
Fully Dynamic Connectivity in O(log n(log log n)2)

Amortized Expected Time∗

Shang-En Huang

Univ. of Michigan

Dawei Huang

Univ. of Michigan

Tsvi Kopelowitz

Univ. of Michigan

Seth Pettie

Univ. of Michigan

Abstract

Dynamic connectivity is one of the most fundamental

problems in dynamic graph algorithms. We present

a new randomized dynamic connectivity structure with

O(log n(log log n)2) amortized expected update time and

O(log n/ log log log n) query time, which comes within an

O((log log n)2) factor of a lower bound due to Pǎtraşcu and

Demaine. The new structure is based on a dynamic connec-

tivity algorithm proposed by Thorup in an extended abstract

at STOC 2000, which left out some important details.

1 Introduction

The dynamic connectivity problem is one of the most
fundamental problems in dynamic graph algorithms.
The goal is to support the following three operations
on an undirected graph G with n vertices:

• Insert(u, v): Insert a new edge (u, v) into G.

• Delete(u, v): Delete edge (u, v) from G.

• Conn?(u, v): Return true if and only if u and v
are in the same connected component in G.

In this paper we prove the following bound on the
complexity of dynamic connectivity.

Theorem 1.1. There exists a Las Vegas randomized
dynamic connectivity data structure, that supports
insertions and deletions of edges in amortized ex-
pected O(log n(log log n)2) time, and answers connectiv-
ity queries in worst case O(log n/ log log log n) time.

Previous Results. The dynamic connectivity prob-
lem has been studied under both worst case and
amortized measures of efficiency, and in determinis-
tic, randomized Monte Carlo, and randomized Las
Vegas models. We therefore have the opportunity
to see six incomparably best algorithms! Luckily,

∗Supported by NSF grants CCF-1217338, CNS-

1318294, and CCF-1514383. Contact: sehuang@umich.edu,
dwhuang9@gmail.com, kopelot@gmail.com, seth@pettie.net

there are currently only four. The best deterministic-

worst case update time is O(
√

n(log logn)2

logn
) [10], im-

proving on the long-standing O(
√
n) bound [3, 1],

and the best deterministic-amortized update time is
O(log2 n/ log log n) [16], improving on earlier O(log2 n)-
time algorithms [8, 14] (see also [6, 7]). Kapron et al. [9]
designed a worst case randomized Monte Carlo algo-
rithm with O(log5 n) update time, that is, there is some
1/ poly(n) probability of answering a connectivity query
incorrectly. The update time was recently improved to
O(log4 n) [4] for deletion andO(log3 n) [15] for insersion.
In all dynamic connectivity algorithms the update time
determines the query time [6]: O(t(n) log n) update im-
plies O(log n/ log t(n)) query time; see Theorem 2.1.

Thorup [14], in an extended abstract pre-
sented at STOC 2000, proposed a Las Vegas
randomized-amortized algorithm with update time
O(log n(log log n)3), that is, queries must be answered
correctly with probability 1, and the total update
time for m updates is a random variable, which is
m · O(log n(log log n)3) in expectation. Unfortunately,
the extended abstract [14] sketched or omitted a few
critical data structural details. The problem of com-
pleting Thorup’s research program has, over the years,
evolved into an important open research problem in
the area of dynamic graph algorithms. A bound of
O(log n poly(log log n)) is substantially better than the
best worst case and/or deterministic algorithms [10, 8,
9, 16], and comes within a tiny poly(log log n) factor of
known cell-probe lower bounds [11, 12].

Pǎtraşcu and Demaine [11] showed that for t(n) =
Ω(1), update time O(t(n) log n) implies query time
Ω(log n/ log t(n)) and Pǎtraşcu and Thorup [12] showed
that there is no similar tradeoff in the reverse direction,
that update time o(log n) implies Ω(n1−o(1)) query time.
Whether there is a dynamic connectivity structure sup-
porting all operations in O(log n) time (even amortized)
is one of the main open questions in this area. This
bound has only been achieved on forests [13] and em-
bedded planar graphs [2].

510 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Our Contribution. Thorup [14] proposed a dynamic
connectivity structure based on four innovative ideas:
(1) using a single, hierarchical representation of the
graph, (2) imposing an overlay network of shortcuts on
this representation in order to navigate between certain
nodes in O(log log n) time, (3) using random sampling
(as in [7, 6]) to find replacement edges after Delete

operations, and (4) maintaining a system of approximate
counters to facilitate efficient random sampling of edges.
The interactions between these four elements is rather
complex. Dynamic changes in the hierarchy (1) may
require destroying and rebuilding the shortcuts in (2),
and may invalidate the approximate counters in (4). In
order for (3) to work correctly the approximate counters
must be very accurate.

In this paper we use the same tools introduced
by Thorup, but apply them differently in order to
simplify parts of the algorithm, to accommodate a proof
of correctness, and improve the expected amortized
update time to O(log n(log log n)2). Here is a summary
of the technical differences.

