Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Scaling Algorithms for Weighted Matching in General Graphs*

Ran Duan
Tsinghua University

Abstract

We present a new scaling algorithm for maxi-
mum (or minimum) weight perfect matching on
general, edge weighted graphs. Our algorithm
runs in O(my/nlog(nN)) time, O(m+/n) per scale,
which matches the running time of the best cardi-
nality matching algorithms on sparse graphs [29,
18]. Here m,n, and N bound the number of
edges, vertices, and magnitude of any integer edge
weight. Our result improves on a 25-year old
algorithm of Gabow and Tarjan, which runs in

O(m+/nlogna(m,n)log(nN)) time.

1 Introduction

In 1965 Edmonds [8, 9] proposed the complexity
class P and proved that on general (non-bipartite)
graphs, both the maximum cardinality matching
and maximum weight matching problems could be
solved in polynomial time. Subsequent work on
general weighted graph matching focused on de-
veloping faster implementations of Edmonds’ algo-
rithm [24, 12, 23, 19, 15, 14| whereas others pursued
alternative techniques such as cycle-canceling [3],
weight-scaling [13, 18], or an algebraic approach
using fast matrix multiplication [4]. Refer to Ta-
ble 1 for a survey of weighted matching algorithms
on general graphs. The fastest implementation of
Edmonds’ algorithm [14] runs in O(mn + n?logn)
time on arbitrarily-weighted graphs. On graphs
with integer edge-weights having magnitude at most
N, Gabow and Tarjan’s [18] algorithm runs in
O(m+y/na(m,n)lognlog(nN)) time whereas Cy-
gan, Gabow, and Sankowski’s runs in O(Nn*) time
with high probability, where w is the matrix multi-
plication exponent. For reasonable values of m,n,
and N the Gabow-Tarjan algorithm is theoreti-

~ *Supported by NSF grants CCF-0939370, CCF-
1217338, (CNS-1318294, CCF-1514383, CCF-1637546,
BIO-1455983, and AFOSR FA9550-13-1-0042. R. Duan
is supported by a China Youth 1000-Talent grant.
Email: duanran@mail.tsinghua.edu.cn, pettie@umich.edu,
hsinhao@mit.edu.

Seth Pettie
University of Michigan

781

Hsin-Hao Su
MIT

cally superior to the others. However, it is an
Q(y/logna(m,n)) factor slower than comparable
algorithms for bipartite graphs [17, 26, 20, 7], and
even slower than the interior point algorithm of [2]
for sparse bipartite graphs. Moreover, its analysis
is rather complex.

In this paper we present a new scaling al-
gorithm for weighted matching that runs in
O(m+/nlog(nN)) time. Its analysis is accessible
to anyone familiar with Edmonds’ algorithm and
LP duality. Each scale of our algorithm runs in
O(m+/n) time, which is asymptotically the same
time required to compute a maximum cardinality
matching on sparse graphs [29, 18]. Therefore, it
is unlikely that our algorithm could be substan-
tially improved without first finding faster algo-
rithms for the manifestly simpler problem of car-
dinality matching.

1.1 Terminology The input is a graph G =
(V,E,w) where |V| =n,|E| =m, and & : E — R
assigns a real weight to each edge. A matching M
is a set of vertex-disjoint edges. A vertex is free
if it is not adjacent to an M edge. An alternating
path is one whose edges alternate between M and
E\ M. An alternating path P is augmenting if it

begins and ends with free vertices, which implies

that M & P < (MUP)\ (MnNP)is also a match-

ing and has one more edge. The mazimum cardi-
nality matching (MCM) problem is to find a match-
ing M maximizing |M|. The mazimum weight per-
fect matching (MwPM) problem is to find a perfect
matching M (or, in general, one with maximum
cardinality) maximizing w(M) = > c,; w(e). The
mazimum weight matching problem—with no car-
dinality constraint—is reducible to MwPM [5] and
may be a slightly easier problem [7, 21]. In this
paper we assume that @ : E — {0,..., N} assigns
non-negative integer weights bounded by N.!

T Assuming non-negative weights is without loss of gener-
ality since we can simply subtract min.c p{w(e)} from every

edge weight, which does not affect the relative weight of two

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Year Authors

Time Complexity & Notes

1965 | Edmonds mn?

1974 | Gabow 3
n
1976 | Lawler

1976 | Karzanov

n® + mnlogn

1978 | Cunningham & Marsh poly(n)

1982 | Galil, Micali & Gabow mnlogn

1985 | Gabow mn®/*log N INTEGER WEIGHTS
1989 | Gabow, Galil & Spencer mnlogloglog, n + n?logn d=24+m/n
1990 | Gabow mn +n?logn

1991 | Gabow & Tarjan

m+/na(n,m)lognlog(nN)

INTEGER WEIGHTS

Cygan, Gabow
& Sankowski

2012 Nn*

RANDOMIZED, INTEGER WEIGHTS

new

Edm -/nlog(nN)
my/nlog(nN)

INTEGER WEIGHTS

Table 1: Maximum Weight Perfect Matching (MwpPM) algorithms for General Graphs. Edm is the time for
one execution of Edmonds’ search on an integer-weighted graph.

1.2 Edmonds’ Algorithm Edmonds’ MwpPM
algorithm begins with an empty matching M and
consists of a sequence of search steps, each of which
performs zero or more dual adjustment, blossom
shrinking, and blossom dissolution steps until a
tight augmenting path emerges or the search de-
tects that |M| is maximum. (Blossoms, duals, and
tightness are reviewed in Section 2.) The overall
running time is therefore O(n - Edm), where Edm
is the cost of one search. Gabow’s implementation
of Edmonds’ search runs in O(m + nlogn) time,
the same as one Hungarian search [11] on bipartite
graphs.

1.3 Scaling Algorithms The problem with Ed-
monds’ MWPM algorithm is that it finds augment-
ing paths one at a time, apparently dooming it to a
running time of Q(mn). The matching algorithms
of [13, 18] take the scaling approach of Edmonds and
Karp [10]. The idea is to expose the edge weights
one bit at a time. In the ith scale the goal is to
compute an optimum perfect matching with respect
to the ¢ most significant bits of #. Gabow [13]
showed that each of log IV scales can be solved in
O(mn?/*) time. Gabow and Tarjan [18] observed
that it suffices to compute a +O(n)-approximate

perfect matchings. Moreover, the minimum weight perfect
matching problem is reducible to MwPM, simply by substi-
tuting —w for w.

782

solution at each scale, provided there are additional
scales; each of their log(nN) scales can be solved in
O(m+/na(m,n)logn) time.

Scaling algorithms for general graph matching
face a unique difficulty not encountered by scaling
algorithms for other optimization problems. At the
beginning of the ith scale we have inherited from
the (i — 1)th scale a nested set €' of blossoms and
near-optimal duals ¢, 2’. (The matching primer in
Section 2 reviews y and z duals.) Although ¢/, 2’ are
numerically close to optimal; Q' may be structurally
very far from optimal for scale i. The [13, 1§]
algorithms gradually get rid of inherited blossoms
in ' while simultaneously building up a new near-
optimum solution €2, y, z. They decompose the tree
of ' blossoms into heavy paths and process the
paths in a bottom-up fashion. Whereas Gabow’s
method [13] is slow but moves the dual objective in
the right direction, the Gabow-Tarjan method [18§]
is faster but may actually widen the gap between the
dual objective and optimum. There are logn layers
of heavy paths and processing each layer widens the
gap by up to O(n). Thus, at the final layer the gap
could be as large as O(nlogn). It is this gap that
is the source of the y/nlogn factor in the running
time of [18], not any data structuring issues.

Broadly speaking our algorithm follows the scal-
ing approach of [13, 18|, but dismantles old blos-
soms in a completely new way, and further weakens
the goal of each scale. Rather than compute an op-

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

timal [13] or near-optimal [18] perfect matching at
each scale, we compute a near-optimal, near-perfect
matching at each scale. The advantage of leaving
some vertices unmatched (or, equivalently, artifi-
cially matching them up with dummy mates) is not
at all obvious, but it helps speed up the dismantling
of blossoms in the next scale. The algorithms are
parameterized by a 7 = 7(n). A blossom is called
large if it contains at least 7 vertices and small oth-
erwise. Each scale of our algorithm produces an
imperfect matching M with y, z,Q that (i) leaves
O(n/T) vertices unmatched, and (ii) is such that the
sum of z(B) of all large B € 2 is O(n), independent
of the magnitude of edge weights. After the last
scale, the vertices left free by (i) (over all scales) will
need to be matched up in O(Edm-(n/7)log(nN))
time, at the cost of one Edmonds’ search per vertex.
Thus, we want 7 to be large. Part (ii) guarantees
that large blossoms formed in one scale can be effi-
ciently liguidated in the next scale (see Section 3),
but getting rid of small blossoms (whose z-values
are unbounded, as a function of n) is more com-
plicated. Our methods for getting rid of small blos-
soms have running times that are increasing with 7,
so we want 7 to be small. In the LIQUIDATIONIST al-
gorithm, all inherited small blossoms are processed
in O(Edm -7) time whereas in HYBRID (a hybrid of
L1QUIDATIONIST and Gabow’s algorithm [13]) they
are processed in O(m73/4) time.

1.4 Organization In Section 2 we review Ed-
monds’ LP formulation of MwpM and Ed-
monds’ search procedure. In Section 3 we
present the LIQUIDATIONIST algorithm running in
O(Edm -\/nlog(nN)) time. In Section 4 we give
the HYBRID algorithm running in O(m+/nlog(nN))
time.

Our algorithms depend on having an efficient im-
plementation of Edmonds’ search procedure. In [6,
§5] we give a detailed description of an implemen-
tation of Edmonds’ search that is very efficient on
integer-weighted graphs. It runs in linear time
when there are a linear number of dual adjust-
ments. When the number of dual adjustments is
unbounded it runs in O(mloglogn) time deter-
ministically or O(m+/loglogn) time w.h.p. This
implementation is based on ideas suggested by
Gabow [13]| and may be considered folklore in some
quarters.

