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Abstract—Over the past 30 years numerous algorithms have
been designed for symmetry breaking problems in the LOCAL
model, such as maximal matching, MIS, vertex coloring, and
edge coloring. For most problems the best randomized algo-
rithm is at least exponentially faster than the best deterministic
algorithm. We prove that these exponential gaps are necessary
and establish numerous connections between the deterministic
and randomized complexities in the LOCAL model. Each of
our results has a very compelling take-away message:

1) Building on the recent randomized lower bounds of
Brandt et al. [1], we prove that the randomized com-
plexity of A-coloring a tree with maximum degree A
is O(log logn + log™ n), for any A > 55, whereas its
deterministic complexity is Q(log, n) for any A > 3.
This also establishes a large separation between the
deterministic complexity of A-coloring and (A + 1)-
coloring trees.

2) We prove that any deterministic algorithm for a natural
class of problems that runs in O(1) + o(log, n) rounds
can be transformed to run in O(log™"n — log™ A + 1)
rounds. If the transformed algorithm violates a lower
bound (even allowing randomization), then one can
conclude that the problem requires Q(log, n) time
deterministically. This gives an alternate proof that
deterministically A-coloring a tree with small A takes
Q(loga n) rounds.

3) We prove that the randomized complexity of any natural
problem on instances of size n is at least its deter-
ministic complexity on instances of size +/logn. This
shows that a deterministic Q(log, n) lower bound for
any problem (A-coloring a tree, for example) implies a
randomized Q)(log 5 log n) lower bound. It also illustrates
that the graph shattering technique employed in recent
randomized symmetry breaking algorithms is absolutely
essential to the LOCAL model. For example, it is provably
impossible to improve the 2°(V1°81°2™) term in the com-
plexities of the best MIS and (A + 1)-coloring algorithms
without also improving the 2°(vV°2™) _round Panconesi-
Srinivasan algorithm.
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I. INTRODUCTION

One of the central problems of theoretical computer
science is to determine the value of random bits. If the dis-
tinction is between computable vs. incomputable functions,
random bits are provably useless in centralized models (Tur-
ing machines). However, this is not true in the distributed
world! The celebrated Fischer-Lynch-Patterson theorem [2]
states that asynchronous deterministic agreement is impos-
sible with one unannounced failure, yet it is possible to
accomplish with probability 1 using randomization [3].

In this paper we examine the value of random bits in
Linial’s [4] LOCAL model, which, for the sake of clarity, we
bifurcate into two models RandLOCAL and DetLOCAL. In
both models the graph G = (V, E) represents the topology
of the communications network. Each vertex hosts a pro-
cessor and all vertices run the same algorithm. Each edge
supports communication in both directions. The computation
proceeds in synchronized rounds. In a round, each processor
performs some computation and sends a message along each
incident edge, which is delivered before the beginning of

the next round. Each vertex v is initially aware of its degree

deg(v) and certain global parameters such as n def \s

A = A(G) ' maxyey deg(v), and possibly others.! In

the LOCAL model the only measure of efficiency is the
number of rounds. All local computation is free and the
size of messages is unbounded. Henceforth “time” refers to
the number of rounds.

o DetLOCAL: In order to avoid trivial impossibilities, all
vertices are assumed to hold unique O(logn)-bit IDs.
Except for the registers holding deg(v) and ID(v), the
initial state of v is identical to every other vertex. The
algorithm executed at each vertex is deterministic.

o RandLOCAL: In this model each vertex may locally
generate an unbounded number of independent truly
random bits. (There are no globally shared random
bits.) Except for the register holding deg(v), the initial
state of v is identical to every other vertex. Algorithms
in this model operate for a specified number of rounds

)

IThe assumption that global parameters are common knowledge can
sometimes be removed; see Korman, Sereni, and Viennot [5].
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and have some probability of failure, the definition of

which is problem specific. We usually only consider

algorithms whose global probability of failure is at most
1/poly(n).

Observe that the lack of IDs in RandLOCAL is not a
practical limitation. Before the first round each node can
locally generate a random O(logn)-bit ID, which is unique
with probability 1/poly(n).

Early work in the LOCAL models suggested that ran-
domness is of limited help. Naor [6] showed that Linial’s
Q(log™ n) lower bound [4] for 3-coloring the ring holds even
in RandLOCAL, and Naor and Stockmeyer [7] proved that
the class of problems solvable by O(1)-round algorithms
is the same in RandLOCAL and DetLOCAL. See [8] for
a generalization of the Naor-Stockmeyer derandomization.
However, in the intervening decades we have seen numerous
examples of symmetry breaking algorithms for RandLOCAL
that are substantially faster than their counterparts in
DetLOCAL. The best DetLOCAL maximal independent set
(MIS) algorithms run in O(min{A + log* n,20(VIos™)})
time [9], [10], whereas the fastest RandLOCAL MIS
algorithm [11] runs in O(log A + 20(VIeslogn)) (ime,
The best DetLOCAL maximal matching algorithm runs in
O(min{A+log™ n, log? n}) time [12], [13] whereas the best
in the RandLOCAL model is O(log A+log* logn) [14]. The
best DetLOCAL algorithms for (A +1)-coloring and O(A)-
coloring run in min{O(v/A)+log* n, 20(VI0e™)} time [15],
[16], [10]. In the RandLOCAL model O(A)-coloring can
be solved in 20(v1glog™) time and in O(log* n) time for
sufficiently large A > logn. Recently Harris, Schneider,
and Su [17] gave a RandLOCAL (A +1)-coloring algorithm
running in O(y/Tog A +20(VIoglogn)) time. See [14] for an
extensive survey.

