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Abstract

Spanners, emulators, and approximate distance ora-
cles can be viewed as lossy compression schemes that
represent an unweighted graph metric in small space,
say Õ(n1+δ) bits. There is an inherent tradeoff be-
tween the sparsity parameter δ and the stretch func-

tion f of the compression scheme, but the qualitative
nature of this tradeoff has remained a persistent open
problem.

It has been known for some time that when δ ≥
1/3 there are schemes with constant additive stretch
(distance d is stretched to at most f(d) = d+O(1)),
and recent results of Abboud and Bodwin show that
when δ < 1/3 there are no such schemes. Thus, to get
practically efficient graph compression with δ → 0 we
must pay super-constant additive stretch, but exactly
how much do we have to pay?

In this paper we show that the lower bound
of Abboud and Bodwin is just the first step in
a hierarchy of lower bounds that characterize the
asymptotic behavior of the optimal stretch function
f for sparsity parameter δ ∈ (0, 1/3). Specifically,
for any integer k ≥ 2, any compression scheme with

size O(n
1+ 1

2k−1
−ε

) has a sublinear additive stretch

function f :

f(d) = d+Ω(d1−
1
k ).

This lower bound matches Thorup and Zwick’s (2006)
construction of sublinear additive emulators. It also
shows that Elkin and Peleg’s (1+ ε, β)-spanners have
an essentially optimal tradeoff between δ, ε, and β,
and that the sublinear additive spanners of Pettie
(2009) and Chechik (2013) are not too far from opti-
mal. To complement these lower bounds we present a
new construction of (1+ ε, O(k/ε)k−1)-spanners with

size O((k/ε)hkkn
1+ 1

2k+1
−1 ), where hk < 3/4. This

size bound improves on the spanners of Elkin and
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Peleg (2004), Thorup and Zwick (2006), and Pet-
tie (2009). According to our lower bounds neither
the size nor stretch function can be substantially im-
proved.

Our lower bound technique exhibits several inter-
esting degrees of freedom in the framework of Abboud
and Bodwin. By carefully exploiting these freedoms,
we are able to obtain lower bounds for several related
combinatorial objects. We get lower bounds on the
size of (β, ε)-hopsets, matching Elkin and Neiman’s
construction (2016), and lower bounds on shortcut-

ting sets for digraphs that preserve the transitive clo-
sure. Our lower bound simplifies Hesse’s (2003) refu-
tation of Thorup’s conjecture (1992), which stated
that adding a linear number of shortcuts suffices to
reduce the diameter to polylogarithmic. Finally, we
show matching upper and lower bounds for graph
compression schemes that work for graph metrics
with girth at least 2γ + 1. One consequence is that
Baswana et al.’s (2010) additive O(γ)-spanners with

size O(n1+ 1
2γ+1 ) cannot be improved in the expo-

nent.

1 Introduction

Spanners [46], emulators [27, 57], and approximate

distance oracles [56] can be viewed as kinds of com-
pression schemes that approximately encode the dis-
tance metric of a (dense) undirected input graph
G = (V,E) in small space, where the notion of ap-
proximation is captured by a non-decreasing stretch

function f : N → N.

Spanners. An f(d)-spanner G′ = (V,E′) is a sub-
graph of G for which distG′(u, v) is at most
f(distG(u, v)). An (α, β)-spanner is one with
stretch function f(d) = αd + β. Notable spe-
cial cases include multiplicative α-spanners [46,
8, 30, 56, 10, 9], when β = 0, and additive β-
spanners [6, 27, 30, 57, 9, 62, 20, 38], when α = 1.
See [30, 9, 57, 47, 20, 43] for “mixed” spanners
with α > 1, β > 0.

Emulators. An f(d)-emulator (also called a Steiner

spanner [8]) is a weighted graph G′ = (V ′ ⊇
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V,E′, w′) such that for each u, v ∈ V ,
distG′(u, v) ∈ [distG(u, v), f(distG(u, v))]. In
other words, one is allowed to add Steiner points
(V ′\V ) and long-range (weighted) edges (u, v) ∈
E′\E such that distances are non-contracting.

(Unconstrained) Distance Oracles. For our
purposes, an f(d)-approximate distance or-
acle using space s is a bit string in {0, 1}s
such that given u, v ∈ V , an estimate

d̃ist(u, v) ∈ [distG(u, v), f(distG(u, v))] can
be computed by examining only the bit string.
Note: the term “oracle” was used in [56] to

indicate that d̃ist(u, v) is computed in con-
stant time [44, 3, 21]. Later work considered
distance oracles with non-constant query
time [48, 5, 4, 31]. In this paper we make no
restrictions on the query time at all. Thus,
for our purposes distance oracles generalize
spanners, emulators, and related objects.