2 A Matching Primer

The MWPM problem can be expressed as an integer
linear program

maximize Z x(e) - w(e)

eeE
subject to x(e) € {0,1}, for alle € E

and Zz(e) =1, forallveV.

esv

The integrality constraint lets us interpret x as
the membership vector of a set of edges and the
ZSDU z(e) = 1 constraint enforces that x represents
a perfect matching. Birkhoft’s theorem [1] (see also
von Neumann [30]) implies that in bipartite graphs
the integrality constraint can be relaxed to z(e) €
[0,1]. The basic feasible solutions to the resulting
LP correspond to perfect matchings. However,
this is not true of non-bipartite graphs! Edmonds
proposed exchanging the integrality constraint for
an exponential number of the following odd set
constraints, which are obviously satisfied for every
x that is the membership vector of a matching.

> a(e) < [|B|/2], forall BCV, |B| >3 odd.
ecE(B)

Edmonds proved that the basic feasible solutions
to the resulting LP are integral and therefore cor-
respond to perfect matchings. Weighted match-
ing algorithms work directly with the dual LP. Let
y:V — Rand z:2" — R be the vertex duals and
odd set duals.

minimize Z y(v) + Z 2(B) - [|B|/2]
veV BCV:
|B|>3 is odd

subject to z(B) >0, for allodd B C V,

w(u,v) < yz(u,v) for all (u,v) € E,

where yz is, by definition,
def
y2(u,0) = y(u) +y(0) + Y 2(B).

BDO{u,v}

We generalize the synthetic dual yz to an arbitrary
set S C V of vertices as follows.

yz(S)
=S "y + D aB) - B+ Y w15,
ues BCS BD>S

Note that yz(V) is exactly the dual objective.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Edmonds’ algorithm [8, 9] maintains a dynamic
matching M and dynamic laminar set Q C 2V of
odd sets, each associated with a blossom subgraph.
Informally, a blossom is an odd-length alternating
cycle (w.r.t. M), whose constituents are either
individual vertices or blossoms in their own right.
More formally, blossoms are constructed inductively
as follows. If v € V then the odd set {v} induces
a trivial blossom with edge set (). Suppose that
for some odd ¢ > 3, Ag,...,As_1 are disjoint sets
associated with blossoms E4,,...,E4, ,. If there
are edges eg, ...,ep_1 € F such that e; € A; x A;41
(modulo ¢) and e; € M if and only if ¢ is odd,
then B = |J; A4; is an odd set associated with the
blossom Ep = |J; Ea,U{eo,...,e,—1}. Because / is
odd, the alternating cycle on Ay, ..., Ay_1 has odd
length, leaving A(incident to two unmatched edges,
ep and ey_1. One can easily prove by induction that
|B| is odd and that Ep N M matches all but one
vertex in B, called the base of B. Remember that
E(B)=FEnN (g), the edge set induced by B, may
contain many non-blossom edges not in Eg. Define
n(B) = |B| and m(B) = |E(B)| to be the number
of vertices and edges in the graph induced by B.

The set Q2 of active blossoms is represented by
rooted trees, where leaves represent vertices and in-
ternal nodes represent nontrivial blossoms. A root
blossom is one not contained in any other blossom.
The children of an internal node representing a blos-
som B are ordered by the odd cycle that formed B,
where the child containing the base of B is ordered
first. Edmonds [9, 8] showed that it is often possi-
ble to treat blossoms as if they were single vertices,
by shrinking them. We obtain the shrunken graph
G/Q by contracting all root blossoms and remov-
ing the edges in those blossoms. To dissolve a root
blossom B means to delete its node in the blossom
forest and, in the contracted graph, to replace B
with individual vertices Ag,..., Ap_1.

Blossoms have numerous properties. Our algo-
rithms use two in particular.

1. The subgraph on Ep is critical, meaning it
contains a perfect matching on B\{v}, for each
v € B. Phrased differently, any v € B can be
made the base of B by choosing the matching
edges in E'p appropriately.

2. As a consequence of (1), any augmenting path
P’ in G/ extends to an augmenting path P
in G, by replacing each non-trivial blossom
vertex B in P’ with a corresponding path
through Ep. Moreover, € is still valid for the
matching M & P, though the bases of blossoms

784

intersecting P may be relocated by augmenting
along P. See Figure 1 for an example.

2.1 Relaxed Complementary Slackness Ed-
monds’ algorithm maintains a matching M, a
nested set Q of blossoms, and duals y : V — Z
and z : 2¥ — N that satisfy Property 2.1. Here
w is a weight function assigning even integers; it is
generally not the same as the input weights w.

PROPERTY 2.1. (Complementary Slackness) As-
sume w assigns only even integers.

1. Granularity. z(B) is a nonnegative even inte-
ger and y(u) is an integer.

2. Active Blossoms. |M N Eg| = ||B|/2] for all
B € Q. If B € Q is a root blossom then
2(B) > 0; if B ¢ Q then z(B) = 0. Non-root
blossoms may have zero z-values.

3. Domination.
(u,v) € E.

4. Tightness. yz(e) = w(e), for each e € M U
Upea EB-

LEMMA 2.1. If Property 2.1 is satisfied for a perfect
matching M, blossom set €, and duals y, z, then M
is necessarily a MWPM w.r.t. the weight function w.

yz(e) > w(e), for each e =

The proof of Lemma 2.1 follows the same lines
as Lemma 2.2, proved below. The Gabow-Tarjan
algorithms and their successors [17, 18, 26, 20, 7, 5]
maintain a relaxation of complementary slackness.
By using Property 2.2 in lieu of Property 2.1 we
introduce an additive error as large as m. This
does not prevent us from computing exact MWPMs
but it does necessitate additional scales. Before the
algorithm proper begins we compute the extended
weight function w(e) = (5 + 1)w(e). Note that
the weight of every matching w.r.t. @ is a multiple
of § + 1. After the final scale of our algorithms
w = 2w so if we can find a matching M such that
w(M) is within n of optimum, then w(M) is within
5 of optimum, and therefore w(M) and w(M) are
exactly optimum. These observations motivate the
use of Property 2.2.

PROPERTY 2.2. (Relazed Complementary Slack-
ness) Assume w assigns only even integers. Prop-
erty 2.1(1,2) holds and (3,4) are replaced with
3. Near Domination. yz(e) > w(e) — 2 for each
edge e = (u,v) € E.
4. Near Tightness. yz(e) < w(e), for each e €
MU UBGQ Ep.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

(a)

(b)

Figure 1: Matched edges are thick, unmatched edges thin. Left: B is a blossom consisting of 7 sub-blossoms,

4 of which are trivial (vertices) and the other three non-trivial blossoms. The path P’ =

(U17U2,B,U3) is

an augmenting path in the shrunken graph G/{B}. Right: augmenting along P’ in G/{B} enlarges the
matching and has the effect of moving the base of B to the vertex matched with ug.

LEMMA 2.2. If Property 2.2 is satisfied for some
perfect matching M, blossom set 2, and duals y, z,
then w(M) > w(M*) — n, where M* is an MWPM.

Proof. By Property 2.2 (near tightness and active
blossoms), the definition of yz, and the perfection
of M, we have,

M) > yz(e)

eeM

= y(u)+ Y 2(B)-|MnEB)
ueV BeQ

= > yw)+ > =(B)-[|Bl/2].
ueV BeQ)

Since the MWPM M* puts at most ||B|/2] edges in
any blossom B € €, we have, by Property 2.2 (near
domination),

£

ME

< (yz(e) +2)

?

ec M*

=Yy + Y 2B)-|M*NE(B)|+2[M|
ueV BeQ
<Dy + Y 2(B)-[IBl/2) +
ueV BeQ

Therefore, we have w(M) > w(M*) —

2.2 Edmonds’ Search Suppose we have a
matching M, blossom set €2, and duals y, z satis-
fying Property 2.1 or 2.2. The goal of Edmonds’
search procedure is to manipulate y, z, and) un-
til an eligible augmenting path emerges. At this

785

point |M| can be increased by augmenting along
such a path (or multiple such paths), which pre-
serves Property 2.1 or 2.2. The definition of eligible
needs to be compatible with the governing invari-
ant (Property 2.1 or 2.2) and other needs of the
algorithm. In our algorithms we use several imple-
mentations of Edmonds’ generic search: they differ
in their governing invariants, definition of eligibil-
ity, and data structural details. For the time being
the reader can imagine that Property 2.1 is in ef-
fect and that we use Edmonds’ original eligibility
criterion [8].

CRITERION 2.1. An edge e is eligible if it is tight,
that is, yz(e) = w(e).

Each scale of our algorithms begins with Prop-
erty 2.1 as the governing invariant but switches to
Property 2.2 when all inherited blossoms are gone.
When Property 2.2 is in effect we use Criterion 2.2
if the algorithm aims to find augmenting paths in
batches and Criterion 2.3 when augmenting paths
are found one at a time. The reason for switching
from Criterion 2.2 to 2.3 is discussed in more detail
in the proof of Lemma 3.3.

CRITERION 2.2. An edge e is eligible if at least one
of the following holds.

1. e € Ep for some B €).
2. e¢ M and yz(e) = w(e) — 2.
3. e € M and yz(e) = w(e).

CRITERION 2.3. An edge is eligible if yz(e) = w(e)
or yz(e) = w(e) — 2.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Regardless of which eligibility criterion is used,
let Gelig = (V,Eeig) be the eligible subgraph
and @Chg = Gliig/S) be obtained from Gz by
contracting all root blossoms.

We consider a slight variant of Edmonds’ search
that looks for augmenting paths only from a speci-
fied set F of free vertices, that is, each augmenting
path must have at least one end in F' and possi-
bly both. The search iteratively performs Augmen-
tation, Blossom Shrinking, Dual Adjustment, and
Blossom Dissolution steps, halting after the first
Augmentation step that discovers at least one aug-
menting path. We require that the y-values of all
F vertices have the same parity (even/odd). This
is needed to keep vy, z integral and allow us to per-
form discrete dual adjustment steps without vio-
lating Property 2.1 or 2.2. See Figure 2 for the
pseudocode.

The main data structure needed to implement
EDMONDSSEARCH is a priority queue for schedul-
ing events (blossom dissolution, blossom formation,
and grow events that add vertices to Vip U Vout).
We refer to PQSEARCH as an implementation of
EDMONDSSEARCH when the number of dual adjust-
ments is unbounded. See Gabow [14] for an im-
plementation of PQSEARCH taking O(m + nlogn)
time, or [6, §5] for one taking O(m+/loglogn) time,
w.h.p. When the number of dual adjustments is
t = O(m) we can use a trivial array of buckets as a
priority queue. Let BUCKETSEARCH be an imple-
mentation of EDMONDSSEARCH running in O(m-+t)
time; refer to [6, §5] for a detailed description.