• Thorup [14] (as in [8, 16]) assigns each edge a depth
(aka level) between 1 and log n and maintains a
spanning forest F . Depths are non-decreasing over
time, so we can charge each depth promotion (from
i to i+1) (log log n)2 units of work. The depths of
F-edges induce a hierarchyH, which is then refined
into a binary hierarchy, Hb, by substituting “local
trees” connecting each H-node to its H-children.
One of the primitive operations supported by the
hierarchy H is to return an almost uniformly ran-
dom depth-i edge touching some component corre-
sponding to an H-node. To implement this random
sampling efficiently one needs a system of short-
cuts and approximate counters. However, it is not
obvious how to efficiently maintain approximate
counters after edge promotions. Our data struc-
ture uses a more complicated classification of edges,
which simplifies how approximate counters are im-
plemented and analyzed. Each edge has a depth,
as before, and each edge is either a witness (in F)
or non-witness. The endpoints of a depth-i non-
witness edge can be either primary or secondary.
We only keep approximate counters for i-primary
endpoints, and only sample i-primary endpoints.
When an edge is promoted from depth i − 1 to
i, its endpoints are secondary, so there is no im-
mediate need to update approximate counters for
depth i. So long as good replacement edges can be
found by sampling from the pool of i-primary end-
points we are happy, but if none can be found we are
also happy to spend some time promoting depth-i
edges to depth-(i + 1), and upgrading i-secondary

endpoints to i-primary status. Since each edge’s
endpoints can be upgraded at most 2 log n times
over the lifetime of the edge, each upgrade can also
be charged (log log n)2 units of work. Whenever
we upgrade i-secondary endpoints to i-primary sta-
tus, we are guaranteed that the number of promo-
tions/upgrades is large enough to completely rebuild
the system of approximate counters for a pool of i-
primary endpoints.

• One of Thorup’s [14] ideas was to maintain log n
forests (one for each edge depth) on different sub-
sets of the Hb-nodes, via a system of shortcuts.
However, to be efficient it is important that these
forests share shortcuts whenever possible. We pro-
vide a new method for storing and updating short-
cuts, that allows us to find the right shortcut at a
Hb-node in O(1) time, and update information on
all the shortcuts at a Hb-node in O(log log n) time.

• We give a simpler random sampling procedure,
which can be regarded as a two-stage version of
the “provide or bound” routine of [6]. Our ran-
dom sampling procedure is necessarily somewhat
different than [14] because of the classification of
non-witness edges into primary and secondary. The
routine must either (i) provide a replacement edge
with an i-primary endpoint, or (ii) determine that
the fraction of such edges is less than a certain con-
stant, with high probability. In case (ii) the proce-
dure has found (statistical) evidence that there will
be enough promotions/upgrades to pay for convert-
ing i-secondary endpoints to i-primary, promoting
depth-i edges to depth-(i + 1), and rebuilding i-
primary approximate counters.

• The structure of H is uniquely determined by the
depths of witness (F) edges, and Hb is a binary
refinement of H. In Thorup’s [14] system Hb is
only modified in response to structural changes in
H, due to promotions of witness edges in F . A
key invariant maintained by our data structure is
that certain approximate counters, once initialized,
are only subject to decrements, never increments.
Thus, to preserve this invariant we actually up-
date Hb in response to non-witness edge promo-
tions/upgrades, which necessarily have no effect on
H.

Organization of the Paper. In Section 2 we re-
view several fundamental concepts of dynamic connec-
tivity algorithms. Section 3 gives a detailed overview of
the data structure invariants and its three main compo-
nents: maintaining a binary hierarchical representation

511 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

of the graph, maintaining shortcuts for efficient naviga-
tion around the hierarchy, and maintaining a system of
approximate counters to support O(1)-approximate ran-
dom sampling. Each of these three main components is
explained in great detail in the arXiv version of the pa-
per1.

2 Preliminaries

In this section we review some basic concepts and
invariants used in prior dynamic connectivity algo-
rithms [6, 5, 8, 14, 16].

Witness Edges, Witness Forests and Replace-

ment Edges. A common method for supporting con-
nectivity queries is to maintain a spanning forest F of
G called the witness forest, together with a dynamic
connectivity structure on F . Each edge in the witness
forest is called a witness edge and all others non-witness
edges. Notice that deleting a non-witness edge does not
change the connectivity. A dynamic connectivity data
structure for F supports fast queries via Theorem 2.1.

Theorem 2.1. (Henzinger and King [5]) For any
function t(n) = Ω(1), there exists a dynamic connectiv-
ity data structure for forests with O(t(n) log n) update
time and O(log n/ log t(n)) query time.

The difficulty in maintaining a dynamic connectiv-
ity data structure is to find a replacement edge e′ when
a witness edge e ∈ F is deleted, or determine that no
replacement exists. To speed up the search for replace-
ment edges we maintain Invariant 1 (below) governing
edge depths.

