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Efficient Quartet Representations of Trees and

Applications to Supertree and Summary Methods
Ruth Davidson, MaLyn Lawhorn, Joseph Rusinko*, and Noah Weber

Abstract—Quartet trees displayed by larger phylogenetic trees
have long been used as inputs for species tree and supertree
reconstruction. Computational constraints prevent the use of
all displayed quartets in many practical problems with large
numbers of taxa. We introduce the notion of an Efficient Quartet
System (EQS) to represent a phylogenetic tree with a subset of
the quartets displayed by the tree. We show mathematically that
the set of quartets obtained from a tree via an EQS contains
all of the combinatorial information of the tree itself. Using
performance tests on simulated datasets, we also demonstrate
that using an EQS to reduce the number of quartets in both
summary method pipelines for species tree inference as well as
methods for supertree inference results in only small reductions
in accuracy.

I. INTRODUCTION

Phylogenetic reconstruction algorithms turn a single set of
input data about a set of taxa into a tree that reflects the
evolutionary relationships among the taxa. Due to advances in
molecular sequencing technology in recent decades, the input
to a phylogenetic reconstruction problem is usually a set of
molecular sequences.

Our contribution in this manuscript is useful for two-step
pipelines that first infer an alignment of the sequence data [1],
[2], [3] and then infer a tree from the alignment [4], [5], [6],
[7]. Inputs to two-step phylogenomic inference methods are
usually aligned molecular sequence data from genomes of taxa
obtained as short sequences of nucleotides or proteins referred
to as genes. The gene alignments are either used to infer
gene trees, which are then used as the input to phylogenomic
methods known as summary methods, or concatenated into a
single long alignment before applying a phylogenetic inference
method to infer a species tree. The concatenation versus
summary method approach is the subject of lively debate [8]
that lies outside the scope of this paper.

Combining a collection of gene trees into a single tree
representing the relationships among the species is known as
the gene-species tree problem [9]. The relationship between
gene and species trees can be modeled by the multi-species
coalescent (MSC) [10], [11], [12]. The MSC provides a theo-
retical basis for advances (see [13], [14]) in the development
of species tree reconstruction methods such as [15].
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Reconstructing the entire tree of life may necessitate com-
bining a collection of species trees to construct a supertree
that reflects the relationships among a larger set of taxa. This
process is called supertree reconstruction. Finding an unrooted
supertree that is maximally consistent with a set of input trees
is computationally difficult: even determining whether a set of
unrooted trees is compatible is NP-complete [16]. As a result
traditional supertree reconstruction algorithms are currently
limited in scale [17], [18].

One approach to handling the computational challenges in
both species tree and supertree reconstruction is through the
analysis of four-taxon subtrees known as quartets [19], [20],
[21], [22]. In this approach one identifies quartet relationships
displayed by the individual gene trees or incomplete species
trees, and then combines these quartets through a quartet-
agglomeration algorithm into a single tree that reflects the
observed relationships. Such strategies include heuristics used
as summary methods [22] or exact algorithms allowing a
constrained set of possible species tree outputs [15] that are
designed to produce a species tree displaying the maximum
number of quartets displayed by the set of input trees given to
the method.

In [13] it was shown that under the probability distribution
induced by the MSC model the most frequent unrooted quartet
tree matched the unrooted shape of the species tree. This gives
a theoretical motivation to develop quartet-based methods of
species tree inference. In supertree reconstruction it is assumed
that the subtrees have consistent topologies with the supertree
and thus should share the same set of quartet relationships
[23].

Thus quartet-agglomeration remains a popular technique in
phylogenetic reconstruction despite the fact that the Maximum
Quartet Consistency Problem is known to be an NP-hard opti-
mization problem [16]. Effective heuristics exist for combining
quartets such as Quartets MaxCut (QMC) [21] and the recent
modification of QMC, wQMC [22]. QMC and wQMC are
popular due to their speed and, as we will discuss in this
manuscript, their accuracy under simulation tests. However,
there are limits to the size of a set of taxa in an inference
problem that can be handled by these methods. For example,
the work of Swenson et al. shows that QMC using all the
quartets fails to return an answer using 500 taxa, as does
Matrix Representation with Parsimony (MRP) [24].