In this paper we establish essentially optimal
tradeoffs between the size of the compressed graph
representation and the asymptotic behavior of its
stretch function f . In order to put our results in
context we must recount the developments of the last
30 years that investigated multiplicative, additive,
(α, β), and sublinear additive stretch functions.

1.1 Multiplicative Stretch Historically, the first
notion of stretch studied in the literature was purely
multiplicative stretch. Althöfer et al. [8] quickly set-
tled the problem by showing that any graph contains
an α-spanner with at most mα+2(n) edges, and that
the claim is false for mα+2(n)− 1. Here mg(n) is the
maximum number of edges in a graph with n vertices
and girth g. The upper bound of [8] follows directly
from the observation that a natural greedy construc-
tion never closes a cycle with length at most α+1; the
lower bound follows from the fact that no strict sub-
graph of a graph with girth α + 2 is an α-spanner.1

It has been conjectured [32, 17, 15] that the triv-
ial upper bound m2k+1(n),m2k+2(n) = O(n1+1/k) is
sharp up to the leading constant, but this Girth Con-

jecture has only been proved for k = 1 (trivial), and
k ∈ {2, 3, 5} [18, 33, 49, 60, 58, 12, 39]. See [40, 41, 61]
for lower bounds on mg(n).

1Removing any edge stretches the distance between its
endpoints from 1 to at least α+1. Moreover, since every graph

contains a bipartite subgraph with at least half the edges,
m2k+1 ≤ 2m2k+2(n) for every k. Thus, there are (2k − 1)-
spanners with size O(m2k+2(n)).

1.2 Additive Stretch It is somewhat disingenu-
ous to apply the girth argument to lower bound mul-
tiplicative stretch since it only applies to adjacent
vertices, i.e., at distance d = 1. For example, it
does not imply that f(d) = (2k − 1)d is an optimal
stretch function for spanners with size O(n1+1/k). In
general, the Girth Conjecture only implies that size
O(n1+1/k)-spanners have f(d) ≥ 2k − d; for example
(α, β)-spanners must have α+ β ≥ 2k − 1.

Aingworth, Chekuri, Indyk, and Motwani [6]
gave a construction of an additive 2-spanner with size
Õ(n3/2), which is optimal in the sense that neither
the additive stretch 2 nor exponent 3/2 can be uni-
laterally improved.2 This result raised the tantalizing
possibility that there exist arbitrarily sparse additive
spanners. Dor, Halperin, and Zwick [27] observed
that additive 4-emulators exist with size Õ(n4/3), i.e.,
the emulator introduces weighted edges connecting
distant vertex pairs. Baswana, Kavitha, Mehlhorn,
and Pettie [9] constructed additive 6-spanners with
size O(n4/3) and Chechik [20] constructed additive-4
spanners with size Õ(n7/5). See [62, 38, 30, 57, 27, 9]
for other constructions of additive 2- and 6-spanners.

The “4/3” exponent proved to be very re-
silient, for both emulators and spanners with additive
stretch. This led to a line of work establishing addi-
tive spanners below the n4/3 threshold with stretch
polynomial in n [16, 9, 47, 20, 13]. The additive span-
ners of Bodwin and Williams [14] with stretch func-
tion f(d) = d + nε have size that is the minimum of

O(n
4
3−

7ε
9 +o(1)) and O(n

5
4−

5ε
12+o(1)).

1.3 Sublinear Additive Stretch Elkin and Pe-
leg [30] showed that the “4/3 barrier” could also
be broken by tolerating 1 + ε multiplicative stretch.
In particular, for any integer κ and real ε > 0,
there are (1 + ε, β)-spanners with size O(βn1+1/κ),
where β = O(ε−1 log κ)log κ. The construction al-
gorithm and size-bound both depend on ε. Tho-
rup and Zwick [57] gave a surprisingly simple con-

struction of an O(kn
1+ 1

2k+1
−1 )-size emulator with

(1 + ε, O(k/ε)k−1)-type stretch.
Thorup and Zwick’s emulator has the special

property that its stretch holds for every ε > 0
simultaneously, i.e., it can be selected as a func-
tion of d. Judiciously choosing ε = k/d

1
k leads

to an emulator with a sublinear additive stretch

2Moreover, later results of Bollobás et al. [16] show that
for spanner size O(n3/2), the stretch function f(d) = d + 2 is

optimal for 1 ≤ d ≤ Θ(
√
n). See [30, 57, 9, 38] for constructions

of additive 2-spanners with size O(n3/2).