Graph Shattering: The randomized symmetry breaking
algorithms cited above are exponentially faster in two ways.
Their dependence on A is exponentially faster and their
dependence on n is usually identical to the best deterministic
complexity, but for poly(logn)-size instances, for example,
20(V1ogn) pecomes 20(VIos1osn) This second phenomenon
is no coincidence! It is a direct result of the graph shattering
approach to symmetry breaking used in [14] and further
in [18], [19], [20], [11], [21], [17], [22], [23]. The idea is to
apply a randomized procedure that fixes some fragment of
the output (e.g., part of the MIS is fixed, part of the coloring
is fixed, etc.), thereby effectively removing a large fraction
of the vertices from further consideration. If it can be shown
that the connected components in the subgraph still under
consideration have size poly(logn), one can revert to the
best available deterministic algorithm and solve the problem
on each component of the “shattered” graph in parallel.

Lower Bounds in the LOCAL Model: Until recently,
the main principle used to prove lower bounds in the
LOCAL model was indistinguishability. The first application
of this principle was by Linial [4] himself, who argued

that any algorithm for coloring degree-A trees either uses
Q(A/log A) colors or takes 2(loga n) time. The proof is
as follows (i) in o(loga n) time, a vertex cannot always
distinguish whether the input graph G is a tree or a graph
with girth Q(loga n), (i) for all A and all n, there exists a
degree-A graph with girth Q(loga n) and chromatic number
x = Q(A/logA), hence? (iii) any o(log n)-time algo-
rithm for coloring trees could also color such a graph, and
therefore must use at least x colors. A more subtle indistin-
guishability argument was used by Kuhn, Moscibroda, and
Wattenhofer [25], who showed that O(1)-approximate vertex
cover, maximal matching, MIS, and several other problems
have Q(min{log A/loglogA, +/logn/loglogn}) lower
bounds. Recently, Bar-Yehuda, Censor-Hillel, and Schwartz-
man [26] showed that a (2+¢)-approximate vertex cover can
be found in O(log A/loglog A) time, matching the above
lower bound. By its nature, indistinguishability is not very
good at separating randomized and deterministic complexi-
ties. Very recently, Brandt et al. [1] developed a lower bound
technique that explicitly incorporates error probabilities and
proved that several problems on graphs with constant A take
Q(loglogn) time in RandLOCAL (with error probability
1/poly(n)) such as sinkless orientation, sinkless coloring,
and A-coloring. Refer to Section II for definitions of these
problems. Since the existence of a sinkless orientation can
be proved with the Lovész local lemma (LLL), this gave
Q(loglogn) lower bounds on distributed algorithms for the
constructive LLL. See [19], [11] for upper bounds on the
distributed LLL.

A. New Results

In this paper we exhibit an exponential separation between
RandLOCAL and DetLOCAL for several specific symmetry
breaking problems. More generally, we give new connec-
tions between the randomized and deterministic complexities
of all locally checkable labeling problems (refer to Section II
for a definition of LCLs), a class that includes essentially
any natural symmetry breaking problem.

1) Separation of RandLOCAL and DetLOCAL. We
extend Brandt et al.’s [1] randomized lower bound
as follows: on degree-A graphs, A-coloring takes
Q(loga logn) time in RandLOCAL and Q(loga n)
time in DetLOCAL. The hard graphs in this lower
bound have girth Q(log n), so by the indistinguisha-
bility principle, these lower bounds also apply to A-
coloring trees. On the upper bound side, Barenboim
and Elkin [27] showed that for A > 3, A-coloring
trees takes O(loga n + log™n) time in DetLOCAL.
We give an elementary proof that for A > 55, A-
coloring trees can be done in O(logx logn + log™ n)
time in RandLOCAL, matching Brandt et al’s [1]

’Linial [4] actually only used the existence of A-regular graphs with
high girth and chromatic number Q(v/A). See [24] for constructions with
chromatic number Q(A/log A).



lower bound up to a log* n additive term. A more
complicated algorithm for A-coloring trees could be
derived from [23], for A > Ay and some very large
constant Ag.>

Randomized lower bounds imply deterministic
lower bounds. We give a second, more generic proof
that A-coloring trees takes §2(log n) time. The proof
shows that any f(A)+o(logs n) time algorithm for an
LCL problem can be transformed in a black box way
to run in O((1 + f(A))(log" n — log™ A + 1)) time.
Thus, on bounded-degree graphs, there are no “nat-
ural” deterministic time bounds between w(log™ n)
and o(logn). Any w(log™ n) lower bound for bounded
degree graphs (in either RandLOCAL or DetLOCAL)
immediately implies an ((logn) lower bound in
DetLOCAL. This reduction can be parameterized in
many different ways. Under a different parametrization
it shows that any O(loglfﬁr1 n)-time DetLOCAL al-
gorithm for an LCL problem can be transformed to run
in O(log® A(log* n—log* A+ 1))-time. For example,
if one were to develop a deterministic O(+/logn)-
time MIS or maximal matching algorithm—almost
matching one of the KMW [25] lower bounds—
it would immediately imply an O(log A(log"n —
log™ A + 1))-time MIS/maximal matching algorithm,
which almost matches the other KMW lower bound.
By some strange coincidence, [14] gave an analo-
gous reduction for MIS/maximal matching in bounded
arboricity graphs, but for RandLOCAL and in the
reverse direction. Specifically, any O(log” A + f(n))-
time RandLOCAL MIS/maximal matching algorithm
for general graphs can be transformed into an
O(logl_’f%1 n + f(n))-time RandLOCAL algorithm
for bounded arboricity graphs.