One strength of quartet-based reconstruction is that in order
to reconstruct an n-taxon tree one does not need all

(

n
4

)

input
quartets. Theoretically, a carefully selected set of n−3 quartets
is sufficient, but this requires knowledge of the correct tree
[25]. In practice, some studies have indicated that randomly
sampled quartets on the order of n3 are sufficient for reliable
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reconstruction [21]. However, even QMC using quartets sam-
pled via a stochastic method can fail once the number of taxa
approaches 1000 due to the overwhelming number of quartets
that must be analyzed [23]. This random sampling approach
is also used in the biological analysis in [26] as well as the
simulations in [22].

The number of quartets under consideration affects the
running time of any phylogenetic inference method that takes
quartets as inputs. Therefore it is natural to ask if a small
subset of quartets can be used without losing any mathematical
information about the tree.

In this paper we propose a method of quartet sampling that is
based on the combinatorics of definitive quartets. A collection
of trees is called definitive if there exists a unique tree that
displays all of the trees in the collection. Our method builds
on the combinatorial structures developed in [25], [27], and
proposes sampling a particular set of input quartets that we
call an Efficient Quartet System (EQS).

An EQS is definitive and thus captures all of the phylo-
genetic signal contained in the input trees. Since QMC is a
heuristic algorithm with no theoretical guarantees it does not
always return the correct tree even when the input quartets
are definitive (see [27] for a six-taxon example). However, we
demonstrate that QMC returns the correct simulated model tree
given an EQS as input with extremely high probability. We test
the efficacy of using an EQS representation of a set of gene
trees as an input for summary methods as well as the efficacy
of using an EQS representation of the incomplete species trees
used in supertree reconstruction.

Sampling using an EQS is an alternative to sampling short
quartets, or those with a smaller diameter in the input tree,
with larger probability than sampling quartets at random [20].
The short quartets approach prioritizes the inclusion of quartets
thought to be accurately reconstructed, while our approach
prioritizes selecting quartets that are guaranteed to retain the
combinatorial features of the inferred tree.

II. EFFICIENT QUARTET SYSTEMS

A. Theoretical Properties of an EQS

A phylogenetic tree is a connected, undirected, acyclic graph
in which the vertices of degree one (often called leaves) are
labeled by a set of taxa. We assume all trees in this paper are
binary, meaning that the internal vertices are of degree three.
Furthermore, we assume all trees in this paper are unrooted. A
quartet tree is a phylogenetic tree with four leaves. We write
ab|cd when a and b form a cherry of T . Figure 1 shows this
tree.

ca

db

Fig. 1: Unrooted Quartet ab|cd

A quartet is the fundamental unit of evolutionary infor-
mation when working with methods based on time-reversible
models of sequence evolution such as GTR [28].

Let T be a phylogenetic tree on a set of taxa X . For
every subset S ⊆ X , the induced subtree T |S is the tree
constructed by taking the unique minimal connected subgraph
of T containing the leaves in S , and then removing all vertices
of degree two. The support of a tree, denoted by supp(T ), is
the collection of taxa at the leaves of T . We say a tree T1

displays a tree T2 if T1|supp(T2) = T2. The set of quartets of
a tree, denoted by Q(T ), is the collection of quartets displayed
by T .

The following definition generalizes the notion of a quartet
distinguishing an edge of a tree (cf. def. 6.8.3 in [29]).

Definition 1. A quartet q = ab|cd distinguishes a path p
between internal vertices v1 and v2 of T if the following three
conditions are met:

1) {a, b} and {c, d} are subsets of different connected
components of graph formed by removing the path p
from the tree T ,

2) the path between a and b in T passes through v1, and
3) the path between c and d in T passes through v2.

