

3 **EDGE BEARING TESTS TO ASSESS THE INFLUENCE OF RADIAL**
4 **GRADATION ON THE TRANSVERSE BEHAVIOR OF BAMBOO**

4 Richard Moran^a, Kelly Webb^b, Kent Harries^c, José Jaime García^a

5 ^a Escuela de Ingeniería Civil y Geomática, Universidad del Valle, Cali, Colombia;

7 ^b Department of Civil Engineering, Architecture and Building, Coventry University, United
8 Kingdom;

8 ^c Department of Civil and Environmental Engineering, University of Pittsburgh, United States;

9 [^arichard.moran@correounivalle.edu.co](mailto:richard.moran@correounivalle.edu.co), [^bwebbk6@uni.coventry.ac.uk](mailto:webbk6@uni.coventry.ac.uk), [^ckharries@pitt.edu](mailto:kharries@pitt.edu),

10 [^ajosejgar@gmail.com](mailto:josejgar@gmail.com).

11 **ABSTRACT**

22 Bamboo is a sustainable material with high potential for structural applications. The aim of
23 this study was to use edge bearing tests, digital image correlation analysis, and finite
24 element simulations to research about the distribution of the circumferential elastic
25 modulus through the wall and the associated failure strain and stress. Studied bamboo
26 species were *Phyllostachys edulis* (Moso), *Bambusa stenostachya* (Tre Gai) and *Guadua*
27 *angustifolia* (Guadua). Using the edge bearing tests, the effective circumferential moduli
28 under compression were similar to those obtained under tension. Mean effective moduli
29 were 1358.5 MPa, 662 MPa, and 862 MPa for bamboo Moso, Tre Gai, and Guadua,
30 respectively. Linear, exponential and parabolic functions that were proposed to represent
31 the circumferential modulus provided a relatively good fitting of the experimental results.
32 Due to the radial gradation, the circumferential moduli at the outer position were 2.3, 1.9,

22 and 2.6 higher than those at the inner location for Moso, Tre Gai, and Guadua, respectively.
23 Mean circumferential failure strains and stresses in the inner culm surface were: 6693 $\mu\epsilon$
24 and 7.6 MPa; 13137 $\mu\epsilon$ and 12.1 MPa; and 5948 $\mu\epsilon$ and 3.7 MPa for Moso, Tre Gai and
25 Guadua respectively.

26 **Key words:** Bamboo, digital image correlation, finite element method, circumferential
27 elastic modulus, functional graded material.

28

29 **1. INTRODUCTION**

30 Bamboo is a variety of giant grass widely available in tropical zones around the world [1].
31 Bamboo has shown great potential as a sustainable material, due to its fast growth and
32 maturation, and its capacity to sequester CO₂ and regulate water cycles [2-3]. Furthermore,
33 bamboo has excellent potential as a structural material because of his tubular shape and the
34 fact that its axial strength is similar to that of low carbon steel [4-5].

35 Bamboo culms consist of hollow cylindrical internodes reinforced with transverse
36 diaphragms dispersed along their length. The internodes behave mechanically as a hollow
37 cylinder reinforced with axially oriented cellulose fibers embedded in a weak matrix of
38 lignin [5]. Thus, mechanical properties are highly anisotropic, with large strength and
39 stiffness in the axial direction and poor properties in the transverse directions [6-7]. In
40 addition, bamboo is a heterogeneous material as the fiber density increases from the inner
41 to the outer wall faces of the internode cross-section. For this reason, bamboo is often
42 referred to as a functionally graded material [8-9].

43 Despite its attributes, the use of bamboo in construction remains limited primarily to ‘non-
44 engineered’ or vernacular structural forms. This is due in part to the considerable
45 dimensional and mechanical property variation among culms and even along the length of a
46 single culm. In addition, due to the unidirectional fiber-reinforced structure of the material,
47 longitudinal splitting is a typical failure mode in bamboo members [5, 10-12]. Splitting
48 failures are often critical at structural joints, where high localized shear and tensile
49 circumferential stresses are generated, due for example to the presence of holes in bolted
50 connections [12]. The splitting mode of failure is also present, and often is dominant, in
51 bending [5] and even in compression.

52 One the main challenges in bamboo construction is the development of efficient
53 connections, which are difficult to build due to the hollow cylindrical shape of the culms. In
54 order to design efficient and inexpensive connections for bamboo members, an
55 understanding of the failure modes and stress distribution in critical regions is necessary.
56 However, this can only be achieved using constitutive models that can accurately capture
57 the anisotropic and heterogeneous behavior of the material. In this regard, most
58 experimental studies focus on axial property characterization [9, 13-16], while transverse
59 properties remain poorly understood, even though most bamboo failures are initiated within
60 the fiber planes due to the transverse components of the stress tensor.

61 Few studies have been carried out to determine transverse mechanical properties of
62 bamboo. Torres et al. [17] proposed an edge bearing test and a transverse isotropic law to
63 calculate the effective circumferential elastic modulus of *Phyllostachys edulis* (Moso) and
64 *Guadua angustifolia* (Guadua) rings. Sharma et al.[10] tested thin-walled Moso and thick-
65 walled *Bambusa stenostachya* (Tre Gai) rings using the edge bearing test to determine

66 strain profiles and the effective circumferential elastic modulus. Circumferential strength
67 results were compared with split-pin transverse tension tests in which a fracture mechanics
68 approach was used to investigate the splitting failures [18]. However, no distribution of
69 elastic modulus was proposed, and it was recognized that more research is necessary to
70 determine the influence of fiber gradation through the culm wall thickness on the
71 mechanical transverse behavior of bamboo.

72 Lee et al. [19] developed a test arrangement using bamboo rings under internal pressure. To
73 analyze the variation of the circumferential elastic modulus through the culm wall
74 thickness, linear, power and exponential distributions were used to fit the inner and outer
75 strain measurements. Based on this study Lee et al. [19] proposed an exponential
76 distribution for the circumferential modulus. Lee et al. [19] did not report the species used
77 although a review of available literature [20] indicates that through-wall modulus
78 distribution is species dependent.

79 Thus, the goal of this study was to investigate the variation of the circumferential Young's
80 modulus of bamboo with radial position. The circumferential compression, or 'edge
81 bearing' test was used together with digital image correlation (DIC) and finite element (FE)
82 models to assess the distribution of circumferential elastic modulus of three bamboo
83 species. Additionally, circumferential failure strains and stresses were determined.