Regardless of what t is or how the dual adjust-
ments are handled, we still have options for how
to implement the Augmentation step. Under Crite-
rion 2.1 of eligibility, the Augmentation step always
extends M to a maximum cardinality matching in
the subgraph of Gelig induced by V(M) U F. This
can be done in O((p+1)m) time if p > 0 augmenting
paths are found [16], or in O(m+/n) time, indepen-
dent of p, using an MCM algorithm, e.g., [25, 29] or
[18, §10].

When eligibility Criterion 2.2 is in effect the
Augmentation step is qualitatively different. Ob-
serve that in the contracted graph G/, matched
and unmatched edges have different eligibility cri-
teria. It is easily proved that augmenting along
a mazrimal set of augmenting paths eliminates
all eligible augmenting paths, quickly paving the
way for Blossom Shrinking and Dual Adjustment
steps. Unlike PQSEARCH and BUCKETSEARCH,
SEARCHONE only performs one dual adjustment

786

and must be used with Criterion 2.2. See Figure 3
Finding a maximal set of augmenting paths in O(m)
time is straightforward with depth first search [18,
§8] and a union-find algorithm [16].

The following lemmas establish the correctness
of EDMONDSSEARCH (using either Property 2.1
or 2.2) and SEARCHONE (using Property 2.2 and
Criterion 2.2).

LEMMA 2.3. After the Augmentation step of
SEARCHONE(F) (using Criterion 2.2 for eligibil-
ity), @elig contains no eligible augmenting paths
from an F-vertez.

Proof. Suppose that, after the Augmentation step,
there is an augmenting path P from an F-vertex
in Geljg. Since ¥ was maximal, P must intersect
some P’ € ¥ at a vertex v. However, after the
Augmentation step every edge in P’ will become
ineligible, so the matching edge (v,v') € M is
no longer in @elig, contradicting the fact that P
consists of eligible edges.

LEMMA 2.4. If Property 2.1 is satisfied and the
y-values of wvertices in F have the same parity,
then EDMONDSSEARCH(F') (under Criterion 2.1)
preserves Property 2.1.

Proof. Property 2.1 (granularity) is obviously main-
tained, since we are always adjusting y-values by
1 and z-values by 2. Property 2.1 (active blos-
soms) is also maintained since all the new root blos-
soms discovered in the Blossom Shrinking step are
in Vo and will have positive z-values after adjust-
ment. Furthermore, each root blossom whose z-
value drops to zero is removed.

Consider the tightness and the domination con-
ditions of Property 2.1. First note that if both end-
points of e lie in the same blossom, yz(e) will not
change until the blossom is dissolved. When the
blossom was formed, the blossom edges must be el-
igible (tight). The augmentation step only makes
eligible edges matched, so tightness is satisfied.

Consider the effect of a dual adjustment on an
edge e = (u,v), whose endpoints lie in different
blossoms. We divide the analysis into the following
four cases.

1. Both v and v are in Vi, U Vo and e € M.
We cannot have both u,v € Vi, since e € M
is eligible, nor can we have both u,v € Vo
since this would put u, v in a common blossom.
Thus, u € Vip, v € Vouy and yz(e) is unchanged.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

EDMONDSSEARCH(F')

Precondition: {y(u) | u € F} must all be of the same parity.

Repeatedly perform Augmentation, Blossom Shrinking, Dual Adjustment, and Blossom Dissolution
steps until a halting condition is reached.

Augmentation:
While Gz contains an augmenting path from some free vertex in F, find such a path P and set

M « M & P. Update Geg.
Blossom Shrinking:
Let Vouy € V(Gelig) be the vertices (that is, root blossoms) reachable from free vertices in F' by
even-length alternating paths in éelig; let Qpew be a maximal set of (nested) blossoms on ‘A/Om.
(That is, if (u,v) € E(éehg)\M and u,v € Vo, then u and v must be in a common blossom in
Qnew.) Let ‘7111 - V(@ehg)\‘/}out be those vertices reachable from free vertices in F' by odd-length
alternating paths. Set z(B) < 0 for B € Qyew and set Q + QU Q. Update éehg.
Dual Adjustment: R R
Let Vin, Vout € V be original vertices represented by vertices in Vi, and V. The y- and z-values
for some vertices and root blossoms are adjusted:

y(u) + y(u) — 1, for all u € V.

y(u) + y(u) + 1, for all u € Vi,.

2(B) + z(B) + 2, if B € Q is a root blossom with B C V.

z2(B) < z(B) — 2, it B € Q is a root blossom with B C Vj,.

Blossom Dissolution:
After dual adjustments some root blossoms may have zero z-values. Dissolve such blossoms (remove
them from) as long as they exist. Update Gelig.

Figure 2: A generic implementation of Edmonds’ search procedure. Data structural issues are ignored, as is

the eligibility criterion, which determines ée“g.

2. Both u and v are in Vi, U Vot and e ¢ M.
If at least one of w or v is in Vi, then
yz(e) cannot decrease and domination holds.
Otherwise we must have u,v € V . In this
case, e must be ineligible, for otherwise an
augmenting path or a blossom would have been
found. Ineligibility implies yz(e) > w(e) + 1
but something stronger can be inferred. Since
the y-values of free vertices have the same
parity, all vertices reachable from free vertices
by eligible alternating paths also have the same
parity. Since w(e) is even (by assumption) and
yz(e) is even (by parity) we can conclude that
yz(e) > w(e) + 2 before dual adjustment, and
therefore yz(e) > w(e) after dual adjustment.

3. ubut not visin ViUV, and e € M. This case
cannot happen since in this case, u € V;, and
e must be ineligible, but we know all matched
edges are tight.

4. u but not v is in Vi, U Vuy and e ¢ M. If

787

u € Vip, then yz(e) increases and domination
holds. Otherwise, u € V,u and e must be
ineligible. In this case, we have yz(e) > w(e)+1
before the dual adjustment and yz(e) > w(e)
afterwards.

LEMMA 2.5. If Property 2.2 is satisfied and the
y-values of wvertices in F have the same par-
ity, then SEARCHONE(F) (under Criterion 2.2) or
EDMONDSSEARCH(F) (under Criterion 2.83) pre-
serves Property 2.2.

Proof. The proof is similar to that of the previous
lemma, except that we replace the tightness and
domination by near tightness and near domination.
We point out the differences in the following. An
edge e can be included in a blossom only if it is
eligible. An eligible edge must have yz(e) = w(e)
or yz(e) = w(e) — 2. Augmentations only make
eligible edges matched. Therefore near tightness is
satisfied after the Augmentation step.

When doing the dual adjustment, the following

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

SEARCHONE(F)

o Augmentation:

EDMONDSSEARCH.

Precondition: {y(u) | v € F} must all be of the same parity.

Find a maximal set ¥ of vertex-disjoint augmenting paths from F' in @e“g. Set M < M & U P.

e Perform Blossom Shrinking and Dual Adjustment steps from F', then Blossom Dissolution, exactly as in

Pev

Figure 3:

are the cases when yz(e) is modified after the dual
adjustment. In Case 2 of the previous proof, when
u,v € Voue but e is ineligible we have yz(e) >
w(e) — 1. By parity this implies that yz(e) > w(e)
before the dual adjustment and yz(e) > w(e) — 2
afterwards. Case 3 may happen in this situation.
It is possible that v € Vi, and e € M is ineligible.
Then we must have yz(e) < w(e) — 1 before the
dual adjustment and yz(e) < w(e) afterwards. In
Case 4, when u € Viut, we have yz(e) > w(e) — 1
before the dual adjustment and yz(e) > w(e) — 2
afterwards.

3 The LiQUIDATIONIST Algorithm

The most expedient way to get rid of an inherited
blossom is to liguidate it (our term) by distributing
its z-value over its constituents’ y-values, preserving
Property 2.1 (domination).

L1QUIDATE(B) :
y(u) < y(u) + z(B)/2 for allu € B
z2(B) + 0 (and dissolve B)

From the perspective of a single edge, liquidation
has no effect on yz(e) if e is fully inside B or outside
B, but it increases yz(e) by z(B)/2 if e straddles B.
From a global perspective, liquidation increases the
dual objective yz(V') by

|B|-2(B)/2 = [|B|/2] - 2(B) = 2(B)/2.

Since z(B) is generally unbounded (as a function
of n), this apparently destroys the key advantage
of scaling algorithms, that yz(V') is within O(n) of
optimum. It is for this reason that [13, 18] did not
pursue liquidation.

The LIQUIDATIONIST algorithm (see Figure 4)
is so named because it liquidates all inherited
blossoms. Let w’,v’, z’, M', € be the edge weights,
dual variables, matching and blossom set at the end
of the (i —1)th scale.? Recall that a blossom is large

2In the first scale, w’,y’,z’ = 0 and M’,Q’ = 0, which
satisfies Property 2.2.

788

if it contains at least 7 vertices and small otherwise.

The first step is to compute the even weight
function w for the ith scale and starting duals ¥, z,
as follows.

w(e) < 2(w'(e) + the ith bit of w(e)),
y(u) < 2y (u) +3,
2(B) « 22/(B).

It is proved that if w’,y’,2’ satisfy Property 2.2
wort. M’', then w,y,z satisfy Property 2.1
w.r.t. M = (), except for the Active Blossom prop-
erty, a point that will be moot once we liquidate
all blossoms in . It will be guaranteed that
> Large Bea 2(B) = O(n), so liquidating all large
blossoms increases yz(V') by a tolerable O(n). Af-
ter liquidating large blossoms, but before liquidat-
ing small blossoms, we reweight® the graph. For
each edge (u,v) and vertex wu,

w(u,v) + w(u,v) —y(u) —y(v)
y(u) + 0

Liquidating small blossoms increases y(u) from 0
t0 D Small Bear, uen #(B)/2, which temporarily de-
stroys the property that yz(V) is within O(n) of
optimal. Let B’ be a mazimal former small blos-
som. We repeatedly execute PQSEARCH(F') from
the set I of free vertices in B’ with maximum y-
value Y until one of three events occurs (i) |F| de-
creases, because an augmenting path is discovered,
(i) |F| increases because Y — Y’ dual adjustments
have been performed, where Y’ is the 2nd largest
y-value of a free vertex in B’, or (iii) the y-values of
all vertices in F' become zero. Because B’ is small
there can be at most O(|B’|) = O(7) executions
that stop due to (i) and (ii). We prove that con-
ducting Edmonds’ searches in exactly this way has
two useful properties. First, no edge straddling B’

SReweighting is a conceptual trick that simplifies the

presentation and some proofs. A practical implementation
would simulate this step without actually modifying the edge
weights.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

ever becomes eligible, so the search is confined the
subgraph induced by B’, and second, when the y-
values of free vertices are zero, yz(V) is restored to
be within O(n) of optimal. Each of these Edmonds’
searches can form new weighted blossoms, but be-
cause of the first property they all must be small.
The second property is essential for the next step:
efficiently finding a near-perfect matching.