We define a representative subset of Q(T ) known as an
Efficient Quartet System (EQS) which is both definitive and
contains a quartet which distinguishes a path between each pair
of internal vertices of T . To construct an EQS we first assign
to each internal vertex a representative set of taxa (RST). To
do so we first observe that each internal vertex on a binary
tree partitions the taxa into three disjoint sets S1, S2, and S3.

Definition 2. For a given ordering of the internal vertices
of a tree, sequentially assign each vertex vi a three-element
representative set of taxa denoted by RST (vi) consisting of
representative taxa rt1(vi) ∈ S1(vi), rt2(vi) ∈ S2(vi), and
rt3(vi) ∈ S3(vi) which are the fewest number of edges from
vi. When there are multiple taxa satisfying these conditions
we use the following tie-breaking procedure:

• Choose a taxon that is part of a cherry.
• Select the taxon appearing in the most RSTs for the

preceding vertices.
• Select a taxon at random.

The tie-breaking procedure in the second bullet point en-
sures Lemma II.1 holds.

Lemma II.1. If vi and vj are adjacent internal vertices of a
tree T , then |RST (vi) ∪RST (vj)| = 4.

Proof: Let vi and vj be adjacent internal vertices of a tree
T . Assume that i precedes j in the ordering of internal vertices
used to compute the associated RST. The removal of each
vertex partitions the tree into three connected components. We
assume that S1(vi) (resp. S1(vj)) corresponds to the taxa in
the connected component of the tree that contains vj (resp.
vi). Since any path which from vi to a taxa in S1 must pass
first through vj it follows from the second bullet point in the
tie-breaking procedure that rt1(vi) must be either rt2(vj) or
rt3(vj). Therefore rt1(vi) ∈ RST (vj). A similar argument
shows that rt1(vj) ∈ RST (vi). The proof then follows from
noting that |RST (vi)∪RST (vj)| > 3 since both rt2(vj) and
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rt3(vj) are elements of S1(vi) and thus cannot both be in
RST (vi).

Given a choice of RSTs, we construct a collection of quartets
known as efficient quartets.

Definition 3. Given a pair of internal vertices vi and vj and
a RST, the associated efficient quartet is the unique quartet
q = ab|cd such that supp(q) ⊂ RST (vi) ∪ RST (vj), and
which distinguishes the path between vi and vj . Explicitly,
a = rt2(vi), b = rt3(vi), c = rt2(vj), and d = rt3(vj).

Definition 4. Given a fixed RST of T , an Efficient Quartet
System (EQS) of T -denoted E(T )-is the set of all possible
efficient quartets associated to T .

Since the RST is dependent on both an ordering of internal
vertices and the potential random selection of taxa there is
not a unique EQS associated to T thus we refer to an EQS
rather than the EQS. However, it is important to note that the
cardinality of an EQS E(T ) for any tree T is independent of
these choices.

Lemma II.2. In a tree T with n taxa and any EQS represen-
tation E(T ) of T , |E(T )| =

(

n−2
2

)

.

Proof: This is clear because there is one efficient quartet
for each pair of internal vertices in the tree.

So, as |Q(T )| =
(

n
4

)

and |E(T )| =
(

n−2
2

)

, reconstruction

pipelines incorporating an EQS will require the use of O(n2)
fewer quartets.

Small definitive systems of quartets are strong candidates
for supertree inputs as they retain all of the combinatorial
information from the input trees. One example of a family of
small definitive systems of quartets is known as linked systems,
introduced in [27].

Definition 5 ([27]). Given a subset of quartets L ⊂ Q(T ) of
n − 3 quartet trees, define the associated graph GT (L) with
vertex set V and edge set E as follows:

• the vertex set V is the set of all quartet trees q ∈ L
which distinguish a unique edge in T , and

• vertex pairs {qi, qj} are connected by an edge e ∈ L if
the edge ei that qi distinguishes is adjacent to the edge
ej that qj distinguishes and |supp({qi, qj})| = 5.