Edge Depths. Each edge e has a depth de ∈ [1, dmax],
where dmax = blog nc. Let Ei be the set of edges
with depth i. All edges are inserted at depth 1 and
depths are non-decreasing over time. Incrementing
the depth of an edge is called a promotion. Since
we are aiming for O(log n(log log n)2) amortized time
per update, if the actual time to promote an edge
set S is O(|S| · (log log n)2), the amortized time per
promotion is zero. Promotions are performed in order to
maintain Invariant 1. There are other at most O(log n)
status changes that an edge will undergo, each affording
O((log log n)2) work. Define Gi = (V,

⋃

j≥i Ej).

Invariant 1. (The Depth Invariant)

(1) (Spanning Forest Property) F is a maximum span-
ning forest of G with respect to the depths.

(2) (Weight Property) For each 1 ≤ i ≤ dmax, each
connected component in the subgraph Gi contains
at most n/2i−1 vertices.

1https://arxiv.org/abs/1609.05867

Hierarchy of connected components. Define
V̂i to be in one-to-one correspondence with the con-
nected components of Gi+1, which are called (i + 1)-
components. If u ∈ V , let ui ∈ V̂i be the unique (i+1)-
component containing u. Define Ĝi = (V̂i, Êi) to be the
multigraph (including parallel edges and loops) obtained
by contracting edges with depth above i and discarding
edges with depth below i, so Êi = {(ui, vi) | (u, v) ∈
Ei}. The hierarchy H is composed of the undirected
multi-graphs Ĝdmax

, Ĝdmax−1, . . . , Ĝ0. An edge e =
(u, v) ∈ Ei is said to be touching all nodes xj ∈ V̂j

where either uj = xj or vj = xj .
Let Fi = Ei ∩ F be the set of i-witness edges; all

other edges in Ei − Fi are i-non-witness edges. By
Invariant 1, Fi corresponds to a spanning forest of Ĝi.
The weight w(ui) of a node ui ∈ V̂i is the number of
vertices in its component: w(ui) = |{v ∈ V | vi =
ui}|. The data structure explicitly maintains the exact
weight of all hierarchy nodes. The weight property in
Invariant 1 can be restated as w(ui) ≤ n/2i.

Endpoints. The endpoints of an edge e = (u, v) are
the pairs 〈u, e〉 and 〈v, e〉. At one stage in our algorithm
we sample a random endpoint from E′ ⊂ E incident to
a set V ′ ⊂ V ; this means that an edge (u, v) ∈ E′ is
sampled with probability proportional to |{u, v} ∩ V ′|.
An endpoint 〈u, e〉 is said to be touching the nodes
ui ∈ V̂i for all i ∈ [1, dmax].

3 Overview of the Data Structure

Following the key invariant in [8, 14, 16], the main goal
is summarized as the following lemma:

Lemma 3.1. Invariant 1 is maintained throughout up-
dates to G.

In the rest of this section, we provide an overview
of the data structure. The underlined parts of the text
refer to primitive data structure operations supported
by Lemma 3.2, presented in Section 3.3.

The data structure. The hierarchy H naturally de-
fines a rooted forest (not to be confused with the span-
ning forest), which is called the hierarchy forest, and
contains several hierarchy trees. We abuse notation and
say that H refers to this hierarchy forest, together with
several auxiliary data structures supporting operations
on the forest. The nodes in H are the i-components
for all 1 ≤ i ≤ dmax . The roots of the hierarchy trees
are nodes in V̂0, representing 1-components. The set of
nodes at depth i is exactly V̂i. The set of children of
a node vi at depth i is {ui+1 ∈ V̂i+1 | ui = vi}. The
leaves are nodes in V̂dmax

= V . See Figure 1 for an ex-
ample. The nodes in H are called H-nodes, and the
roots are called H-roots. Each non-leaf H-node v is as-

512 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

3

2

2

3

2

3

1

3

2
3

2
2 3

1

1

2

1

1

12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

V̂2

V̂1

V̂0

1
Figure 1: An illustration of a graph and the corresponding hierarchy forest H, where n = 15 and dmax = 3. All
thick edges are witness edges and the thin edges are non-witness edges.

sociated with a binary local tree, implicitly supporting
operations between v and its H-children.

3.1 Insertion. To execute an insert(u, v) opera-
tion, where e = (u, v), the data structure first sets
de = 1. If e connects two distinct components in G
(which is verified by a connectivity query on F), then
the data structure accesses two H-roots u0 and v0,
merges u0 and v0 and e is inserted into H (and F) as
a 1-witness edge. Otherwise, e is inserted into H as a
1-non-witness edge.

3.2 Deletion. By the Spanning Forest Property of
Invariant 1, the deletion of an edge e can only be
replaced by edges of depth de or less. We always first
look for a replacement edge at the same depth of the
deleted edge. If we do not find a replacement edge at
depth de then we demote e by setting de ← de − 1,
which preserves Invariant 1, and continue looking for
replacement edges at the new depth de. Demotion
is merely conceptual; the deletion algorithm does not
actually update de in the course of deleting e.