84 **2. METHODS**

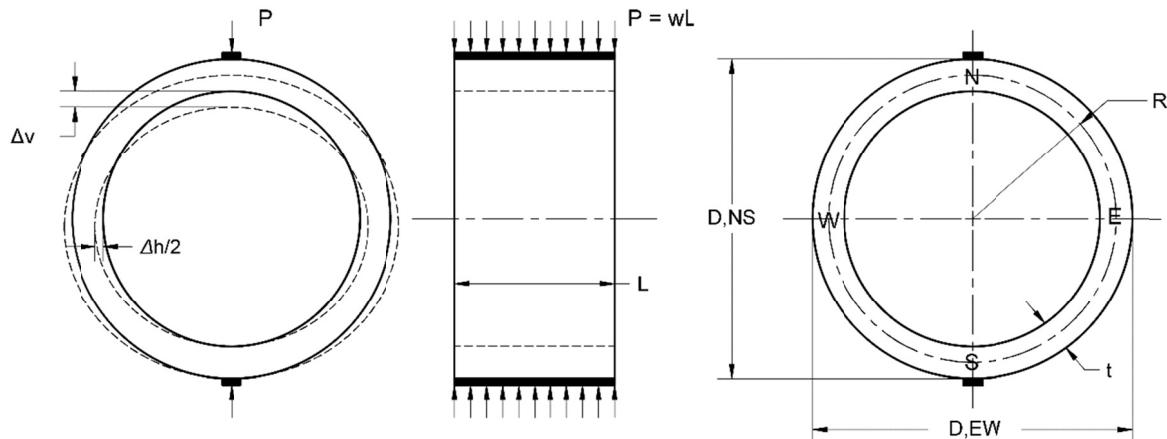
85 **2.1 Material**

86 Rings were extracted from internode zones of three species of bamboo: *Phyllostachys*
87 *edulis* (Moso), *Bambusa stenostachya* (Tre Gai) and *Guadua angustifolia* Kunt (Guadua).

88 These are commercially viable species in China, Southeast Asia, and South America,
89 respectively. All rings came from borax salt treated culms [6-7, 10]. Rings were extracted
90 from four different culms of Tre Gai and Moso and five different culms of Guadua,
91 although location along the culm of the rings was not available for any bamboo species.
92 Specimens were labeled as X-YYZ, where the first letter (X) was used to identify the
93 species (M for Moso, T for Tre Gai and G for Guadua), and the following three numbers
94 were used to identify the culm number (YY) and the specimen number from the culm (Z).

95 Moisture content was measured in eight locations for every test specimen using a test probe
96 (EXTECH Moisture Meter 0220), the average moisture values measured were: 12.4%
97 (COV= 0.06) for Moso, 14.4% (COV = 0.17) for Tre Gai and 11.6% (COV = 0.05) for
98 Guadua.

99 All rings were marked at four quadrants (N, E, S and W). Diameters (D) were measured
100 across N-S and E-W positions, while thickness (t) and ring specimen length (L) were
101 measured at each quadrant. Average dimensions of tested specimens for each species and
102 load type (described subsequently) are reported in Table 1.


103 For the compression tests, L/D ring ratios were 0.59 (COV =0.09), 0.58 (COV =0.03), and
104 0.41 (COV =0.03) for Moso, Thre Gai, and Guadua, respectively. For the tension tests, L/D
105 ratios were 0.48 (COV = 0.2), 0.15 (COV = 0.08), and 0.41 (COV = 0.05) for Moso, Thre
106 Gai, and Guadua, respectively. A lower L/D ratio for the Thre Gai rings under tension was
107 necessary to be able to test these thick-walled rings in the tension fixture described below.

108

109

111 **2.2 Edge bearing test**

115 The edge bearing or transverse compression test has been used to characterize transverse
 116 effective properties of bamboo rings [10, 17]. In this test, specimens are loaded across their
 117 diameter (load points are designated N and S) and the load and vertical or horizontal
 118 displacement (Δv or Δh) are recorded (Figure 1).

116

117 Figure 1. Edge bearing compression test and characteristic geometric dimensions

123 Under the assumption of the material as homogeneous and transverse isotropic, each
 124 displacement Δv or Δh of Figure 1 can be determined in terms of the load P , the effective
 125 circumferential elastic modulus E_ϕ , and the geometrical parameters of the ring by using the
 126 Castigiano's theorem described in texts of solid mechanics [21]. These formulas are
 127 presented in [22]. As the vertical displacement Δv was measured in the compression
 128 experiment, the circumferential modulus was calculated as,

$$124 E_\phi = \frac{12PR^3}{Lt^3\Delta_v} * \left(\frac{\pi k_1}{4} - \frac{2k_2^2}{\pi} \right). \quad (1)$$

126 On the other hand, as the horizontal displacement Δh was measured in the tension
 127 experiment, the elastic modulus was calculated using,

126 $E_\phi = \frac{12PR^3}{Lt^3\Delta_h} * \left(\frac{k_1}{2} - k_2 + \frac{2k_2^2}{\pi}\right)$. (2)

127 Where k_1 and k_2 are correction factors equal to:

128 $k_1 = \left(1 - \frac{t^2}{12R^2} + \frac{FEt^2}{12GR^2}\right)$, and (3)

129 $k_2 = \left(1 - \frac{t^2}{12R^2}\right)$ for thin rings, and (4)

130 $k_2 = \left(\frac{t}{R \ln \frac{R_o}{R_i}}\right)$ for thick rings. (5)

131 In which R is the mean radius of the ring ($D/2 - t/2$), R_o and R_i are inner and the outer radii,
 132 respectively, and t is the culm wall thickness. Finally, considering a transverse isotropic
 133 model the ratio E/G is assumed to be $2(1+v)$, where the Poisson's ratio, $v= 0.22$ [6] and the
 134 shape factor $F = 1.2$ for a rectangular section [10]. For the purposes of understanding trends,
 135 k_2 may be estimated to be equal to 1 while $k_1 \approx 1 + 0.16t^2/R^2$ without introducing significant
 136 error.