Two quartets are linked if their vertices are connected in
GT (L). The system of quartet trees L is a linked system if
GT (L) is connected.

Proposition II.3. An EQS is a definitive set of quartets.

Proof: Let E(T ) be an EQS for a tree T . We denote by
L(T ) to be the subset of E(T ) of size n− 3 of quartets that
distinguish edges of T . Let qi and qj be elements of L(T )
which distinguish adjacent edges. It follows from Lemma II.1
that |supp(qi)∪supp(qj)| ≤ 5. This must in fact be an equality
since qi 6= qj . Thus L(T ) is a linked system of quartets. It
follows from Theorem 3.1 in [27] that L(T ) is a definitive set
of quartets. Since each quartet in E(T ) is displayed by a tree,
then T must be the unique tree that displays the quartets in
L(T ). Therefore E(T ) is a definitive set of quartets.

Along with Lemma II.2, Proposition II.3 indicates that the
notion of an EQS satisfies theoretical properties that merit
exploration in phylogenetic inference pipeline applications.

# Taxa T = QMC(E(T )) Normalized RF distance

100 99.5% 0.01%

200 98.3% 0.02 %

300 95.3% 0.07 %

400 95.3% 0.05 %

500 92.7% 0.06 %

600 82.8% 0.10 %

700 84.2% 0.10 %

800 85.0% 0.08 %

900 78.8% 0.10 %

1000 79.0% 0.09 %

TABLE I: Comparison between T and QMC(E(T )) for 1000
trees generated under the Yule-Harding model. Normalized RF
distances are reported as the mean over all 1000 trees in each
data set.

III. EXPERIMENTAL PROPERTIES OF AN EQS

In our first experiment we choose an input tree T and ask
if QMC returns a tree similar to T given the input E(T ).
This baseline test indicates that not too much information is
being lost in the conversion of input data from T to E(T ). In
the second and third experiments we test the utility of adding
an EQS component to pipelines for species tree construction
and supertree construction. We use wQMC in both of these
experiments.

A. Baseline Finding

Given a tree T , we denote by QMC(E(T )) the tree
constructed by applying QMC to the efficient representa-
tion E(T ) of T . To measure the amount of information
lost by using E(T ) to represent T and reconstruct T us-
ing QMC, we generated a tree T and then computed the
Normalized Robinson-Foulds (RF) distance [30] between T
and QMC(E(T )). The Robinson-Foulds distance measures
the number of bipartitions (also known as splits) of the taxa
that appear in one tree but not the other. As a result RF
distances tend to be larger for trees with more taxa. To account
for this we report the Normalized Robinson-Foulds distance
because it scales the RF distance by the maximum possible
RF distance. Since QMC is a heuristic algorithm with no
theoretical guarantees, it is both impossible to provide a proof
that QMC(E(T )) = T for all trees T and unreasonable to
expect that the equality QMC(E(T )) = T would be observed
in practice.

We used the R package ape to simulate unrooted, binary
trees on increasing numbers of taxa and without assigned
branch lengths [31]. For each tree size between 100 and 1000,
we generated 1000 trees under the Yule-Harding distribution
with the rmtree command in ape. For each tree we computed
the Normalized Robinson-Foulds distance between T and
QMC(E(T )). We also report the percentage of time when
QMC(E(T )) is the original tree T . The results of this study
are displayed in Table I.

It is plausible that QMC could return T given even smaller
input sets than E(T ). However, we ran this analysis using
QMC applied to linked systems L(T ), which are definitive
but contain only n−3 quartets. On the same 100 taxa samples
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used in Table I, QMC(L(T )) returns the correct tree 0.0%
of the time and has a Normalized RF distance of 61.45% in
comparison to a .01% error observed for QMC(E(T )).