To execute a delete(u, v) operation, where e =
(u, v), the data structure first removes e from H. If
e is an i-non-witness edge, then the deletion process
is done. If e is an i-witness edge, the deletion of
e could split an i-component. Specifically, prior to
the deletion, the edge (ui, vi) connected two (i + 1)-
components, ui and vi, which, possibly together with
some additional i-witness edges and (i+1)-components,
formed a single i-component ui−1 = vi−1 in Ĝi. If
no i-non-witness replacement edge exists, then deleting
(u, v) splits ui−1 into two i-components. In order to
establish if this is the case, the data structure first ac-
cesses ui, vi and ui−1 in H and implicitly splits the
i-component ui−1 into two connected components cu

and cv in F̂i = (V̂i, {(ui, vi) | (u, v) ∈ Fi}) where
ui ∈ cu and vi ∈ cv (we define cu and cv but without
context to the subscripts, see Figure 2.a). The rest of
the deletion process focuses on finding a replacement
edge to reconnect cu and cv into one i-component. This
process has two parts, explained in detail below: (1)
establishing the two components cu and cv, and (2)
finding a replacement edge. Notice that cu and cv do
not correspond to H-nodes.

3.2.1 Establishing Two Components. To estab-
lish the two components cu and cv created by the
deletion of e, the data structure executes in paral-
lel two depth first searches (DFS) on F̂i − {(ui, vi)},
one DFS starting from ui and one DFS starting from
vi. To implement a DFS, the data structure repeat-
edly enumerates all i-witness edge endpoints touching
an (i+ 1)-component. The DFSs are carried out in
parallel until one of the connected components is fully
scanned. By fully scanning one component, the weights
of both components are determined (since w(ui−1) =
w(cu) + w(cv)). Without lost of generality, assume
that w(cu) ≤ w(cv), and so by Invariant 1, w(cu) ≤
w(ui−1)/2 ≤ n/2i.

Witness Edge Promotions. The data structure
promotes all i-witness edges touching nodes in cu and
merges all (i+ 1)-components contained in cu into one
(i+ 1)-component with weight w(cu). This is permitted
by Invariant 1, since w(cu) ≤ w(ui−1)/2 ≤ n/2i. The
merged (i+1)-component has the node ui−1 as its parent
in H. See Figure 2.b.

To differentiate between versions of components
before and after the merges, we use a convention where
bold notation refers to the components after the merges
take place. Thus, we deonte the (i + 1)-component
contracted from all (i+ 1)-components inside cu by ui.

513 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

point is enumerated (see below), the data structure up-
grades that endpoint into an i-primary endpoint. The
set of i-secondary endpoints is subject to individual in-
sertions, but we never sample from the i-secondary end-
points. The set of i-primary endpoints is subject to bulk
inserts/deletes, which are sufficiently large to pay for
completely rebuilding the counters necessary to support
random sampling. Rather than use the full power of [7],
we give a simpler two-stage sampling procedure that ei-
ther provides a replacement edge or states that, with
high enough probability, the fraction of i-primary end-
points touching ui that belongs to replacement edges is
small. If so, we enumerate all i-primary and i-secondary
endpoints touching ui, upgrading i-secondary endpoints
at replacement edges to i-primary endpoints, and pro-
moting non-replacement i-non-witness edges to (i+ 1)-
non-witness edges. The cost for rebuilding the i-primary
sampling structure is amortized O((log log n)2) time per
promotion or upgrade, and therefore paid for.

We now give a more detailed description of the
sampling procedure.

The Sampling Procedure. This is the only proce-
dure that uses randomness. The procedure uses sub-
routines for (1 + o(1))-approximating the number s of
i-primary endpoints touching ui, for (1+o(1))-uniformly
sampling an endpoint of an i-primary edge touching ui,
and for enumerating every i-primary/i-secondary end-
point touching ui. The sampling procedure can be
viewed as a two-stage version of Henzinger and Tho-
rup [7]. The data structure first estimates s up to a
constant factor and then invokes the batch sampling
test, which (1 + o(1))-uniformly samples O(log log s) i-
primary endpoints touching ui. If an endpoint of a re-
placement edge is sampled, then the sampling procedure
is terminated, returning one of the replacement edges.
Otherwise, the data structure invokes the batch sam-
pling test, which (1 + o(1))-uniformly samples O(log s)
i-primary endpoints touching ui. The purpose of this
step is not to find a replacement edge, but to increase
our confidence that there are actually few replacement
edges. If more than half of these endpoints belong to re-
placement edges, the sampling procedure is terminated
and one replacement edge is returned. Otherwise, the
data structure concludes that the fraction of the non-
replacement edges touching ui is at least a constant,
and invokes the enumeration procedure.