1
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function f(d) = d + O(kd1−
1
k + 3k).3 Tho-

rup and Zwick also showed that this same stretch
function also applies to their earlier [56] construc-
tion of multiplicative (2k + 1)-spanners with size

O(kn1+ 1
k+1 ). Pettie [47] gave a construction of sub-

linear additive spanners whose size-stretch trade-
off is closer to the Thorup-Zwick emulators. For
stretch function d + O(kd1−

1
k + 3k) the size is

O(kn
1+

(3/4)k−2

7−2(3/4)k−2 ), which is always o(n1+(3/4)k+3

) for
any fixed k. At their sparsest, Thorup and Zwick’s
emulators [57] and Pettie’s spanners [47] have size
O(n log log n) and stretch f(d) = d + O(log log n) ·
d1−Θ(1/ log logn)+(log n)log2 3. Pettie [47] gave an even
sparser (1 + ε, O(ε−1 log log n)log logn)-spanner with
size O(n log log(ε−1 log log n)).

1.4 Lower Bounds Woodruff proved that any
k−1n1+1/k-size spanner with stretch function f must
have f(k) ≥ 3k. As a corollary, additive (2k − 2)-
spanners must have size Ω(k−1n1+1/k), independent
of the status of the Girth Conjecture. Bollobás,
Coppersmith, and Elkin [16] showed that if the
stretch f is such that f(d) = d for d ≥ D, then
Ω(n2/D)-size is necessary and sufficient for spanners
and emulators.

In a recent surprise, Abboud and Bodwin [1]
proved that no additive β-spanners, emulators, nor
distance oracles exist with β = O(1) and exponent
less than 4/3. More precisely, any construction of
these three objects with additive β = O(1) stretch

has size Ω(n4/3/2O(
√
logn)) and any construction with

size O(n4/3−ε) has additive stretch β = nδ for some
δ = δ(ε). This result explained why all prior additive
spanner constructions had a strange transition at
4/3 [27, 57, 9, 20, 14, 38, 62], but it did not suggest
what the optimal stretch function should be for
sparsity n1+δ when δ ∈ [0, 1/3).

1.5 New Results

3The Thorup-Zwick emulator can easily be converted to a
(1 + ε, β)-spanner by replacing weighted edges with paths up
to length β. A careful analysis shows the size of the resulting

spanner can be made O((k/ε)O(1)n
1+ 1

2k+1
−1 ) (see the full

version) which would slightly improve on [30]. Elkin [personal
communication, 2013] has stated that with minor changes,
the Elkin-Peleg [30] spanners can also be expressed as (1 +

ε, O(k/ε)k−1)-spanners with size O((k/ε)O(1)n
1+ 1

2k+1
−1 ). We

state these bounds in Figure 1 rather than those of [30] in order

to facilitate easier comparisons with subsequent constructions
[57, 20, 47], and the new constructions in the full version of
this paper.

Distance Oracle Lower Bounds. Our main
result is a hierarchy of lower bounds for spanners,
emulators, and distance oracles, which shows that
tradeoffs offered by Thorup and Zwick’s [57] sub-
linear additive emulators [57] and Elkin and Peleg’s
(1+ ε, β)-spanners cannot be substantially improved.
Building on Abboud and Bodwin’s [1] Ω(n4/3−o(1))
lower bounds for additive spanners, we prove that for
every integer k ≥ 2 and d < no(1), there is a graph

Hk on n vertices and n
1+ 1

2k−1
−o(1)

edges such that

any spanner with size n
1+ 1

2k−1
−ε

, ε > 0, stretches
vertices at distance d to at least d + ckd

1− 1
k for a

constant ck = Θ(1/k). More generally, we exhibit
graph families that cannot be compressed into dis-

tance oracles on n
1+ 1

2k−1
−ε

bits such that distances
can be recovered below this error threshold. The con-
sequences of this construction are that the existing
sublinear additive emulators [57], sublinear additive
spanners [47, 20], and (1 + ε, β)-spanners [30, 57, 47]
are, to varying degrees, close to optimal. Specifically,

• The (d+O(kd1−
1
k +3k))-emulator [57] with size

O(n
1+ 1

2k+1
−1 ) cannot be improved by more than

a constant factor in the stretch O(kd1−
1
k ), or by

a o(1) in the exponent 1 + 1
2k+1−1

.