137 In order to understand failures in the tests and strain measurements, stress and strain
 138 analysis can be carried out considering an isotropic and homogeneous material [22].
 139 Assuming symmetry, the moments at the North and South quadrants are equal to:

140 $M_{NS} = \frac{PRk_2}{\pi}$. (6)

141 Similarly, the East and West moments can be calculated as:

142 $M_{EW} = \frac{PRk_2}{\pi} - \frac{PR}{2}$, (7)

143 Where P is total load applied uniformly over length L . Circumferential stresses in the
 144 corresponding quadrants are calculated as:

$$145 \quad \sigma_{NS} = \frac{M_{NS}}{Lth} \frac{(R-r-h)}{r} \quad (8)$$

146 and,

$$147 \quad \sigma_{EW} = \frac{M_{EW}}{Lth} \frac{(R-r-h)}{r} - \frac{P}{2Lt}, \quad (9)$$

148 where r , ranging from R_i to R_o , is the radial position where the stress is calculated and h
 149 defines the shift in position of the neutral axis in the curved culm wall segment from its
 150 centroid ($t/2$) when subject to flexure. For a rectangular cross section, h is given as:

$$151 \quad h = R - \frac{t}{\ln\left[\frac{2R+t}{2R-t}\right]}. \quad (10)$$

152 Since k_2 is approximately equal to 1, the magnitudes of the N-S moments are about 75%
 153 greater than that of the E-W moments, hence failures in the N-S positions should dominate
 154 behavior. This, however, is not always the case since the gradient of material properties
 155 through the culm wall results in the shift in neutral axis toward the external surface of the
 156 ring which complicates behavior [10]. Nevertheless, if the ring is loaded in tension (that is P
 157 is reversed in Figure 1), the superposition of the normal load and the bending moment in
 158 the East and West quadrants (Eq. 7) may lead to failure since the additional normal
 159 component of stress ($P/2Lt$ in Eq. 9) is superposed in quadrants E-W. Therefore, at these
 160 positions, the neutral axis radial position R_{EW} in the culm wall is shifted further toward the
 161 external surface of the ring, as can be calculated from:

$$162 \quad R_{EW} = \frac{2 M_{NW} (R-h)}{2 M_{NW} + hP} . \quad (11)$$

163 The normalized neutral axis position with respect to the interior surface of the culm wall for
164 N-S and E-W quadrants can be calculated as:

165 $N.A_{NS} = \frac{(R-h-R_i)}{t}$, and (12)

166 $N.A_{EW} = \frac{(R_{EW}-R_i)}{t}$ (13)

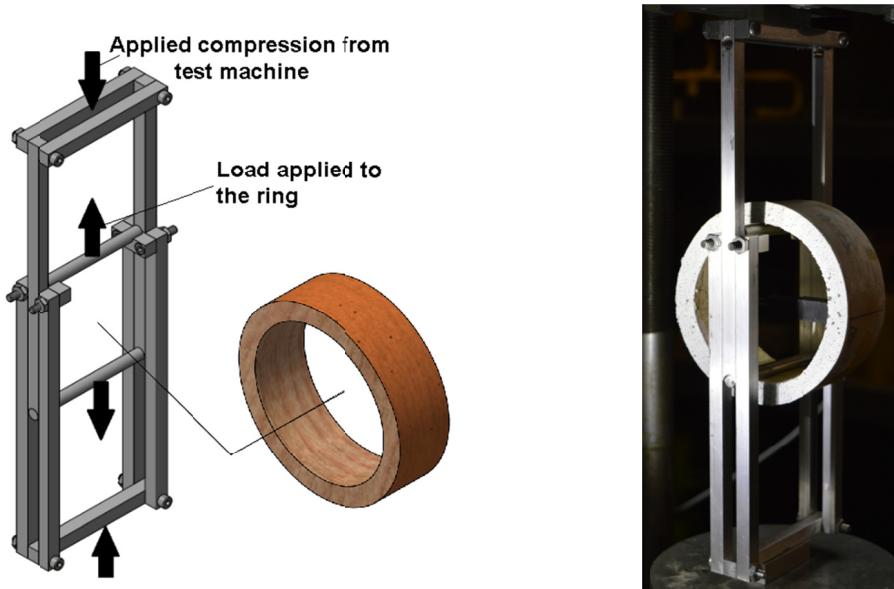
167 One objective of the present study is to address the orientation of the load and its effect on
168 test behavior. When tested in compression, the internal moments result in the inner culm
169 wall at the N and S quadrants and the outer wall at E and W quadrants being placed in
170 tension. When tested in tension, the opposite moment orientations result and the normal
171 component of load at the E and W quadrants reverses (sign of P change in Eqs. 6, 7 and 9).
172 This reversal, it was thought, may impact circumferential modulus measurements.
173 Additionally, it was hypothesized that the local effects of the introduction of the load at the
174 ‘compression’ face of the N and S quadrants may affect overall behavior at these quadrants
175 meaning that only data from the E or W quadrant are valid. If this were the case, both
176 compression and tension tests are required to fully investigate through-culm-wall
177 properties.

178 **2.3 Experimental setup**

179 Compression tests were carried out using a precision gear-driven compression machine
180 (Wykeham Farrance 5-Ton) with a 45 kN load cell having a resolution of 4.5 N. The load
181 was applied at the N and S positions while the vertical displacement was measured with a
182 linear position transducer (regal 9600-series) placed within the ring (Figure 2a). Neoprene
183 pads 10 mm wide and 3.4 mm deep were used to distribute the loads evenly along the N

191 and S lengths of the specimen. In order to measure displacements and strain profiles in the
192 transverse cross-section of the ring, a VIC3D digital image correlation (DIC) system was
193 used (Correlated Solutions Inc.). Before testing, all specimens were painted with a white
194 base paint and sprayed with black matte paint to generate the speckle pattern required for
195 the DIC cameras (Fig 2b). Load and displacement data were recorded at the same regular
196 intervals at which DIC images were obtained. All the tests were carried out under
197 displacement control at a speed of 0.019mm/s.

192 a. b.


195 Fig 2. Compression edge bearing test, a. Test arrangement (one DIC camera is in
196 foreground), b. Bamboo rings prepared for DIC measurement.

196 **2.3.1 Edge bearing tension test**

101 To examine possible differences in the apparent transverse modulus associated with the
102 direction of bending, a tension edge bearing test apparatus (Figure 3) was developed,
103 allowing the tension test to be conducted in the same machine used for the compression
104 tests. In this test, diametric tension was applied across the N-S diameter of the bamboo ring.
205 In this case, load is applied to the inner wall of the ring at N and S and the ring is 'pulled'

205 vertically. East and West strain profiles for the tension tests were also obtained using DIC
206 (the test frame obscured the N and S locations). To facilitate the tension test setup, the
207 horizontal internal displacement was measured instead the vertical (Figure 3b). Tension
208 tests were conducted at the same applied displacement rate of 0.019 mm/s.