The Enumeration Procedure. The data structure
first upgrades all i-secondary endpoints touching ui to i-
primary endpoints, enumerates all i-primary endpoints
touching ui and establishes for each such edge how many
of its endpoints touch ui (either one or both). An
edge is a replacement edge if and only if exactly one

of its endpoints is enumerated. Each non-replacement
edge encountered by the enumeration procedure has
both endpoints in an (i + 1)-component, namely ui,
and can therefore be promoted to be a depth (i+ 1)-
non-witness edge (making both endpoints secondary),
without violating Invariant 1. After all promotions and
upgrades are completed, the sampling structure for i-
primary endpoints touching ui is rebuilt.

3.2.3 Iteration and Conclusion. If a replacement
edge e′ exists, then ui−1 is still an i-component and the
data structure converts e′ from an i-non-witness edge
to an i-witness edge. Otherwise, cu and cv form two

distinct i-components in Ĝi. In this case, depending
on i, the data structure splits ui−1 into two sibling
nodes or two H-roots: a new node ui−1 representing cu
whose only child is ui, and vi−1 representing cv whose
children are the rest of the (i + 1)-components in cv.
Recall that while there may not be an i-non-witness
replacement edge for e, there may be one at a lower
depth, by the Spanning Forest Property. Therefore, if
i = 1 then we are done. Otherwise, we set i = i − 1,
conceptually demoting e, and repeat the procedure as if
e were deleted at depth i− 1.

3.3 The Backbone of the Data Structure.

Lemma 3.2 summarizes the primitive operations re-
quired to execute and Insert or Delete. Remember
that the possible depths are integers in [1, dmax], and
that the possible endpoint types are witness, primary
and secondary.

Lemma 3.2. There exists a data structure supporting
the following operations on H with the following amor-
tized time complexities (in parentheses):

(1) Add or remove an edge with a given edge depth and
endpoint type

(

O(log n(log log n)2)
)

.

(2) Given a set S of sibling H-nodes or H-roots, merge
them into a single node ui, and then promote all i-
witness edges touching ui into (i+1)-witness edges.
(O(k(log log n)2 + 1), where k is the number of i-
witness edges touching ui).

(3) Given an H-node vi ∈ V̂i, upgrade all i-secondary
endpoints associated with vi to i-primary endpoints
(O((p + s)(log log n)2 + 1), where p and s denote
the number of i-primary endpoints and i-secondary
endpoints touching vi prior to the upgrade).

(4) Given an H-node vi ∈ V̂i and a subset of i-
primary endpoints associated with vi, promote them
to (i+1)-secondary endpoints. (O(k(log log n)2+1),
where k is the number of all i-primary endpoints
associated with vi).

515 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

3

3

3

2

3

1

3

2
3

2
2 3

1

1

2

1

1

12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

V̂2

V̂1

V̂0

1
Figure 3: After deletion of (v3, v5) (See Figure 1.) By identifying {v1, v2, v3} to be the smaller weight component,
the witness edge (v2, v3) is promoted and the corresponding nodes in V̂2 is merged. The edge (v3, v4) is the
replacement edge.

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

3

3

3

3

1

3

2
3

2
2 3

1

1

2

1

1

12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

V̂2

V̂1

V̂0

1
Figure 4: After deletion of (v4, v5): (1) Split the node in V̂2 associated with v4 and v5. (2) Identify that {v5, v6, v7}
is the smaller weight component. (3) Merge nodes v25 and v26 = v27 . (4) Split the node v15 . (5) Found replacement
edge (v1, v6).

(5) Convert a given i-non-witness edge into an i-
witness edge

(

O(log n(log log n)2)
)

.

(6) Given two H-nodes ui−1 and ui where ui is an
H-child of ui−1, split ui−1 into two sibling H-
nodes: one with ui as a single H-child and the other
with the rest of ui−1’s former H-children as its H-
children

(

O((log logn)2)
)

.

(7) Given an H-node vi ∈ V̂i and a given endpoint
type, enumerate all endpoints 〈u, e〉 where e is
of the given endpoint type, de = i, and ui =
vi. (O(k log log n + 1), where k is the number of
enumerated endpoints).

(8) Given vi, return vi−1
(

O(log(w(vi−1))− log(w(vi)) + log log n)
)

.

(9) Given an H-node vi ∈ V̂i, return a (1 + o(1))-
approximation to the number of i-primary endpoints

touching vi (O(1)).

(10) (Batch Sampling Test) Given an H-node vi ∈
V̂i and an integer k, independently sample k i-
primary endpoints touching vi (1 + o(1))-uniformly
at random, and establish for each sampled end-
point whether the other endpoint is also in vi.
(O(min(k log n log log n, k+(p+s) log log n)), where
p and s are the number of i-primary and i-secondary
endpoints touching vi, respectively).

