Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Fully Dynamic Connectivity in O(log n(loglogn)?)
Amortized Expected Time*

Shang-En Huang
Univ. of Michigan

Dawei Huang
Univ. of Michigan

Abstract

Dynamic connectivity is one of the most fundamental
problems in dynamic graph algorithms. We present
a new randomized dynamic connectivity structure with
O(log n(loglogn)?) amortized expected update time and
O(logn/logloglogn) query time, which comes within an
O((loglogn)?) factor of a lower bound due to Patragcu and
Demaine. The new structure is based on a dynamic connec-
tivity algorithm proposed by Thorup in an extended abstract
at STOC 2000, which left out some important details.

1 Introduction

The dynamic connectivity problem is one of the most
fundamental problems in dynamic graph algorithms.
The goal is to support the following three operations
on an undirected graph G with n vertices:

e Insert(u,v): Insert a new edge (u,v) into G.
e Delete(u,v): Delete edge (u,v) from G.

e Conn?(u,v): Return true if and only if u and v
are in the same connected component in G.

In this paper we prove the following bound on the
complexity of dynamic connectivity.

THEOREM 1.1. There exists a Las Vegas randomized
dynamic connectivity data structure, that supports
insertions and deletions of edges in amortized ex-
pected O(log n(loglogn)?) time, and answers connectiv-
ity queries in worst case O(logn/logloglogn) time.

Previous Results. The dynamic connectivity prob-
lem has been studied under both worst case and
amortized measures of efficiency, and in determinis-
tic, randomized Monte Carlo, and randomized Las
Vegas models. We therefore have the opportunity
to see six incomparably best algorithms! Luckily,

Supported by NSF grants CCF-1217338, CNS-
1318294, and CCF-1514383. Contact: sehuang@umich.edu,
dwhuang9@gmail .com, kopelot@gmail.com, seth@pettie.net

510

Seth Pettie
Univ. of Michigan

Tsvi Kopelowitz
Univ. of Michigan

there are currently only four. The best deterministic-

worst case update time is O(\/%Osnp) [10], im-
proving on the long-standing O(y/n) bound [3, 1],
and the best deterministic-amortized update time is
O(log? n/loglogn) [16], improving on earlier O(log? n)-
time algorithms [8, 14] (see also [6, 7]). Kapron et al. [9]
designed a worst case randomized Monte Carlo algo-
rithm with O(log® n) update time, that is, there is some
1/ poly(n) probability of answering a connectivity query
incorrectly. The update time was recently improved to
O(log* n) [4] for deletion and O(log® n) [15] for insersion.
In all dynamic connectivity algorithms the update time
determines the query time [6]: O(¢(n)logn) update im-
plies O(logn/logt(n)) query time; see Theorem 2.1.

Thorup [14], in an extended abstract pre-
sented at STOC 2000, proposed a Las Vegas
randomized-amortized algorithm with update time
O(log n(loglogn)?), that is, queries must be answered
correctly with probability 1, and the total update
time for m updates is a random variable, which is
m - O(logn(loglogn)?) in expectation. Unfortunately,
the extended abstract [14] sketched or omitted a few
critical data structural details. The problem of com-
pleting Thorup’s research program has, over the years,
evolved into an important open research problem in
the area of dynamic graph algorithms. A bound of
O(lognpoly(loglogn)) is substantially better than the
best worst case and/or deterministic algorithms [10, 8,
9, 16], and comes within a tiny poly(loglogn) factor of
known cell-probe lower bounds [11, 12].

Patragcu and Demaine [11] showed that for ¢(n) =
Q(1), update time O(t(n)logn) implies query time
Q(logn/logt(n)) and Patragcu and Thorup [12] showed
that there is no similar tradeoff in the reverse direction,
that update time o(log n) implies Q(n!=°(M)) query time.
Whether there is a dynamic connectivity structure sup-
porting all operations in O(logn) time (even amortized)
is one of the main open questions in this area. This
bound has only been achieved on forests [13] and em-
bedded planar graphs [2].

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Our Contribution. Thorup [14] proposed a dynamic
connectivity structure based on four innovative ideas:
(1) using a single, hierarchical representation of the
graph, (2) imposing an overlay network of shortcuts on
this representation in order to navigate between certain
nodes in O(loglogn) time, (3) using random sampling
(as in [7, 6]) to find replacement edges after Delete
operations, and (4) maintaining a system of approzimate
counters to facilitate efficient random sampling of edges.
The interactions between these four elements is rather
complex. Dynamic changes in the hierarchy (1) may
require destroying and rebuilding the shortcuts in (2),
and may invalidate the approximate counters in (4). In
order for (3) to work correctly the approximate counters
must be very accurate.