206 a. b.

207

208 Figure 3. Tension edge bearing test. a. Tension apparatus, b. Test set up.

209

210 3. TEST RESULTS

213 As summarized in Table 1, 54 specimens were tested. Table 1 summarizes the key
214 experimental results from this test program; these are discussed further in subsequent
215 sections.

215 Defects in specimens that appear in Table 1 were micro cracks that were only detected with
216 the DIC measurements. However, these defects were not critical for the measured

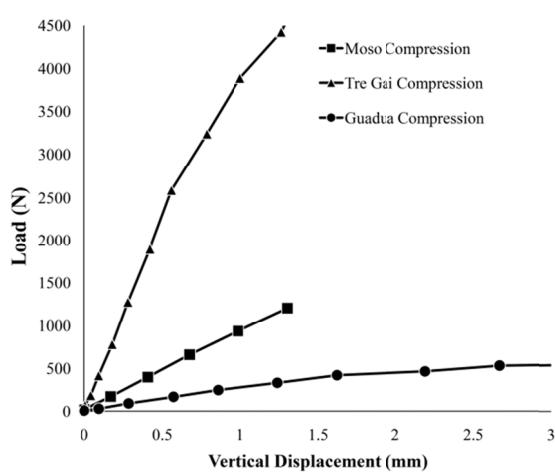
215 parameters, as confirmed by a statistical analysis (not presented in this paper) that showed
216 no difference between results from defective and free-defect specimens.

217 Table 1. Summary of specimen geometry and test key results (COV in brackets)

Species	Loadtype	<i>n</i>	<i>D</i>	<i>t</i>	<i>L</i>	s_h or s_v	E_ϕ	Neutral axis location	Location of failures		Samples with defects
			mm	mm	mm	N/mm	MPa	mm/mm	NS	EW	
Moso	C	9	86.0 (0.10)	9.3 (0.09)	50.7 (0.04)	607 (0.62)	1355 (0.24)	0.59 (0.23)	4	5	6
	T	8	86.0 (0.10)	10.4 (0.21)	50.7 (0.04)	389 (0.25)	1362 (0.20)	0.53 (0.09)	8	0	2
Tre Gai	C	6	88.5 (0.06)	22.4 (0.12)	51.1 (0.01)	4109 (0.39)	766 (0.34)	0.67 (0.07)	6	0	2
	T	11	97.3 (0.04)	19.2 (0.42)	14.4 (0.06)	1622 (1.54)	558 (0.74)	0.68 (0.10)	11	0	0
Guadua	C	10	117.0 (0.02)	12.7 (0.22)	47.9 (0.02)	256 (0.11)	864 (0.31)	0.59 (0.16)	10	0	4
	T	10	116.7 (0.02)	12.8 (0.22)	47.4 (0.03)	341 (0.30)	860 (0.30)	0.59 (0.16)	7	4	4

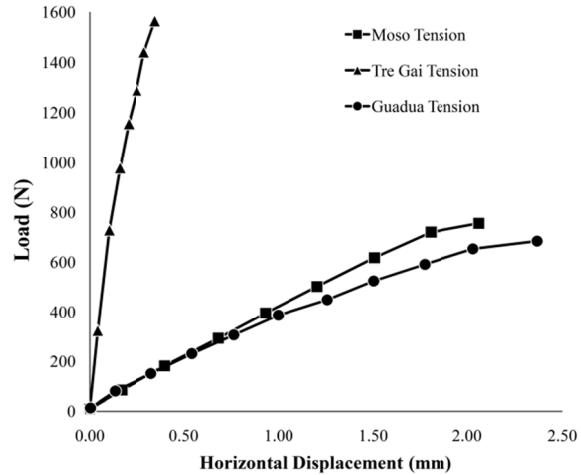
218

219 3.1 Effective elastic properties


220 Load versus displacement curves exhibited an essentially linear behavior up to about 80%
221 of the maximum load at failure for both the tension and compression tests (Figure 4). For
222 all tests, the slopes of the force versus deflection curves were calculated using least square
223 fitting of the data up to approximately 60% of the ultimate capacity. For compression, the
224 slopes s_v were 607 N/mm, 4109N/mm and 256N/mm, for Moso, Tre Gai and Guadua,
225 respectively. In the tension tests the slopes s_h were 389 N/mm, 1622 N/mm and 341 N/mm
226 for Moso, Tre Gai and Guadua, respectively. The coefficient of determination, R^2 , was
227 greater than 0.99 in all cases indicating a very linear response.

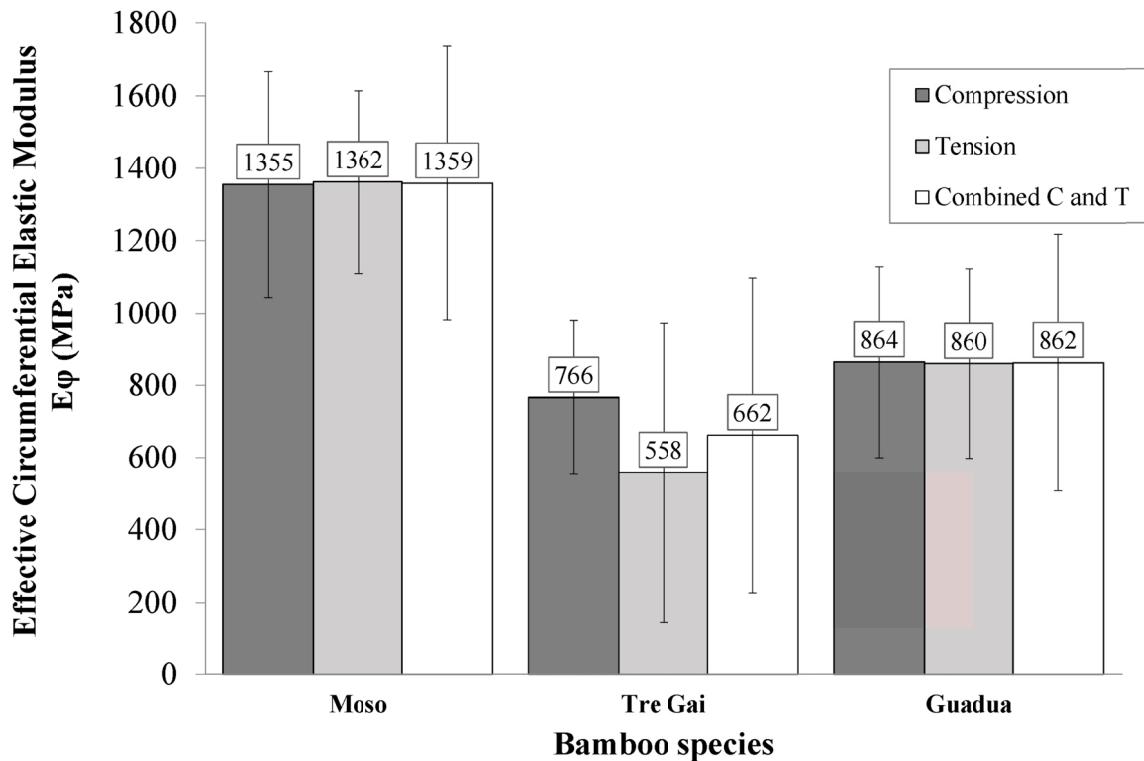
228

229


231

a.

