
An Exponential Separation Between Randomized

and Deterministic Complexity in the LOCAL Model

Yi-Jun Chang

University of Michigan

Ann Arbor, MI

cyijun@umich.edu

Tsvi Kopelowitz

University of Michigan

Ann Arbor, MI

kopelot@gmail.com

Seth Pettie

University of Michigan

Ann Arbor, MI

pettie@umich.edu

Abstract—Over the past 30 years numerous algorithms have
been designed for symmetry breaking problems in the LOCAL

model, such as maximal matching, MIS, vertex coloring, and
edge coloring. For most problems the best randomized algo-
rithm is at least exponentially faster than the best deterministic
algorithm. We prove that these exponential gaps are necessary
and establish numerous connections between the deterministic
and randomized complexities in the LOCAL model. Each of
our results has a very compelling take-away message:

1) Building on the recent randomized lower bounds of
Brandt et al. [1], we prove that the randomized com-
plexity of ∆-coloring a tree with maximum degree ∆
is O(log∆ log n + log∗ n), for any ∆ ≥ 55, whereas its
deterministic complexity is Ω(log∆ n) for any ∆ ≥ 3.
This also establishes a large separation between the
deterministic complexity of ∆-coloring and (∆ + 1)-
coloring trees.

2) We prove that any deterministic algorithm for a natural
class of problems that runs in O(1) + o(log∆ n) rounds
can be transformed to run in O(log∗ n − log∗ ∆ + 1)
rounds. If the transformed algorithm violates a lower
bound (even allowing randomization), then one can
conclude that the problem requires Ω(log∆ n) time
deterministically. This gives an alternate proof that
deterministically ∆-coloring a tree with small ∆ takes
Ω(log∆ n) rounds.

3) We prove that the randomized complexity of any natural
problem on instances of size n is at least its deter-
ministic complexity on instances of size

√
log n. This

shows that a deterministic Ω(log∆ n) lower bound for
any problem (∆-coloring a tree, for example) implies a
randomized Ω(log∆ log n) lower bound. It also illustrates
that the graph shattering technique employed in recent
randomized symmetry breaking algorithms is absolutely
essential to the LOCAL model. For example, it is provably

impossible to improve the 2O(
√

log logn) term in the com-
plexities of the best MIS and (∆+1)-coloring algorithms

without also improving the 2O(
√

logn)-round Panconesi-
Srinivasan algorithm.

Keywords-coloring; distributed algorithm; local model; sym-
metry breaking

This work is supported by NSF grants CCF-1217338, CNS-1318294, and
CCF-1514383.

I. INTRODUCTION

One of the central problems of theoretical computer

science is to determine the value of random bits. If the dis-

tinction is between computable vs. incomputable functions,

random bits are provably useless in centralized models (Tur-

ing machines). However, this is not true in the distributed

world! The celebrated Fischer-Lynch-Patterson theorem [2]

states that asynchronous deterministic agreement is impos-

sible with one unannounced failure, yet it is possible to

accomplish with probability 1 using randomization [3].

In this paper we examine the value of random bits in

Linial’s [4] LOCAL model, which, for the sake of clarity, we

bifurcate into two models RandLOCAL and DetLOCAL. In

both models the graph G = (V,E) represents the topology

of the communications network. Each vertex hosts a pro-

cessor and all vertices run the same algorithm. Each edge

supports communication in both directions. The computation

proceeds in synchronized rounds. In a round, each processor

performs some computation and sends a message along each

incident edge, which is delivered before the beginning of

the next round. Each vertex v is initially aware of its degree

deg(v) and certain global parameters such as n
def
= |V |,

∆ = ∆(G)
def
= maxv∈V deg(v), and possibly others.1 In

the LOCAL model the only measure of efficiency is the

number of rounds. All local computation is free and the

size of messages is unbounded. Henceforth “time” refers to

the number of rounds.

• DetLOCAL: In order to avoid trivial impossibilities, all

vertices are assumed to hold unique Θ(log n)-bit IDs.

Except for the registers holding deg(v) and ID(v), the

initial state of v is identical to every other vertex. The

algorithm executed at each vertex is deterministic.

• RandLOCAL: In this model each vertex may locally

generate an unbounded number of independent truly

random bits. (There are no globally shared random

bits.) Except for the register holding deg(v), the initial

state of v is identical to every other vertex. Algorithms

in this model operate for a specified number of rounds

1The assumption that global parameters are common knowledge can
sometimes be removed; see Korman, Sereni, and Viennot [5].

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.72

614

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.72

615

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.72

615

and have some probability of failure, the definition of

which is problem specific. We usually only consider

algorithms whose global probability of failure is at most

1/poly(n).

Observe that the lack of IDs in RandLOCAL is not a

practical limitation. Before the first round each node can

locally generate a random O(log n)-bit ID, which is unique

with probability 1/poly(n).
Early work in the LOCAL models suggested that ran-

domness is of limited help. Naor [6] showed that Linial’s

Ω(log∗ n) lower bound [4] for 3-coloring the ring holds even

in RandLOCAL, and Naor and Stockmeyer [7] proved that

the class of problems solvable by O(1)-round algorithms

is the same in RandLOCAL and DetLOCAL. See [8] for

a generalization of the Naor-Stockmeyer derandomization.

However, in the intervening decades we have seen numerous

examples of symmetry breaking algorithms for RandLOCAL

that are substantially faster than their counterparts in

DetLOCAL. The best DetLOCAL maximal independent set

(MIS) algorithms run in O(min{∆ + log∗ n, 2O(
√
logn)})

time [9], [10], whereas the fastest RandLOCAL MIS

algorithm [11] runs in O(log∆ + 2O(
√
log logn)) time.

The best DetLOCAL maximal matching algorithm runs in

O(min{∆+log∗ n, log4 n}) time [12], [13] whereas the best

in the RandLOCAL model is O(log∆+log4 log n) [14]. The

best DetLOCAL algorithms for (∆+1)-coloring and O(∆)-
coloring run in min{Õ(

√
∆)+log∗ n, 2O(

√
logn)} time [15],

[16], [10]. In the RandLOCAL model O(∆)-coloring can

be solved in 2O(
√
log logn) time and in O(log∗ n) time for

sufficiently large ∆ � logn. Recently Harris, Schneider,

and Su [17] gave a RandLOCAL (∆+1)-coloring algorithm

running in O(
√
log∆+2O(

√
log logn)) time. See [14] for an

extensive survey.

Graph Shattering: The randomized symmetry breaking

algorithms cited above are exponentially faster in two ways.

Their dependence on ∆ is exponentially faster and their

dependence on n is usually identical to the best deterministic

complexity, but for poly(log n)-size instances, for example,

2O(
√
logn) becomes 2O(

√
log logn). This second phenomenon

is no coincidence! It is a direct result of the graph shattering

approach to symmetry breaking used in [14] and further

in [18], [19], [20], [11], [21], [17], [22], [23]. The idea is to

apply a randomized procedure that fixes some fragment of

the output (e.g., part of the MIS is fixed, part of the coloring

is fixed, etc.), thereby effectively removing a large fraction

of the vertices from further consideration. If it can be shown

that the connected components in the subgraph still under

consideration have size poly(log n), one can revert to the

best available deterministic algorithm and solve the problem

on each component of the “shattered” graph in parallel.