In this paper we use the same tools introduced
by Thorup, but apply them differently in order to
simplify parts of the algorithm, to accommodate a proof
of correctness, and improve the expected amortized
update time to O(logn(loglogn)?). Here is a summary
of the technical differences.

e Thorup [14] (as in [8, 16]) assigns each edge a depth
(aka level) between 1 and logn and maintains a
spanning forest F. Depths are non-decreasing over
time, so we can charge each depth promotion (from
i to i+ 1) (loglogn)? units of work. The depths of
F-edges induce a hierarchy H, which is then refined
into a binary hierarchy, 1%, by substituting “local
trees” connecting each H-node to its H-children.
One of the primitive operations supported by the
hierarchy H is to return an almost uniformly ran-
dom depth-¢ edge touching some component corre-
sponding to an H-node. To implement this random
sampling efficiently one needs a system of short-
cuts and approximate counters. However, it is not
obvious how to efficiently maintain approximate
counters after edge promotions. Our data struc-
ture uses a more complicated classification of edges,
which simplifies how approximate counters are im-
plemented and analyzed. Each edge has a depth,
as before, and each edge is either a witness (in F)
or non-witness. The endpoints of a depth-i non-
witness edge can be either primary or secondary.
We only keep approximate counters for i-primary
endpoints, and only sample i-primary endpoints.
When an edge is promoted from depth i — 1 to
1, its endpoints are secondary, so there is no im-
mediate need to update approximate counters for
depth i. So long as good replacement edges can be
found by sampling from the pool of ¢-primary end-
points we are happy, but if none can be found we are
also happy to spend some time promoting depth-i
edges to depth-(i + 1), and upgrading i-secondary

511

endpoints to i-primary status. Since each edge’s
endpoints can be upgraded at most 2logn times
over the lifetime of the edge, each upgrade can also
be charged (loglogn)? units of work. Whenever
we upgrade i-secondary endpoints to i-primary sta-
tus, we are guaranteed that the number of promo-
tions/upgrades is large enough to completely rebuild
the system of approximate counters for a pool of i-
primary endpoints.

e One of Thorup’s [14] ideas was to maintain logn
forests (one for each edge depth) on different sub-
sets of the Hb-nodes, via a system of shortcuts.
However, to be efficient it is important that these
forests share shortcuts whenever possible. We pro-
vide a new method for storing and updating short-
cuts, that allows us to find the right shortcut at a
HP-node in O(1) time, and update information on
all the shortcuts at a Hb-node in O(loglogn) time.

e We give a simpler random sampling procedure,
which can be regarded as a two-stage version of
the “provide or bound” routine of [6]. Our ran-
dom sampling procedure is necessarily somewhat
different than [14] because of the classification of
non-witness edges into primary and secondary. The
routine must either (i) provide a replacement edge
with an i-primary endpoint, or (ii) determine that
the fraction of such edges is less than a certain con-
stant, with high probability. In case (ii) the proce-
dure has found (statistical) evidence that there will
be enough promotions/upgrades to pay for convert-
ing i-secondary endpoints to i-primary, promoting
depth-i edges to depth-(i + 1), and rebuilding -
primary approximate counters.

e The structure of H is uniquely determined by the
depths of witness (F) edges, and H’ is a binary
refinement of H. In Thorup’s [14] system H’ is
only modified in response to structural changes in
H, due to promotions of witness edges in F. A
key invariant maintained by our data structure is
that certain approximate counters, once initialized,
are only subject to decrements, never increments.
Thus, to preserve this invariant we actually up-
date H® in response to non-witness edge promo-
tions/upgrades, which necessarily have no effect on

H.

Organization of the Paper. In Section 2 we re-
view several fundamental concepts of dynamic connec-
tivity algorithms. Section 3 gives a detailed overview of
the data structure invariants and its three main compo-
nents: maintaining a binary hierarchical representation

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

of the graph, maintaining shortcuts for efficient naviga-
tion around the hierarchy, and maintaining a system of
approximate counters to support O(1)-approximate ran-
dom sampling. Each of these three main components is
explained in great detail in the arXiv version of the pa-
per?.

2 Preliminaries

In this section we review some basic concepts and
invariants used in prior dynamic connectivity algo-
rithms [6, 5, 8, 14, 16].

Witness Edges, Witness Forests and Replace-
ment Edges. A common method for supporting con-
nectivity queries is to maintain a spanning forest F of
G called the witness forest, together with a dynamic
connectivity structure on F. Each edge in the witness
forest is called a witness edge and all others non-witness
edges. Notice that deleting a non-witness edge does not
change the connectivity. A dynamic connectivity data
structure for F supports fast queries via Theorem 2.1.

THEOREM 2.1. (HENZINGER AND KING [5]) For any
function t(n) = Q(1), there exists a dynamic connectiv-
ity data structure for forests with O(t(n)logn) update
time and O(logn/logt(n)) query time.

The difficulty in maintaining a dynamic connectiv-
ity data structure is to find a replacement edge ¢ when
a witness edge e € F is deleted, or determine that no
replacement exists. To speed up the search for replace-
ment edges we maintain Invariant 1 (below) governing
edge depths.

Edge Depths. Each edge e has a depth d. € [1, dyaz],
where dpe; = |logn]. Let E; be the set of edges
with depth i. All edges are inserted at depth 1 and
depths are non-decreasing over time. Incrementing
the depth of an edge is called a promotion. Since
we are aiming for O(logn(loglogn)?) amortized time
per update, if the actual time to promote an edge
set S is O(|S] - (loglogn)?), the amortized time per
promotion is zero. Promotions are performed in order to
maintain Invariant 1. There are other at most O(logn)
status changes that an edge will undergo, each affording

O((loglogn)?) work. Define G; = (V,U;; E))-
INVARIANT 1. (THE DEPTH INVARIANT)

(1) (Spanning Forest Property) F is a mazimum span-
ning forest of G with respect to the depths.