Deterministic lower bounds imply randomized
lower bounds. We prove that for any LCL problem,
its RandLOCAL complexity on instances of size n
is at least its DetLOCAL complexity on instances
of size y/logn. This reverses the implication proved
above. For example, if we begin with a proof that
A-coloring takes Q(log, n) time in DetLOCAL, then
we conclude that it must take Q(loga logn) time
in RandLOCAL. This result has a very clear take-
away message: the graph shattering technique ap-
plied by recent randomized symmetry breaking algo-
rithms [14], [19], [20], [11], [17], [18], [22], [23] is
inherent to the RandLOCAL model and every opti-

2)

3)

3The reason we are interested in minimizing the Ag < A for which the
algorithm works is somewhat technical. It seems as if A-coloring trees is a
problem whose character makes a qualitative transition when A is a small
enough constant. Using our technique (graph shattering) we may be able
to replace 55 with a smaller constant, but not too small. Any algorithm
that 3-colors 3-regular trees, for example, will need to be qualitatively very
different in its design.
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mal RandLOCAL algorithm for instances of size n
must, in some way, encode an optimal DetLOCAL
algorithm on poly(logn)-size instances. It is there-
fore impossible to improve the 20(vIoglogn) termg
in the RandLOCAL MIS and coloring algorithms
of [14], [11], [17], [20] without also improving the
20(V1og7)_time DetLOCAL algorithms of Panconesi
and Srinivasan [10], and it is impossible to improve
the O(log* logn) term in the RandLOCAL maximal
matching algorithm of [14] without also improving the
O(log* n) DetLOCAL maximal matching algorithm
of [13].

II. PRELIMINARIES

Graph Notation: For a graph G = (V,E) and for
u,v € V, let distg(v,u) be the distance between v and
uwin G. Let N(v) = {u | (v,u) € E} be the neighborhood
of v and let N"(v) = {u | distg(v,u) < r} be the set of
all vertices within distance r of v.

Locally Checkable Labeling: The class of Locally
Checkable Labeling (LCL) [7] problems are intuitively those
graph problems whose solutions can be verified in O(1)
rounds, given a suitable labeling of the graph. Formally,
an LCL problem is defined by a fixed radius r, a finite
set ¥ of vertex labels, and a set C of acceptable labeled
subgraphs. For any legal solution I to the problem there is
a labeling A; V' — X that encodes I (plus possibly
other information) such that for each v € V, the labeled
subgraph induced by N"(v) lies in C. Moreover, for any
non-solution I' to the problem, there is no labeling A\, with
this property. The following symmetry breaking problems
are LCLs for r = 1.

o MAXIMAL INDEPENDENT SET (MIS). Given a graph

G = (V,E), find a set I CV such that for any vertex

v €V, wehave Nv)NI=0iff vel

e k-COLORING. Given a graph G = (V,E), find an

assignment V' — {1,2,...,k} such that for each edge

{u,v} € E, u and v are assigned to different numbers

(also called colors).

For MIS it suffices to label vertices with ¥ = {0, 1} indi-
cating whether they are in the MIS. For k-Coloring we use
¥ ={1,...,k}. The definition of LCLs is easily generalized
to the case where the input graph G is supplemented with
some labeling (e.g., an edge coloring) or where \ labels both
vertices and edges. Brandt et al. [1] considered the following
problems.

e A-SINKLESS COLORING. Given a A-regular graph

G = (V,E) and a proper A-edge coloring of E

using colors in {1,2,..., A}, find a A-coloring of V

using colors in {1,2,..., A} such that there is no edge
{u,v} € E for which u, v and {u, v} all have the same
color.

o A-SINKLESS ORIENTATION. Given a A-regular graph
G = (V,E) and a proper A-edge coloring of E, find



an orientation of the edges such that all vertices have
out-degree > 1.

Observe that both A-Sinkless Coloring and A-Sinkless
Orientation are LCL graph problems with » = 1. For
Sinkless Orientation ¥ = {—, < }* encodes the directions
of all edges incident to a vertex, and the radius r 1
is necessary and sufficient to verify that the orientations
declared by both endpoints of an edge are consistent.

Linial’s coloring: In the DetLOCAL model the initial
O(log n)-bit IDs can be viewed as an nM-coloring of the
graph. Our algorithms make frequent use of Linial’s [4]
coloring algorithm, which recolors the vertices using a
smaller palette.

Theorem 1 ([4]). Let G be a graph which has been k-
colored. Then it is possible to deterministically re-color G
using 5A%log k colors in one round.

Theorem 2 ([4]). There exists a universal constant 3 > 0
such that there is a DetLOCAL algorithm that computes a
B - A%-coloring of a graph in O(log*n —log* A + 1) time.

III. THE NECESSITY OF GRAPH SHATTERING

Theorem 3 establishes that the graph shattering tech-
nique [14] is optimal and unavoidable in RandLOCAL.
In particular, the randomized complexity of any symmetry
breaking problem always hinges on its deterministic com-
plexity.

Theorem 3. Let P be an LCL problem. Define Detp(n, A)
to be the complexity of the optimal deterministic algorithm
for P in the DetLOCAL model and define Randp(n, A) to
be its complexity in the RandLOCAL model, with global
error probability 1/n. Then

Detp(n,A) < Randp(2",A).

Proof: Let Agrang be a randomized algorithm for P.
Each vertex running Agrangd generates a string of r(n,A)
random bits and proceeds for t(n,A) rounds, where r
and t are two arbitrary functions. The probability that the
algorithm fails in any way is at most 1/n. Our goal is to
convert Agang into a deterministic algorithm Ape; in the
DetLOCAL model. Let G = (V, E) be the network on which
Apet tuns. Initially each v € V knows n = |V|, A, and
a unique ID(v) € {0,1}¢°8™ Let G, A be the set of all
n-vertex graphs with unique vertex IDs in {0, 1}¢!°8™ and
maximum degree at most A. Regardless of A,

ZdEf

(G| < 203)Hentonn o gn® & iy,

Imagine simulating Agrang on a graph G’ € G, A whose
vertices are given input parameters (N,A), that is, we
imagine G’ is disconnected from the remaining N — n
vertices. The probability that Agang fails on an N-vertex
graph is at most 1/N, so the probability that any vertex in
G’ witnesses a failure is also certainly at most 1/N.
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Suppose we select a function ¢ {0, 1}cloen
{0, 1}7(N:A) uniformly at random from the space of all such
functions. Define Apet[¢] to be the deterministic algorithm
that simulates Agang for t(N, A) steps, where the string of
random bits generated by v is fixed to be ¢(ID(v)). We shall
call ¢ a bad function if Ape[¢] fails to compute the correct
answer on some member of G, A. By the union bound,

Pr(¢ is bad)

< Y Pr(oald] ems on @)
G'€Gn,A

= Z Pr(ARrang errs on G’, with parameters (N, A))
G'€Gn,A

<|Gna| /N < 1.