After inherited blossoms have been dealt with
we must match up all but O(n/7) vertices. At
this stage we switch from satisfying Property 2.1
to Property 2.2 and call SEARCHONE(F') 7 times
using eligibility Criterion 2.2, where F' is the set of
all free vertices. We prove that this leaves at most
O(n/T) free vertices. Note that large blossoms can
only be introduced during the calls to SEARCHONE.
Since we only perform 7 dual adjustments, we can
bound the sum of z-values of all new large blossoms
by O(n).

To end the ith scale we artificially match up all
free vertices with dummy vertices and zero-weight
edges, yielding a perfect matching. Thus, the input
graph G, to scale i 41 is always G supplemented
with some dummy pendants (degree one vertices)
that have accrued over scales 1 through 7. Pendants
can never appear in a blossom.

After the last scale, we have a perfect matching
M in Griog((z+1)n)), Which includes up to O(n/7) -
log((§ +1)N) dummy vertices acquired over all the
scales. We delete all dummy vertices and repeatedly
call PQSEARCH(F) on the current set of free ver-
tices until F' = (). Since these calls make many dual
adjustments, we switch from Criterion 2.2 (which
is only suitable for use with SEARCHONE) to Cri-
terion 2.3 of eligibility. Each call to PQSEARCH
matches at least two vertices so the total time for
finalization is O(Edm -(n/7)log(nN)). See Figure 4
for a compact summary of the whole algorithm.

3.1 Correctness We first show that rescaling
w,y,z at the beginning of a scale restores Prop-
erty 2.1 (except for Active Blossoms) assuming
Property 2.2 held at the end of the previous scale.

LEMMA 3.1. Consider an edge e € E(G;) at scale
7.

o After Step 2 (Scaling), w(e) < yz(e). More-
over, if e € M' U Upcq Ep then w(e) >
yz(e) — 6. (In the first scale, w(e) > yz(e) — 6
for every e.)

o After Step 4 (Large Blossom Liquidation and
Reweighting), w(e) is even for all e € E(G;)

789

and y(u) = 0 for ally € V(G;). Furthermore,
w(e) <yz(e) = Z z(B').

B'eQ:

e€E(B’)
Therefore, Property 2.1 (excluding Active Blos-
soms) holds after Large Blossom Liquidation and
Reweighting.

Proof. At the end of the previous scale, by Prop-
erty 2.2(near domination), y'z'(e) > w'(e) — 2. Af-
ter the Scaling step,

yz(e) =2y'2'(e) + 6 > 2w'(e) + 2 > w(e).

If e € M'"UJp o Ep was an old matching or
blossom edge then

yz(e) = 2y'2'(e) + 6 < 2w'(e) + 6 < w(e) + 6.

In the first scale, yz(e) = 6 and w(e) € {0,2}. Step
3 will increase some yz-values and w(e) < yz(e) will
be maintained. After Step 4 (reweighting), w(u,v)
will be reduced by y(u) + y(v), so

w(u,v) < Z z(B").

Small B’€Q’:

(u,v)EE(B’)
From Property 2.2(1) (granularity) in the previous
scale, after Step 2 all y-values are odd and z-values
are multiples of 4. Therefore y-values remain odd
after Step 3. Since w(u,v) is even initially, it
remains even after subtracting off odd y(u), y(v) in
Step 4.

LEMMA 3.2. After Step 5 in Small Blossom Liqui-
dation, we have w(u,v) < 2-min{y(u),y(v)}, hence,
w(u,v) < y(u) + y(v). Furthermore, Property 2.1
holds after Small Blossom Liquidation.

Proof. Fix any edge (u,v). According to Lemma
3.1, after Step 5 we have

yw) = Y

Small B'eQ)':
ueB’

=Y

Small B'eQ’:
(u,v)€E(B’)

2(B')/2

2(B"/2 > w(u,v)/2.

Therefore, w(u,v) < 2y(u) and by symmetry,
w(u,v) < 2y(v). After Step 5 z = 0 and Q = 0,
so Property 2.1 (including Active Blossoms) holds.
In Step 6 of Small Blossom Liquidation, PQSEARCH
is always searching from the free vertices with the
same y-values and the edge weights are even. There-
fore, by Lemma 2.4, Property 2.1 holds afterwards.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

LIQUIDATIONIST(G, W)

e Go+ G,y+ 0,2+ 0, Q<+ 0.

e Forscalesi=1,---,[log((§ 4+ 1)N)], execute steps Initialization-Perfection.
Initialization
1. Set G < Gi1, 9y +y, 2" <2, M+ 0, Q < Q, and Q < 0.
Scaling

2. Set w(e) + 2(w’(e) + (the i*" bit of w(e))) for each edge e, set y(u) + 2y (u) + 3 for each vertex
u, and z(B’) + 22'(B’) for each B’ € 0'.

Large Blossom Liquidation and Reweighting

3. LiQuIDATE(B’) for each large B’ € V.
4. Reweight the graph:

y(u) <0

Small Blossom Liquidation

5. L1QUIDATE(B’) for each small B’ € '.
6. For each mazimal old small blossom B’:

Free Vertex Reduction

Perfection

and a zero-weight matched edge (u,4) €

w(u,v) + wu,v) —y(u) —

y(v)

While max{y(u) | u € B’ is free} > 0,
Y + max{y(u) |u € B’ is free}
F < {u€ B'is free|y(u) = Y}
Y’ + max{0, max{y(u) |u € B'\F is free}}

Run PQSEARCH(F') (Criterion 2.1) until an augmenting path is found
or Y — Y’ dual adjustments have been performed.

7. Run SEARCHONE(F') (Criterion 2.2) 7 times, where F' is the set of free vertices.

8. Delete all free dummy vertices. For each remaining free vertex u, create a dummy @ with y(4) = 7

M.

e Finalization Delete all dummy vertices from G“Og((%H)Nﬂ.
(Criterion 2.3) on the set F' of free vertices until F' = (.

for each edge (u,v) € E

for each vertex u € V'

Repeatedly call PQSEARCH(F)

Figure 4:

LEMMA 3.3. The LIQUIDATIONIST algorithm re-
turns the maximum weight perfect matching of G.

Proof. First we claim that at the end of each scale
i, M is a perfect matching in G; and Property
2.2 is satisfied. By Lemma 3.2, Property 2.1
is satisfied after the Small Blossom Liquidation
step. The calls to SEARCHONE in the Free Vertex
Reduction step always search from free vertices
with the same y-values. Therefore, by Lemma 2.5,
Property 2.2 holds afterwards. The perfection step
adds/deletes dummy free vertices and edges to
make the matching M perfect. The newly added
edges have w(e) = yz(e), and so Property 2.2 is
maintained at the end of scale 1.

Therefore, Property 2.2 is satisfied at the end
of the last scale [log((5 + 1)N)]|. Consider the

790

shrunken blossom edges at this point in the al-
gorithm. Each edge e was made a blossom edge
when it was eligible according to Criterion 2.1 (in
Step 6) or Criterion 2.2 (in Step 7) and may have
participated in augmenting paths while its blos-
som was still shrunken. Thus, all we can claim
is that yz(e) — w(e) € {0,—2}. In the calls to
PQSEARCH in the Finalization step we switch to
eligibility Criterion 2.3 in order to ensure that edges
inside shrunken blossoms remain eligible whenever
the blossoms are dissolved in the course of the
search. By Lemma 2.5, each call to PQSEARCH
maintains Property 2.2 while making the matching
perfect. After Finalization, w(M) > w(M*) — n.
Note that in the last scale w(e) = 2w(e) for each
edge e, so W(M) > w(M*) — n/2. By definition of

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

w, w(M) is a multiple of § + 1, so M maximizes
w(M) and hence w(M) as well.

3.2 Running time Next, we analyze the run-
ning time.

LEMMA 3.4. In Step 6, we only need to consider the
edges within small blossoms of the previous scale.
The total time needed for Step 6 in one scale is
O((m+nlogn)r) (using [14]) or O(m+/loglogn-T)
w.h.p. (using [6, §5]).

Proof. We first prove that the y-values of vertices
in the eligible graph, Vi, U V4, must be at least Y:
the maximum y-value of a free vertex. The proof is
by induction. After Initialization, since M = (), we
have Vi, UV, = F. Suppose that it is true before
a dual adjustment in PQSEARCH(F') when YV = ¢.
After the dual adjustment, we have ¥ = ¢ — 1.
Vertices can have their y-values decreased by at
most one which may cause new edges straddling
Vin U Vout to become eligible. Suppose that (u,v)
becomes eligible after the dual adjustment, adding
v to the set Vi, U Voyue. The eligibility criterion is
tightness (Criterion 2.1), so we must have w(u,v) =
y(u) + y(v) > t — 1+ y(v). On the other hand,
by Lemma 3.2 and since y(v) has not been changed
since Step 5, we have w(u,v) < 2y(v). Therefore,
y(v) >t—1.

We have just shown that in the calls to
PQSEARCH(F) in Step 6 no edge straddling a for-
mer maximal small blossom B’ € ' can become el-
igible until all F-vertices have zero y-values. Thus,
we only consider the edge set E(B’) when conduct-
ing this search. Each call to PQSEARCH(F) takes
O(m(B’) + n(B')logn(B’)) time (using [14]) or
O(m(B’)/loglogn(B’)) time w.h.p. (using [6, §5])
and either matches at least two vertices or enlarges
the set F' of free vertices with maximum y-value in
B’. Thus there can be at most O(n(B’)) = O(r)
calls to PQSEARCH on B’. Summed over all max-
imal small B’ € §, the total time for Step 6 is

O((m + nlogn)7) or O(m+/loglogn - 7) w.h.p.

LEMMA 3.5. The sum of z-values of large blossoms
at the end of a scale is at most 2n.