(2) (Weight Property) For each 1 < i < dpax, each
connected component in the subgraph G; contains
at most n/2i=1 vertices.

Thttps://arxiv.org/abs/1609.05867

512

Hierarchy of connected components. Define
V; to be in one-to-one correspondence with the con-
nected components of G;y1, which are called (i + 1)-
components. If u € V, let u’ € V; be the unique (i+1)-
component containing u. Define G; = (VZ, Ez) to be the
multigraph (including parallel edges and loops) obtained
by contracting edges with depth above i and discarding
edges with depth below i, so E; = {(u’,v") | (u,v) €
E;}. The hierarchy H is composed of the undirected
multi-graphs Gg Gy ..,Go. An edge e =
(u,v) € E; is said to be touching all nodes 2/ € Vj
where either v/ = 27 or v/ = 27.

Let F; = E; N F be the set of i-witness edges; all
other edges in F; — F; are i-non-witness edges. By
Invariant 1, F; corresponds to a spanning forest of G;.
The weight w(u®) of a node u’ € Vi is the number of
vertices in its component: w(u') = [{v € V | v' =
u'}|. The data structure explicitly maintains the exact
weight of all hierarchy nodes. The weight property in
Invariant 1 can be restated as w(u?) < n/2%.

maz) maz— 1 *

Endpoints. The endpoints of an edge e = (u,v) are
the pairs (u, €) and (v, e). At one stage in our algorithm
we sample a random endpoint from E’ C E incident to
a set V' C V; this means that an edge (u,v) € E’ is
sampled with probability proportional to |{u,v} N V’|.
An endpoint (u,e) is said to be touching the nodes
ut € V; for all i € [1, dmaz)-

3 Overview of the Data Structure

Following the key invariant in [8, 14, 16], the main goal
is summarized as the following lemmas:

LEMMA 3.1. Invariant 1 is maintained throughout up-
dates to G.

In the rest of this section, we provide an overview
of the data structure. The underlined parts of the text
refer to primitive data structure operations supported
by Lemma 3.2, presented in Section 3.3.

The data structure. The hierarchy H naturally de-
fines a rooted forest (not to be confused with the span-
ning forest), which is called the hierarchy forest, and
contains several hierarchy trees. We abuse notation and
say that H refers to this hierarchy forest, together with
several auxiliary data structures supporting operations
on the forest. The nodes in H are the ¢-components
for all 1 < i < dpaez. The roots of the hierarchy trees
are nodes in VO, representing 1-components. The set of
nodes at depth ¢ is exactly V;. The set of children of
a node v’ at depth 7 is {u"t! € Vi; | u* = v'}. The
leaves are nodes in Vdmm = V. See Figure 1 for an ex-
ample. The nodes in H are called H-nodes, and the
roots are called H-roots. Each non-leaf H-node v is as-

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

SO O 0 Q0 000 W

@) () ())) @) @) @9) () €29 €)1 19 €19 €1

Figure 1: An illustration of a graph and the corresponding hierarchy forest H, where n = 15 and duq, = 3. All
thick edges are witness edges and the thin edges are non-witness edges.

sociated with a binary local tree, implicitly supporting
operations between v and its H-children.

3.1 Insertion. To execute an insert(u,v) opera-
tion, where e = (u,v), the data structure first sets
d. = 1. If e connects two distinct components in G
(which is verified by a connectivity query on F), then
the data structure accesses two H-roots u’ and ©°,

merges u’ and v° and e is inserted into H (and F) as

a l-witness edge. Otherwise, e is inserted into H as a

1-non-witness edge.

3.2 Deletion. By the Spanning Forest Property of
Invariant 1, the deletion of an edge e can only be
replaced by edges of depth d. or less. We always first
look for a replacement edge at the same depth of the
deleted edge. If we do not find a replacement edge at
depth d. then we demote e by setting d. + d. — 1,
which preserves Invariant 1, and continue looking for
replacement edges at the new depth d.. Demotion
is merely conceptual; the deletion algorithm does not
actually update d. in the course of deleting e.

To execute a delete(u,v) operation, where e =
(u,v), the data structure first removes e from H. If
e is an ¢-non-witness edge, then the deletion process
is done. If e is an i-witness edge, the deletion of
e could split an é-component. Specifically, prior to
the deletion, the edge (u‘,v%) connected two (i + 1)-
components, u! and v’, which, possibly together with
some additional i-witness edges and (i+ 1)-components,
formed a single i-component u~* = ¢! in G;. If
no i-non-witness replacement edge exists, then deleting
(u,v) splits u’~! into two i-components. In order to
establish if this is the case, the data structure first ac-
cesses u', v' and u'~! in H and implicitly splits the

i-component u’~! into two connected components c,

513

and ¢, in By = (V;,{(u’,v") | (u,v) € F;}) where
u' € ¢, and v' € ¢, (we define ¢, and ¢, but without
context to the subscripts, see Figure 2.a). The rest of
the deletion process focuses on finding a replacement
edge to reconnect ¢, and ¢, into one i-component. This
process has two parts, explained in detail below: (1)
establishing the two components ¢, and ¢,, and (2)
finding a replacement edge. Notice that ¢, and ¢, do
not correspond to H-nodes.