Thus, there exists some good ¢. Any ¢ can be encoded as a
long bit-string (¢) def #(0)p(1) - - - p(2¢1°8™ —1). Define ¢*
to be the good function for which (¢*) is lexicographically
first.

The algorithm Ape is as follows. Each vertex
given input parameters (n,A), first computes N =
2”2,t(N ,A),7(N,A), then performs the simulations of
ARrand necessary to compute ¢*. Once ¢* is computed
it executes Apet[¢*] for t(N,A) rounds. By definition,
Apet[¢*] never errs when executed on any member of G,, A.

|

v?

Remark 1. Theorem 3 works equally well when t and
r are functions of n,/, and possibly other quantitative
global graph parameters. For example, the time may de-
pend on measures of local sparsity (as in [20]), arboric-
ity/degeneracy (as in [27], [14]), or neighborhood growth
(as in [28]).

Naor and Stockmeyer [7] proved that the class of truly
local (O(1)-time) problems in RandLOCAL and DetLOCAL
is identical for bounded A. Theorem 3 implies something
slightly stronger, since log™ n and log™(y/logn) differ by an
additive constant.

Corollary 1. Any RandLOCAL algorithm for an LCL
running in t(n) = 290" ") time can be derandomized
without asymptotic penalty. The corresponding DetLOCAL
algorithm runs in O(t(n)) time.

IV. LOWER BOUNDS FOR A-COLORING TREES

In this section we prove that on degree-A graphs with
girth Q(loga n), A-coloring takes Q(loga logn) time in
RandLOCAL and Q(logs n) time in DetLOCAL. Since the
girth of the graphs used to prove these lower bounds is
Q(loga n), by the indistinguishability principle they also
apply to the problem of A-coloring trees.



Sinkless coloring and sinkless orientations: Brandt
et.al. [1] proved Q(loglogn) lower bounds on RandLOCAL
algorithms, that have a 1/poly(n) probability of failure,
for sinkless coloring and sinkless orientation of 3-regular
graphs. We say that a sinkless coloring algorithm .4 has
failure probability p if, for each individual edge e = {u, v},
the probability that color(u) = color(v) = color({u,v}) is
at most p. Thus, by the union bound, the global probability
of failure is at most p|E|. We say a that sinkless orientation
algorithm A has failure probability p if, for each v € V,
the probability that v is a sink is at most p. We say that
monochromatic edges and sinks are forbidden configurations
for sinkless coloring and sinkless orientation, respectively.

The following two lemmas are proven in [1] for A = 3.
It is straightforward to go through the details of the proof
and track the dependence on A.

Lemma 1 ([1]). Let G = (V, E, ) be a A-regular graph
with girth g that is equipped with a proper A-edge coloring
1. Suppose that there is a RandLOCAL algorithm A for A-
sinkless coloring taking t < % rounds such that Ve € E,
A outputs a forbidden configuration at e with probability
at most p. Then there is a RandLOCAL algorithm A’ for
A-sinkless orientation taking t rounds such that Yv € V,
A’ outputs a forbidden configuration at v with probability
at most 2Ap*/3.

Lemma 2 ([1]). Let G = (V, E, ) be a A-regular graph
with girth g that is equipped with a proper A-edge coloring
1. Suppose that there is a RandLOCAL algorithm A’ for
sinkless orientation taking t < % rounds such that Yv €
V., A" outputs a forbidden configuration at v with probability
at most p. Then there is a RandLOCAL algorithm A for A-
sinkless coloring taking t — 1 rounds such that Ve € E, A
outputs a forbidden configuration at e with probability at
most 4p*/(A+1),

The following theorem generalizes Corollary 25 in [1] to
allow non-constant A and arbitrary failure probability p.

Theorem 4. Any RandLOCAL algorithm for A-coloring a
graph with degree at most /A and error probability p takes
at least t = min{elogsa 1) In(1/p), €logan} — 1 rounds
for a sufficiently small € > 0.

Proof: We assume that €logsa 1y In(1/p) > 1, since
otherwise the theorem is trivial as ¢ < 0. For any A > 3
there exist a bipartite A-regular graph with girth Q(log n);
see [29], [30]. Such graphs are trivially A-edge colorable.
Moreover, any A-coloring of such a graph is also a valid
A-sinkless coloring. Applying Lemmas 1 and 2 we con-
clude that any ¢-round A-sinkless coloring algorithm with
error probability p can be transformed into a (¢t — 1)-
round A smkless colorlng algorithm with error probability
4(2A) AJr1p$<A+1> < Tp3a+D) SaTD . Iterating this process ¢ times,
it follows that there exists a 0-round A-sinkless coloring
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algorithm with failure probability O(p( sarn)’ ). Notice that

elogg(at1) In(1/p)

psam) < plsam)

— p(ln(l/P)) ¢ — eXp(—(ln(l/p))l_E),

Because the graph is A-regular and the vertices undifferenti-
ated by IDs, any 0-round RandLOCAL algorithm colors each
vertex independently according to the same distribution.
The probability that any vertex is involved in a forbidden
configuration (a monochromatic edge) is therefore at least
1/A?. Since €logg 41y In(1/p) > 1 we have A < In(1/p),
but

é > exp(=2InIn(1/p) > exp (— (n(1/p))' ™) .