Given that QMC(L(T )) fails to represent the combinatorial
information in T we do not report the similarly poor perfor-
mance of QMC(L(T )) in our subsequent experiments. Our
hypothesis is that the problem in applying QMC to linked
systems, or other small definitive quartet systems, is that not
enough information remains in the divide-and-conquer step of
QMC to reconstruct a tree. Therefore, the trees returned by
QMC(L(T )) are largely unresolved. While it is possible to
quickly reconstruct an accurate tree from L(T ) (p. 139 [29])
this does not appear to be easy using an algorithm which can
also handle incompatible quartets.

B. Application of an EQS in a Pipeline Using wQMC as a
Summary Method

A summary method is a method for estimating a species
history on a set of n species X that has two steps. First, gene
trees are inferred from multiple loci using a tree-inference
method. Then a set of gene trees G from each locus are
combined into a species tree S. See [32] and ASTRAL-II
[15] for examples of promising (in terms of running time and
accuracy) summary methods that will complete their analyses
on datasets containing about 50 taxa in a reasonable amount
of time, e.g. less than 24 hours on a typical laptop or desktop
machine purchased after 2011.

The quartet-agglomeration method wQMC [22] is a mod-
ification to QMC [21] that allows the quartets input to the
method to be assigned weights by the user. Therefore wQMC
can be used as a summary method, and this use of wQMC has
been shown to yield reasonably accurate results on simulated
datasets [33]. To use wQMC in this way, one first computes
the set of all quartets q that are displayed by each gene tree in
a set of gene trees G, and then computes the frequency with
which q appears in G, which we denote by w(q,G).

A computational challenge arises in this approach due to
the growth rate of the binomial coefficient

(

n
4

)

. One ap-
proach to deal with this obstacle is to provide the quartet-
agglomeration method with a selection of randomly sampled
subsets of quartets. For example, this is the approach used
in the experimental study in [26] to complete an analysis on
52 taxa. This approach is also used in [23], [22] and [34].
But it is unknown what phylogenomic signal is lost when
using randomly sampled quartets to represent the information
in the dataset; this motivates the incorporation of an EQS
representation of gene trees into summary method pipelines.

We demonstrate the use of EQS representations of gene trees
by using wQMC as a summary method. We first compute EQS
representations of each gene tree in a set G, and then use the
EQS representations of the trees in G to compute the quartet
frequencies used as weights for wQMC. This approach was
also used in [33], but with using all quartets displayed by the
gene trees. We chose a data set with 51 taxa from [15] for this
experiment because

1) datasets with this number of taxa are large enough to
begin to pose computational difficulties such as those

encountered in [26] (in which they used QMC and ran
most of their analyses on desktop machines without
appealing to access to high-performance computing
resources), and

2) datasets of interest to biologists regularly contain at
least 50 taxa.

In particular, we use the dataset on 51 taxa from [15], which
was generated using the program SimPhy [35]. This dataset is
described in detail in the original paper [15] and linked to on
the website for the supporting online materials for this paper.
But briefly, we mention that the dataset contains 50 replicates,
each containing 1000 true gene trees simulated on a model
species tree under the MSC model as well as 1000 gene trees
estimated from sequences simulated on the true gene trees.
Our experiment uses the true gene trees to both

1) maintain similarity with the baseline experiment in
Section III-A, and

2) avoid the introduction of gene tree estimation error
in the first analysis of the EQS approach. Gene tree
estimation error can only be bounded in the presence
of a molecular clock [36], which cannot be assumed in
the context of methods that use unrooted trees as inputs.

For the Control Version of this experiment we first computed
the set of all quartets displayed by each true gene tree in the
set G for each replicate in the data set using custom scripts
based on software developed for [37], and then computed the
frequency w(q,G) with which each quartet appeared in G.

In the Efficient Version of this experiment, we tested the
efficacy of an EQS for conserving the information of the
gene trees in a summary method. We first found an EQS
representing each true gene tree for each replicate in the
data set, combined the resulting quartets for each replicate,
which we denote as QE , and then computed the frequency
wE(q,G) with which each quartet in this reduced set of
quartets appeared.