Lower Bounds in the LOCAL Model: Until recently,

the main principle used to prove lower bounds in the

LOCAL model was indistinguishability. The first application

of this principle was by Linial [4] himself, who argued

that any algorithm for coloring degree-∆ trees either uses

Ω(∆/ log∆) colors or takes Ω(log∆ n) time. The proof is

as follows (i) in o(log∆ n) time, a vertex cannot always

distinguish whether the input graph G is a tree or a graph

with girth Ω(log∆ n), (ii) for all ∆ and all n, there exists a

degree-∆ graph with girth Ω(log∆ n) and chromatic number

χ = Ω(∆/ log∆), hence2 (iii) any o(log∆ n)-time algo-

rithm for coloring trees could also color such a graph, and

therefore must use at least χ colors. A more subtle indistin-

guishability argument was used by Kuhn, Moscibroda, and

Wattenhofer [25], who showed that O(1)-approximate vertex

cover, maximal matching, MIS, and several other problems

have Ω(min{log∆/ log log∆,
√

log n/ log log n}) lower

bounds. Recently, Bar-Yehuda, Censor-Hillel, and Schwartz-

man [26] showed that a (2+ε)-approximate vertex cover can

be found in O(log∆/ log log∆) time, matching the above

lower bound. By its nature, indistinguishability is not very

good at separating randomized and deterministic complexi-

ties. Very recently, Brandt et al. [1] developed a lower bound

technique that explicitly incorporates error probabilities and

proved that several problems on graphs with constant ∆ take

Ω(log log n) time in RandLOCAL (with error probability

1/poly(n)) such as sinkless orientation, sinkless coloring,

and ∆-coloring. Refer to Section II for definitions of these

problems. Since the existence of a sinkless orientation can

be proved with the Lovász local lemma (LLL), this gave

Ω(log log n) lower bounds on distributed algorithms for the

constructive LLL. See [19], [11] for upper bounds on the

distributed LLL.

A. New Results

In this paper we exhibit an exponential separation between

RandLOCAL and DetLOCAL for several specific symmetry

breaking problems. More generally, we give new connec-

tions between the randomized and deterministic complexities

of all locally checkable labeling problems (refer to Section II

for a definition of LCLs), a class that includes essentially

any natural symmetry breaking problem.

1) Separation of RandLOCAL and DetLOCAL. We

extend Brandt et al.’s [1] randomized lower bound

as follows: on degree-∆ graphs, ∆-coloring takes

Ω(log∆ log n) time in RandLOCAL and Ω(log∆ n)
time in DetLOCAL. The hard graphs in this lower

bound have girth Ω(log∆ n), so by the indistinguisha-

bility principle, these lower bounds also apply to ∆-

coloring trees. On the upper bound side, Barenboim

and Elkin [27] showed that for ∆ ≥ 3, ∆-coloring

trees takes O(log∆ n + log∗ n) time in DetLOCAL.

We give an elementary proof that for ∆ ≥ 55, ∆-

coloring trees can be done in O(log∆ log n+ log∗ n)
time in RandLOCAL, matching Brandt et al.’s [1]

2Linial [4] actually only used the existence of ∆-regular graphs with

high girth and chromatic number Ω(
√
∆). See [24] for constructions with

chromatic number Ω(∆/ log∆).

615616616

lower bound up to a log∗ n additive term. A more

complicated algorithm for ∆-coloring trees could be

derived from [23], for ∆ > ∆0 and some very large

constant ∆0.3

2) Randomized lower bounds imply deterministic

lower bounds. We give a second, more generic proof

that ∆-coloring trees takes Ω(log∆ n) time. The proof

shows that any f(∆)+o(log∆ n) time algorithm for an

LCL problem can be transformed in a black box way

to run in O((1 + f(∆))(log∗ n − log∗ ∆ + 1)) time.

Thus, on bounded-degree graphs, there are no “nat-

ural” deterministic time bounds between ω(log∗ n)
and o(log n). Any ω(log∗ n) lower bound for bounded

degree graphs (in either RandLOCAL or DetLOCAL)

immediately implies an Ω(log n) lower bound in

DetLOCAL. This reduction can be parameterized in

many different ways. Under a different parametrization

it shows that any O(log1−
1

k+1 n)-time DetLOCAL al-

gorithm for an LCL problem can be transformed to run

in O(logk ∆(log∗ n− log∗ ∆+1))-time. For example,

if one were to develop a deterministic O(
√
log n)-

time MIS or maximal matching algorithm—almost

matching one of the KMW [25] lower bounds—

it would immediately imply an O(log∆(log∗ n −
log∗ ∆ + 1))-time MIS/maximal matching algorithm,

which almost matches the other KMW lower bound.

By some strange coincidence, [14] gave an analo-

gous reduction for MIS/maximal matching in bounded

arboricity graphs, but for RandLOCAL and in the

reverse direction. Specifically, any O(logk ∆+ f(n))-
time RandLOCAL MIS/maximal matching algorithm

for general graphs can be transformed into an

O(log1−
1

k+1 n + f(n))-time RandLOCAL algorithm

for bounded arboricity graphs.

3) Deterministic lower bounds imply randomized

lower bounds. We prove that for any LCL problem,

its RandLOCAL complexity on instances of size n
is at least its DetLOCAL complexity on instances

of size
√
log n. This reverses the implication proved

above. For example, if we begin with a proof that

∆-coloring takes Ω(log∆ n) time in DetLOCAL, then

we conclude that it must take Ω(log∆ log n) time

in RandLOCAL. This result has a very clear take-

away message: the graph shattering technique ap-

plied by recent randomized symmetry breaking algo-

rithms [14], [19], [20], [11], [17], [18], [22], [23] is

inherent to the RandLOCAL model and every opti-

3The reason we are interested in minimizing the ∆0 ≤ ∆ for which the
algorithm works is somewhat technical. It seems as if ∆-coloring trees is a
problem whose character makes a qualitative transition when ∆ is a small
enough constant. Using our technique (graph shattering) we may be able
to replace 55 with a smaller constant, but not too small. Any algorithm
that 3-colors 3-regular trees, for example, will need to be qualitatively very
different in its design.

mal RandLOCAL algorithm for instances of size n
must, in some way, encode an optimal DetLOCAL

algorithm on poly(log n)-size instances. It is there-

fore impossible to improve the 2O(
√
log logn) terms

in the RandLOCAL MIS and coloring algorithms

of [14], [11], [17], [20] without also improving the

2O(
√
logn)-time DetLOCAL algorithms of Panconesi

and Srinivasan [10], and it is impossible to improve

the O(log4 log n) term in the RandLOCAL maximal

matching algorithm of [14] without also improving the

O(log4 n) DetLOCAL maximal matching algorithm

of [13].