This is a contradiction since we obtain a O-round A-sinkless
coloring algorithm with failure probability less than 1/AZ2.
Thus, there is no RandLOCAL A-sinkless coloring algorithm
that takes ¢-rounds and errs with probability p. ]

Corollary 2 is an immediate consequence of Theorem 4.

Corollary 2. Any RandLOCAL algorithm for A-coloring
a graph with global error probability 1/poly(n) takes
Q(loga logn) time.

Theorem 4 does not immediately extend to DetLOCAL.
Recall that in the DetLOCAL model vertices are initially
endowed with O(logn)-bit IDs whereas in RandLOCAL
they are undifferentiated.

Theorem 5. Any DetLOCAL algorithm that A-colors
degree-A graphs with girth Q(loga n) or degree-A trees
requires Q)(loga m) time.

Proof: Let Apet be a DetLOCAL algorithm that A-
colors a graph in ¢ = ¢(n,A) rounds and G be the input
graph. We construct a RandLOCAL algorithm Agang taking
O(t) rounds as follows. Before the first round each vertex
locally generates a random n-bit ID. Assume for the time
being that these IDs are unique, and therefore constitute a
2"-coloring of G. Let G' = (V,{(u,v) | distg(u,v) <
2t + 1}). The maximum degree A’ in G’ is clearly less
than n. We apply one step of Linial’s recoloring algorithm
(Theorem 1) to G’ and obtain a coloring with palette size
O(A?1og(2")) = O(n?®). A step of Linial’s algorithm in
G’ is simulated in G using O(t) time. Using these colors
as (3logn + O(1))-bit IDs, we simulate Ape; in G for ¢
steps. Since no vertex can see two vertices with the same ID,
this algorithm necessarily behaves as if all IDs are unique.
Observe that because Ape; is deterministic, the only way
ARand can err is if the initial n-bit IDs fail to be unique.
This occurs with probability p < n?/2". By Theorem 4
ARrand takes Q(min{logx log(1/p), loga n}) = Q(loga n)
time. ]

V. GAPS IN DETERMINISTIC TIME COMPLEXITY

The Time Hierarchy Theorem informally says that a
Turing machine can solve more problems given more time.



A similar question can be asked in the setting of distributed
computation. For example, does increasing the number of
rounds from ©(log™ n) to O(loglogn) allow one to solve
more problems? In this section, we will demonstrate a
general technique that allows one to speedup deterministic
algorithms in the DetLOCAL model. Based on this tech-
nique, we demonstrate the existence of a “gap” in possible
DetLOCAL complexities.

A graph class is hereditary if it is closed under removing
vertices and edges. Examples of hereditary graph classes are
general graphs, forests, bounded arboricity graphs, triangle-
free graphs, and planar graphs. We prove that for graphs
with constant A the time complexity of any LCL problem
on a hereditary graph class is either Q(logn) or O(log™ n).

Theorem 6. Let P be an LCL graph problem with param-
eters v, X, and C, and let A be a DetLOCAL algorithm for
solving ‘P. Let [3 be the universal constant from Theorem 2.
Suppose that the cost of A on instances of P with n vertices,
where the instances are taken from a hereditary graph
class, is at most f(A) + eloga n time, where f(A) > 0
and € Tiilogpiar 8 a constant. Then there exists
a DetLOCAL algorithm A’ that solves P on the same
instances in O ((1+ f(A)(log™ n — log" A + 1)) time.

Proof: Notice that for any instance of P with n ver-
tices and ID length ¢, it must be that ¢ > logn and so
the running time of .4 on such instances is bounded by
T(A0) < f(A) + ox.

Let G = (V, E) be an instance of P. The algorithm A’
on G works as follows. Let 7 = 1 + log 8 be a constant.
We use Linial’s coloring technique to produce short IDs of
length ¢’ that are distinct within distance 4f(A) + 27 4 2r.
Let G’ = (V, E’) be the graph with

E' = {{um} e (Y) ‘ distg(u,v) <4f(A) + 27'+2r}.

The maximum degree in G’ is clearly at most A%/ (8)+27+2r,
Each vertex uw € V simulates G’ by collecting
N A)IH2142r () in O(f(A) + 7 4 r) time.

We simulate the algorithm of Theorem 2 on G’ by treating
each of the ¢-bit IDs of vertices in V' as a color. This
produces a 3 - A8F(A)+47+47_coloring, which is equivalent
to identifiers of length ¢/ = (8 f(A)+47+4r) log A+log S.
Although these identifiers are not globally unique, they are
distinct in N2/(A)+7+7(y) for each vertex u € V. The time
complexity of this process is

Af(A)+27+2r)- O (log"n—log" A+1).
Finally, we apply A on G while implicitly assuming that

the graph size is 2 and using the shorter IDs. The runtime
of this execution of A is:
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F(A) + s

= f(A) + 6((8f(A)+4'rlt;11210gA+10g5)

= (1+86)f(A) + 1+ 5288 e(4r +4r) =1
<(148)f(A)+T logA>1e<1
<2f(A)+. 8e=r <1

Whether the output labeling of v € V' is legal depends on
the labeling of the vertices in N"(u), which depends on the
graph structure and the IDs in N2/(2)+7+7(y). Due to the
hereditary property of the graph class under consideration,
for each u € V, N2/(A)+7+7(4,) is isomorphic to a subgraph
of some 2 -vertex graph in the same class. Moreover, the
shortened TDs in N2/(A)+7+7(y) are distinct. Therefore, it
is guaranteed that the output of the simulation is a legal
labeling.