3.2.1 Establishing Two Components. To estab-
lish the two components ¢, and ¢, created by the
deletion of e, the data structure executes in paral-
lel two depth first searches (DFS) on Ej — {(u’,v%)},
one DFS starting from u’ and one DFS starting from
v’. To implement a DFS, the data structure repeat-
edly enumerates all i-witness edge endpoints touching

an (i + 1)-component. The DFSs are carried out in

parallel until one of the connected components is fully
scanned. By fully scanning one component, the weights
of both components are determined (since w(u‘~1) =
w(ey) + w(ey)). Without lost of generality, assume
that w(c,) < w(ey), and so by Invariant 1, w(c,) <
w(ut~1)/2 < n/2i.

Witness Edge Promotions. The data structure
promotes all i-witness edges touching nodes in ¢, and

merges all (i + 1)-components contained in ¢, into one

(i + 1)-component with weight w(c,,). This is permitted

by Invariant 1, since w(c,) < w(u'~!)/2 < n/2!. The
merged (i+1)-component has the node u*~! as its parent
in H. See Figure 2.b.

To differentiate between versions of components
before and after the merges, we use a convention where
bold notation refers to the components after the merges
take place. Thus, we deonte the (i + 1)-component
contracted from all (i + 1)-components inside ¢, by u'.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Figure 2: Hlustration of the hierarchy of components at depth ¢ — 1 and i: (a) After identifying two components
¢y, and ¢y, it turns out that ¢, has smaller weight although it has more (i 4+ 1)-components. (b) After merging all
(i + 1)-components in the smaller weight component. (c) If no replacement edge is found, then ¢, and ¢, are two

actual connected components in G; and hence u' is split.

Similarly, the graph G; after merging some of its nodes
is denoted by Gi.

Having contracted the (i + 1)-components inside
¢, into u!, we now turn our attention to identifying
whether the deletion of e disconnects u! from ¢, in éi.
This task reduces to determining whether there exists an
edge in G; that reconnects u' to any (i+ 1)-components
in w~1\ ul.

3.2.2 Finding a Replacement Edge. Notice that
by definition of G; and w1 a depth i edge is a
replacement edge in E if and only if it is an i-non-
witness edge with exactly one endpoint x € V such
that z° = ul. To find a replacement edge, the data
structure executes one or both of the following two
auxiliary procedures: the sampling procedure and the
enumeration procedure.

Intuition. Consider these two situations. In Situation
A at least a constant fraction of the i-non-witness edges
touching u! have exactly one endpoint touching u', and
are therefore eligible replacement edges. In Situation
B a small € fraction (maybe zero) of these edges have
exactly one endpoint in u'. If we magically knew which
situation we were in and could sample i-non-witness
endpoints uniformly at random then the problem would
be easy. In Situation A we would iteratively sample
an j-non-witness endpoint and test whether the other
endpoint was in u’; each test takes O(lognloglogn)
time. The expected number of samples required to
find a replacement edge is O(1) and this cost would
be charged to the deletion operation. In Situation
B we would enumerate and mark every i-non-witness
endpoint touching ul. Any edge with one mark is
a replacement edge and any with two marks can be
promoted to depth ¢ + 1. Since a majority of the
edges will end up being promoted, the amortized cost

514

of the enumeration procedure is zero, so long as the
enumeration and promotion cost is O((loglogn)?) per
endpoint.

There are two technical difficulties with implement-
ing this idea. First, the set of -non-witness edges inci-
dent to u' is a dynamically changing set, and support-
ing (almost-)uniformly random sampling on this set is a
very tricky problem. Second, we do not know which sit-
uation, A or B, we are in. Note that it is insufficient to
take O(1) random samples and, if no replacement edges
are found, deduce that we are in Situation B. Because
the cost of enumeration is so high, we cannot afford to
mistakenly think we are in Situation B unless the prob-
ability of error is inversely proportional to the cost of
enumeration.

Thorup [14] addresses the first difficulty by main-
taining a system of approximate counters and two layers
of overlay networks,? and solves the second difficulty by
using the “provide or bound” sampling procedure of [7].

Primary and Secondary Endpoints — A Sim-
pler Sampling Method. The difficulty with sup-
porting random sampling is dynamic updates: ¢-non-
witness edges are inserted and deleted from the pool due
to promotions, and we want to update various coun-
ters in response to each insertion/deletion. However,
the number of counters that need to be updated turns
out to be too large. Our solution is to maintain two
endpoint types for i-non-witness edges: primary and
secondary. A newly promoted i-non-witness edge has
two i-secondary endpoints and when an i-secondary end-

2The first overlay network, which we also use, supports

navigation to the H-leaves incident to ¢-non-witness edges. The
second overlay network, which is sketched in [14], is derived from
a heavy-path decomposition of the first overlay network in order
to guarantee some degree of balance. The second overlay network
is used to facilitate dynamic updates to the approximate counters.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

point is enumerated (see below), the data structure up-
grades that endpoint into an i-primary endpoint. The
set of i-secondary endpoints is subject to individual in-
sertions, but we never sample from the i-secondary end-
points. The set of i-primary endpoints is subject to bulk
inserts/deletes, which are sufficiently large to pay for
completely rebuilding the counters necessary to support
random sampling. Rather than use the full power of [7],
we give a simpler two-stage sampling procedure that ei-
ther provides a replacement edge or states that, with
high enough probability, the fraction of i-primary end-
points touching ! that belongs to replacement edges is
small. If so, we enumerate all i-primary and i-secondary
endpoints touching u?, upgrading i-secondary endpoints
at replacement edges to i-primary endpoints, and pro-
moting non-replacement i-non-witness edges to (i + 1)-
non-witness edges. The cost for rebuilding the i-primary
sampling structure is amortized O((loglogn)?) time per
promotion or upgrade, and therefore paid for.