• The sublinear additive spanners of Pettie [47]
and Chechik [20] probably have suboptimal ex-
ponents, but not by much. For example, the
exponent of Chechik’s [20] Õ(n20/17)-size (d +
O(

√
d))-spanner is within 0.034 of optimal and

the exponent of Pettie’s [47] O(n25/22)-size (d+
O(d2/3))-spanner is within 0.07 of optimal.

• When ε ≥ 1/no(1), the existing constructions of
(1+ ε, O(k/ε)k−1)-spanners [30, 57, 47] with size

O
(
(k/ε)O(1)n

1+ 1

2k+1
−1

)
cannot be substantially

improved in either the additive O(k/ε)k−1 term
or the exponent 1+ 1

2k+1−1
. This follows from the

fact that any spanner with stretch of type (1 +
ε̂, O(k/ε̂)k−1), for every ε̂ ≥ ε functions as a (d+

O(kd1−
1
k ))-spanner for distances d ≤ O(k/ε)k.

However, there is no reason to believe that the
size of such (1 + ε, β)-spanners must depend on
ε, as it does in the current constructions.

There is an interesting new hierarchy of phase

transitions in the interplay between our lower bounds
previous upper bounds [57]. Let C be a sufficiently
large constant and c be a sufficiently small constant.
If one wants a graph compression scheme with stretch
f(d) = d + C

√
d, then one needs only Õ(n8/7) bits

of space to store an emulator [57]. However, if we
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Stretch Function

d+O
(√

d
)

d+O
(
d

2
3

)
d+O

(
d

3
4

)
d+O

(
kd1−

1
k )
)

or or or or
Citation

(
1 + ε, O

(
1
ε

)) (
1 + ε, O

(
1
ε

)
2
) (

1 + ε, O
(
1
ε

)
3
) (

1 + ε, O
(
k
ε

)
k−1

)

Elkin & Peleg Span. O
(
ε−O(1)n

8
7

)
O
(
ε−O(1)n

16
15

)
O
(
ε−O(1)n

32
31

)
O
((

k
ε

)
O(1)n

1+ 1

2k+1
−1

)

Thorup Emul. O
(
n

8
7

)
O
(
n

16
15

)
O
(
n

32
31

)
O
(
kn

1+ 1

2k+1
−1

)

& Zwick Span. O
(
n

4
3

)
O
(
n

5
4

)
O
(
n

6
5

)
O
(
kn1+ 1

k+1

)

Pettie Span. O
(
n

6
5

)
O
(
n

25
22

)
O
(
n

103
94

)
O

(
kn

1+
(3/4)k−2

7−2(3/4)k−2

)

Chechik Span. Õ
(
n

20
17

)

New Span. O
(
ε−

2
7n

8
7

)
O
(
ε−

7
15n

16
15

)
O
(
ε−

18
31n

32
31

)
O
((

k
ε

)
hkn

1+ 1

2k+1
−1

)

New Lower
Bounds

All Ω
(
n

4
3−o(1)

)
Ω
(
n

8
7−o(1)

)
Ω
(
n

16
15−o(1)

)
Ω
(
n
1+ 1

2k−1
−o(1)

)

Figure 1: A summary of spanners and emulators with (1+ε, O(k/ε)k−1)-type stretch and sublinear additive

stretch d + O(kd1−
1
k ). Note: the new lower bounds do not contradict the upper bounds; the lower bounds

are for stretch functions with smaller leading constants in the O(k/ε)k−1 and O(kd1−
1
k ) terms. In the last

cell of the table, h = 3·2k−1−(k+2)
2k+1−1

< 3/4, which improves the dependence on ε that can be obtained from
modified versions of existing constructions [30, 57].

3
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want a slightly improved stretch f(d) = d + c
√
d,

then, by our lower bound, the space requirement
leaps to Ω(n4/3−o(1)). In general, the optimal space
for stretch function f(d) = d + c′d1−1/k takes a
polynomial jump as we shift c′ from some sufficiently
large constant O(k) to a sufficiently small constant
Ω(1/k).