The total time complexity is

(Af(A)+27+2r)-O(log"n —log" A+ 1)+ 2f(A)+ 7
=0((1+ f(A)(log"n —log" A +1)).

|

Combining Theorem 6 with Corollary 2 and setting
f(A) = O(1) provides a new proof of Theorem 5 for small
enough A. To see this, notice that any lower bound for
the RandLOCAL model with error probability 1/poly(n)
can be adapted to DetLOCAL since we can randomly
pick O(logn)-bit IDs that are distinct with probability
1—1/poly(n). From Corollary 2 any DetLOCAL algorithm
that A-colors a degree-A tree requires Q(loga logn) time.
However, Theorem 6 states that any DetLOCAL algorithm
running in O(1) + o(loga n) time can be sped up to
run in O (log" n —log™ A + 1) time. This contradicts the
lower bound whenever loga logn > log*n — log" A + 1.
Hence A-coloring a degree-A tree takes Q(loga n) time
in DetLOCAL for small enough A such that logs logn >
log*n —log" A + 1.

Another consequence of Theorem 2 is that the determin-
istic time complexity of a problem can either be solved
very efficiently (i.e. in O ((1 4+ f(A)(log" n — log™ A + 1))
time) or requires 2(f(A) + loga n) time, which is at least
the order of the diameter when the underlying graph is a
complete regular tree. Such a consequence is the strongest
when A is small. For example, if A is a constant, Theorem 2
implies the following corollary:

Corollary 3. The time complexity of any LCL problem
on any hereditary graph class that has constant A in the
DetLOCAL model is either 2(logn) or O(log" n).

A simple adaptation of the proof of Theorem 6 shows an
even stronger dichotomy when A = 2.

Theorem 7. The DetLOCAL time complexity of any LCL
problem on any hereditary graph class with A = 2 is either
Q(n) or O(log™ n).



We remark that an interpretation of the time complexity
requirement in Theorems 6 and 7 is that the diameter of a
graph with maximum degree A is at least Q(loga n) for
A > 3 and (n) when A = 2. If we allow the possibility
for an algorithm to see the entire graph, then the algorithm
can solve the problem globally.

Given a O(y/log n)-time deterministic algorithm, one may
feel that it is possible to use Theorem 6 to improve the
time complexity to O(log™n) since vlogn = o(loga n)
for the case A = exp(o(y/logn)). However, the class of
graphs with A = exp(o(+/logn)) is not hereditary, and so
Theorem 6 does not apply. Nonetheless, Linial’s coloring
technique can be made to speed up algorithms with time
complexity of the form f(A) + g(n).

Theorem 8. Let P be an LCL graph problem with param-
eters v, %, and C, and let A be a DetLOCAL algorithm
for solving ‘P. Suppose that the runtime of the algorithm
A on instances of P from a hereditary graph class is
O(log" A + logr’Kl n). Then there exists a deterministic
algorithm A’ that solves P on the same instances in
O(log® A(log™ n —log* A 4 1)) time.

Proof: Notice that for any instance of P with n vertices
and ID length /, it must be that ¢ > logn and so the running
time of A on such instances is bounded by e; log" A +
egéﬁ, for some constants €1, €s.

We set 7 = elogk A, with the parameter € to be deter-
mined. Similar to the proof of Theorem 6, the algorithm
A’ first produces shortened 1D that are distinct for vertices
within distance 27 -+ 27, and then simulates A on the
shortened IDs in 7 rounds.

Let G’ = (V, E’) be the graph with

E = {{u,v} e (%) ‘ distg(u,v) < 27 + 27’}.

The maximum degree in G’ is at most A%27+27 Each vertex
u € V simulates G’ by collecting N27+27(u) in O( + r)
time.

We simulate the algorithm of Theorem 2 on G’ by treating
each of the ¢-bit IDs of vertices in V as a color. This
produces a 3 - A*"*t4"_coloring, which is equivalent to
identifiers of length ¢/ = (47 + 4r)log A + log 8. Although
these identifiers are not globally unique, they are distinct in
N7 (u) for each vertex u € V. The time complexity of
this process is

(27 +2r)-O(log*n —log" A+1).

Finally, we apply A on G while implicitly assuming
that the graph size is 2¢ and using the shorter IDs.
By setting € as a large enough number such that e; +
€2 (4(e + r +log 8)) ¥ < ¢, the runtime of this execution
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of A is
erlogh A + e (£)7T
= e110g" A + 65 (47 + 47) log A + log B)FiT

ke

<erlogh A+ e (4(elog’C A+ r+logf) log A) o
A

T

€1 logh A + ¢, (4(6 + 1+ log ) log" ™! A) :

(61 + e (4(e + 7 +log 5))?’?1) log® A
<elogh A =1

IN

Whether the output labeling of v € V is legal depends
on the labeling of the vertices in N” (u), which depends on
the graph structure and the IDs in N7 (u). Due to the
hereditary property of the graph class under consideration,
for each u € V, N™*"(u) is isomorphic to a subgraph
of some 2¢-vertex graph in the same class. Moreover,
the shortened ID in N7+7(u) are distinct. Therefore, it
is guaranteed that the output of the simulation is a legal
labeling.

The total time complexity is at most

(27 +2r)-O(log"n —log" A+ 1)+ 7
= O(log" A(log* n — log* A +1)).

|
A note about MIS lower bounds: Kuhn, Mosci-
broda, and Wattenhofer [25] showed that for a variety
of problems (including MIS) there is a lower bound of
min(log A/loglog A, /logn/loglogn) rounds. The lower
bound graph they used to prove such these result has
log A/loglog A = O(y/logn/loglogn). By Theorem 8,
setting k = 1 implies that if there is a deterministic
algorithm for MIS that runs in O(+/log n) time, then there is
another deterministic algorithm running in O(log A(log* n—
log* A + 1)) time. Interestingly, Barenboim, Elkin, Pet-
tie, and Schneider [14] showed that an MIS algorithm
in RandLOCAL running in O(log® A + f(n))-time im-
plied another RandLOCAL algorithm running in O(logk A+
logl_’»“%1 n + f(n)) time on graphs of arboricity \.