232


b.

233 Figure 4. Typical loading curves, a. Compression, b. Tension.

238 In the compression tests, the circumferential elastic modulus, calculated using Eq. 1, of
 239 bamboo Moso was 76% and 56% greater than those of Tre Gai and Guadua, likewise in
 240 tension tests (Eq. 2) it was 143% and 58% greater than those of Tre Gai and Guadua,
 241 respectively. No statistical differences in E_θ determined from compression or tension tests
 242 were found for any species (Figure 5).

239

240

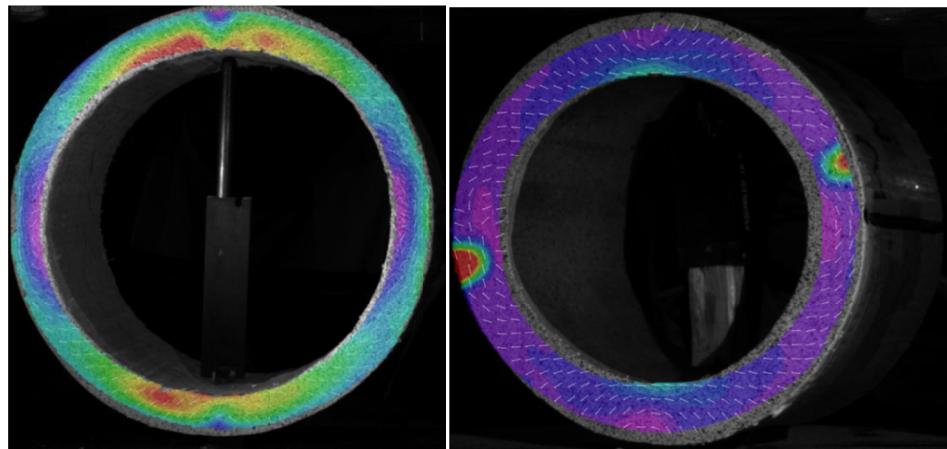
242 Figure 5. Effective elastic circumferential moduli determined from compression and
 243 tension tests. Error bars represent one standard deviation

243

244 **3.2 Strain profiles**

247 Circumferential strain – determined from DIC data such as that shown in Figure 6 – in the
 248 four quadrants of the rings exhibited nonlinear profiles (Figure 7), which were more
 249 pronounced for the thick Tre Gai rings.

248


249

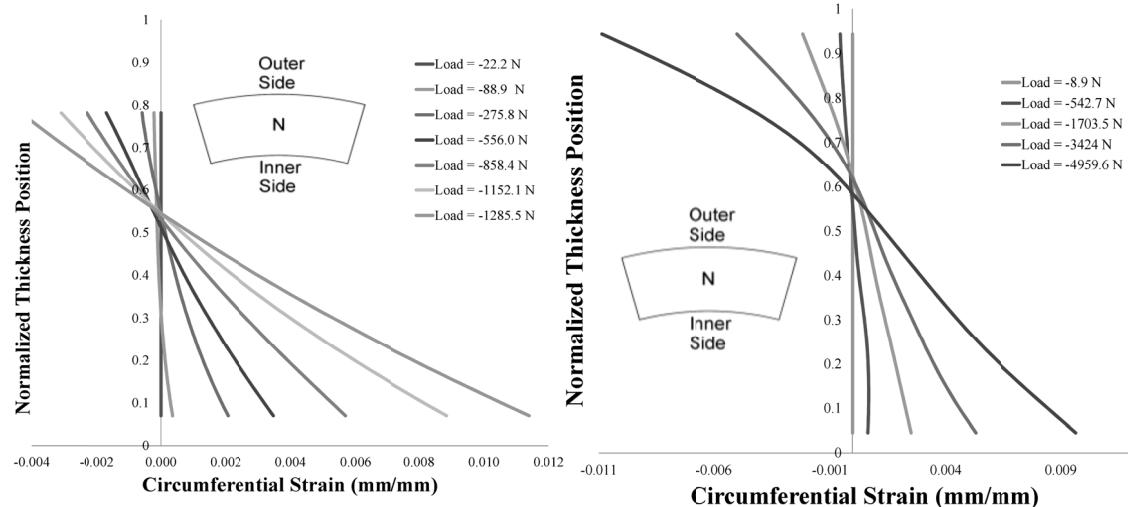
250

251

a.

b.

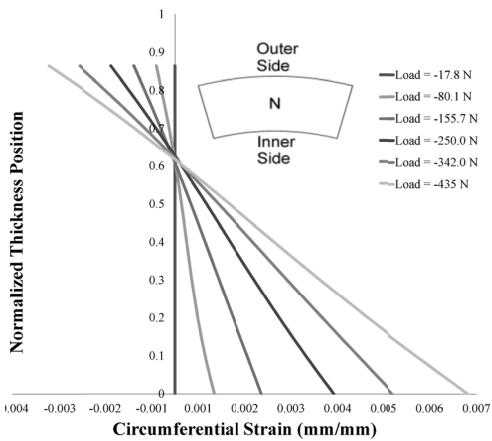
252


254 Figure 6. Profiles of the maximum principal strain, a. Relatively defect-free specimen
255 (Guadua G-34), b. Specimen with preexistent cracks (Moso M-13).