An important take-away message from our work
is that the sublinear additive stretch functions of
type f(d) = d + O(d1−1/k) used by Thorup and
Zwick [57] are exactly of the “right” form. For
example, such plausible-looking stretch functions as
f(d) = d + O(d1/3) and f(d) = d + O(d2/3/ log d)
could only exist in the narrow bands not covered by
our lower bounds: between space n4/3−o(1) and n4/3

and between space n8/7−o(1) and n8/7.
Spanner Upper Bounds. To complement our

lower bounds we provide new upper bounds on
the sparsity of spanners with stretch of type (1 +
ε̂, O(k/ε̂)k−1), which holds for every ε̂ ≥ ε. Our

new spanners have size O((k/ε)hkn
1+ 1

2k+1
−1 ), where

h = 3·2k−1−(k+2)
2k+1−1

< 3/4. This construction improves
on the bounds that can be derived from [57, 30, 47]
in the dependence on ε.4 For example, one conse-
quence of this result is an O(D1/7n8/7)-size span-
ner that functions as a (d + O(

√
d))-spanner for all

d ≤ D. This size bound is an improvement on
Chechik’s (d+O(

√
d))-spanner, as long as D < n4/17.

Hopset Lower Bounds. Hopsets are funda-
mental objects that are morally similar to emulators.
They were explicitly defined by Cohen [23] but used
implicitly in many earlier works [59, 37, 22, 51]. Let
G = (V,E,w) be an arbitrary undirected weighted

graph andH ⊂
(
V
2

)
be a set of edges called the hopset.

In the united graph G′ = (V,E∪H,w), the weight of
an edge (u, v) ∈ H is the length of the shortest path
in G between u and v. Define the β-limited distance

in G′, denoted dist
(β)
G′ (u, v), to be the length of the

shortest path from u to v that uses at most β edges
in G′.5 We call H a (β, ε)-hopset, where β ≥ 1, ε > 0,
if, for any u, v ∈ V , we have

dist
(β)
G′ (u, v) ≤ (1 + ε) distG(u, v).

4No bounds of this type are stated explicitly in [57] or [30].
In order to get a bound of this type—with the 1 + 1

2k+1
−1

exponent and some poly(1/ε) dependence on ε— one must only
adjust the sampling probabilities of [57]; however, adapting
[30] requires slightly more significant changes [Elkin, personal
communication, 2013].

5Note that whereas dist = dist(∞) is metric, dist(β) does
not necessarily satisfy the triangle inequality for finite β.

There is clearly some three-way tradeoff between β, ε,
and |H|. Elkin and Neiman [28] recently showed that
any graph has a (β, ε)-hopset with size Õ(n1+1/κ),

where β = O
(

log κ
ε

)log κ

.6

In this work, we show that any construction of

(β, ε)-hopsets with worst-case size n
1+ 1

2k−1
−δ

, where

k ≥ 1 is an integer and δ > 0, must have β = Ωk

(
1
ε

)k
.

For example, hopsets with β = o(1/ε) must have size
Ω(n2−o(1)) and those with β = o(1/ε2) must have
size Ω(n4/3−o(1)). This essentially matches the Elkin-
Neiman tradeoff, up to a constant in β that depends
on k.

Lower Bounds on Shortcutting Digraphs.
In 1992, Thorup [53] conjectured that the diameter
of any directed graph G = (V,E) could be drastically
reduced with a small number of shortcuts. In particu-
lar, there exists another directed graph G′ = (V,E′)
with |E′| = O(|E|) and the same transitive closure
relation as G ( ), such that if u v, then there is a
poly(log n)-length path from u to v in G′. Thorup’s
conjecture was confirmed for trees [53, 55, 19] and
planar graphs [54], but finally refuted by Hesse [34]
for general graphs. In this paper we give a simpler
1-page proof of Hesse’s refutation by modifying our
spanner lower bound construction.

Spanners for High-Girth Graphs. Our lower
bounds apply to the class of all undirected graph
metrics. Baswana, Kavitha, Mehlhorn, and Pettie [9]
gave sparser spanners for a restricted class of graph
metrics. Specifically, graphs with girth at least 2γ+1

contain additive 6γ-spanners with size O(n1+ 1
2γ+1 ).

We adapt our lower bound construction to prove
that the exponent 1 + 1

2γ+1 is optimal, assuming
the Girth Conjecture, and more generally we give
lower bounds on compression schemes for the class
of graphs with girth at least 2γ + 1. Any scheme

that uses n
1+ 1

(γ+1)2k−1
−1

−ε
bits must have stretch

f(d) ≥ d + Ω(d1−1/k), for any d < no(1). We also
give new constructions of emulators and spanners for
girth-(2γ + 1) graphs that shows that the exponent
1 + 1

(γ+1)2k−1−1
is the best possible.