VI. ALGORITHMS FOR A-COLORING TREES

In Section IV, we showed that the problem of A-coloring
on trees has an Q(log n) deterministic lower bound and an
Q(log A log n) randomized lower bound. These lower bounds
have matching upper bounds, up to an additive log™ n term.

The algorithm of Barenboim and Elkin [27] demonstrates
that the deterministic bound is essentially tight. They proved
that A-coloring unoriented trees, where A > 3, takes
O(loga n + log" n) time. This is actually a special case
of their algorithm, which applies to graphs of bounded
arboricity .



Theorem 9 ([27]). For q > 3, there is a DetLOCAL
algorithm for q-coloring trees in O(log, n + log" n) time,
independent of A.

Pettie and Su [23] gave randomized algorithms for
(4+0(1))A/ In A-coloring triangle-free graphs. Their algo-
rithm makes extensive use of the distributed Lovész local
lemma [19] and runs in Q(logn) time. Pettie and Su
sketched a proof that A-coloring trees takes O(loga logn +
log* n) time, at least for sufficiently large A.

Theorem 10 ([23]). There exists a large constant Ag such
that when A > Ay, there is a RandLOCAL algorithm for
A-coloring trees in O(loga logn + log™ n) time.

The nature of the proof of Theorem 10 makes it difficult to
calculate a specific Ay for which the theorem applies. More-
over, the proof is only sketched. We address both of these
issues. First, we provide a simple algorithm and elementary
proof of Theorem 10. Second, we prove Theorem 11, which
combines Theorem 10 with a new technique for constant
A > 55, thereby providing a randomized algorithm for A-
coloring a tree that runs in O(logx logn + log* n) time for
any constant A > 55.

A. A simple proof of Theorem 10.

For a graph G = (V, E) we say that a subset S C V is a
distance-k set if the following two conditions are met:

1) For any two distinct vertices u,v € S, we have u ¢
NE1(0),
2) Let G* = (V, E¥), where there is an edge (u,v) € E*
if and only if diste(u,v) = k. Then S is connected
in G*.
The following lemma is used in the proof of Theorem 10.

Lemma 3 ([14]). The number of distinct distance-k sets of
size t is less than 4t - n - AFC=1),

Proof of Theorem 10: Our algorithm has two phases.
The first phase, which takes ¢t = O(log™ A) rounds, partially
colors the graph using colors in {1,2,...,A — v/A}. The
second phase, which takes O(logx logn + log™ n) rounds,
applies a deterministic algorithm to v/A-color the remaining
uncolored vertices using colors in {A — VA +1,...,A}.
We assume throughout the proof that A is at least a large
enough constant.

Phase 1: The first phase of the algorithm takes
O(log" A) rounds. In each round, the algorithm attempts
to color some uncolored vertices. We will explain soon how
uncolored vertices decide if they participate in a given round.
In the beginning of round i, for each vertex v € V, let
U,;(v) denote v’s available palette (i.e. the set of colors
that v can choose in round #), and let N;(v) denote the set
of uncolored vertices adjacent to v that are trying to color
themselves in this round. Initially, we set Ny(v) = N(v),
and ¥y (v) = {1,2,...,A — /A}, for all v. That is, in the
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first round all vertices attempt to color themselves, and they
all have the full palette of this phase available for choices
of a color.

We maintain the following two properties at each vertex
v that is not marked bad at round :. Only non-bad vertices
attempt to color themselves at round i:

P1(v): (Large Palette Property at v) |¥,;(v)]

P2(v):(Small Degree Property at v) |N;(v)

where ¢; is defined as: ¢; = 1, co = 200/1
and ¢; = min {AO Le exp(3 500- (;200 )}
i > 2.

Notice that ¢; is a constant, for all 7. Let ¢ be the smallest
number i such that ¢; = A%!. Notice that t = O(log* A) is
the number of the rounds in the first phase.

The intuition behind the two properties P; (v) and Po(v)
is that they ensure that (i) participating vertices always have
a large enough palette to use, and (ii) there is a large
separation between the palette size and the degree (of the
graph induced by uncolored vertices) so that we can color
a large fraction of vertices in each round.

For each 1 < i < ¢, the ™ round consists of two
constant time sub-routines ColorBidding() and Filtering(i).
In ColorBidding(i), each participating vertex v selects a
random subset of colors S,,. If there is a color in .S, that does
not belong to Uue Ni(v) S.., the vertex v succeeds and colors
itself with any such color. If such a color is chosen, denote it
by Color(v). After ColorBidding(:), we execute Filtering(s)
which filters out some vertices and thereby prevents P,
and P from being violated. Such vertices are called bad
vertices, and they will no longer participate in the remaining
rounds of Phase 1.

A
> 300"
| <

é
99,
for

ColorBidding(i).

Do the following steps in parallel for each uncolored
vertex v that is not bad:

1) If ¢; = ¢; = 1, then S, contains one color cho-
sen uniformly at random from ¥, (v). Otherwise
(¢; > 1), construct the set S, by independently
including each color of ¥;(v) with probability
ci/|¥;(v)].

If Su\Uyen, (v) Su # 0, then permanently color v
by picking an arbitrary color in Sy, \ J,,¢ Ny (v) Su
for Color(v).

Uir1(v) <« T;(w) \ {Color(u)
N;(v) is permanently colored}.