Proof. By Lemma 3.4, Small Blossom Liquidation
only operates on subgraphs of at most 7 vertices
and therefore cannot create any large blossoms.
Every dual adjustment performed in the Free Vertex
Reduction step increases the z-values of at most n/7
large root blossoms, each by exactly 2. (The dummy
vertices introduced in the Perfection step of scales

1 through ¢ — 1 are pendants and cannot be in any
blossom. Thus, the ‘n’ here refers to the number of
original vertices, not |[V(G;)|.) There are at most 7
dual adjustments in Free Vertex Reduction, which
implies the lemma.

LEMMA 3.6. Let M’ be the perfect matching ob-
tained in the previous scale. Let M" be any (not
necessarily perfect) matching. After Large Blos-
som Liquidation and Reweighting we have w(M") <
w(M') + 8n.

Proof. Consider the perfect matching M’ obtained
in the previous scale, whose blossom set € is
partitioned into small and large blossoms. (For the
first scale, M’ is any perfect matching and €' = (.)
Define K to be the increase in the dual objective
due to Large Blossom Liquidation,

K= > «B)2= > Z®B).

Large B’/ Large B’/

By Lemma 3.5, K < 2n. Let y;,2; denote the
duals after Step ¢ of LIQUIDATIONIST. Let wg be
the weight function before Step 4 (reweighting) and
w be the weight afterwards. We have:

wo(M') > —6[M'| + Y yza(e)

ee M’
(Lemma 3.1)

=—6|M'| - K+ Z yszs(e) (see above)
ec M’

After reweighting we have

w(M') > =6|M'| = 2n+ Y ysz(e)

ec M’

>—6|M'|—2n+ > u(B)- B
Sm. B’€Q)

(Since y4 = 0)
>-8nt Yy aB)- 3

Sm. B’

(##dummy vertices < n)

>—8n+ » Y zu(B)
e€eM" Sm. B'eQ)':
ecE(B’)
(IM" N E(B)| < [|B']/2])
> —8n+ Z w(e) = —8n +w(M")

eeM”
(by Lemma 3.1.)

Observe that this Lemma would not be true as
stated without the Reweighting step, which allows

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

us to directly compare the weight of perfect and
imperfect matchings.

The next lemma is stated in a more general
fashion than is necessary so that we can apply it
again later, in Section 4. In the LIQUIDATIONIST
algorithm, after Step 6 all y-values of free vertices
are zero, so the sum 3 oy Ys(u) seen below
vanishes.

LEMMA 3.7. Let yg,2¢ be the duals after Step 6,
just before the Free Vertex Reduction step. Let M
be the matching after Free Vertex Reduction and f
be the number of free vertices with respect to M.
Suppose that there exists some perfect matching M’
such that w(M) < w(M') +8n — 37 oy) Yo(u).
Then, f < 10n/T.

Proof. Let y7, 27,8 denote the duals and blossom
set after Free Vertex Reduction. By Property 2.2
(near domination),

w(M') < Z (yrz7(e) +2)

ee M’
=Y yrw+ Y > z(B)+2/M|
ueV ecM’ BeQ:
ecE(B)
< Z yr(u) + Z z7(B) - [|Bl/2] + 2n
ueV BeQ

(#dummy vertices < n)

<| > wlw)+ Y z(B)-[1Bl/2]

uweV (M) BeQ

+ Y yr(u)+2n
)

ugV (M

> yrzle)+ D yr(u)+2n

eeM w@V (M)

wM)+ Y yr(u)+2n
ugV (M)

IN

(near tightness)
WM+ Y yelw) - fr+2n
ug¢V (M)
(y7(u) = yo(u) — 7)
<w(M')+10n — fr
(by assumption of M’.)

Therefore, f7 < 10n, and f < 10n/7.

THEOREM 3.1. The LIQUIDATIONIST algorithm
runs in O((m + nlogn)y/nlog(nN)) time, or
O(m~/nloglognlog(nN)) time w.h.p.

792

Proof. Initialization, Scaling, and Large Blossom
Liquidation take O(n) time. By Lemma 3.4,
the time needed for Small Blossom Liquidation is
O(Edm -7), where Edm is the cost of one Edmonds’
search. Each iteration of SEARCHONE takes O(m)
time, so the time needed for Free Vertex Reduc-
tion is O(m7). By Lemmas 3.6 and 3.7, at most
10(n/7)[log((5 4+ 1)N)] free vertices emerge after
deleting dummy vertices. Since we have rescaled
the weights many times, we cannot bound the
weighted length of augmenting paths by O(m).
The cost for rematching vertices in the Finaliza-
tion step is O(Edm-(n/7)log(nN)). The total
time is therefore O(m7 + Edm -(7 4+ n/7) log(nN)),
which is minimized when 7 = y/n. Depending on
the implementation of PQSEARCH this is O((m +
nlogn)y/nlog(nN)) or O(m+/nloglognlog(nN))

w.h.p.

4 The HYBRID Algorithm

In this section, we describe an MWPM algorithm
called HYBRID that runs in O(m+/nlog(nN)) time
even on sparse graphs. In the LIQUIDATIONIST
algorithm, the Small Blossom Liquidation and the
Free Vertex Reduction steps contribute O(Edm -7)
and O(m7) to the running time. If we could do
these steps faster, then it would be possible for
us to choose a slightly larger 7, thereby reducing
the number of vertices that emerge free in the
Finalization step. The time needed to rematch
these vertices is O(Edm-(n/7)log(nN)), which is
at most O(m+/nlog(nN)) for, say, 7 = \/nlogn.

The pseudocode for HYBRID is given in Fig-
ure 5. It differs from the LIQUIDATIONIST algo-
rithm in two respects. Rather than do Small Blos-
som Liquidation, it uses Gabow’s method on each
maximal small blossom B’ € Q' in order to dis-
solve B’ and all its sub-blossoms. (Lemma 4.1 lists
the salient properties of Gabow’s algorithm; it is
proved in Section 4.2.) The Free Vertex Reduc-
tion step is now done in two stages since we can-
not afford to call SEARCHONE 7 = w(y/n) times.
The first y/n dual adjustments are performed by
SEARCHONE with eligibility Criterion 2.2 and the
remaining 7 — /n dual adjustments are performed
in calls to BUCKETSEARCH with eligibility Crite-
rion 2.3.4

TWe switch to Criterion 2.3 to ensure that formerly
shrunken blossom edges remain eligible when the blossom
is dissolved in the course of a search. See the discussion in

the proof of Lemma 3.3.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

LEMMA 4.1. Fiz a B € . Suppose that Prop-
erty 2.1 holds, that all free vertices in B’ have the
same parity, and that yz(e) < w(e) + 6 for all
e € Eg. After calling Gabow’s algorithm on B the
following hold.

o All the old blossoms B' C B are dissolved.

e Property 2.1 holds and the y-values of free
vertices in B have the same parity.

o yz(V) does not increase.

Futhermore, Gabow’s
O(m(B)(n(B))>/*) time.

algorithm runs in

4.1 Correctness and Running Time We first
argue scale ¢ functions correctly. Assuming Prop-
erty 2.2 holds at the end of scale i — 1, Property
2.1 (except Active Blossoms) holds after Initializa-
tion at scale i. Note that Lemma 3.5 was not sen-
sitive to the value of 7, so it holds for HYBRID
as well as LIQUIDATIONIST. We can conclude that
Large Blossom Liquidation increases the dual objec-
tive by 31 g prear 2 (B') < 2n. By Lemma 4.1,
the Small Blossom Dissolution step dissolves all re-
maining old blossoms and restores Property 2.1. By
Lemma 2.5, The Free Vertex Reduction step main-
tains Property 2.2. The rest of the argument is the
same as in Section 3.1.

In order to bound the running time we need to
prove that the Free Vertex Reduction step runs in
O(m+/n) time, independent of 7, and that after-
wards there are at most O(n/7) free vertices.

We now prove a lemma similar to Lemma 3.6
that allows us to apply Lemma 3.7.

LEMMA 4.2. Let M’ be the perfect matching ob-
tained in the previous scale and M" be any match-
ing, not necessarily perfect. We have w(M") <
w(M')+8n =3, sy vy y(u) after the Small Blos-
som Dissolution step of HYBRID.

Proof. Let yg, zo denote the duals immediately be-
fore Small Blossom Dissolution and y, z,) denote
the duals and blossom set after Small Blossom Dis-
solution. Similar to the proof of Lemma 3.6, we

793

have, for K =371 . preq 2 (B'),

w(M') > =6|M'| = K + 3 yozo(e)
eeM’
(by Lemma 3.1)
= —8n+ yozo(V)
(since K < 2n)
> —8n+yz(V)

(by Lemma 4.1)
—8n+ > yw)+ Y =(B)- 1G]

ueV B’eQ

V

z
+
N
<
S

ugV (M)
+1 Y ww+ Y B B
uwEV (M) B’eQ
> —8n + Z y(u) + Z yz(e)
ugV (M) ee M
>—8n+ Y y(u)+w(M")
ugV (M)

(Property 2.1 (domination).)

Therefore, because Lemma 4.2 holds for any
matching M”, we can apply Lemma 3.7 to show the
number of free vertices after Free Vertex Reduction
is bounded by O(n/7).

THEOREM 4.1. HYBRID computes an MWPM in
time

0 ({m\/ﬁ +m73/* + Edm (TL/T)] log(nN)) .

Proof. Initialization, Scaling, and Large Blossom
Liquidation still take O(n) time. By Lemma
4.1, the Small Blossom Dissolution step takes
O(m(B)(n(B))*>/*) time for each maximal small
blossom B € €, for a total of O(m73/*). We now
turn to the Free Vertex Reduction step. After /n
iterations of SEARCHONE(F'), we have performed
[v/n] units of dual adjustment from all the remain-
ing free vertices. By Lemma 4.2 and Lemma 3.7,
there are at most 10n/[v/n] = O(y/n) free vertices.
The difference between w(M) and yz(V) is O(n),
so we can implement BUCKETSEARCH with an ar-
ray of O(n) buckets for the priority queue. See [6,
§5] for details. A call to BUCKETSEARCH(F') that
finds p > 0 augmenting paths takes O(m(p + 1))
time. Only the last call to BUCKETSEARCH may
fail to find at least one augmenting path, so the
total time for all such calls is O(m+/n).