1.6 Related Work Much of the recent work on
spanners has focused on preserving or approximating
distances between specified pairs of vertices. See [25,
2, 1] for lower bounds on pairwise spanners and
[25, 47, 26, 36, 35, 2, 43, 50] for upper bounds.

6It is likely that Elkin and Neiman’s tradeoff could be more
precisely stated as follows: for any positive integer k and ε > 0,

there is an Õ(n
1+ 1

2k+1
−1 ) size (β, ε)-hopset with β = O(k/ε)k.
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Pairwise spanners have proven to be useful tools for
constructing (sublinear) additive spanners; see [47,
20, 13].

The space/stretch tradeoffs offered by the best
distance oracles [21, 44, 45, 3, 5, 4, 31] are strictly
worse than those of the best spanners and emula-
tors, even though distance oracles are entirely un-

constrained in how they encode the graph metric.
This is primarily due to the requirement that dis-
tance oracles respond to queries quickly. There are
both unconditional [52] and conditional [24, 44, 45]
lower bounds suggesting that distance oracles with
reasonable query time cannot match the best span-
ners or emulators.

2 Formal Statement of Our Theorems

In this section we give the formal statements of the
results that we discussed in the introduction. All
proofs can be found in the full version of the paper.

2.1 Lower Bounds for Spanners We start with
our main result that exhibits a hierarchy of additive
spanner lower bounds.

Theorem 2.1. For any integer k ≥ 2 and a suf-

ficiently small constant ck = O(1/k), any spanner

construction with stretch function bounded by f(d) ≤
d+ ckd

1− 1
k + Õ(1) has size Ω(n

1+ 1

2k+1
−1

−o(1)
) in the

worst case.

The next theorem presents our lower bound for
mixed spanners.

Theorem 2.2. ((1 + ε, β)-Spanner Lower
Bounds) Any (1 + ε, β) spanner construction

with worst-case size at most n
1+ 1

2k+1
−1

−δ
, δ > 0, has

β = Ω
(

1
ε(k−1)

)
k−1.

Theorem 2.2 shows that the exist-
ing (1 + ε, O(k/ε)k−1)-spanners with size

O((k/ε)O(1)n
1+ 1

2k+1
−1 ) are optimal in the fol-

lowing sense. If k is constant then we cannot
improve β by more than a constant factor ≈ (k2)k−1

without increasing the exponent to 1 + 1
2k−1

− o(1).
Moreover, any constant reduction in the exponent
increases β to Θ(1/(kε))k.

The next theorem strengthens the results above
showing that the lower bounds hold for any kind of
compression.

Theorem 2.3. (Distance Oracle Lower
Bounds) Consider any data structure for the

class of n-vertex undirected graphs that answers

approximate distance queries. If its stretch function

is:

• f(d) ≤ d+ ckd
1− 1

k + Õ(1) for an integer k and a

sufficiently small constant ck < 2/(k − 1)1−1/k,

or

• f(d) ≤ (1 + ε)d+ β where β = o
((

1
ε(k−1)

)
k−1

)

then on some graph, the data structure occupies at

least n
1+ 1

2k−1
−o(1)

bits of space.

2.2 Lower Bounds for Hopsets Next, we show
lower bounds on the tradeoffs between β and ε in
(β, ε)-hopsets, subject to an upper bound on the
number of edges in the hopset.

Theorem 2.4. Fix a positive integer k and param-

eter ε > 1/no(1). Any construction of (β, ε)-hopsets

with size n
1+ 1

2k−1
−δ

, δ > 0, has β = Ωk

(
1
ε

)k
.

Observe that Theorem 2.4 implies several inter-
esting corollaries: any (β, ε)-hopset with β = o(1/ε)
must have size Ω(n2−o(1)) and any such hopset with
β = o(1/ε2) must have size Ω(n4/3−o(1)).

2.3 Lower Bounds on Compressing High
Girth Graphs Baswana et al. [9] showed that the
class of graphs with girth (length of the shortest cy-
cle) larger than 4 contains additive spanners below
the 4/3 threshold. For example, graphs with girth 5
contain additive 12-spanners with size O(n6/5).

Theorem 2.5. ([9]) For any integer γ ≥ 1, any

graph with girth at least 2γ + 1 contains an additive

6γ-spanner on O(n1+ 1
2γ+1 ) edges.

We extend our lower bound technique to show
that the exponent of Theorem 2.5 is optimal. More
generally, we establish a hierarchy of tradeoffs for
sublinear additive graph compression schemes that
depend on k and γ.