2)

3) €

| u

We define IV/(v) as the set of participating vertices after
ColorBidding(i — 1) and before Filtering(i — 1) that are
adjacent to v. In other words,

M) =N (0 {u |

u is permanently colored
in ColorBidding(: — 1)



Filtering(z).

For each uncolored vertex v that is not bad:

1) If i =1 and [¥(v)| — [ N5(v)| < 555, then mark
v as a bad vertex.

If 1 <i<tand|N/(v) >
as a bad vertex.

If 7 =t then mark v as a bad vertex.

A

e then mark v
i

2)

3)

Phase 2: By the filtering rule for ¢ = ¢, all the
remaining uncolored vertices after Phase 1 are bad vertices.
We color the bad vertices in Phase 2. We will later prove that
after Phase 1, with high probability a connected component
induced by bad vertices has size at most A*logn. Hence
we use Theorem 9 to v/A-color such connected components
using the v/A reserved colors. For simplicity, if this phase
lasts for too long (which may happen with low probability)
the algorithm just stops and fails.

Runtime: The runtime of Phase 1 is ¢ = O(log" A)
rounds. The runtime of Phase 2 is O(log /x (A*logn) +
log* (A*logn) ) = O (log logn + log™ n) . Thus, the total
runtime is O (loga logn + log™ n) rounds.

Analysis: The analysis of Phase 2 relies only on prov-
ing that, with high probability, all connected components
induced by bad vertices after Phase 1 are of size at most
A*logn. Thus, we focus on analyzing Phase 1.

A vertex v that participates in round ¢ may be marked bad,
depending on the random bits generated by vertices in N2 (v)
in this round. Our analysis applies to any partial coloring
of N2(v) that satisfies properties P; and P, and is entirely
independent of the random bits generated by vertices outside
of N?%(v). The probability that a vertex is marked bad is
exp(—poly(A). This proof is based on the following claims,
which are proved by applying standard Chernoff bounds.
See [31] for details.

Claim 1. The probability that a vertex v is marked as bad
in round i = 1 is at most exp(—Q(A)); this event only
depends on the random bits chosen by vertices in N?(v).

Claim 2. The probability that a vertex v that participates
in round 1 < i <t is marked as bad in round i is at most
exp(—Q(A%Y)); this event only depends on the random bits
chosen by vertices in N?(v).

Claim 3. The probability that a vertex v that participates
in round i = t is marked as bad in round i is at most
exp(—Q(A%Y)); this event only depends on the random bits
chosen by vertices in N2(v).

By the union bound for all rounds in Phase 1, the
probability that any vertex v becomes a bad vertex after
Phase 1 is O(log™ A)exp(—poly(A)) = exp(—poly(A)),
regardless of the choice of random bits for all vertices not
in N2(v). Therefore, just before Phase 2, for any distance-
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5 set T of size s, the probability that all vertices in T'
are bad is at most exp(—s - poly(A)). By Lemma 3, there
are at most 4° - n - A*5=1) distinct distance-5 sets T
of size s. By the union bound, with probability at least
(4% - n - A*=1) cexp(—s-poly(A)), there is no distance-5
set of size s that contains only bad vertices. This probability
can be upper bounded by n~¢ for any ¢ when s = logn.
Therefore, with high probability all of the connected com-
ponents induced by bad vertices after Phase 1 are of size at
most A*logn. This concludes the proof of Theorem 10. ®

B. Algorithm for A > 55.

The proof of the previous section (and that of [23]) is hard
to analyze quantitatively without the aid of O(-) notation
to hide large, unspecified constants. It seems to require a
very large A for the proof to go through, since in each
round several Chernoff bounds are applied to make sure
that key requirements are met. In what follows we present a
different algorithm with a significantly simpler analysis for
A-coloring trees with small constant A. Its dependence on
A is polynomial, which is fine if A = O(1).

Theorem 11. For A > 55, there exists a RandLOCAL algo-
rithm that computes a A-coloring of a tree in O(log log n+
log™ n) time.

Proof: Due to the antiquated page constraint, we only
present the algorithm and omit the analysis. See [31] for
a full proof. We assume that A = O(1) is constant, since
otherwise we can apply Theorem 10. Our algorithm has three
phases:

Phase 1: We execute the following procedure to par-
tially color the graph with colors in {4,5,... A}.

Initially U < V.

For i from A downto 4, do the following steps in
parallel for each vertex v € U:

Choose a real number z(v) € [0, 1] uniformly at
random.

Let K = v‘x(v)<

1y

min x(u)} be the set
uwEN (v)NU
of all vertices holding local minima.
Find any MIS I D K of U. All vertices in I are
colored 1.

Set U < U \ I (remove all colored vertices).

2)

3)

4)

The above procedure ensures that the number of uncolored
neighbors of a vertex v € U is at most ¢ — 1 after step 4.
Therefore, at the end of Phase 1, we have |[N(v) NU| < 3
for any uncolored vertex v.

The MIS required in Step 3 can be computed in O(A +
log"*n) = O(log"n) time [9], or in O(A? + log* n)
O(log™ n) time via Theorem 2.



Phase 2: We can show that the set of vertices S = {v €
U s.t. [IN(v)NU| = 3} form connected components of size
at most O(logn) with probability > 1 — n~° [31]. Hence
we apply Theorem 9 to 3-color the set S (using the colors
1,2,3) in O(loglogn) time. We then update U = U \ S
after coloring the vertices in S.

Phase 3: For each vertex v that remains uncol-
ored, the number of its available colors (i.e. {1,...,A}\
{color(u) | u € N(v) is colored}) is strictly greater than
the number of its uncolored neighbors (i.e. |N(v)NU|). We
apply an O(log™ n)-time MIS algorithm twice to get a 3-
coloring of vertices in U (with three colors 1’,2’,3"). For
i/ =1/,2',3, we recolor each vertex in color class i’ using
any available color from its palette. ]
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