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

HYBRID(G,)

e Gy G,y+ 0,2+ 0.

LIQUIDATIONIST.

Small Blossom Dissolution

Free Vertex Reduction

performed so far in Steps 2 and 3.

e For scales i = 1,--- , [log((§ + 1)N)], execute steps Initialization through Perfection.

Initialization, Scaling, and Large Blossom Liquidation are performed exactly as in

1. Run Gabow’s algorithm on each maximal small blossom B’ € §'.

Let F always denote the current set of free vertices and § the number of dual adjustments

2. Run SEARCHONE(F) (Criterion 2.2) y/n times.

3. While 6 < 7 and M is not perfect, call BUCKETSEARCH(F') (Criterion 2.3), terminating when
an augmenting path is found or when § = 7.

Perfection is performed as in LIQUIDATIONIST.

e Finalization is performed as in LIQUIDATIONIST.

Figure 5:

By Lemma 3.7 again, after Free Vertex Re-
duction, there can be at most 10n/7 free ver-
tices. Therefore, in the Finalization step,
at most (10n/7)[log((§ + 1)N)]| free vertices
emerge after deleting dummy vertices. It takes
O(Edm -(n/7)log(nN)) time to rematch them with
Edmonds’ search. Here we can afford to use
any reasonably fast O(mlogn) implementation of
PQSEARCH, such as [19, 15, 14] or the one pre-
sented in [6, §5].

Setting 7 € [/nlogn,n??], we get a running
time of O(m+y/nlog(nN)) with any O(mlogn) im-
plementation of PQSEARCH.

4.2 Gabow’s Algorithm The input is a max-
imal old small blossom B € € containing no
matched edges, where yz(e) > w(e) for all e € B
and yz(e) < w(e) + 6 for all e € Ep. Let T de-
note the old blossom subtree rooted at B. The goal
is to dissolve all the old blossoms in 7" and satisfy
Property 2.1 without increasing the dual objective
value yz(V). Gabow’s algorithm achieves this in
O(m(B)(n(B))*/*) time. This is formally stated in
Lemma 4.1.

Gabow’s algorithm decomposes T into major
paths. Recall that a child By of By is a magor child
if |B1| > |Bz2|/2. A node R is a major path root if
R is not a major child, so B is a major path root.
The major path P(R) rooted at R is obtained by

794

starting at R and moving to the major child of the
current node, so long as it exists.

Gabow’s algorithm is to traverse each node R
in T in postorder, and if R is a major path
root, to call DISMANTLEPATH(R). The outcome
of DISMANTLEPATH(R) is that all remaining old
sub-blossoms of R are dissolved, including R. De-
fine the rank of R to be [logn(R)|. Suppose
that DISMANTLEPATH(R) takes O(m(R)(n(R))>/*)
time. If R and R’ are major path roots with the
same rank, then they must be disjoint. Summing
over all ranks, the total time to dissolve B and its
sub-blossoms is therefore on the order of

[log n(B)]
m(B) - (274 = 0 (m(B)(n(B))*/*).

r=1

Thus, our focus will be on the analysis of
DISMANTLEPATH(R). In this algorithm inherited
blossoms from Q' coexist with new blossoms in Q.
We enforce a variant of Property 2.1 that addition-
ally governs how old and new blossoms interact.

PROPERTY 4.1. Property 2.1(1,3,4) holds and (2)
(Active Blossoms) is changed as follows. Let €Y
denote the set of as-yet undissolved blossoms from
the previous scale and 2, M be the blossom set and
matching from the current scale.

2a. Y UQ is a laminar (hierarchically nested) set.
2b. There is no B € Q,B" € Q' with B’ C B.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

2c. No e € M has exactly one endpoint in some
B eq.

2d. If B € Q and z(B) > 0 then |Eg N M| =
[|B|/2]. An Q-blossom is called a root blossom
if it is not contained in any other Q-blossom.
All root blossoms have positive z-values.

4.2.1 The procedure DISMANTLEPATH(R)
Because DISMANTLEPATH is called on the
sub-blossoms of B in postorder, upon calling
DISMANTLEPATH(R) the only undissolved blos-
soms in R are those in P(R). Let C, D € P(R)U{0}
with C D D. The subgraph induced by C\D is
called a shell, denoted G(C, D). Since all blossoms
have an odd number of vertices, G(C,D) is an
even size shell if D # () and an odd size shell if
D = (). Tt is an undissolved shell if both C' and D
are undissolved, or C is undissolved and D = (.
We call an undissolved shell atomic if there is no
undissolved blossom C’ € ' with D c C’ c C.

The procedure DISMANTLEPATH(R) has two
stages. The first consists of iterations. Each it-
eration begins by surveying the undissolved blos-
soms in P(R), say they are By D Bg—1 D -+ D
B;. Let the corresponding atomic shells be S; =
G(B;, Bi—1), where By def () and let f; be the num-
ber of free vertices in S;. We sort the (S;) in non-
increasing order by their number of free vertices
and call SHELLSEARCH(S;) in this order, but refrain
from making the call unless S; contains at least two
free vertices.

The procedure SHELLSEARCH(C, D) is simply an
instantiation of EDMONDSSEARCH with the follow-
ing features and differences.

1. There is a current atomic shell G(C*, D*),
which is initially G(C, D), and the Augmen-
tation, Blossom Formation, and Dual Adjust-
ment steps only search from the set of free ver-
tices in the current atomic shell. By definition
C* is the smallest undissolved blossom contain-
ing C' and D* the largest undissolved blossom
contained in D, of @ if no such blossom exists.

2. An edge is eligible if it is tight (Criterion 2.1)
and in the current atomic shell. Tight edges
that straddle the shell are specifically excluded.

3. Each unit of dual adjustment is accompanied
by a unit translation of C* and D*, if D* # ().
This may cause either/both of C* and D* to
dissolve if their z-values become zero, which
then causes the current atomic shell to be

795

updated.®

4. Like EDMONDSSEARCH, SHELLSEARCH halts
after the first Augmentation step that discov-
ers an augmenting path. However, it halts
in two other situations as well. If C* is
the outermost undissolved blossom in P(R)
and C* dissolves, SHELLSEARCH halts imme-
diately. If the current shell G(C*, D*) ever in-
tersects a shell searched in the same iteration of
DISMANTLEPATH(R), SHELLSEARCH halts im-
mediately. Therefore, at the end of an itera-
tion of DISMANTLEPATH(R), every undissolved
atomic shell contains at least two vertices that
were matched (via an augmenting path) in the
iteration.

Blossom translations are used to preserve Prop-
erty 2.1(domination) for all edges, specifically those
crossing the shell boundaries. = We implement
SHELLSEARCH(C, D) using an array of buckets for
the priority queue, as in BUCKETSEARCH, and exe-
cute the Augmentation step using an O(m+/n) MCM
algorithm (either [25, 29] or [18, §10].) Let t be
the number of dual adjustments, G(C*, D*) be the
current atomic shell before the last dual adjust-
ment, and p > 0 be the number of augmenting
paths discovered before halting. The running time
of SHELLSEARCH(C, D) is O(t+m(C*, D*)-min{p+
1,y/n(C*,D*)}). We will show that ¢ is bounded
by O(n(C*, D*))) as long as the number of free ver-
tices inside G(C*, D*) is at least 2. See Corollary
4.1.

The first stage of DISMANTLEPATH(R) ends
when either all old blossoms in P(R) have dis-
solved (in which case it halts immediately) or there
is exactly one free vertex remaining in an undis-
solved blossom. In the latter case we proceed to the
second stage of DISMANTLEPATH(R) and liquidate
all remaining old blossoms. This preserves Prop-
erty 2.1 but screws up the dual objective yz(R),
which must be corrected before we can halt. Let
w be the last free vertex in an undissolved blos-
som in R and T' =). 2(B;)/2 be the aggregate
amount of translations performed when liquidat-
ing the blossoms. We perform PQSEARCH({w}),
halting after exactly T° dual adjustments. The
search is guaranteed not to find an augmenting
path. It runs in O(m(R) + n(R)logn(R)) time [14]

or O(m(R)+/loglogn(R)) w.h.p.; see [6, §5].
5To translate a blossom B by one unit means to decrement

z(B) by 2 and increment y(u) by 1 for each u € B.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

DisMANTLEPATH(R): R is a major path root.
Let F be the set of free vertices that are still in undissolved blossoms of R.

1. While P(R) contains undissolved blossoms and |F| > 2,
e Sort the undissolved shells in non-increasing order by the number of free vertices, excluding
those with less than 2 free vertices. Let S1,S53, ..., Sk be the resulting list.
e For i<« 1...k, call SHELLSEARCH(S;) (Criterion 2.1).

2. If P(R) contains undissolved blossoms (implying |F'| = 1)

e Let w be the free vertex in R. Let By C By C --- C By be the undissolved blossoms in P(R)
and T'=), 2(B;)/2.

e Fori=1,2,... ¢, LIQUIDATE(B;)

e Call PQSEARCH({w}) (Criterion 2.1), halting after 7' dual adjustments.

To summarize, DISMANTLEPATH(R) dissolves all soms {Bl}, y(w) increases by T déf Zi Z(Bl)/Q
old blossoms in P(R), either in stage 1, through before the call to PQSEARCH({w}). Define
gradual translations, or in stage 2 through lig- w'(u,v) = yz(u,v) — w(u,v). The eligible edges
uidation. ~ Moreover, Property 1 is maintained must have w'(u,v) = 0. We can easily see that
throughout DISMANTLEPATH(R). In the follow- when we dissolve B; and increase the y-values
ing, we will show that DISMANTLEPATH(R) takes of vertices in B;, the w'-distance from w to any
O(m(R)(n(R))**) time and the dual objective vertex outside the largest undissolved blossom By
value yz(S) does not increase for every S such that increases by z(B;)/2. Therefore, the total distance
R C S. In addition, we will show that at all times, from w to any vertex outside B, increases by T
the y-values of all free vertices have the same parity. after dissolving all the blossoms. Since every other

vertex inside By is matched, PQSEARCH({w}) will

4.2.2 Properties We show the following lemmas perform T dual adjustments and halt before finding

to complete the proof of Lemma 4.1. Let yo, 2o an augmenting path. We conclude that y(w) is
denote the initial duals, before calling Gabow’s restored to the value it had before the second stage
algorithm. of DISMANTLEPATH(R).