Our construction uses a slightly stronger, but
equivalent, statement of the Girth Conjecture [32, 17,
15] that asserts a lower bound on the degree rather
than the total size: For any integer γ ≥ 1, there exists
a graph with n vertices, girth 2γ + 2, and minimum
degree Ω(n1/γ).

We prove the following theorem. Observe that by
setting k = 2, Theorem 2.6 implies that the exponent
of Theorem 2.5 cannot be improved.

Theorem 2.6. Fix integers γ ≥ 1, k ≥ 2. Consider

any data structure that answers approximate distance

5
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queries for the class of n-vertex undirected graphs

with girth at least 2γ + 1. Assuming the Girth Con-

jecture, if the stretch function of the data structure is

f(d) < d+ ck,γd
1−1/k, for ck,γ ≈ 2

(γ(k−1))1−1/k and d

sufficiently large then on some graph the data struc-

ture occupies at least Ω(n
1+ 1

(γ+1)2k−1
−1

−o(1)
) bits.

We also provide a matching upper bound extend-
ing the result of Baswana et al. [9] for larger k > 2.

Theorem 2.7. Let G be a graph with girth at least

2γ + 1. There is an additive 4γ-emulator and ad-

ditive 6γ-spanner for G with size O(n1+ 1
2γ+1 ). For

any integer k ≥ 2, there is an (d + O(γkd1−1/k))-

emulator for G with size O(kn
1+ 1

(γ+1)2k−1 ) and

a (1 + ε, O(γk/ε)k−1)-spanner for G with size

O((γk/ε)hkn
1+ 1

(γ+1)2k−1 ), where h = 3·2k−1−(k+2)
(γ+1)2k−1

<
3

2(γ+1) .

3 Conclusion

In this paper, we characterized the optimal asymp-
totic behavior of sublinear additive stretch functions
f for spanners, emulators, or any graph compression
scheme. Roughly speaking, any representation using

n
1+ 1

2k−1
−δ

bits (for any δ > 0) must have stretch

function f(d) = d+Ω(d1−
1
k ). Previous constructions

of sublinear additive emulators [57] and (1 + ε, β)-
spanners ([30, 57] and the construction in the full
version of this paper) show that neither the expo-

nent 1 + 1
2k−1

nor additive stretch Ω(d1−
1
k ) can be

improved, for any k,
The main distinction between (1 + ε, β)-

spanners [30, 57, 47] and sublinear additive emula-
tors/spanners [57, 47, 20] is that constructions of the
former take ε as a parameter (which affects the size of
the spanner) whereas the latter have (1+ε, β)-stretch
for all ε, that is, ε can be chosen in the analysis. An
interesting open question is whether one can match
the size-stretch tradeoff of Thorup and Zwick’s opti-
mal emulators [57] with a spanner. (Constructions in
[47, 20] are off from [57] (and our lower bounds) by a
polynomial factor.) It would be possible to construct
such spanners given a pairwise spanner with a sub-
linear additive stretch function. For example, when
S ⊂ V with |S| = Ω(n4/7) and P = S×S, does there
exist a pairwise spanner for P with stretch d+O(

√
d)

and size O(|P |)? If such an object existed, we would
immediately have an optimal (d + O(

√
d))-spanner

with size O(n8/7); see [57, 47].
Our lower bounds match the existing upper

bounds in the distance regime 2Ω(k) � d < no(1),

while they say nothing when d = 2O(k) and they are
weaker when d = nΩ(1). An interesting open problem
is to understand the sparseness-stretch tradeoffs
available when d = O(2k) is tiny (see [29, 9, 43]) and
when d = nΩ(1) is very large [16, 14].

Acknowledgment. We are grateful to Virginia
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paper.

References

[1] A. Abboud and G. Bodwin. The 4/3 additive
spanner exponent is tight. In Proceedings 48th
Annual ACM Symposium on Theory of Computing
(STOC), pages 351–361, 2016.

[2] A. Abboud and G. Bodwin. Error amplification
for pairwise spanner lower bounds. In Proceedings
27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 841–854, 2016.

[3] I. Abraham and C. Gavoille. On approximate
distance labels and routing schemes with affine
stretch. In Proceedings 25th International Sympo-
sium on Distributed Computing (DISC), pages 404–
415, 2011.

[4] R. Agarwal. The space-stretch-time tradeoff in dis-
tance oracles. In Proceedings 22nd Annual European
Symposium Algorithms (ESA), pages 49–60, 2014.