II. PRELIMINARIES

Graph Notation: For a graph G = (V,E) and for

u, v ∈ V , let distG(v, u) be the distance between v and

u in G. Let N(v) = {u | (v, u) ∈ E} be the neighborhood

of v and let N r(v) = {u | distG(v, u) ≤ r} be the set of

all vertices within distance r of v.

Locally Checkable Labeling: The class of Locally

Checkable Labeling (LCL) [7] problems are intuitively those

graph problems whose solutions can be verified in O(1)
rounds, given a suitable labeling of the graph. Formally,

an LCL problem is defined by a fixed radius r, a finite

set Σ of vertex labels, and a set C of acceptable labeled

subgraphs. For any legal solution I to the problem there is

a labeling λI : V → Σ that encodes I (plus possibly

other information) such that for each v ∈ V , the labeled

subgraph induced by Nr(v) lies in C. Moreover, for any

non-solution I ′ to the problem, there is no labeling λI′ with

this property. The following symmetry breaking problems

are LCLs for r = 1.

• MAXIMAL INDEPENDENT SET (MIS). Given a graph

G = (V,E), find a set I ⊆ V such that for any vertex

v ∈ V , we have N(v) ∩ I = ∅ iff v ∈ I .

• k-COLORING. Given a graph G = (V,E), find an

assignment V → {1, 2, . . . , k} such that for each edge

{u, v} ∈ E, u and v are assigned to different numbers

(also called colors).

For MIS it suffices to label vertices with Σ = {0, 1} indi-

cating whether they are in the MIS. For k-Coloring we use

Σ = {1, . . . , k}. The definition of LCLs is easily generalized

to the case where the input graph G is supplemented with

some labeling (e.g., an edge coloring) or where λ labels both

vertices and edges. Brandt et al. [1] considered the following

problems.

• ∆-SINKLESS COLORING. Given a ∆-regular graph

G = (V,E) and a proper ∆-edge coloring of E
using colors in {1, 2, . . . ,∆}, find a ∆-coloring of V
using colors in {1, 2, . . . ,∆} such that there is no edge

{u, v} ∈ E for which u, v and {u, v} all have the same

color.

• ∆-SINKLESS ORIENTATION. Given a ∆-regular graph

G = (V,E) and a proper ∆-edge coloring of E, find

616617617

an orientation of the edges such that all vertices have

out-degree ≥ 1.

Observe that both ∆-Sinkless Coloring and ∆-Sinkless

Orientation are LCL graph problems with r = 1. For

Sinkless Orientation Σ = {→,←}∆ encodes the directions

of all edges incident to a vertex, and the radius r = 1
is necessary and sufficient to verify that the orientations

declared by both endpoints of an edge are consistent.

Linial’s coloring: In the DetLOCAL model the initial

Θ(log n)-bit IDs can be viewed as an nO(1)-coloring of the

graph. Our algorithms make frequent use of Linial’s [4]

coloring algorithm, which recolors the vertices using a

smaller palette.

Theorem 1 ([4]). Let G be a graph which has been k-

colored. Then it is possible to deterministically re-color G
using 5∆2 log k colors in one round.

Theorem 2 ([4]). There exists a universal constant β > 0
such that there is a DetLOCAL algorithm that computes a

β ·∆2-coloring of a graph in O(log∗ n− log∗ ∆+ 1) time.

III. THE NECESSITY OF GRAPH SHATTERING

Theorem 3 establishes that the graph shattering tech-

nique [14] is optimal and unavoidable in RandLOCAL.

In particular, the randomized complexity of any symmetry

breaking problem always hinges on its deterministic com-

plexity.

Theorem 3. Let P be an LCL problem. Define DetP(n,∆)
to be the complexity of the optimal deterministic algorithm

for P in the DetLOCAL model and define RandP(n,∆) to

be its complexity in the RandLOCAL model, with global

error probability 1/n. Then

DetP(n,∆) ≤ RandP(2
n2

,∆).

Proof: Let ARand be a randomized algorithm for P .

Each vertex running ARand generates a string of r(n,∆)
random bits and proceeds for t(n,∆) rounds, where r
and t are two arbitrary functions. The probability that the

algorithm fails in any way is at most 1/n. Our goal is to

convert ARand into a deterministic algorithm ADet in the

DetLOCAL model. Let G = (V,E) be the network on which

ADet runs. Initially each v ∈ V knows n = |V |,∆, and

a unique ID(v) ∈ {0, 1}c logn. Let Gn,∆ be the set of all

n-vertex graphs with unique vertex IDs in {0, 1}c logn and

maximum degree at most ∆. Regardless of ∆,

|Gn,∆| ≤ 2(
n
2)+cn logn � 2n

2 def
= N.

Imagine simulating ARand on a graph G′ ∈ Gn,∆ whose

vertices are given input parameters (N,∆), that is, we

imagine G′ is disconnected from the remaining N − n
vertices. The probability that ARand fails on an N -vertex

graph is at most 1/N , so the probability that any vertex in

G′ witnesses a failure is also certainly at most 1/N .

Suppose we select a function φ : {0, 1}c logn →
{0, 1}r(N,∆) uniformly at random from the space of all such

functions. Define ADet[φ] to be the deterministic algorithm

that simulates ARand for t(N,∆) steps, where the string of

random bits generated by v is fixed to be φ(ID(v)). We shall

call φ a bad function if ADet[φ] fails to compute the correct

answer on some member of Gn,∆. By the union bound,

Pr
φ
(φ is bad)

≤
∑

G′∈Gn,∆

Pr
φ
(ADet[φ] errs on G′)

=
∑

G′∈Gn,∆

Pr(ARand errs on G′, with parameters (N,∆))

≤ |Gn,∆| /N < 1.

Thus, there exists some good φ. Any φ can be encoded as a

long bit-string 〈φ〉 def
= φ(0)φ(1) · · ·φ(2c logn−1). Define φ�

to be the good function for which 〈φ�〉 is lexicographically

first.

The algorithm ADet is as follows. Each vertex v,

given input parameters (n,∆), first computes N =
2n

2

, t(N,∆), r(N,∆), then performs the simulations of

ARand necessary to compute φ�. Once φ� is computed

it executes ADet[φ
�] for t(N,∆) rounds. By definition,

ADet[φ
�] never errs when executed on any member of Gn,∆.

Remark 1. Theorem 3 works equally well when t and

r are functions of n,∆, and possibly other quantitative

global graph parameters. For example, the time may de-

pend on measures of local sparsity (as in [20]), arboric-

ity/degeneracy (as in [27], [14]), or neighborhood growth

(as in [28]).

Naor and Stockmeyer [7] proved that the class of truly

local (O(1)-time) problems in RandLOCAL and DetLOCAL

is identical for bounded ∆. Theorem 3 implies something

slightly stronger, since log∗ n and log∗(
√
logn) differ by an

additive constant.

Corollary 1. Any RandLOCAL algorithm for an LCL

running in t(n) = 2O(log∗ n) time can be derandomized

without asymptotic penalty. The corresponding DetLOCAL

algorithm runs in O(t(n)) time.