Notice that each data structure operation stated in
Lemma 3.2 on its own does not guarantee that the data
structure maintains Property 1. However, given the use
of Lemma 3.2 in the description of the algorithm above,
the proof of Lemma 3.1 is straightforward.

3.4 The Main Modules of the Data Structure.

To support Lemma 3.2, the data structure utilizes five

516 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

main modules, some of which depend on each other: (1)
theH-leaf data structure (2) the notion of induced (i, t)-
forests (3) the shortcut infrastructure (4) approximate
counters, and (5) local trees. The H-leaf data structure
is fairly straightforward and is described in detail in
Section 3.4.1. Then we define the notion of overlaying
O(log n) forests on H in Section 3.4.2. A brief overview
of the other modules is described in Sections 3.4.3, 3.4.4,
and 3.4.5. In the arXiv version of the paper we provide
a detailed explanation of each module.

The data structure also uses lookup tables in several
modules. We describe in Section 3.5 a way to amortize
the cost constructing the lookup tables. The general
operations involving multiple modules, as well as the
proof of Lemma 3.2 are described and analyzed in detail
in the arXiv version.

3.4.1 The H-Leaf Data Structure. The H-leaf
data structure supports the following operations: (1)
Given an endpoint with a specified edge depth and
endpoint type, insert or delete an edge with an endpoint
at the leaf. (2) Given a depth and type, enumerate all
edge endpoints incident to the leaf with that depth and
type. (3) Return a uniformly random endpoint among
the set of edge endpoints with a given depth and type.

To support these operations, each leaf main-
tains a dynamic array of endpoints for each edge
depth 1 ≤ i ≤ dmax and each endpoint type t ∈
{witness, primary, secondary}. Hence the three op-
erations are supported in worst case O(1) time.

3.4.2 The Induced (i, t)-forest. For a given edge
depth i ∈ [1, dmax] and endpoint type t ∈
{witness, primary, secondary}, an H-leaf v is an
(i, t)-leaf if v has an endpoint with depth i and type
t. An H-node vi ∈ V̂i having an (i, t)-leaf in its sub-
tree is an (i, t)-root. For each (i, t) pair, consider the
induced forest F on H by taking the union of the paths
from each (i, t)-leaf to the corresponding (i, t)-root. An
H-node v in F is an (i, t)-node if

• v is an (i, t)-leaf,

• v is an (i, t)-root,

• v has more than one child in F. In this case we call
v an (i, t)-branching node, or

• v is an H-child of an (i, t)-branching node but has
only one H-child in F. In this case we call v an
single-child (i, t)-node.

Notice that an (i, t)-root may or may not be an (i, t)-
branching node.

For each (i, t)-node other than an (i, t)-root, define
its (i, t)-parent to be the nearest ancestor on F that is

also an (i, t)-node. An (i, t)-child is defined accordingly.
The (i, t)-parent/child relation implicitly defines an
(i, t)-forest, which consists of (i, t)-trees rooted at V̂i

nodes. The single-child (i, t)-nodes play a crucial role
in the efficiency of traversing an (i, t)-tree. An H-node
v has an (i, t)-status if v is an (i, t)-node.

Storing (i, t)-status. Each node in v ∈ H stores two
bitmaps of size O(log n) each, indicating whether v is
an (i, t)-node, and if so then indicating whether v is an
(i, t)-branching node or not.

Operations on (i, t)-forests. A key idea introduced
by Thorup [14] is that edges between an (i, t)-node
and its (i, t)-parent or (i, t)-children do not need to
be maintained explicitly. The two components that
simulate these edges are the shortcut infrastructure, and
the local trees (which also use a relaxed version of the
shortcut infrastructure). In particular, the shortcut
infrastructure supports efficient traversals from a single-
child (i, t)-node to its unique (i, t)-child, while the local
trees support efficient enumeration of all (i, t)-children
of an (i, t)-branching node. Lemma 3.3 summarizes
the operations on (i, t)-forests which are implemented
via the shortcut infrastructure and local trees, together
with their corresponding time cost. We emphasize that
our implementation of the operations in Lemma 3.3
imply an O(log log n) factor improvement in time cost
over the system of Thorup [14].

Lemma 3.3. There exists a data structure on H sup-
porting the following operations:

• Given an H-leaf x, make x an (i, t)-leaf
(

O(log n(log log n)2)
)

.

• Given an (i, t)-leaf x, remove the (i, t)-leaf status
from x (O(log n log log n)).

• Given an (i, t)-node v, return the (i, t)-parent of v.
(O(log log n)).

• Given an (i, t)-node v, enumerate the (i, t)-children
of v. (O(k log log n+ 1)) where k is the number of
enumerated (i, t)-children.

• Given an (i, t)-tree T rooted at v, an integer i ≤
i′ ≤ dmax , an endpoint type t′, and two subsets
of (i, t)-leaves S− and S+ (these subsets need not
be disjoint), update H so that all of the leaves in
S− lose their (i, t)-leaf status, and all leaves in S+

gain (i′, t′)-leaf status (if they did not have it before)
(

O(|T |(log log n)2 + 1)
)

.