LEMMA 4.3. Throughout DISMANTLEPATH(R), we LEMMA 4.4. If Property 4.1 holds and y-values of
have y(u) > yo(u) for all w € R. Moreover, the free vertices have the same parity, then Property 4.1

y-values of free vertices in R are always odd. holds after calling SHELLSEARCH(C, D).

Proof. We will assume inductively that this holds Proof. First we will argue that Property 4.1 holds
after every recursive call of DISMANTLEPATH(R') after calling SHELLSEARCH(C, D). The current
for every R’ that is a non-major child of a P(R) atomic shell G(C*,D*) cannot contain any old
node. Then, it suffices to show y(u) does not blossoms, since we are calling DISMANTLEPATH(R)
decrease and the parity of free vertices always stays in postorder. Because we are simulating
the same during DISMANTLEPATH(R). Consider EDMONDSSEARCH(F™) from the set F* of free
doing a unit of dual adjustment inside the shell vertices in G(C*,D*), whose y-values have the

G(C*,D*). Due to the translations of C* and same parity, by Lemma 2.4, Property 4.1 holds in
D*, every vertex in D* has its y-value increased G(C*, D*). It is easy to check that Property 4.1(1)
by 2 and every vertex in C* either has its y-value (granularity) holds in G. Now we only need to check
unchanged or increased by 1 or 2. The y-values of Property 4.1(3,4) (domination and tightness) for
the free vertices in C*\ D* remain unchanged. (The the edges crossing C* or D*. By Property 4.1(2c)

dual adjustment decrements their y-values and the there are no crossing matched edges and all the

translation of C* increments them again.) newly created blossoms lie entirely in G(C*, D*).

Consider the second stage of Therefore, tightness must be satisfied. The trans-

DISMANTLEPATH(R). When liquidating blos- lations on blossoms C* and D* keep the yz-values
796 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

of edges straddling C*\ D* non-decreasing, thereby
preserving domination.

Now we claim Property 4.1(2) holds. We only
consider the effect on the creation of new blossoms,
since the dissolution of C* or D* cannot violate
Property 4.1(2). Since edges straddling the atomic
shell G(C*, D*) are automatically ineligible, we will
only create new blossoms inside G(C*, D*). Since
G(C*, D*) does not contain any old blossoms and
the new blossoms in G(C*, D*) form a laminar set,
Property 4.1(2a,2b) holds. Similarly, the augmen-
tation only takes place in G(C*, D*) which does not
contain old blossoms, Property 4.1(2¢) holds.

LEMMA 4.5. Throughout the ezecution of
DISMANTLEPATH(R), yz(V) in non-increasing.

Proof. Consider a dual adjustment in
SHELLSEARCH(C,D) in which F* is the
set of free vertices in the current atomic
shell G(C*,D*). By Property 4.1(tightness),
yz(R) = w(M N E(R)) + 3 ,cr\vn) Y(u). The
dual adjustment within the shell reduces yz(R)
by |F*|. The translation on C* increases yz(R)
by 1, and if D* # (, the translation of D* also
increases yz(R) by 1. Therefore, a dual adjustment
in SHELLSEARCH decreases yz(R) by |F*| — 2, if
D* # (), and by |F*| —1if D = {. Since G(C*, D*)
contains at least 2 free vertices, yz(R) does not
increase during DISMANTLEPATH(R).

Suppose the second stage of
DISMANTLEPATH(R) is reached, that is, there
is exactly one free vertex w in an undissolved
blossom in R. When we liquidate all remaining
blossoms in R, yz(R) increases by T. As shown
in the proof of Lemma 4.3, PQSEARCH({w})
cannot stop until it reduces yz(w) by T. Since
Property 4.1(tightness) is maintained, this also
reduces yz(R) by T, thereby restoring yz(R)
back to its value before the second stage of
DisMANTLEPATH(R). Since DISMANTLEPATH(R)
only affects the graph induced by R, the arguments
above show that yz(S) is non-increasing, for every

S2OR.

The following lemma considers a not necessarily
atomic undissolved shell G(C, D) at some point
in time, which may, after blossom dissolutions,
become an atomic shell. Specifically, C' and D are
undissolved but there could be many undissolved
C' € QY for which D c C' c C.

LEMMA 4.6. Consider a call to
DISMANTLEPATH(R) and any shell G(C,D)

797

in R. Throughout the call to DISMANTLEPATH,
so long as C and D are undissolved (or C
is undissolved and D = 0) yz(C) — yz(D) >
Y020(C) — yozo(D) — 3n(C'\ D).

Proof. If D = @, we let D’ be the singleton set
consisting of an arbitrary vertex in C. Otherwise,
we let D’ = D. Let w be a vertex in D’. Since
blossoms are critical, we can find a perfect matching
M, that is also perfect when restricted to D’ \ {w}
or C'\ D', for any ¢’ € Q with ¢ D D’. By
Lemma 3.1, every ¢ € M, N Er has ypzo(e) <
w(e) + 6. Therefore,

Z w(e)

e€M,NE(C\D’)

>

S (o) —6n(C\ D)2

e€M,NE(C\D’)

ueV (C\D’)

Z Yo(u) + Z 20(C") - WLW

—3n(C\ D)

= 9020(C) — yozo(D") — 3n(C \ D").

On the other hand, by Property 4.1(domination),
we have

> wle)

eeM,NE(C\D’)

<

IN

> ya(e)

e€ M,NE(C\D’)

> e Y s CLCEP

weV(C\D’) c'eq:
D'cc’
+ 3 2(B)-|M,NEBNC\ D)
BeQ
N lC"nCl—|D'|
> yw+ Y () 5
uweV (C\D’) c'eq:
D'cc’
|B| — [BND'|
+ > 2(B)- [
BeQ:
BCC

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Consider a B € () that contributes a non-zero term
to the last sum. By Property 4.1, QU Q' is laminar
so either B C D or B C C'\ D. In the first case
B contributes nothing to the sum. In the second
case we have [BN D’| <1 (it can only be 1 when
D = () and D’ is a singleton set intersecting B) so it
contributes exactly z(B) - ||B|/2]. Continuing on,

_ N 1C'NCI—|D|
= 3w+ Y) ;
uweV (C\D’) c'e:
D'cc’
|B
+) Z(B)'LTJ
BeQ:
BC(C\D)

— y2(C) — (D).

Therefore, yz(C) — yz(D') > yo20(C) — yozo(D’)
3n(C,D’"). When D =) we have yz(D’) = y(w)
yo(w). Therefore, regardless of D, yz(C) —yz(D)
Y020(C) — yozo(D) — 3n(C, D).

>
>

COROLLARY 4.1. The number of dual adjustments
in. SHELLSEARCH(C, D) is bounded by O(n(C* \
D*)) where G(C*, D*) is the current atomic shell
when the last dual adjustment is performed.

Proof. We first claim that the recursive calls to
DiSMANTLEPATH(R’) on the descendants R’ of
P(R) do not decrease yz(C*) — yz(D*). If
R’ < D*, then any dual adjustments done in
DisMANTLEPATH(R') changes yz(C*) and yz(D*)
by the same amount. Otherwise, R’ C G(C*, D*).
In this case, DISMANTLEPATH(R’) has no effect on
yz(D*) and does not increase yz(C*) by Lemma 4.5.
Therefore, yz(C*) —yz(D*) < yo20(C*) —yoz0(D*).

First consider the period in the execution of
SHELLSEARCH(C, D) when D* # (). During this
period SHELLSEARCH performs some number of
dual adjustments, say k. There must exist at least
two free vertices in G(C*, D*) that participate in all
k dual adjustments. Note that a unit translation on
an old blossom C” € Q' where D* C C"” C C*, has
no net effect on yz(C*) — yz(D*), since it increases
both yz(C*) and yz(D*) by 1. Thus, each dual
adjustment reduces yz(C*)—yz(D*) by the number
of free vertices in the given shell, that is, by at
least 2k over k dual adjustments. (See the proof
of Lemma 4.5.) By Lemma 4.6, yz(C*) — yz(D*)
decreases by at most 3n(C* \ D*) overall, which
implies that k£ < 3/2-n(C*\ D*).

Now consider the period when D* = (. Let
G(C', D') to be the current atomic shell just before
the smallest undissolved blossom D’ dissolves and

798

let &’ be the number of dual adjustments performed
in this period, after D’ dissolves. By Lemma
4.5, all prior dual adjustments have not increased
yz(C*). There exists at least 3 free vertices in C*
that participate in all k' dual adjustments. Each
translation of C* increases yz(C*) by 1. According
to the proof of Lemma 4.5, yz(C*) decreases by at
least 3k’ — k' = 2k’ due to the &’ dual adjustments
and translations performed in tandem. By Lemma
4.6, yz(C™) can decrease by at most 3n(C*), so k' <
3/2-n(C*). The total number of dual adjustments is
therefore k+&" < 3/2(n(C'\D")+n(C*)) < 3n(C*).

The following two lemmas are adapted from [13].

LEMMA 4.7. For any fized ¢ > 0, the number
of iterations of DISMANTLEPATH(R) with |F| >
(n(R))< is O((n(R))' ™).

Proof. Consider an iteration in
DISMANTLEPATH(R). Let f be the number
of free vertices before this iteration. Call an atomic
shell big if it contains more than 2 free vertices.
We consider two cases depending on whether more
than f/2 vertices are in big atomic shells or not.
Suppose big shells do contain more than f/2 free
vertices. The free vertices in an atomic shell will
not participate in any dual adjustment only if some
adjacent shells have dissolved into it. In the worst
case a shell containing f’ free vertices dissolves into
(at most 2) adjacent shells and, simultaneously, the
call to SHELLSEARCH finds an augmenting path
and halts. This prevents at most 2f’ free vertices
in the formerly adjacent shells from participating
in a dual adjustment, due to the order we search
the shells. Therefore, at least f/6 free vertices
in the big shells participate in at least one dual
adjustment. Let S; be a big even shell with f; free
vertices. If they are subject to a dual adjustment
then, according to the proof of Lemma 4.5 yz(R)
decreases by at least (f; —2) > f;/2, since the shell
is big. If S; is a big odd shell then the situation
is even better. In this case yz(R) is reduced by
(fi—1) > %fi. Therefore, yz(R) decreases by at
least f/12.