IV. LOWER BOUNDS FOR ∆-COLORING TREES

In this section we prove that on degree-∆ graphs with

girth Ω(log∆ n), ∆-coloring takes Ω(log∆ log n) time in

RandLOCAL and Ω(log∆ n) time in DetLOCAL. Since the

girth of the graphs used to prove these lower bounds is

Ω(log∆ n), by the indistinguishability principle they also

apply to the problem of ∆-coloring trees.

617618618

Sinkless coloring and sinkless orientations: Brandt

et.al. [1] proved Ω(log log n) lower bounds on RandLOCAL

algorithms, that have a 1/poly(n) probability of failure,

for sinkless coloring and sinkless orientation of 3-regular

graphs. We say that a sinkless coloring algorithm A has

failure probability p if, for each individual edge e = {u, v},

the probability that color(u) = color(v) = color({u, v}) is

at most p. Thus, by the union bound, the global probability

of failure is at most p|E|. We say a that sinkless orientation

algorithm A has failure probability p if, for each v ∈ V ,

the probability that v is a sink is at most p. We say that

monochromatic edges and sinks are forbidden configurations

for sinkless coloring and sinkless orientation, respectively.

The following two lemmas are proven in [1] for ∆ = 3.

It is straightforward to go through the details of the proof

and track the dependence on ∆.

Lemma 1 ([1]). Let G = (V,E, ψ) be a ∆-regular graph

with girth g that is equipped with a proper ∆-edge coloring

ψ. Suppose that there is a RandLOCAL algorithm A for ∆-

sinkless coloring taking t < g−1
2 rounds such that ∀e ∈ E,

A outputs a forbidden configuration at e with probability

at most p. Then there is a RandLOCAL algorithm A′ for

∆-sinkless orientation taking t rounds such that ∀v ∈ V ,

A′ outputs a forbidden configuration at v with probability

at most 2∆p1/3.

Lemma 2 ([1]). Let G = (V,E, ψ) be a ∆-regular graph

with girth g that is equipped with a proper ∆-edge coloring

ψ. Suppose that there is a RandLOCAL algorithm A′ for

sinkless orientation taking t < g−1
2 rounds such that ∀v ∈

V , A′ outputs a forbidden configuration at v with probability

at most p. Then there is a RandLOCAL algorithm A for ∆-

sinkless coloring taking t − 1 rounds such that ∀e ∈ E, A
outputs a forbidden configuration at e with probability at

most 4p1/(∆+1).

The following theorem generalizes Corollary 25 in [1] to

allow non-constant ∆ and arbitrary failure probability p.

Theorem 4. Any RandLOCAL algorithm for ∆-coloring a

graph with degree at most ∆ and error probability p takes

at least t = min{ε log3(∆+1) ln(1/p), ε log∆ n} − 1 rounds

for a sufficiently small ε > 0.

Proof: We assume that ε log3(∆+1) ln(1/p) ≥ 1, since

otherwise the theorem is trivial as t < 0. For any ∆ ≥ 3
there exist a bipartite ∆-regular graph with girth Ω(log∆ n);
see [29], [30]. Such graphs are trivially ∆-edge colorable.

Moreover, any ∆-coloring of such a graph is also a valid

∆-sinkless coloring. Applying Lemmas 1 and 2 we con-

clude that any t-round ∆-sinkless coloring algorithm with

error probability p can be transformed into a (t − 1)-
round ∆-sinkless coloring algorithm with error probability

4(2∆)
1

∆+1 p
1

3(∆+1) < 7p
1

3(∆+1) . Iterating this process t times,

it follows that there exists a 0-round ∆-sinkless coloring

algorithm with failure probability O(p(
1

3(∆+1)
)t). Notice that

p(
1

3(∆+1)
)t ≤ p(

1
3(∆+1)

)
ε log3(∆+1) ln(1/p)

= p(ln(1/p))
−ε

= exp(−(ln(1/p))1−ε).

Because the graph is ∆-regular and the vertices undifferenti-

ated by IDs, any 0-round RandLOCAL algorithm colors each

vertex independently according to the same distribution.

The probability that any vertex is involved in a forbidden

configuration (a monochromatic edge) is therefore at least

1/∆2. Since ε log3(∆+1) ln(1/p) ≥ 1 we have ∆ < ln(1/p),
but

1

∆2
≥ exp(−2 ln ln(1/p)) � exp

(

− (ln(1/p))
1−ε

)

.

This is a contradiction since we obtain a 0-round ∆-sinkless

coloring algorithm with failure probability less than 1/∆2.

Thus, there is no RandLOCAL∆-sinkless coloring algorithm

that takes t-rounds and errs with probability p.

Corollary 2 is an immediate consequence of Theorem 4.

Corollary 2. Any RandLOCAL algorithm for ∆-coloring

a graph with global error probability 1/poly(n) takes

Ω(log∆ log n) time.

Theorem 4 does not immediately extend to DetLOCAL.

Recall that in the DetLOCAL model vertices are initially

endowed with O(log n)-bit IDs whereas in RandLOCAL

they are undifferentiated.

Theorem 5. Any DetLOCAL algorithm that ∆-colors

degree-∆ graphs with girth Ω(log∆ n) or degree-∆ trees

requires Ω(log∆ n) time.

Proof: Let ADet be a DetLOCAL algorithm that ∆-

colors a graph in t = t(n,∆) rounds and G be the input

graph. We construct a RandLOCAL algorithm ARand taking

O(t) rounds as follows. Before the first round each vertex

locally generates a random n-bit ID. Assume for the time

being that these IDs are unique, and therefore constitute a

2n-coloring of G. Let G′ = (V, {(u, v) | distG(u, v) ≤
2t + 1}). The maximum degree ∆′ in G′ is clearly less

than n. We apply one step of Linial’s recoloring algorithm

(Theorem 1) to G′ and obtain a coloring with palette size

O(∆′2 log(2n)) = O(n3). A step of Linial’s algorithm in

G′ is simulated in G using O(t) time. Using these colors

as (3 log n + O(1))-bit IDs, we simulate ADet in G for t
steps. Since no vertex can see two vertices with the same ID,

this algorithm necessarily behaves as if all IDs are unique.

Observe that because ADet is deterministic, the only way

ARand can err is if the initial n-bit IDs fail to be unique.

This occurs with probability p < n2/2n. By Theorem 4

ARand takes Ω(min{log∆ log(1/p), log∆ n}) = Ω(log∆ n)
time.

V. GAPS IN DETERMINISTIC TIME COMPLEXITY

The Time Hierarchy Theorem informally says that a

Turing machine can solve more problems given more time.

618619619

A similar question can be asked in the setting of distributed

computation. For example, does increasing the number of

rounds from Θ(log∗ n) to Θ(log log n) allow one to solve

more problems? In this section, we will demonstrate a

general technique that allows one to speedup deterministic

algorithms in the DetLOCAL model. Based on this tech-

nique, we demonstrate the existence of a “gap” in possible

DetLOCAL complexities.

A graph class is hereditary if it is closed under removing

vertices and edges. Examples of hereditary graph classes are

general graphs, forests, bounded arboricity graphs, triangle-

free graphs, and planar graphs. We prove that for graphs

with constant ∆ the time complexity of any LCL problem

on a hereditary graph class is either Ω(log n) or O(log∗ n).