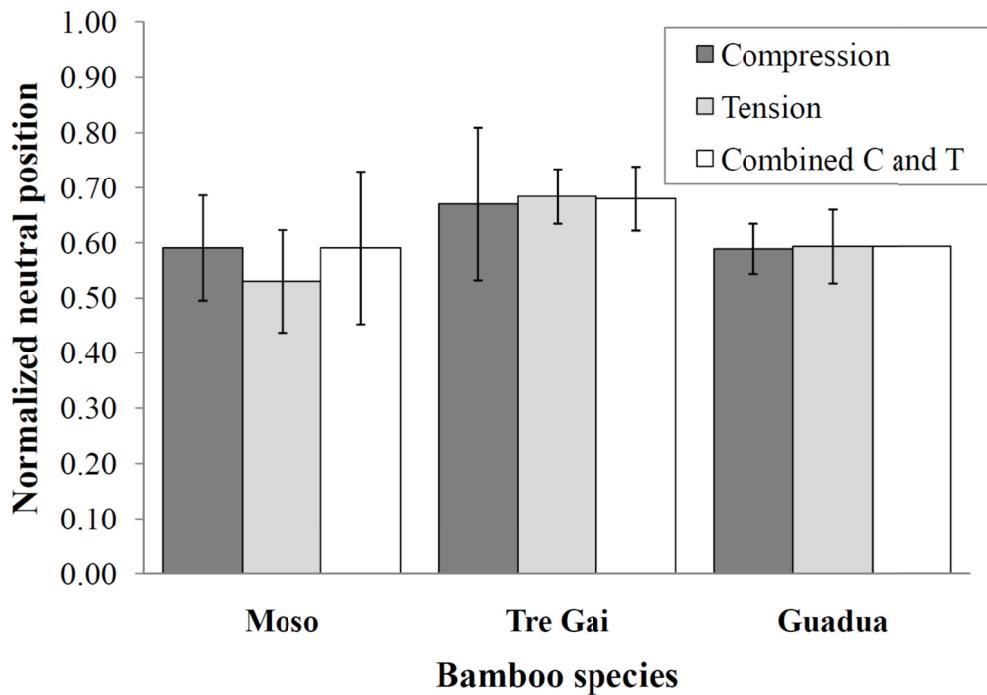
255

256

a.


b.

257


258

259

263 Figure 7. Experimental strain profiles in compression test (North position), a. Moso (M-
 264 13), b. Tre Gai(T-11) and c. Guadua (G-25).

270 The observed positions of the neutral axis, normalized to the wall thickness, relative to the
 271 interior culm wall were of 0.59, 0.68 and 0.59 for Moso, Tre Gai and Guadua, respectively
 272 (Figure 7). No statistical differences in the neutral axis position between compression and
 273 tension loading were found. The position of the neutral axis in the East and West quadrants
 274 calculated using Eq. 13 assuming a homogeneous material and formulas valid for curved
 275 beams [21] were 0.53, 0.59 and 0.54 for Moso, Tre Gai and Guadua, respectively. The
 276 radial gradation of the material accounts for the larger observed values.

271

273 Figure 8. Normalized neutral axis position for all species under both loading conditions.

274 Error bars represent one standard deviation

279 Even in a relatively defect-free specimen (Figure 6a), the strain profiles were not perfectly
 280 symmetric due to geometry variations of the rings. In specimens having an initial defect
 281 (Figure 6b, having existing longitudinal cracks), the strain concentrations are pronounced
 282 and affect the final failure of the test. The experimental strain at the N and S locations of
 283 the tension tests was not available since the test apparatus masked the specimen from the
 284 DIC camera.

280 **3.3 Failures analysis**

283 From the 54 specimens tested, 46 failed at the N-S positions (Table 1). Five Moso
 284 specimens failed at the E-W positions in the compression tests, while three Guadua
 285 specimens under tension failed at the E-W positions, which may be attributed to preexisting

287 imperfections in some specimens. The typical failure in both, the compression and tension
288 tests, occurred at the N-S locations with the tensile crack opening at the inner culm wall
289 surface when tested in compression and at the outer surface when tested in tension.(Figure
290 9).

288 a. b. c.

291 Figure 9. Failure types.a. Under compression load (T-14), b. Under tension load (T-94), c.
292 Failure due to preexisting crack (G-44).

295 Maximum tensile strains at failure were calculated for the compression specimens that
296 cracked on the inner surface (Figure 9a). The tension failure strains determined from DIC
297 were: $6693 \mu\epsilon$ (COV = 0.44), $13137 \mu\epsilon$ (COV = 0.26) and $5948 \mu\epsilon$ (COV = 0.39) for
298 Moso, Tre Gai and Guadua, respectively.

296 **3.4 Finite Element modeling and fitting**

201 The formulas presented previously are based on homogeneous material properties through
202 the culm wall. A finite element (FE) approach in which the distribution of circumferential
203 modulus was varied in order to best match the experimentally observed loading curves and
204 strain profiles was used to investigate the heterogeneous nature of the culm wall. All FE
305 models were developed using ABAQUS (Simulia Corp.). Results from six ring models, two

301 for each species, one in compression and the other in tension, were fitted to the
302 experimentally responses. A three dimensional FE mesh was built with eight-node linear
303 brick elements with reduced integration and hourglass control (ABAQUS element type
304 C3D8R). The mesh size was selected after a convergence analysis with displacements
305 differences less than 2% between successive meshes. Divisions smaller than 1 mm were
306 prescribed through the thickness in order to obtain an accurate description of the change of
307 E_ϕ and thus effectively model the functionally graded material (FGM). Defect-free defect
308 rings were chosen and average dimensions were used to model the rings as perfect hollow
309 cylinders.

310 Anisotropy and heterogeneity were considered. To be able to consider the anisotropy, the
311 elastic properties were defined based on a cylindrical coordinate system, in which the r ,
312 θ and z axes were oriented in the radial, circumferential and axial directions of the culm,
313 respectively. In order to account for the material gradation through the culm wall thickness,
314 an artificial radial temperature field was prescribed and the transverse elastic properties
315 were defined to be a function of this field. Regarding other material properties, a parametric
316 analysis was conducted indicating that only E_ϕ and $G_{r\phi}$ have influence in the results, where
317 E_ϕ has the dominant effect; therefore, just this parameter was fitted. Transverse isotropic
318 behavior was assumed making $E_r = E_\phi$, $G_{r\phi} = E_\phi / (2(1 + \nu_{r\phi}))$, with $\nu_{r\phi} = 0.22$ [6]. All remaining
319 anisotropic constants were kept constant as: $E_z = 13420$ MPa [23], $\nu_{rz} = \nu_{\phi z} = 0.01$ and $G_{rz} =$
320 $G_{rz} = 581$ MPa [6].