We now give a more detailed description of the
sampling procedure.

The Sampling Procedure. This is the only proce-
dure that uses randomness. The procedure uses sub-
routines for (1 + o(1))-approximating the number s of
i-primary endpoints touching ul, for (1+o(1))-uniformly
sampling an endpoint of an i-primary edge touching ul,
and for enumerating every i-primary/i-secondary end-
point touching u'. The sampling procedure can be
viewed as a two-stage version of Henzinger and Tho-
rup [7]. The data structure first estimates s up to a
constant factor and then invokes the batch sampling
test, which (1 + o(1))-uniformly samples O(loglogs) i-
primary endpoints touching u!. If an endpoint of a re-
placement edge is sampled, then the sampling procedure
is terminated, returning one of the replacement edges.
Otherwise, the data structure invokes the batch sam-
pling test, which (1 4 o(1))-uniformly samples O(log s)
i-primary endpoints touching u!. The purpose of this
step is not to find a replacement edge, but to increase
our confidence that there are actually few replacement
edges. If more than half of these endpoints belong to re-
placement edges, the sampling procedure is terminated
and one replacement edge is returned. Otherwise, the
data structure concludes that the fraction of the non-
replacement edges touching u' is at least a constant,
and invokes the enumeration procedure.

The Enumeration Procedure. The data structure
first upgrades all i-secondary endpoints touching u! to i-
primary endpoints, enumerates all i-primary endpoints
touching u! and establishes for each such edge how many
of its endpoints touch u! (either one or both). An
edge is a replacement edge if and only if exactly one

515

of its endpoints is enumerated. Each non-replacement
edge encountered by the enumeration procedure has
both endpoints in an (i + 1)-component, namely ul,
and can therefore be promoted to be a depth (i + 1)-
non-witness edge (making both endpoints secondary),
without violating Invariant 1. After all promotions and
upgrades are completed, the sampling structure for -
primary endpoints touching u! is rebuilt.

3.2.3 Iteration and Conclusion. If a replacement
edge €’ exists, then u*~! is still an i-component and the
data structure converts €’ from an i-non-witness edge
to an i-witness edge. Otherwise, ¢, and ¢, form two

distinct i-components in Gj. In this case, depending
on %, the data structure splits u*~! into two sibling
nodes or two H-roots: a new node u'~1 representing c,,

whose only child is ul, and vi~! representing ¢, whose
children are the rest of the (i + 1)-components in c,.
Recall that while there may not be an i-non-witness
replacement edge for e, there may be one at a lower
depth, by the Spanning Forest Property. Therefore, if
¢t = 1 then we are done. Otherwise, we set i = ¢ — 1,
conceptually demoting e, and repeat the procedure as if
e were deleted at depth ¢ — 1.

3.3 The Backbone of the Data Structure.
Lemma 3.2 summarizes the primitive operations re-
quired to execute and Insert or Delete. Remember
that the possible depths are integers in [1,dq,], and
that the possible endpoint types are WITNESS, PRIMARY
and SECONDARY.

LEMMA 3.2. There exists a data structure supporting
the following operations on H with the following amor-
tized time complexities (in parentheses):

(1) Add or remove an edge with a given edge depth and
endpoint type (O(log n(loglog n)z))

(2) Given a set S of sibling H-nodes or H-roots, merge
them into a single node ul, and then promote all i-
witness edges touching ul into (i+1)-witness edges.
(O(k(loglogn)? + 1), where k is the number of i-
witness edges touching u').

(8) Given an H-node v’ € V;, upgrade all i-secondary
endpoints associated with v* to i-primary endpoints
(O((p + s)(loglogn)? + 1), where p and s denote
the number of i-primary endpoints and i-secondary
endpoints touching v* prior to the upgrade).

(4) Given an H-node v' € V; and a subset of i-
primary endpoints associated with v*, promote them
to (i+1)-secondary endpoints. (O(k(loglogn)?+1),
where k is the number of all i-primary endpoints
associated with v').

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

@) O 0O 000 VO W

@) () ())) @) @) 09) () €19 @) 19 19 €19 €1

Figure 3: After deletion of (v3,v5) (See Figure 1.) By identifying {v1, v2,v3} to be the smaller weight component,
the witness edge (vg,v3) is promoted and the corresponding nodes in V5 is merged. The edge (vs,v4) is the
replacement edge.

Vo
o O Q Q Vi
3 O O Q0 0 V0V Q K

@) 9 @) @) @) @) @) () €29 @) €19 19 €19 €1

Figure 4: After deletion of (v4,vs): (1) Split the node in V, associated with vs and vs. (2) Identify that {vs, ve, v7}
is the smaller weight component. (3) Merge nodes vZ and v3 = v2. (4) Split the node vi. (5) Found replacement
edge (v1,vg).

(5)
(6)

(7)

(8)

(9)

Convert a given i-non-witness edge into an i-
witness edge (O(log n(loglogn)?)).