In each version of this experiment, the sets of frequencies
from w(q,G) (respectively wE(q,G)) were given as user-
assigned weights to quartets for wQMC and wQMC was used
to infer the final species tree.

We measure accuracy for the summary method experiments
using the proportion of splits in the simulated true species
tree that are missing from the species trees estimated by the
summary method or pipeline. We refer to this as the missing
branch rate.

1) Comparison of Experimental Results: We note that the
frequency of a quartet in G will clearly be lower using an
EQS for each true gene tree in G, but this only affects the
weight of the quartet that must be sent to wQMC at the end
of the species tree pipeline. In addition, the upper bounds for
the number of quartets which must be extracted for each gene
tree is reduced from

(

51
4

)

to
(

49
2

)

.

Using EQS representations of the trees in the set G did
effectively reduce the number of quartets input to wQMC in
our experiment. In the Control Version the average number
of quartets across all 50 replicates given to wQMC as the
input set was 649,474, while in the Efficient Version the
average number of quartets across all 50 replicates given to
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Method Real Timing Real Timing

(Quartets Pre-processing) (Species-tree Estimation)

ASTRAL-II 4.7.8 N/A 36m50.100s

Efficient Version 689m29.315s 0m39.604s

Control Version 875m2.449s 1m19.076s

TABLE II: Real Timing Results for EQS and wQMC vs.
ASTRAL-II on a 51-taxon dataset from [15]. Timing data
reported represents the mean time to complete all computations
for a single replicate in the dataset.

Method User Timing User Timing

(Quartets Pre-processing) (Species-tree estimation)

ASTRAL-II 4.7.8 N/A 36m18.873s

Efficient Version 608m51.966s 0m36.769s

Control Version 2433m32.509s 0m59.574s

TABLE III: User Timing Results for EQS and wQMC vs.
ASTRAL-II 4.7.8 on a 51-taxon dataset from [15]. Timing data
reported represents the mean time to complete all computations
for a single replicate in the dataset.

wQMC as the input set was 155,511. This is a significant
reduction in the number of quartets. As shown in Table V,
the large reduction in the number of quartets in the Efficient
Version of the experiment did result in a minor reduction
in accuracy. Our experiments indicate quartet-based summary
method pipelines incorporating EQS representations of gene
trees reduces the total number of quartets derived from the
original gene trees but does not lead to a significant reduction
in accuracy, therefore preserving most of the phylogenomic
signal.

We re-ran the analyses of the dataset using ASTRAL-
II version 4.7.8 to verify the results in the original paper
[15]. Our mean missing branch rate across all 50 replicates
for this dataset essentially matches that reported in [15].
However, in [15], results were given in charts with labeled
axes instead of precise numerical accuracies, which prevents
exact comparison of the results. We also compared the timing
of our experiment to the timing of ASTRAL-II. ASTRAL-II
does not require the pre-processing of quartets and follows a
different algorithmic paradigm, so the only time reported is
the species-tree estimation. Tables II, III, and IV show that
the approximately six-fold reduction in the number of quartets
sent to wQMC reduces the running time of wQMC by about
50% in both real and system timing. In addition, the accuracies
shown in Table V for the Efficient and Control Versions of our
experiment are competitive with ASTRAL-II.

This may have implications for other quartet-agglomeration
methods. For example, another such method, Quartets FM
(QFM), named after Fiduccia and Mattheyses (who introduced
an algorithm known as FM for partitioning hypergraphs [38]),
was introduced in [39]. The simulations in [39] showed im-
proved accuracy over QMC but incurred a cost of a much
slower running time. The reduction in time shown with EQS
representations of trees in combination wQMC indicates that
incorporating the use of an EQS may boost the timing perfor-
mance of QFM in a similar pipeline.