Theorem 6. Let P be an LCL graph problem with param-

eters r, Σ, and C, and let A be a DetLOCAL algorithm for

solving P . Let β be the universal constant from Theorem 2.

Suppose that the cost of A on instances of P with n vertices,

where the instances are taken from a hereditary graph

class, is at most f(∆) + ε log∆ n time, where f(∆) ≥ 0
and ε = 1

4+4 log β+4r is a constant. Then there exists

a DetLOCAL algorithm A′ that solves P on the same

instances in O ((1 + f(∆)(log∗ n− log∗ ∆+ 1)) time.

Proof: Notice that for any instance of P with n ver-

tices and ID length 	, it must be that 	 ≥ log n and so

the running time of A on such instances is bounded by

T (∆,) ≤ f(∆) + ε�
log∆ .

Let G = (V,E) be an instance of P . The algorithm A′

on G works as follows. Let τ = 1 + log β be a constant.

We use Linial’s coloring technique to produce short IDs of

length 	′ that are distinct within distance 4f(∆) + 2τ + 2r.

Let G′ = (V,E′) be the graph with

E′ =
{

{u, v} ∈
(

V
2

)

∣

∣

∣
distG(u, v) ≤ 4f(∆) + 2τ + 2r

}

.

The maximum degree in G′ is clearly at most ∆4f(∆)+2τ+2r.

Each vertex u ∈ V simulates G′ by collecting

N4f(∆)+2τ+2r(u) in O(f(∆) + τ + r) time.

We simulate the algorithm of Theorem 2 on G′ by treating

each of the 	-bit IDs of vertices in V as a color. This

produces a β ·∆8f(∆)+4τ+4r-coloring, which is equivalent

to identifiers of length 	′ = (8f(∆)+4τ+4r) log∆+log β.

Although these identifiers are not globally unique, they are

distinct in N2f(∆)+τ+r(u) for each vertex u ∈ V . The time

complexity of this process is

(4f(∆) + 2τ + 2r) ·O (log∗ n− log∗ ∆+ 1) .

Finally, we apply A on G while implicitly assuming that

the graph size is 2�
′

and using the shorter IDs. The runtime

of this execution of A is:

f(∆) + ε�′

log∆

= f(∆) + ε((8f(∆)+4τ+4r) log∆+log β)
log∆

= (1 + 8ε)f(∆) + 1 + ε log β
log∆ ε(4τ + 4r) = 1

≤ (1 + 8ε)f(∆) + τ log∆ ≥ 1, ε < 1
≤ 2f(∆) + τ . 8ε = 2

τ+r ≤ 1

Whether the output labeling of u ∈ V is legal depends on

the labeling of the vertices in Nr(u), which depends on the

graph structure and the IDs in N2f(∆)+τ+r(u). Due to the

hereditary property of the graph class under consideration,

for each u ∈ V , N2f(∆)+τ+r(u) is isomorphic to a subgraph

of some 2�
′

-vertex graph in the same class. Moreover, the

shortened IDs in N2f(∆)+τ+r(u) are distinct. Therefore, it

is guaranteed that the output of the simulation is a legal

labeling.

The total time complexity is

(4f(∆) + 2τ + 2r) ·O(log∗ n− log∗ ∆+ 1) + 2f(∆) + τ

= O ((1 + f(∆)(log∗ n− log∗ ∆+ 1)) .

Combining Theorem 6 with Corollary 2 and setting

f(∆) = O(1) provides a new proof of Theorem 5 for small

enough ∆. To see this, notice that any lower bound for

the RandLOCAL model with error probability 1/poly(n)
can be adapted to DetLOCAL since we can randomly

pick O(log n)-bit IDs that are distinct with probability

1−1/poly(n). From Corollary 2 any DetLOCAL algorithm

that ∆-colors a degree-∆ tree requires Ω(log∆ logn) time.

However, Theorem 6 states that any DetLOCAL algorithm

running in O(1) + o(log∆ n) time can be sped up to

run in O (log∗ n− log∗ ∆+ 1) time. This contradicts the

lower bound whenever log∆ log n � log∗ n − log∗ ∆ + 1.

Hence ∆-coloring a degree-∆ tree takes Ω(log∆ n) time

in DetLOCAL for small enough ∆ such that log∆ log n �
log∗ n− log∗ ∆+ 1.

Another consequence of Theorem 2 is that the determin-

istic time complexity of a problem can either be solved

very efficiently (i.e. in O ((1 + f(∆)(log∗ n− log∗ ∆+ 1))
time) or requires Ω(f(∆) + log∆ n) time, which is at least

the order of the diameter when the underlying graph is a

complete regular tree. Such a consequence is the strongest

when ∆ is small. For example, if ∆ is a constant, Theorem 2

implies the following corollary:

Corollary 3. The time complexity of any LCL problem

on any hereditary graph class that has constant ∆ in the

DetLOCAL model is either Ω(log n) or O(log∗ n).

A simple adaptation of the proof of Theorem 6 shows an

even stronger dichotomy when ∆ = 2.

Theorem 7. The DetLOCAL time complexity of any LCL

problem on any hereditary graph class with ∆ = 2 is either

Ω(n) or O(log∗ n).

619620620

We remark that an interpretation of the time complexity

requirement in Theorems 6 and 7 is that the diameter of a

graph with maximum degree ∆ is at least Ω(log∆ n) for

∆ ≥ 3 and Ω(n) when ∆ = 2. If we allow the possibility

for an algorithm to see the entire graph, then the algorithm

can solve the problem globally.

Given a O(
√
log n)-time deterministic algorithm, one may

feel that it is possible to use Theorem 6 to improve the

time complexity to O(log∗ n) since
√
log n = o(log∆ n)

for the case ∆ = exp(o(
√
log n)). However, the class of

graphs with ∆ = exp(o(
√
log n)) is not hereditary, and so

Theorem 6 does not apply. Nonetheless, Linial’s coloring

technique can be made to speed up algorithms with time

complexity of the form f(∆) + g(n).

Theorem 8. Let P be an LCL graph problem with param-

eters r, Σ, and C, and let A be a DetLOCAL algorithm

for solving P . Suppose that the runtime of the algorithm

A on instances of P from a hereditary graph class is

O(logk ∆ + log
k

k+1 n). Then there exists a deterministic

algorithm A′ that solves P on the same instances in

O(logk ∆(log∗ n− log∗ ∆+ 1)) time.

Proof: Notice that for any instance of P with n vertices

and ID length 	, it must be that 	 ≥ log n and so the running

time of A on such instances is bounded by ε1 log
k ∆ +

ε2	
k

k+1 , for some constants ε1, ε2.

We set τ = ε logk ∆, with the parameter ε to be deter-

mined. Similar to the proof of Theorem 6, the algorithm

A′ first produces shortened ID that are distinct for vertices

within distance 2τ + 2r, and then simulates A on the

shortened IDs in τ rounds.

Let G′ = (V,E′) be the graph with

E′ =
{

{u, v} ∈
(

V
2

)

∣

∣

∣
distG(u, v) ≤ 2τ + 2r

}

.