Given two H-nodes v'~' and u’ where u' is an

H-child of w'~', split u'~' into two sibling H-
nodes: one with u® as a single H-child and the other
with the rest of u'~'’s former H-children as its H-
children (O((loglogn)?)).

Given an H-node v' € V; and a given endpoint
type, enumerate all endpoints {u,e) where e is
of the given endpoint type, do = i, and u' =
v'. (O(kloglogn + 1), where k is the number of
enumerated endpoints).

i—1

Given v* return v

(O(log(w(vi=1)) - log(w(v")) + loglogn)).

Given an H-node v' € Vi, return a (1 4 o(1))-
approzimation to the number of i-primary endpoints

touching v (O(1)).

(10) (Batch Sampling Test) Given an H-node v' €
Vi and an integer k, independently sample k i-
primary endpoints touching v¢ (1 + o(1))-uniformly
at random, and establish for each sampled end-
point whether the other endpoint is also in v'.
(O(min(klognloglogn, k+ (p+s)loglogn)), where
p and s are the number of i-primary and i-secondary
endpoints touching v*, respectively).

Notice that each data structure operation stated in
Lemma 3.2 on its own does not guarantee that the data
structure maintains Property 1. However, given the use
of Lemma 3.2 in the description of the algorithm above,
the proof of Lemma 3.1 is straightforward.

3.4 The Main Modules of the Data Structure.
To support Lemma 3.2, the data structure utilizes five

516 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

main modules, some of which depend on each other: (1)
the H-leaf data structure (2) the notion of induced (4, t)-
forests (3) the shortcut infrastructure (4) approximate
counters, and (5) local trees. The H-leaf data structure
is fairly straightforward and is described in detail in
Section 3.4.1. Then we define the notion of overlaying
O(logn) forests on H in Section 3.4.2. A brief overview
of the other modules is described in Sections 3.4.3, 3.4.4,
and 3.4.5. In the arXiv version of the paper we provide
a detailed explanation of each module.

The data structure also uses lookup tables in several
modules. We describe in Section 3.5 a way to amortize
the cost constructing the lookup tables. The general
operations involving multiple modules, as well as the
proof of Lemma 3.2 are described and analyzed in detail
in the arXiv version.

3.4.1 The H-Leaf Data Structure. The 7-leaf
data structure supports the following operations: (1)
Given an endpoint with a specified edge depth and
endpoint type, insert or delete an edge with an endpoint
at the leaf. (2) Given a depth and type, enumerate all
edge endpoints incident to the leaf with that depth and
type. (3) Return a uniformly random endpoint among
the set of edge endpoints with a given depth and type.
To support these operations, each leaf main-
tains a dynamic array of endpoints for each edge
depth 1 < i < dj and each endpoint type ¢t €
{WITNESS, PRIMARY, SECONDARY }. Hence the three op-
erations are supported in worst case O(1) time.

3.4.2 The Induced (i,t)-forest. For a given edge
depth ¢ € [1,dme] and endpoint type t €
{WITNESS, PRIMARY, SECONDARY}, an H-leaf v is an
(i,t)-leaf if v has an endpoint with depth ¢ and type
t. An H-node v* € V; having an (4,t)-leaf in its sub-
tree is an (i,t)-root. For each (i,t) pair, consider the
induced forest § on ‘H by taking the union of the paths
from each (i,t)-leaf to the corresponding (i,t)-root. An
H-node v in § is an (i,t)-node if

e v is an (i,t)-leaf,
e v is an (i,t)-root,

e v has more than one child in §. In this case we call
v an (i,t)-branching node, or

e v is an H-child of an (4, ¢)-branching node but has
only one H-child in §. In this case we call v an
single-child (i,t)-node.

Notice that an (,¢)-root may or may not be an (i,t)-
branching node.

For each (i,t)-node other than an (i,¢)-root, define
its (i,t)-parent to be the nearest ancestor on § that is

517

also an (7, t)-node. An (i,t)-child is defined accordingly.
The (i,t)-parent/child relation implicitly defines an
(i,t)-forest, which consists of (i,t)-trees rooted at V;
nodes. The single-child (i,¢)-nodes play a crucial role
in the efficiency of traversing an (i,t)-tree. An H-node
v has an (i,t)-status if v is an (4, t)-node.

Storing (i,t)-status. Each node in v € H stores two
bitmaps of size O(logn) each, indicating whether v is
an (4,t)-node, and if so then indicating whether v is an
(i,t)-branching node or not.

Operations on (i,t)-forests. A key idea introduced
by Thorup [14] is that edges between an (i,t)-node
and its (¢,t)-parent or (i,t)-children do not need to
be maintained explicitly. The two components that
simulate these edges are the shortcut infrastructure, and
the local trees (which also use a relaxed version of the
shortcut infrastructure). In particular, the shortcut
infrastructure supports efficient traversals from a single-
child (7,t)-node to its unique (%, t)-child, while the local
trees support efficient enumeration of all (¢, t)-children
of an (i,t)-branching node. Lemma 3.3 summarizes
the operations on (i,t)-forests which are implemented
via the shortcut infrastructure and local trees, together
with their corresponding time cost. We emphasize that
our implementation of the operations in Lemma 3.3
imply an O(loglogn) factor improvement in time cost
over the system of Thorup [14].