Method System Timing System Timing

(Quartets Pre-processing) (Species-tree Estimation)

ASTRAL-II 4.7.8 N/A 0m25.483s

Efficient Version 41m53.718s 0m0.315s

Control Version 238m18.885s 0m0.612s

TABLE IV: System Timing Results for Efficient and Control
Versions vs. ASTRAL-II 4.7.8 on a 51-taxon dataset from [15].
Timing data reported represents the mean time to complete all
computations for a single replicate in the dataset.

Method Accuracy

ASTRAL-II 4.7.8 0.009576

Efficient Version 0.015414

Control Version 0.009992

TABLE V: Accuracy Results for Efficient and Control Ver-
sions vs. ASTRAL-II 4.7.8 on a 51-taxon dataset from [15].
Accuracy is given by the mean missing branch rate across all
50 replicates in the dataset.

C. Application of an EQS to the use of wQMC as a Supertree
Method

When reconstructing the evolutionary history of large and
diverse samples of taxa, one must combine information from
a variety of input trees into one large supertree reflecting
the history of all taxa under consideration. Quartet-based
algorithms such as wQMC can be used to combine these input
trees into one large supertree. However, the MaxCut algorithm
may fail to complete in a reasonable time if the number of taxa
studied is over 500 when using all quartets, or over 1000 when
using randomly sampled quartets [23]. Therefore, we restrict
our analysis to the application of the MaxCut algorithm to an
EQS-based pipeline rather than the full collection of quartets.

An experimental methodology for testing supertree recon-
struction algorithms was developed in [40]. Swenson et al. used
a sophisticated protocol to generate simulated input trees mim-
icking the process that a computational biologist would use
to construct a supertree. For each supertree they constructed
input trees which reflected the process of estimating 25 clade-
based trees and a single scaffold tree from DNA sequences
which evolved along the corresponding induced subtree of the
supertree. A scaffold tree contains a more disparate set of
species and is meant to help glue the clade trees together.
We emphasize that the clade and scaffold trees were not
constructed under the MSC model, so if the gene trees are
accurately estimated all quartets on these trees should have the
same topology as the corresponding quartets on the supertrees.
In this study (and in practice) there are errors in estimating the
clade and scaffold trees from the sequence data.

We use the data from this study to test the accuracy of
wQMC when applied to an EQS in the case when the true
species tree has 1000 taxa. The density of the taxa which were
included in the scaffold tree ranged from 20% to 100% [40].

Swenson et al. [40] compared MRP [24] using the incom-
plete species trees as inputs, and a combined analysis using
maximum likelihood that reconstructed the species tree directly
after concatenating the DNA sequence data. Methods were
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Scaffold Density wQMC(E(T )) MRP* Combined Analysis with ML*

20% 43.2% 23% 14%

50% 22.5% 21% 15%

75% 14.5% 18% 13%

100% 12.6% 15% 13%

TABLE VI: Normalized RF distance rate between true su-
pertrees and trees reconstructed using wQMC with an EQS-
based approach, MRP, and a combined analysis using maxi-
mum likelihood. Reported error is the mean over ten 1000-
taxon supertrees. Reported accuracies from both the MRP and
Combined Analyses are estimated from Figure 5 of [40].

evaluated based on speed and on the Normalized RF distance
rate between the reconstructed tree and the true species tree.

We did not investigate different weighting systems for
wQMC in the supertree and baseline experiments, but instead if
a quartet appears in an EQS representation of l trees it receives
a weight of l. Since the input data is in terms of unrooted
tree topologies, in each case we analyze the results in terms
of the topological distance between the model tree and the
reconstructed tree.

Table VI shows the Normalized RF distance rate when
wQMC is applied to quartets derived from an EQS in compar-
ison with the results found in [23]. Differences in computing
power prevent a precise comparison between the running times
published in [23] and wQMC applied used with an EQS-based
approach. As a rough comparison, wQMC using an EQS to
represent the input trees returns a supertree on 1000 taxa in
approximately 5 minutes. The equivalent process was reported
to take 1 hour and 47 minutes using MRP and almost 31 hours
when using the combined analysis with maximum likelihood
[23]. We note that the algorithms have similar performance
when the scaffold density is at least 50%, and the use of
wQMC with an EQS-based approach results in decreased
accuracy when the scaffold density is only 20%.