The maximum degree in G′ is at most ∆2τ+2r. Each vertex

u ∈ V simulates G′ by collecting N2τ+2r(u) in O(τ + r)
time.

We simulate the algorithm of Theorem 2 on G′ by treating

each of the 	-bit IDs of vertices in V as a color. This

produces a β · ∆4τ+4r-coloring, which is equivalent to

identifiers of length 	′ = (4τ + 4r) log∆+ log β. Although

these identifiers are not globally unique, they are distinct in

Nτ+r(u) for each vertex u ∈ V . The time complexity of

this process is

(2τ + 2r) ·O (log∗ n− log∗ ∆+ 1) .

Finally, we apply A on G while implicitly assuming

that the graph size is 2�
′

and using the shorter IDs.

By setting ε as a large enough number such that ε1 +

ε2 (4(ε+ r + log β))
k

k+1 ≤ ε, the runtime of this execution

of A is

ε1 log
k ∆+ ε2 (

′)
k

k+1

= ε1 log
k ∆+ ε2 ((4τ + 4r) log∆ + log β)

k
k+1

≤ ε1 log
k ∆+ ε2

(

4(ε logk ∆+ r + log β) log∆
)

k
k+1

≤ ε1 log
k ∆+ ε2

(

4(ε+ r + log β) logk+1 ∆
)

k
k+1

=
(

ε1 + ε2 (4(ε+ r + log β))
k

k+1

)

logk ∆

≤ ε logk ∆ = τ.

Whether the output labeling of u ∈ V is legal depends

on the labeling of the vertices in Nr(u), which depends on

the graph structure and the IDs in Nτ+r(u). Due to the

hereditary property of the graph class under consideration,

for each u ∈ V , Nτ+r(u) is isomorphic to a subgraph

of some 2�
′

-vertex graph in the same class. Moreover,

the shortened ID in Nτ+r(u) are distinct. Therefore, it

is guaranteed that the output of the simulation is a legal

labeling.

The total time complexity is at most

(2τ + 2r) ·O(log∗ n− log∗ ∆+ 1) + τ

= O(logk ∆(log∗ n− log∗ ∆+ 1)).

A note about MIS lower bounds: Kuhn, Mosci-

broda, and Wattenhofer [25] showed that for a variety

of problems (including MIS) there is a lower bound of

min(log∆/ log log∆,
√

log n/ log log n) rounds. The lower

bound graph they used to prove such these result has

log∆/ log log∆ = O(
√

log n/ log log n). By Theorem 8,

setting k = 1 implies that if there is a deterministic

algorithm for MIS that runs in O(
√
log n) time, then there is

another deterministic algorithm running in O(log∆(log∗ n−
log∗ ∆ + 1)) time. Interestingly, Barenboim, Elkin, Pet-

tie, and Schneider [14] showed that an MIS algorithm

in RandLOCAL running in O(logk ∆ + f(n))-time im-

plied another RandLOCAL algorithm running in O(logk λ+

log1−
1

k+1 n+ f(n)) time on graphs of arboricity λ.

VI. ALGORITHMS FOR ∆-COLORING TREES

In Section IV, we showed that the problem of ∆-coloring

on trees has an Ω(log∆ n) deterministic lower bound and an

Ω(log∆ log n) randomized lower bound. These lower bounds

have matching upper bounds, up to an additive log∗ n term.

The algorithm of Barenboim and Elkin [27] demonstrates

that the deterministic bound is essentially tight. They proved

that ∆-coloring unoriented trees, where ∆ ≥ 3, takes

O(log∆ n + log∗ n) time. This is actually a special case

of their algorithm, which applies to graphs of bounded

arboricity λ.

620621621

Theorem 9 ([27]). For q ≥ 3, there is a DetLOCAL

algorithm for q-coloring trees in O(logq n + log∗ n) time,

independent of ∆.

Pettie and Su [23] gave randomized algorithms for

(4+o(1))∆/ ln∆-coloring triangle-free graphs. Their algo-

rithm makes extensive use of the distributed Lovász local

lemma [19] and runs in Ω(log n) time. Pettie and Su

sketched a proof that ∆-coloring trees takes O(log∆ log n+
log∗ n) time, at least for sufficiently large ∆.

Theorem 10 ([23]). There exists a large constant ∆0 such

that when ∆ ≥ ∆0, there is a RandLOCAL algorithm for

∆-coloring trees in O(log∆ logn+ log∗ n) time.

The nature of the proof of Theorem 10 makes it difficult to

calculate a specific ∆0 for which the theorem applies. More-

over, the proof is only sketched. We address both of these

issues. First, we provide a simple algorithm and elementary

proof of Theorem 10. Second, we prove Theorem 11, which

combines Theorem 10 with a new technique for constant

∆ ≥ 55, thereby providing a randomized algorithm for ∆-

coloring a tree that runs in O(log∆ log n+ log∗ n) time for

any constant ∆ ≥ 55.

A. A simple proof of Theorem 10.

For a graph G = (V,E) we say that a subset S ⊆ V is a

distance-k set if the following two conditions are met:

1) For any two distinct vertices u, v ∈ S, we have u /∈
Nk−1(v).

2) Let Gk = (V,Ek), where there is an edge (u, v) ∈ Ek

if and only if distG(u, v) = k. Then S is connected

in Gk.

The following lemma is used in the proof of Theorem 10.

Lemma 3 ([14]). The number of distinct distance-k sets of

size t is less than 4t · n ·∆k(t−1).

Proof of Theorem 10: Our algorithm has two phases.

The first phase, which takes t = O(log∗ ∆) rounds, partially

colors the graph using colors in {1, 2, . . . ,∆ −
√
∆}. The

second phase, which takes O(log∆ logn + log∗ n) rounds,

applies a deterministic algorithm to
√
∆-color the remaining

uncolored vertices using colors in {∆ −
√
∆ + 1, . . . ,∆}.

We assume throughout the proof that ∆ is at least a large

enough constant.

Phase 1: The first phase of the algorithm takes

O(log∗ ∆) rounds. In each round, the algorithm attempts

to color some uncolored vertices. We will explain soon how

uncolored vertices decide if they participate in a given round.

In the beginning of round i, for each vertex v ∈ V , let

Ψi(v) denote v’s available palette (i.e. the set of colors

that v can choose in round i), and let Ni(v) denote the set

of uncolored vertices adjacent to v that are trying to color

themselves in this round. Initially, we set N1(v) = N(v),
and Ψ1(v) = {1, 2, . . . ,∆−

√
∆}, for all v. That is, in the

first round all vertices attempt to color themselves, and they

all have the full palette of this phase available for choices

of a color.

We maintain the following two properties at each vertex

v that is not marked bad at round i. Only non-bad vertices

attempt to color themselves at round i:

P1(v): (Large Palette Property at v) |Ψi(v)| ≥ ∆
200 .

P2(v): (Small Degree Property at v) |Ni(v)| ≤ ∆
ci

,

where ci is defined as: c1 = 1, c2 = 200/199,

and ci = min
{

∆0.1, ci−1 · exp
(ci−1

3·200·e200
)}

for

i > 2.