LEMMA 3.3. There exists a data structure on H sup-
porting the following operations:

e Given an H-leaf x, make x an (i,t)-leaf
(O(log n(loglogn)?)).

e Given an (i,t)-leaf x, remove the (i,t)-leaf status
from x (O(lognloglogn)).

e Given an (i,t)-node v, return the (i,t)-parent of v.
(O(loglogn)).

e Given an (i,t)-node v, enumerate the (i,t)-children
of v. (O(kloglogn + 1)) where k is the number of
enumerated (i,t)-children.

o Given an (i,t)-tree T rooted at v, an integer i <
i < dpmaz, an endpoint type t', and two subsets

of (i,t)-leaves S~ and ST (these subsets need not

be disjoint), update H so that all of the leaves in

S~ lose their (i,t)-leaf status, and all leaves in ST

gain (¢',t')-leaf status (if they did not have it before)

(O(|T|(loglogn)? + 1)).

3.4.3 The Shortcut Infrastructure. The purpose
of shortcuts is to simulate a traversal from a single-child
(4,t)-node to its only H-child. This traversal costs amor-
tized O(loglogn) time. The details and construction of

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

shortcuts is described in the arXiv version. Neverthe-
less, there are two main conceptual components which
we introduce that allow for simplification of the shortcut
system, and the improved runtime in Lemma 3.3.

Shared shortcuts and the local dictionary. Intu-
itively, a shortcut connects an H-node u and a descen-
dant v of uw in H. We say that such a shortcut leaves u
and enters v. Since we are imposing O(logn) indepen-
dent (i,t)-forests on H, when H-nodes merge or split, an
inefficient implementation may necessitate updating in-
formation for several (i,t)-forests. However, notice that
the paths between a single-child (i,¢)-node to its (i, t)-
child may overlap for several (i, ¢) pairs. To improve effi-
ciency, a shortcut is shared between several (4, t)-forests,
and is accessed through an O(logn) size array DOWN,,
with pointers to all shortcuts leaving u. Moreover, we
employ a local dictionary, which is an array DOWNIDX,,
with a slot corresponding to each (i, t)-forest. Each lo-
cation in DOWNIDX,, stores an O(loglogn) bit index of
the location in DOwWN,, containing the pointer to the
shortcut for that specific (i,t) pair. With the local dic-
tionary, the data structure efficiently accesses the short-
cut for any specific (i, t) pair by two array lookups.

Lazy covers. One key aspect of shortcuts is that they
do not cross, which means that if there is a shortcut
between u and v, then there is no shortcut between a
node in the internal path between u and v (exclusive)
and a node that is either a proper descendent or proper
ancestor of both v and v. Since shortcuts do not cross,
they form a naturally partially ordered set (poset).

When structural changes take place in #, all of the
shortcuts that touch the nodes participating in these
changes are removed. The cost for removing those
shortcuts is amortized over the cost of creating them.
However, once the structural changes are complete,
we do not immediately return all the shortcuts back.
Instead, the data structure partially recovers some of
the shortcuts and employs a lazy approach in which
shortcuts are only added when they are needed. We
feel this method simplifies the description of the data
structure.

3.4.4 Approximate Counters. Implementing the
sampling operation in Lemma 3.2 reduces to being able
to traverse from an (i, PRIMARY)-branching node to one
of its (¢, PRIMARY)-children v, where the probability is
almost proportional to the number of i-primary end-
points touching v. The distribution over (i, PRIMARY)-
children of an (i, PRIMARY)-branching node is sup-
ported by maintaining an approximate i-counter at each
(7, PRIMARY)-node. Notice that an H-node could be an
(7, PRIMARY)-node for several i, so there are several i-

518

counters maintained in an H-node. An approximate
i-counter at such a node v stores an (1 + o(1)) approx-
imation of the number of i-primary endpoints touching
v. This quality of approximation provides the guar-
antees needed for the sampling operation. We empha-
size that approximate i-counters are only stored for i-
primary endpoints, not i-secondary endpoints.

Each approximate i-counter uses O(loglogn) bits,
and its precision is relative to the depth and weight of
the node. The i-counters are precisely maintained at
the (7, PRIMARY)-leaves. When the data structure sums
i-counters together, the approximate i-counters may
lose precision. However, this precision depends on the
height of the arithmetic formula tree implicitly formed
in the (i, PRIMARY)-trees. The following property states
the precision requirement in order to support accurate
sampling:

INVARIANT 2. (PRECISION OF APPROXIMATE COUNTERS)

Let v be an H-node and let C;(v) be the number of
i-primary endpoints touching v. Let j be the depth of v
and let

H(v) = (dmaz — J) - O(loglogn) + [log(w(v))].

If v is an (i, PRIMARY)-node then v stores an approxi-
mate i-counter C;(v), where

)N) < Giw) < Cilw).

(1- (log™%n

The shortcut infrastructure and local trees together

allow us to efficiently guarantee that Invariant 2 holds.
This is captured by the following lemma.