321 The distribution of elastic modulus was fitted with linear, parabolic, and exponential
322 functions, which have been used previously to describe bamboo gradation [15-16, 19].
323 These functions are:

324 Linear: $E_\varphi(r) = m \left(\frac{r-R_0}{t} \right) + b,$ (14a)

325 Parabolic: $E_\varphi(r) = a \left(\frac{r-R_0}{t} \right)^2 + c,$ (14b)

326 Exponential: $E_\varphi(r) = \alpha \text{Exp} \left(n \frac{r-R_0}{t} \right),$ (14c)

327 where r is the radial coordinate position, R_0 is the radius of the inner surface of the ring, t is
 328 the wall thickness; and α, n, m, a, b and c are coefficients to be fit with the experimental
 329 data.

330 Pilot simulations of a functionally graded ring showed that the circumferential strain
 331 profiles had the neutral axis shifted toward the external surface, compared to the neutral
 332 axis position of a homogeneous ring. This effect has been experimentally shown both in
 333 this study (Figure 7) and in edge bearing test results reported by Sharma et al. [10].
 334 Therefore the neutral axis shift was used in the calibration process to determine the elastic
 335 modulus variation for each assumed distribution.

336 The fitting process began by selecting initial coefficients (α, n, m, a, b and c) for the fitting
 337 functions of Eq. 14. Then, a Matlab (Mathworks Inc) script was used to generate a table of
 338 elastic properties describing the gradation through the wall thickness. These properties were
 339 used in the FE ring model to which a loading curve in the linear elastic zone was applied.
 340 Displacements and the neutral axis positions from the FE model were compared with
 341 experimentally obtained results through an objective function F_t . The minimization
 342 function *fminsearch* (Matlab) was used to optimize these coefficients to reduce the error.
 343 The process was iterated upon until an acceptable error level of less than 4.5% was
 344 achieved. The target function F_t was defined as the sum of the normalized absolute

345 deviations between the experimental (s_{exp}) and FE model (s_{FEM}) loading slopes, and the
 346 experimental (N_{exp}) and FE model (N_{FEM}) neutral axis positions in the east quadrant. The
 347 function was then defined as:

$$348 \quad F_t = \frac{|s_{exp} - s_{FEM}|}{2|s_{exp}|} + \frac{|N_{exp} - N_{FEM}|}{2|N_{exp}|}, \quad (15)$$

349 in which each term was also divided by 2 in order to measure the average error with respect
 350 to the experimental values.

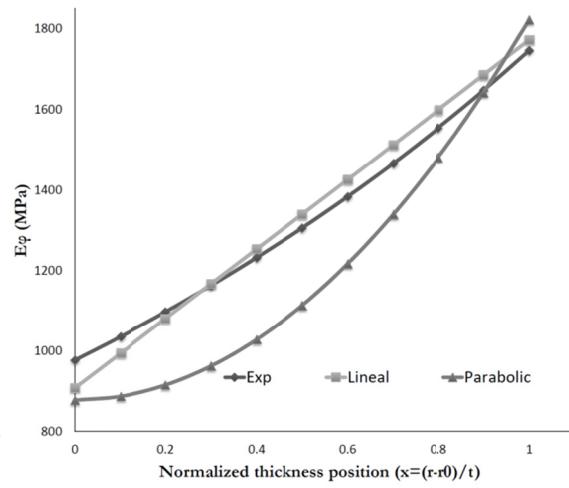
351 Overall, the three functions used to represent the gradation of the circumferential modulus
 352 provided a relatively good approximation of the strain fields as it was possible to reduce the
 353 error to below 4.5% in all cases (Table 2).

354 Table 2. Circumferential elastic distribution fitting parameters

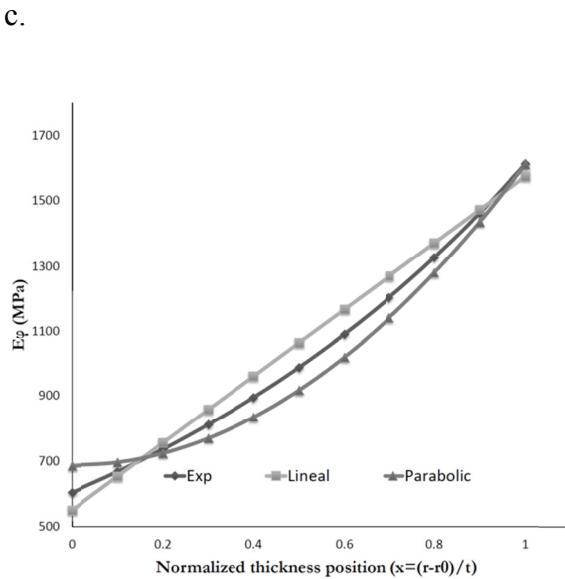
Species	Specimen	Linear fit			Exponential fit			Parabolic fit		
		m	b	Error (%)	α	n	Error (%)	a	c	Error (%)
Moso	M-32	1578	878	4.5	1044	0.81	3.3	1417	1095	0.8
	M-14	1521	1171	0.3	1228	0.80	0.7	1331	1394	0.0
	Mean	1550	1025		1136	0.80		1374	1244	
Tre Gai	T-11	920	933	3.3	1027	0.56	3.7	872	1059	3.1
	T-102	809	882	0.3	927	0.60	0.3	1016	695	0.0
	Mean	864	908		977	0.58		944	877	
Guadua	G-24	990	559	0.0	609	0.96	0.2	836	704	0.4
	G-34	1061	542	0.3	601	1.01	0.1	1014	669	0.1
	Mean	1025	550		605	0.98		925	686	

355

356 In addition, for each of the inner and outer positions, the circumferential moduli were very
 357 similar for the three functions (Figure 10). However, there were important differences with
 358 species, following the same trend of the effective elastic moduli.