3.4.3 The Shortcut Infrastructure. The purpose
of shortcuts is to simulate a traversal from a single-child
(i, t)-node to its onlyH-child. This traversal costs amor-
tized O(log log n) time. The details and construction of

517 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

shortcuts is described in the arXiv version. Neverthe-
less, there are two main conceptual components which
we introduce that allow for simplification of the shortcut
system, and the improved runtime in Lemma 3.3.

Shared shortcuts and the local dictionary. Intu-
itively, a shortcut connects an H-node u and a descen-
dant v of u in H. We say that such a shortcut leaves u
and enters v. Since we are imposing O(log n) indepen-
dent (i, t)-forests onH, whenH-nodes merge or split, an
inefficient implementation may necessitate updating in-
formation for several (i, t)-forests. However, notice that
the paths between a single-child (i, t)-node to its (i, t)-
child may overlap for several (i, t) pairs. To improve effi-
ciency, a shortcut is shared between several (i, t)-forests,
and is accessed through an O(log n) size array Downu

with pointers to all shortcuts leaving u. Moreover, we
employ a local dictionary, which is an array DownIdxu

with a slot corresponding to each (i, t)-forest. Each lo-
cation in DownIdxu stores an O(log log n) bit index of
the location in Downu containing the pointer to the
shortcut for that specific (i, t) pair. With the local dic-
tionary, the data structure efficiently accesses the short-
cut for any specific (i, t) pair by two array lookups.

Lazy covers. One key aspect of shortcuts is that they
do not cross, which means that if there is a shortcut
between u and v, then there is no shortcut between a
node in the internal path between u and v (exclusive)
and a node that is either a proper descendent or proper
ancestor of both u and v. Since shortcuts do not cross,
they form a naturally partially ordered set (poset).

When structural changes take place in H, all of the
shortcuts that touch the nodes participating in these
changes are removed. The cost for removing those
shortcuts is amortized over the cost of creating them.
However, once the structural changes are complete,
we do not immediately return all the shortcuts back.
Instead, the data structure partially recovers some of
the shortcuts and employs a lazy approach in which
shortcuts are only added when they are needed. We
feel this method simplifies the description of the data
structure.

3.4.4 Approximate Counters. Implementing the
sampling operation in Lemma 3.2 reduces to being able
to traverse from an (i, primary)-branching node to one
of its (i, primary)-children v, where the probability is
almost proportional to the number of i-primary end-
points touching v. The distribution over (i, primary)-
children of an (i, primary)-branching node is sup-
ported by maintaining an approximate i-counter at each
(i, primary)-node. Notice that an H-node could be an
(i, primary)-node for several i, so there are several i-

counters maintained in an H-node. An approximate
i-counter at such a node v stores an (1 + o(1)) approx-
imation of the number of i-primary endpoints touching
v. This quality of approximation provides the guar-
antees needed for the sampling operation. We empha-
size that approximate i-counters are only stored for i-
primary endpoints, not i-secondary endpoints.

Each approximate i-counter uses O(log log n) bits,
and its precision is relative to the depth and weight of
the node. The i-counters are precisely maintained at
the (i, primary)-leaves. When the data structure sums
i-counters together, the approximate i-counters may
lose precision. However, this precision depends on the
height of the arithmetic formula tree implicitly formed
in the (i, primary)-trees. The following property states
the precision requirement in order to support accurate
sampling:

Invariant 2. (Precision of Approximate Counters)
Let v be an H-node and let Ci(v) be the number of
i-primary endpoints touching v. Let j be the depth of v
and let

H(v) = (dmax − j) ·O(log log n) + blog(w(v))c.

If v is an (i, primary)-node then v stores an approxi-
mate i-counter Ĉi(v), where

(

1− (log−2 n)
)H(v)+1

Ci(v) ≤ Ĉi(v) ≤ Ci(v).

The shortcut infrastructure and local trees together
allow us to efficiently guarantee that Invariant 2 holds.
This is captured by the following lemma.

Lemma 3.4. There exists a data structure on H that
maintains approximate i-counters and supports the fol-
lowing operations (the runtime is given in parenthesis):

• Update the approximate counters to support a
change in the number of (i, primary)-endpoints at
a given H-leaf. (O(log n(log log n)2))

• Given an (i, primary)-root vi, update the approx-
imate i-counters for all (i, primary)-nodes in the
(i, primary)-tree of vi so that Invariant 2 holds for
those nodes (O(|T |(log log n)2 + 1), where T is the
(i, primary)-tree rooted at vi).

• When merging two sibling H-nodes, compute the
approximate i-counters for all i ∈ [1, dmax] at the
merged node. (O(log log n)).

• When splitting an H-node into two sibling H-nodes,
compute the approximate i-counters for all i ∈
[1, dmax] at the two sibling nodes. (O(log log n)).