IV. CONCLUSION AND FUTURE WORK

As quartets remain a common input for summary and
supertree methods one should carefully consider which sets
of quartets best reflect the input data. In this article we
demonstrate that an EQS theoretically encodes all of the data
of the input tree, and in practice contains enough information
for a fast heuristic algorithm to reconstruct over 99.9% of the
topological data of the original input trees.

When an EQS is incorporated into a quartet-based summary
method pipeline, the data loss from our initial study appears
to be insignificant in terms of accuracy measured by the
missing branch rate. Since computing the EQS representations
of 50,000 gene trees (from the 50 replicates in the dataset)
resulted in a large reduction of the number of quartets nec-
essary to compute a species tree, this reduction has potential
to assist other quartet-agglomeration techniques such as the
QFM method and quartet-puzzling. As the size of datasets
grows and newer methods such as SVDquartets [26] require the
combination of ever-increasing amounts of quartets, reduction
in quartet set size has potential to enable the adoption of
methods that can bypass gene tree estimation error.

When used in a supertree reconstruction, wQMC in com-
bination with an EQS representation of the input trees has
comparable performance to MRP and a combined analysis
using Maximum Likelihood when the scaffold density is at
least 50%. The performance is not as strong when the scaffold
density is only 20%. The decrease in accuracy of wQMC when
using a low scaffold density is offset by the dramatic increase
in speed. This preliminary analysis shows that wQMC in
combination with an EQS should be considered as a potential
supertree reconstruction pipeline when large numbers of taxa
need to be considered. However, care should be taken to ensure
sufficient taxon coverage. It may also be possible that the low
accuracy could be corrected by using multiple scaffold trees
with lower taxon coverage.

As our timing data shows, pre-processing of quartets is
a noteworthy component of quartet-based summary method
pipelines such as the one presented in this paper. Analyzing
all quartets is infeasible due to computational constraints in
many situations, but using smaller definitive systems such
as linked systems can be ineffective when using algorithms
such as QMC and wQMC that must also handle incompatible
quartets. The approach of incorporating an EQS lies in between
and may be an appropriate standard tool when one needs to
identify a representative set of quartets. We conclude with open
questions, which we believe may help to further improve the
field.

Question 1. Can one modify the QMC algorithm to ensure
that T = QMC(E(T )) or that it has the property T =
QMC(f(T )) where f(T ) is a definitive set of quartets on
the order of n?

Question 2. Could quartet-based summary and supertree meth-
ods be improved by using weighting functions that account
for potential error in gene tree estimation, or account for
implementation-based biases in algorithms such as wQMC
known to have no theoretical guarantees, but good performance
in data simulation tests [33]?

Question 3. Recently, QFM has been re-implemented in the
beta-testing version of PAUP* [41] with a refined implemen-
tation [42] over the original implementation in [39]. Could
QFM in combination with EQS produce better results than
with wQMC?

Question 4. Networks provide an alternative combinatorial
framework to trees for describing complex evolutionary his-
tories [43], [44], [45]. Recent work suggests that displayed
quartets can be an important tool in phylogenetic network
reconstruction [46] which is more computationally demanding
than the tree reconstruction considered here. Can the use of
EQS representations of networks increase the scalability of
quartet-based network reconstruction algorithms?

A. Description and Availability of Software

Supporting materials, including the Efficient Quartets
software developed by M. Lawhorn and N. Weber and
the pipeline developed by R. Davidson for incorporating
the use of an EQS into a summary method pipeline,
are available at the websites http://goo.gl/TSFzeD and
https://github.com/redavids/efficientquartets.
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