LEMMA 3.4. There exists a data structure on H that
maintains approrimate i-counters and supports the fol-
lowing operations (the runtime is given in parenthesis):

e Update the approximate counters to support a
change in the number of (i, PRIMARY)-endpoints at
a given H-leaf. (O(logn(loglogn)?))

e Given an (i, PRIMARY)-root v*, update the approz-
imate i-counters for all (i, PRIMARY)-nodes in the
(i, PRIMARY)-tree of v* so that Invariant 2 holds for
those nodes (O(|T|(loglogn)? + 1), where T is the
(i, PRIMARY)-tree rooted at v*).

o When merging two sibling H-nodes, compute the
approzimate i-counters for all i € [1,dpmaz] at the
merged node. (O(loglogn)).

o When splitting an H-node into two sibling H-nodes,
compute the approrimate i-counters for all i €
[1, dmaz] at the two sibling nodes. (O(loglogn)).

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

3.4.5 The Local Trees. The local tree is a specially
constructed binary tree, where the root is associated
with an H-node v and the leaves are the H-children of
v. The local trees support the following operations.

LEMMA 3.5. There exists a data structure that supports
the following operations between an H-node v and its H-
children.

o Add a new H-child z (O((loglogn)?)).

e Delete an H-child z (O((loglogn)?)).

o Merge two sibling H-nodes u and v
(O((loglogn)?)).

e Return the H-parent v'~1 of H-node v’
(O(logw(vi=1) — logw(v?) + loglogn)).

e Enumerate all local tree leaves with an (i,t)-status
(O(loglogn) per leaf).

o Add (i,t)-status to a local tree leaf
(O((loglogn)?)).

e Given an (i, PRIMARY)-branching node u? = and an
edge depth i, sample an (i, PRIMARY)-child v/ with
probability at most

Aél(uf)
Ci(uw=1)

o Given an H-node v, test whether there is a unique
(i,t)-leaf in the local tree rooted at v. If yes, return
that (i,t)-leaf (O(loglogn)).

3.5 Lookup Tables. There are several components
of our data structure that use small lookup tables of
size O(n€) for a constant 0 < ¢ < 1 for supporting
fast operations on bit strings. By assuming that the
initial graph is empty, the O(n¢) sized lookup tables are
built on-the-fly and their cost is amortized through the
operations as follows. As long as the number of graph
updates is m < n, all edge depths are at most |logm].
Hence, for each 0 < r < loglogn, after the m = 22" _th
graph update, the data structure rebuilds the lookup
tables of size O(m¢). The time cost for building the
lookup tables during the first m operations is bounded
by

(1_10g72 n))7[log(w(uj71))710g(w(uj))+0(log log n)])

[2]

[loglog m] .
Z m2" ¢ = 0(m°).
i=0 [11]
This is amortized o(1) per update.
References [12]
[1] D. Eppstein, Z. Galil, G. Italiano, and A. Nis-
senzweig. Sparsification — a technique for speeding
up dynamic graph algorithms. J. ACM, 44(5):669—
696, 1997.
519

D. Eppstein, G. F. Italiano, R. Tamassia, R. E.
Tarjan, J. Westbrook, and M. Yung. Maintenance
of a minimum spanning forest in a dynamic plane

graph. J. Algor., 13(1):33-54, 1992.

G. Frederickson. Data structures for on-line updat-
ing of minimum spanning trees, with applications.
SIAM J. Comput., 14(4):781-798, 1985.

D. Gibb, B. M. Kapron, V. King, and N. Thorn.
Dynamic graph connectivity with improved worst
case update time and sublinear space. CoRR,
abs/1509.06464, 2015.

M. R. Henzinger and V. King. Randomized dy-
namic graph algorithms with polylogarithmic time
per operation. In Proceedings of the Twenty-
seventh Annual ACM Symposium on Theory of
Computing, STOC ’95, pages 519-527, New York,
NY, USA, 1995. ACM.

M. R. Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic
time per operation. J. ACM, 46(4):502-516, July
1999.

M. R. Henzinger and M. Thorup. Sampling to
provide or to bound: With applications to fully
dynamic graph algorithms. Random Structures &
Algorithms, 11(4):369-379, 1997.

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. J. ACM, 48(4):723-760, July
2001.

B. M. Kapron, V. King, and B. Mountjoy. Dynamic
graph connectivity in polylogarithmic worst case
time. In Proceedings of the 24th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 1131-1142, 2013.

C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pettie,
and M. Thorup. Faster worst case deterministic
dynamic connectivity. In Proceedings 24th Furo-
pean Symposium on Algorithms (ESA), pages 53:1—
53:15, 2016.

M. Patragcu and E. Demaine. Logarithmic lower
bounds in the cell-probe model. STAM J. Comput.,
35(4):932-963, 2006.

M. Patragcu and M. Thorup. Don’t rush into a
union: take time to find your roots. In Proceedings
of the 43rd ACM Symposium on Theory of Com-
puting (STOC), pages 559-568, 2011. Technical
report available as arXiv:1102.1783.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

[13]

[14]

[15]

[16]

D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Comput. Syst. Sci., 26(3):362—
391, 1983.

M. Thorup. Near-optimal fully-dynamic graph
connectivity. In Proceedings of the Thirty-second
Annual ACM Symposium on Theory of Computing,
STOC 00, pages 343-350, New York, NY, USA,
2000. ACM.

Z. Wang. An improved randomized data struc-
ture for dynamic graph connectivity. CoRR,
abs/1510.04590, 2015.

C. Wulff-Nilsen. Faster deterministic fully-dynamic
graph connectivity. In Proceedings of the 24th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1757-1769, 2013.

520

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