518 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

3.4.5 The Local Trees. The local tree is a specially
constructed binary tree, where the root is associated
with an H-node v and the leaves are the H-children of
v. The local trees support the following operations.

Lemma 3.5. There exists a data structure that supports
the following operations between an H-node v and its H-
children.

• Add a new H-child x
(

O((log log n)2)
)

.

• Delete an H-child x
(

O((log log n)2)
)

.

• Merge two sibling H-nodes u and v
(

O((log log n)2)
)

.

• Return the H-parent vi−1 of H-node vi

(O(logw(vi−1)− logw(vi) + log log n)).

• Enumerate all local tree leaves with an (i, t)-status
(O(log log n) per leaf).

• Add (i, t)-status to a local tree leaf
(O((log logn)2)).

• Given an (i, primary)-branching node uj−1 and an
edge depth i, sample an (i, primary)-child uj with
probability at most

Ĉi(u
j)

Ĉi(uj−1)
(1−log−2 n))−[log(w(uj−1))−log(w(uj))+O(log logn)].

• Given an H-node v, test whether there is a unique
(i, t)-leaf in the local tree rooted at v. If yes, return
that (i, t)-leaf (O(log log n)).

3.5 Lookup Tables. There are several components
of our data structure that use small lookup tables of
size O(nε) for a constant 0 < ε < 1 for supporting
fast operations on bit strings. By assuming that the
initial graph is empty, the O(nε) sized lookup tables are
built on-the-fly and their cost is amortized through the
operations as follows. As long as the number of graph
updates is m ≤ n, all edge depths are at most blogmc.
Hence, for each 0 ≤ r ≤ log log n, after the m = 22

r

-th
graph update, the data structure rebuilds the lookup
tables of size O(mε). The time cost for building the
lookup tables during the first m operations is bounded
by

dlog logme
∑

i=0

m
1

2i
ε = O(mε).

This is amortized o(1) per update.

References

[1] D. Eppstein, Z. Galil, G. Italiano, and A. Nis-
senzweig. Sparsification – a technique for speeding
up dynamic graph algorithms. J. ACM, 44(5):669–
696, 1997.

[2] D. Eppstein, G. F. Italiano, R. Tamassia, R. E.
Tarjan, J. Westbrook, and M. Yung. Maintenance
of a minimum spanning forest in a dynamic plane
graph. J. Algor., 13(1):33–54, 1992.

[3] G. Frederickson. Data structures for on-line updat-
ing of minimum spanning trees, with applications.
SIAM J. Comput., 14(4):781–798, 1985.

[4] D. Gibb, B. M. Kapron, V. King, and N. Thorn.
Dynamic graph connectivity with improved worst
case update time and sublinear space. CoRR,
abs/1509.06464, 2015.

[5] M. R. Henzinger and V. King. Randomized dy-
namic graph algorithms with polylogarithmic time
per operation. In Proceedings of the Twenty-
seventh Annual ACM Symposium on Theory of
Computing, STOC ’95, pages 519–527, New York,
NY, USA, 1995. ACM.

[6] M. R. Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic
time per operation. J. ACM, 46(4):502–516, July
1999.

[7] M. R. Henzinger and M. Thorup. Sampling to
provide or to bound: With applications to fully
dynamic graph algorithms. Random Structures &
Algorithms, 11(4):369–379, 1997.

[8] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. J. ACM, 48(4):723–760, July
2001.

[9] B. M. Kapron, V. King, and B. Mountjoy. Dynamic
graph connectivity in polylogarithmic worst case
time. In Proceedings of the 24th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 1131–1142, 2013.

[10] C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pettie,
and M. Thorup. Faster worst case deterministic
dynamic connectivity. In Proceedings 24th Euro-
pean Symposium on Algorithms (ESA), pages 53:1–
53:15, 2016.

[11] M. Pǎtraşcu and E. Demaine. Logarithmic lower
bounds in the cell-probe model. SIAM J. Comput.,
35(4):932–963, 2006.

[12] M. Pǎtraşcu and M. Thorup. Don’t rush into a
union: take time to find your roots. In Proceedings
of the 43rd ACM Symposium on Theory of Com-
puting (STOC), pages 559–568, 2011. Technical
report available as arXiv:1102.1783.

519 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

[13] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Comput. Syst. Sci., 26(3):362–
391, 1983.

[14] M. Thorup. Near-optimal fully-dynamic graph
connectivity. In Proceedings of the Thirty-second
Annual ACM Symposium on Theory of Computing,
STOC ’00, pages 343–350, New York, NY, USA,
2000. ACM.

[15] Z. Wang. An improved randomized data struc-
ture for dynamic graph connectivity. CoRR,
abs/1510.04590, 2015.

[16] C. Wulff-Nilsen. Faster deterministic fully-dynamic
graph connectivity. In Proceedings of the 24th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1757–1769, 2013.

520 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