Notice that ci is a constant, for all i. Let t be the smallest

number i such that ci = ∆0.1. Notice that t = O(log∗ ∆) is

the number of the rounds in the first phase.

The intuition behind the two properties P1(v) and P2(v)
is that they ensure that (i) participating vertices always have

a large enough palette to use, and (ii) there is a large

separation between the palette size and the degree (of the

graph induced by uncolored vertices) so that we can color

a large fraction of vertices in each round.

For each 1 ≤ i ≤ t, the ith round consists of two

constant time sub-routines ColorBidding(i) and Filtering(i).
In ColorBidding(i), each participating vertex v selects a

random subset of colors Sv . If there is a color in Sv that does

not belong to
⋃

u∈Ni(v)
Su, the vertex v succeeds and colors

itself with any such color. If such a color is chosen, denote it

by Color(v). After ColorBidding(i), we execute Filtering(i)
which filters out some vertices and thereby prevents P1

and P2 from being violated. Such vertices are called bad

vertices, and they will no longer participate in the remaining

rounds of Phase 1.

ColorBidding(i).
Do the following steps in parallel for each uncolored

vertex v that is not bad:

1) If ci = c1 = 1, then Sv contains one color cho-

sen uniformly at random from Ψ1(v). Otherwise

(ci > 1), construct the set Sv by independently

including each color of Ψi(v) with probability

ci/|Ψi(v)|.
2) If Sv\

⋃

u∈Ni(v)
Su �= ∅, then permanently color v

by picking an arbitrary color in Sv \
⋃

u∈Ni(v)
Su

for Color(v).
3) Ψi+1(v) ← Ψi(v) \ {Color(u) | u ∈

Ni(v) is permanently colored}.

We define N ′
i(v) as the set of participating vertices after

ColorBidding(i − 1) and before Filtering(i − 1) that are

adjacent to v. In other words,

N ′
i(v) = Ni−1(v) \

{

u
∣

∣

∣

u is permanently colored

in ColorBidding(i− 1)

}

.

621622622

Filtering(i).
For each uncolored vertex v that is not bad:

1) If i = 1 and |Ψ2(v)| − |N ′
2(v)| < ∆

200 , then mark

v as a bad vertex.

2) If 1 < i < t and |N ′
i+1(v)| > ∆

ci+1
, then mark v

as a bad vertex.

3) If i = t then mark v as a bad vertex.

Phase 2: By the filtering rule for i = t, all the

remaining uncolored vertices after Phase 1 are bad vertices.

We color the bad vertices in Phase 2. We will later prove that

after Phase 1, with high probability a connected component

induced by bad vertices has size at most ∆4 log n. Hence

we use Theorem 9 to
√
∆-color such connected components

using the
√
∆ reserved colors. For simplicity, if this phase

lasts for too long (which may happen with low probability)

the algorithm just stops and fails.

Runtime: The runtime of Phase 1 is t = O(log∗ ∆)
rounds. The runtime of Phase 2 is O

(

log√∆

(

∆4 log n
)

+

log∗
(

∆4 log n
))

= O (log∆ log n+ log∗ n) . Thus, the total

runtime is O (log∆ log n+ log∗ n) rounds.

Analysis: The analysis of Phase 2 relies only on prov-

ing that, with high probability, all connected components

induced by bad vertices after Phase 1 are of size at most

∆4 log n. Thus, we focus on analyzing Phase 1.

A vertex v that participates in round i may be marked bad,

depending on the random bits generated by vertices in N2(v)
in this round. Our analysis applies to any partial coloring

of N2(v) that satisfies properties P1 and P2 and is entirely

independent of the random bits generated by vertices outside

of N2(v). The probability that a vertex is marked bad is

exp(−poly(∆). This proof is based on the following claims,

which are proved by applying standard Chernoff bounds.

See [31] for details.

Claim 1. The probability that a vertex v is marked as bad

in round i = 1 is at most exp(−Ω(∆)); this event only

depends on the random bits chosen by vertices in N2(v).

Claim 2. The probability that a vertex v that participates

in round 1 < i < t is marked as bad in round i is at most

exp(−Ω(∆0.1)); this event only depends on the random bits

chosen by vertices in N2(v).

Claim 3. The probability that a vertex v that participates

in round i = t is marked as bad in round i is at most

exp(−Ω(∆0.1)); this event only depends on the random bits

chosen by vertices in N2(v).

By the union bound for all rounds in Phase 1, the

probability that any vertex v becomes a bad vertex after

Phase 1 is O(log∗ ∆) exp(−poly(∆)) = exp(−poly(∆)),
regardless of the choice of random bits for all vertices not

in N2(v). Therefore, just before Phase 2, for any distance-

5 set T of size s, the probability that all vertices in T
are bad is at most exp(−s · poly(∆)). By Lemma 3, there

are at most 4s · n · ∆4(s−1) distinct distance-5 sets T
of size s. By the union bound, with probability at least
(

4s · n ·∆4(s−1)
)

·exp(−s ·poly(∆)), there is no distance-5
set of size s that contains only bad vertices. This probability

can be upper bounded by n−c for any c when s = log n.

Therefore, with high probability all of the connected com-

ponents induced by bad vertices after Phase 1 are of size at

most ∆4 log n. This concludes the proof of Theorem 10.

B. Algorithm for ∆ ≥ 55.

The proof of the previous section (and that of [23]) is hard

to analyze quantitatively without the aid of O(·) notation

to hide large, unspecified constants. It seems to require a

very large ∆ for the proof to go through, since in each

round several Chernoff bounds are applied to make sure

that key requirements are met. In what follows we present a

different algorithm with a significantly simpler analysis for

∆-coloring trees with small constant ∆. Its dependence on

∆ is polynomial, which is fine if ∆ = O(1).

Theorem 11. For ∆ ≥ 55, there exists a RandLOCAL algo-

rithm that computes a ∆-coloring of a tree in O(log∆ log n+
log∗ n) time.

Proof: Due to the antiquated page constraint, we only

present the algorithm and omit the analysis. See [31] for

a full proof. We assume that ∆ = O(1) is constant, since

otherwise we can apply Theorem 10. Our algorithm has three

phases:

Phase 1: We execute the following procedure to par-

tially color the graph with colors in {4, 5, . . . ,∆}.

Initially U ← V .

For i from ∆ downto 4, do the following steps in

parallel for each vertex v ∈ U :

1) Choose a real number x(v) ∈ [0, 1] uniformly at

random.

2) Let K =

{

v
∣

∣

∣
x(v) < min

u∈N(v)∩U
x(u)

}

be the set

of all vertices holding local minima.

3) Find any MIS I ⊇ K of U . All vertices in I are

colored i.
4) Set U ← U \ I (remove all colored vertices).

The above procedure ensures that the number of uncolored

neighbors of a vertex v ∈ U is at most i − 1 after step 4.

Therefore, at the end of Phase 1, we have |N(v) ∩ U | ≤ 3
for any uncolored vertex v.