The case when more than f/2 free vertices are in
small atomic shells can only happen O(logn) times.
In this case, there are at least | f/4| small shells. In
each shell, there must be vertices that were matched
during the previous iteration. Therefore, in the
previous iteration, there must have been at least
f + 2| f/4] free vertices. This can only happen
O(logn(R)) times, since the number of free vertices
shrinks by a constant factor each time it happens.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

By Lemma 4.5, yz(R) does not increase in
the calls to DISMANTLEPATH on the descendants
of P(R). By Lemma 4.6, since yz(R) decreases
by at most 3n(R), the number of iterations with
|F| > (n(R))€ is at most O(n(R))!~¢ +logn(R)) =
O((n(R))!).

LEMMA 4.8. DISMANTLEPATH(R) takes at most
O(m(R)(n(R))*/*) time.

Proof. Recall that SHELLSEARCH is implemented
like BUCKETSEARCH, using an array for a prior-
ity queue; see [6, §5]. This allows all operations
(insert, deletemin, decreasekey) to be implemented
in O(1) time, but incurs an overhead linear in
the number of dual adjustments/buckets scanned.
By Corollary 4.1 this is >, O(n(S;)) = O(n(R))
per iteration. By Lemma 4.7, there are at most
O((n(R))**) iterations with |F| > (n(R))?/4. Con-
sider one of these iterations. Let {S;} be the shells
at the end of the iteration. The augmentation
step takes), O(m(S;)\/n(5;)) = O(m(R)\/n(R))
time. Therefore, the total time of these itera-
tions is O(m(R)(n(R))3>/*). There can be at most
(n(R))3/* more iterations afterwards, since each it-
eration matches at least 2 free vertices. There-
fore, the cost for all subsequent Augmentation
steps is O(m(R)(n(R))3>/*). Finally, the second
stage of DISMANTLEPATH(R), when one free ver-
tex in an undissolved blossom remains, involves
a single Edmonds search. This takes O(m(R) +
n(R)logn(R)) time [14] or O(m(R)+/loglogn(R))
time w.h.p. [6, §5]. Therefore, the total running
time of DISMANTLEPATH(R) is O(m(R)(n(R))3/*).

Let us summarize what has been proved. By the
inductive hypothesis, all calls to DISMANTLEPATH
preceding DISMANTLEPATH(R) have (i) dissolved
all old blossoms in R excluding those in P(R), (ii)
kept the y-values of all free vertices in R the same
parity (odd) and kept yz(R) non-increasing, and
(iii) maintained Property 4.1. If these preconditions
are met, the call to DISMANTLEPATH(R) dissolves
all remaining old blossoms in P(R) while satisfying
(ii) and (iii). Futhermore, DISMANTLEPATH(R)
runs in O(m(R)(n(R))?>/*) time. This concludes the
proof of Lemma 4.1.

5 Conclusion

We have presented a new scaling algorithm
for MWPM on general graphs that runs in
O(m+/nlog(nN)) time. This algorithm improves
slightly on the running time of the Gabow-Tarjan

799

algorithm [18]. However, its analysis is somewhat
simpler than [18] and is generally more accessible.
Historically there were two barriers to computing
weighted matching in less than O(m+/nlog(nV))
time. The first barrier was that the best cardinality
matching algorithms took O(m+/n) time [29, 18],
and cardinality matching seemed easier than a sin-
gle scale of weighted matching. The second bar-
rier was that even on bipartite graphs, where blos-
soms are not an issue, the best matching algorithms
took O(m+/nlog(nN)) time [17, 26, 20, 7|. Recent
work by Cohen, Madry, Sankowski, and Vladu [2]
has broken the second barrier on sufficiently sparse
graphs. They showed that several problems, includ-
ing weighted bipartite matching, can be computed
in O(m'%7log N) time.

We highlight several problems left open by this
work.

e The LIQUIDATIONIST MWPM algorithm is rel-
atively simple and streamlined, and among
the scaling algorithms for MWPM so-far pro-
posed [13, 18], the one with the clearest poten-
tial for practical impact. However, on sparse
graphs it is theoretically an Q(y/loglogn) fac-
tor slower than the HYBRID algorithm. Can
the efficiency of HYBRID be matched by an al-
gorithm that is as simple as LIQUIDATIONIST?

e There is now some evidence that the maxi-
mum weight (not necessarily perfect) match-
ing problem [7, 27, 21, 22| may be slightly eas-
ier than MwPM. Is it possible to compute a
maximum weight matching of a general graph
in O(m+/nlog N) time, matching the bound of
Duan and Su [7] for bipartite graphs?

e The implementation of Edmonds’ algorithm
described in [6, §5] uses an (integer) priority
queue supporting insert and delete-min, but
does not take advantage of fast decrease-keys.
Given an integer priority queue supporting
O(1) time decrease-key and O(g) time insert
and delete-min, is it possible to implement
Edmonds’ search in O(m + nq) time, matching
the bound for a Hungarian search [11, 28] on a
bipartite graph?

References

[1] G. Birkhoff. Tres observaciones sobre el elgebra
lineal. Universidad Nacional de Tucuman, Revista
A, 5(1-2):147-151, 1946.

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/06/17 to 69.136.137.32. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

[2] M. B. Cohen, A. Madry, P. Sankowski, and O(EVlogV) algorithm for finding a maximal
A. Vladu. Negative-weight shortest paths and unit weighted matching in general graphs. SIAM
capacity minimum cost flow in O~(m10/7 log W) J. Comput., 15(1):120-130, 1986.
time. In Proceedings 28th ACM-SIAM Symposium [20] A. V. Goldberg and R. Kennedy. Global price
on Discrete Algorithms (SODA), 2017. updates help. SIAM J. Discr. Math., 10(4):551—

[3] W. H. Cunningham and A. B. Marsh, III. A pri- 572, 1997.
mal algorithm for optimum matching. Mathemat- [21] C.-C. Huang and T. Kavitha. Efficient algorithms
ical Programming Study, 8:50-72, 1978. for maximum weight matchings in general graphs

[4] M. Cygan, H. N. Gabow, and P. Sankowski. Al- with small edge weights. In Proceedings 23rd
gorithmic applications of Baur-Strassen’s theo- ACM-SIAM Symposium on Discrete Algorithms
rem: Shortest cycles, diameter, and matchings. J. (SODA), pages 1400-1412, 2012.

ACM, 62(4):28, 2015. [22] M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F.

[5] R.Duan and S. Pettie. Linear-time approximation Ting. A decomposition theorem for maximum
for maximum weight matching. J. ACM, 61(1):1, weight bipartite matchings. SIAM J. Comput.,
2014. 31(1):18-26, 2001.

[6] R. Duan, S. Pettie, and H.-H. Su. Scaling algo- [23] A. V. Karzanov. Efficient implementations of
rithms for weighted matching in general graphs. Edmonds’ algorithms for finding matchings with
CoRR, abs/1411.1919v4, 2016. maximum cardinality and maximum weight. In

[7] R. Duan and H.-H. Su. A scaling algorithm for A. A. Fridman, editor, Studies in Discrete Opti-
maximum weight matching in bipartite graphs. mization, pages 306-327. Nauka, Moscow, 1976.
In Proc. 23rd ACM-SIAM Symposium on Discrete [24] E. Lawler. Combinatorial Optimization: Networks
Algorithms (SODA), pages 1413-1424, 2012. and Matroids. Holt, Rinehart & Winston, New

[8] J. Edmonds. Maximum matching and a polyhe- York, 1976.
dron with 0, 1-vertices. J. Res. Nat. Bur. Stan- [25] S. Micali and V. Vazirani. An O(y/[V] - |E|) al-
dards Sect. B, 69B:125-130, 1965. gorithm for finding maximum matching in gen-

[9] J. Edmonds. Paths, trees, and flowers. Canadian eral graphs. In Proceedings 21st Annual IEEE
Journal of Mathematics, 17:449-467, 1965. Symposium on Foundations of Computer Science

[10] J. Edmonds and R. M. Karp. Theoretical improve- (FOCS), pages 17-27, 1980.
ments in algorithmic efficiency for network flow [26] J. B. Orlin and R. K. Ahuja. New scaling algo-
problems. J. ACM, 19(2):248-264, 1972. rithms for the assignment and minimum mean cy-
[11] M. L. Fredman and R. E. Tarjan. Fibonacci heaps cle problems. Math. Program., 54:41-56, 1992.
and their uses in improved network optimization [27] S. Pettie. A simple reduction from maximum
algorithms. J. ACM, 34(3):596-615, 1987. weight matching to maximum cardinality match-
[12] H. N. Gabow. An efficient implementation of ing. Inf. Process. Lett., 112(23):893-898, 2012.
edmonds’ algorithm for maximum matching on [28] M. Thorup. Integer priority queues with decrease
graphs. J. ACM, 23:221-234, April 1976. key in constant time and the single source shortest
[13] H. N. Gabow. A scaling algorithm for weighted paths problem. In Proc. 35th ACM Symp. on
matching on general graphs. In Proceedings 26th Theory of Computing (STOC), pages 149-158,
Annual IEEE Symposium on Foundations of Com- 2003.
puter Science (FOCS), pages 90-100, 1985. [29] V. V. Vazirani. An improved definition of blos-
[14] H. N. Gabow. Data structures for weighted match- soms and a simpler proof of the MV matching al-
ing and nearest common ancestors with linking. In gorithm. CoRR, abs/1210.4594, 2012.
Proceedings 1st ACM-SIAM Symposium on Dis- [30] J. von Neumann. A certain zero-sum two-person
crete Algorithms (SODA), pages 434-443, 1990. game equivalent to the optimal assignment prob-
[15] H. N. Gabow, Z. Galil, and T. H. Spencer. Ef- lem. In H. W. Kuhn and A. W. Tucker, editors,
ficient implementation of graph algorithms using Contributions to the Theory of Games, volume 11,
contraction. J. ACM, 36(3):540-572, 1989. pages 5-12. Princeton University Press, 1953.
[16] H. N. Gabow and R. E. Tarjan. A linear-time
algorithm for a special case of disjoint set union.
J. Comput. Syst. Sci., 30(2):209-221, 1985.
[17] H. N. Gabow and R. E. Tarjan. Faster scaling al-
gorithms for network problems. SIAM J. Comput.,
18(5):1013-1036, 1989.
[18] H. N. Gabow and R. E. Tarjan. Faster scaling

algorithms for general graph-matching problems.
J. ACM, 38(4):815-853, 1991.

[19] Z. Galil, S. Micali, and H. N. Gabow. An

800 Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