[5] R. Agarwal and P. B. Godfrey. Distance ora-
cles for stretch less than 2. In Proceedings 24th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 526–538, 2013.

[6] D. Aingworth, C. Chekuri, P. Indyk, and R. Mot-
wani. Fast estimation of diameter and short-
est paths (without matrix multiplication). SIAM
J. Comput., 28(4):1167–1181, 1999.

[7] N. Alon. Testing subgraphs in large graphs. In
Proceedings 42nd IEEE Symposium on Foundations
of Computer Science (FOCS), pages 434–441, 2001.

[8] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs.
Discrete and Computational Geometry, 9:81–100,
1993.

[9] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie.
Additive spanners and (α, β)-spanners. ACM Trans.
on Algorithms, 2009.

[10] S. Baswana and S. Sen. A simple and linear
time randomized algorithm for computing sparse
spanners in weighted graphs. J. Random Structures
and Algs., 30(4):532–563, 2007.

[11] F. Behrend. On sets of integers which contain no
three terms in arithmetic progression. Proc. Nat.
Acad. Sci., 32:331–332, 1946.

[12] C. Benson. Minimal regular graphs of girth eight

574 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

6
/1

7
 t

o
 6

9
.1

3
6
.1

3
7
.3

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



and twelve. Canadian Journal of Mathematics,
18:1091–1094, 1966.

[13] G. Bodwin and V. Vassilevska Williams. Very
sparse additive spanners and emulators. In Proceed-
ings 2015 Conference on Innovations in Theoretical
Computer Science (ITCS), pages 377–382, 2015.

[14] G. Bodwin and V. Vassilevska Williams. Better dis-
tance preservers and additive spanners. In Proceed-
ings 27th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 855–872, 2016.

[15] B. Bollobás. Extremal graph theory, volume 11 of
London Mathematical Society Monographs. Aca-
demic Press Inc. [Harcourt Brace Jovanovich Pub-
lishers], London, 1978.

[16] B. Bollobás, D. Coppersmith, and M. Elkin. Sparse
subgraphs that preserve long distances and additive
spanners. SIAM J. Discr. Math., 9(4):1029–1055,
2006.

[17] J. Bondy and M. Simonovits. Cycles of even length
in graphs. J. Combinatorial Theory, Series B,
16:97–105, 1974.

[18] W. G. Brown. On graphs that do not contain a
Thomsen graph. Canad. Math. Bull., 9:281–285,
1966.

[19] B. Chazelle. Computing on a free tree via
complexity-preserving mappings. Algorithmica,
2(3):337–361, 1987.

[20] S. Chechik. New additive spanners. In Proceedings
24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 498–512, 2013.

[21] S. Chechik. Approximate distance oracles with
improved bounds. In Proceedings 47th Annual ACM
on Symposium on Theory of Computing (STOC),
pages 1–10, 2015.

[22] E. Cohen. Using selective path-doubling for parallel
shortest-path computations. Journal of Algorithms,
22(1):30–56, 1997.

[23] E. Cohen. Polylog-time and near-linear work ap-
proximation scheme for undirected shortest-paths.
J. ACM, 47:132–166, 2000.

[24] H. Cohen and E. Porat. On the hardness of distance
oracle for sparse graph. CoRR, abs/1006.1117, 2010.

[25] D. Coppersmith and M. Elkin. Sparse source-
wise and pair-wise preservers. SIAM J. Discrete
Mathematics, 20(2):463–501, 2006.

[26] M. Cygan, F. Grandoni, and T. Kavitha. On pair-
wise spanners. In Proceedings 30th International
Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), pages 209–220, 2013.

[27] D. Dor, S. Halperin, and U. Zwick. All-pairs almost
shortest paths. SIAM J. Comput., 29(5):1740–1759,
2000.

[28] M. Elkin and O. Neiman. Hopsets with constant
hopbound, and applications to approximate shortest
paths. In Proc. 57th IEEE Symposium on Founda-
tions of Computer Science (FOCS), to appear, 2016.

[29] M. Elkin and D. Peleg. (1 + ε, β)-spanner construc-

tions for general graphs. In Proc. 33rd Annual ACM
Symposium on Theory of Computing (STOC), pages
173–182, 2001.

[30] M. Elkin and D. Peleg. (1 + ε, β)-spanner con-
structions for general graphs. SIAM J. Comput.,
33(3):608–631, 2004.

[31] M. Elkin and S. Pettie. A linear-size logarithmic
stretch path-reporting distance oracle for general
graphs. ACM Trans. Algorithms, 12(4):50, 2016.
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