The MIS required in Step 3 can be computed in O(∆ +
log∗ n) = O(log∗ n) time [9], or in O(∆2 + log∗ n) =
O(log∗ n) time via Theorem 2.

622623623

Phase 2: We can show that the set of vertices S = {v ∈
U s.t. |N(v)∩U | = 3} form connected components of size

at most O(log n) with probability ≥ 1 − n−c [31]. Hence

we apply Theorem 9 to 3-color the set S (using the colors

1, 2, 3) in O(log log n) time. We then update U = U \ S
after coloring the vertices in S.

Phase 3: For each vertex v that remains uncol-

ored, the number of its available colors (i.e. {1, . . . ,∆} \
{color(u) | u ∈ N(v) is colored}) is strictly greater than

the number of its uncolored neighbors (i.e. |N(v)∩U |). We

apply an O(log∗ n)-time MIS algorithm twice to get a 3-

coloring of vertices in U (with three colors 1′, 2′, 3′). For

i′ = 1′, 2′, 3′, we recolor each vertex in color class i′ using

any available color from its palette.

REFERENCES

[1] S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen,
J. Rybicki, J. Suomela, and J. Uitto, “A lower bound for the
distributed Lovász local lemma,” in Proceedings 48th ACM
Symposium on the Theory of Computing (STOC), 2016, pp.
479–488.

[2] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility
of distributed consensus with one faulty process,” J. ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[3] M. Ben-Or, “Another advantage of free choice: Completely
asynchronous agreement protocols,” in Proceedings of the
2nd ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), 1983, pp. 27–30.

[4] N. Linial, “Locality in distributed graph algorithms,” SIAM
J. Comput., vol. 21, no. 1, pp. 193–201, 1992.

[5] A. Korman, J.-S. Sereni, and L. Viennot, “Toward more
localized local algorithms: removing assumptions concerning
global knowledge.” Distributed Computing, vol. 26, no. 5–6,
pp. 289–308, 2013.

[6] M. Naor, “A lower bound on probabilistic algorithms for
distributive ring coloring,” SIAM J. Discrete Mathematics,
vol. 4, no. 3, pp. 409–412, 1991.

[7] M. Naor and L. J. Stockmeyer, “What can be computed
locally?” SIAM J. Comput., vol. 24, no. 6, pp. 1259–1277,
1995.

[8] L. Feuilloley and P. Fraigniaud, “Randomized local network
computing,” in Proceedings of the 27th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2015,
pp. 340–349.

[9] L. Barenboim, M. Elkin, and F. Kuhn, “Distributed (∆+1)-
coloring in linear (in ∆) time,” SIAM J. Comput., vol. 43,
no. 1, pp. 72–95, 2014.

[10] A. Panconesi and A. Srinivasan, “On the complexity of
distributed network decomposition,” J. Algor., vol. 20, no. 2,
pp. 356–374, 1996.

[11] M. Ghaffari, “An improved distributed algorithm for maximal
independent set,” in Proceedings 27th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2016, pp. 270–
277.

[12] A. Panconesi and R. Rizzi, “Some simple distributed algo-
rithms for sparse networks,” Distributed Computing, vol. 14,
no. 2, pp. 97–100, 2001.

[13] M. Hańćkowiak, M. Karoński, and A. Panconesi, “On the
distributed complexity of computing maximal matchings,”
SIAM J. Discrete Mathematics, vol. 15, no. 1, pp. 41–57
(electronic), 2001.

[14] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider, “The
locality of distributed symmetry breaking,” J. ACM, vol. 63,
no. 3, pp. 20:1–20:45, 2016.

[15] L. Barenboim, “Deterministic (∆ + 1)-coloring in sublinear
(in ∆) time in static, dynamic and faulty networks,” in
Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing (PODC), 2015, pp. 345–354.

[16] P. Fraigniaud, M. Heinrich, and A. Kosowski, “Local conflict
coloring,” in Proceedings 57th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2016.

[17] D. Harris, J. Schneider, and H.-H. Su, “Distributed (∆+ 1)-
coloring in sublogarithmic rounds,” in Proceedings 48th ACM
Symposium on Theory of Computing (STOC), 2016, pp. 465–
478.

[18] T. Bisht, K. Kothapalli, and S. V. Pemmaraju, “Brief an-
nouncement: Super-fast t-ruling sets,” in Proceedings 33rd
ACM Symposium on Principles of Distributed Computing
(PODC), 2014, pp. 379–381.

[19] K.-M. Chung, S. Pettie, and H.-H. Su, “Distributed algorithms
for the Lovász local lemma and graph coloring,” in Pro-
ceedings 33rd ACM Symposium on Principles of Distributed
Computing (PODC), 2014, pp. 134–143.

[20] M. Elkin, S. Pettie, and H. H. Su, “(2∆ − 1)-edge coloring
is much easier than maximal matching in the distributed
setting,” in Proceedings 26th ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2015, pp. 355–370.

[21] M. Ghaffari and H.-H. Su, “Distributed degree splitting, edge
coloring, and orientations,” CoRR, vol. abs/1608.03220, 2016.

[22] K. Kothapalli and S. V. Pemmaraju, “Super-fast 3-ruling
sets,” in Proceedings IARCS Conference on Foundations
of Software Technology and Theoretical Computer Science
(FSTTCS), ser. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2012, vol. 18, pp. 136–147.

[23] S. Pettie and H.-H. Su, “Distributed algorithms for coloring
triangle-free graphs,” Information and Computation, vol. 243,
pp. 263–280, 2015.

[24] B. Bollobás, “Chromatic number, girth and maximal degree,”
Discrete Mathematics, vol. 24, no. 3, pp. 311–314, 1978.

[25] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Local compu-
tation: Lower and upper bounds,” J. ACM, vol. 63, no. 2, pp.
17:1–17:44, 2016.

[26] R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman,
“A distributed (2 + ε)-approximation for vertex cover in
O(log∆/ε log log∆) rounds,” in Proceedings 35th Annual
ACM Symposium on Principles of Distributed Computing
(PODC), 2016, pp. 3–8.

[27] L. Barenboim and M. Elkin, “Sublogarithmic distributed MIS
algorithm for sparse graphs using Nash-Williams decomposi-
tion,” Distributed Computing, vol. 22, no. 5-6, pp. 363–379,
2010.

[28] J. Schneider and R. Wattenhofer, “An optimal maximal in-
dependent set algorithm for bounded-independence graphs,”
Distributed Computing, vol. 22, no. 5-6, pp. 349–361, 2010.

[29] X. Dahan, “Regular graphs of large girth and arbitrary de-
gree,” Combinatorica, vol. 34, no. 4, pp. 407–426, 2014.

[30] B. Bollobás, Extremal graph theory, ser. London Mathemat-
ical Society Monographs. London: Academic Press Inc.
[Harcourt Brace Jovanovich Publishers], 1978, vol. 11.

[31] Y.-J. Chang, T. Kopelowitz, and S. Pettie, “An exponential
separation between randomized and deterministic complexity

in the local model,” CoRR, vol. abs/1602.08166, 2016.

623624624