350

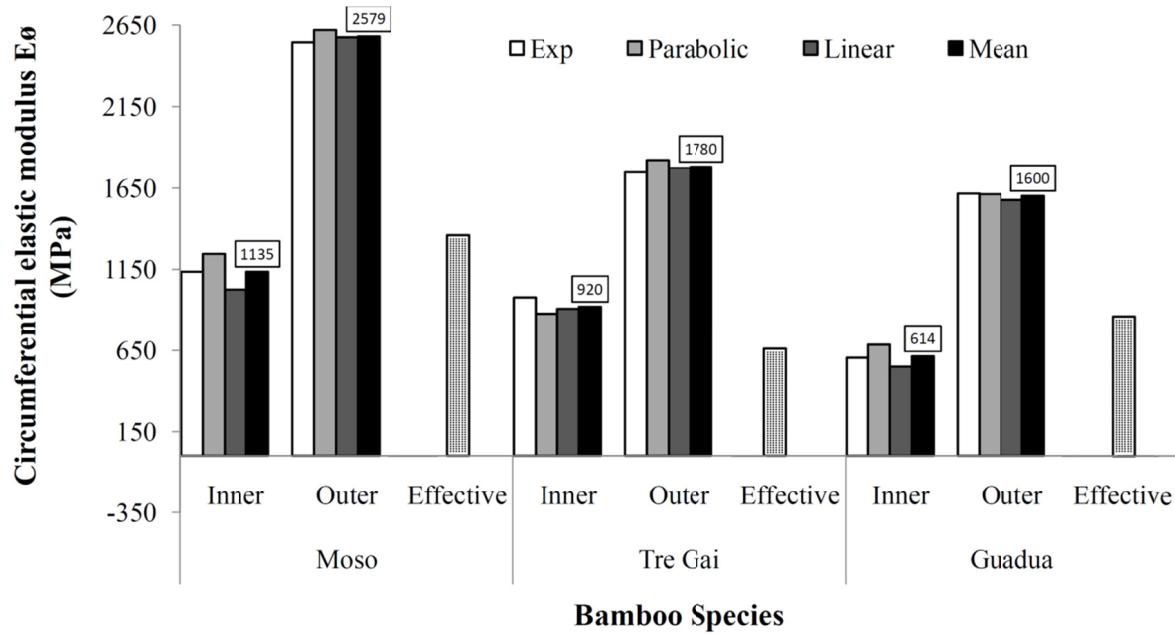
a.



361

b.

362



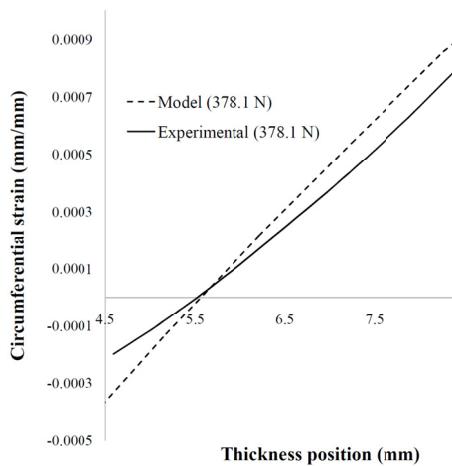
363

365 Figure 10. Circumferential modulus distributions obtained with the three functions for: a.
 366 Moso, b. Tre Gai, and c. Guadua.

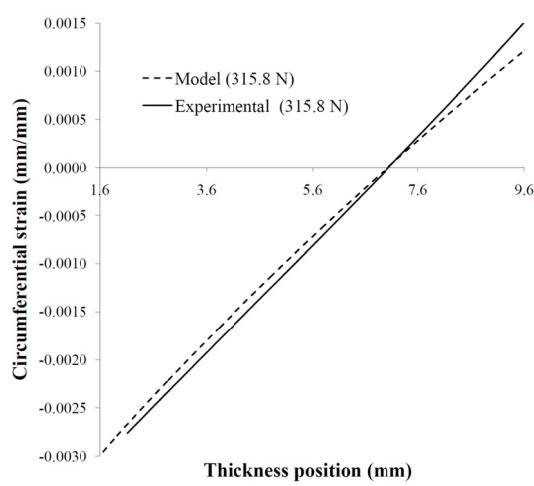
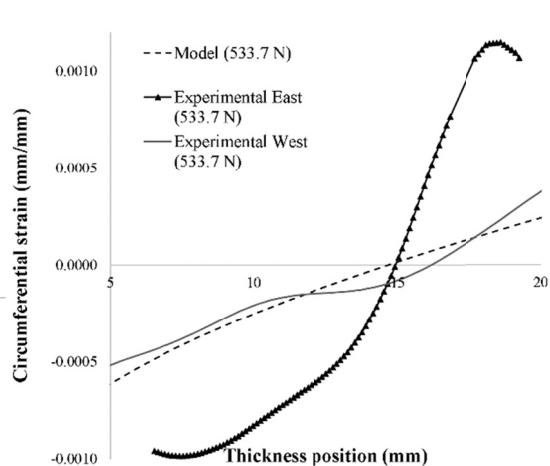
368 Experimentally determined effective moduli (Table 1 and Figure 5) in Moso and
 369 Guaduafall beetwen the average inner and outer moduli obtained with the fitted functions,
 370 while for Tre Gai, the effective modulus is lower than even the inner surface modulus

370 (Figure 11). The mean moduli at the outer position were 2.3, 1.9, 2.6 times higher than those
371 at the inner location for Moso, Tre Gai, and Guadua, respectively.

371


372 Figure 11. Summary of the circumferential moduli obtained in this study.

376 Similarly, the strain field obtained with the parabolic distribution in the FE models
377 provided a relatively good approximation of the experimentally observed strains for Moso
378 and Guadua, while, once again, the approximation was poor at the east location for Tre Gai
379 (Figure 12).



381 There are a number of possible reasons for the poor modelling of Tre Gai, primarily the
382 significant out-of-round asymmetry of the specimens (see Table 1 and Figure 9a). This
383 considerable asymmetry caused substantial differences between East and West strain
384 profiles (Figure 12b), which cannot be captured with the cylindrical shape assumed in the
385 FE model.

382

a.

b.

387 Figure 12. Circumferential strain profiles in compression test for bamboo specimens, a. M-
388 14(East), b. T-11 (East and West) and c.G-34 (East)

388 3.5 Failure stresses

390 Failure stresses in the inner side of the rings were calculated as the product of mean inner
391 circumferential moduli (Figure 11) and experimentally-determined maximum tension

390 strains from the compression tests. They are equal to 7.6 MPa (COV = 0.43), 12.1 MPa
391 (COV = 0.26) and 3.7 MPa (COV = 0.38) for Moso, Tre Gai and Guadua, respectively.

392 **4. DISCUSSION**

393 An experimental study of the mechanical behavior of three commercially viable (for
394 construction) bamboo species under circumferential loading was presented. Compression
395 and tension edge bearing tests showed similar elastic effective moduli and neutral axis
396 positions, which indicates that both tests are useful for the mechanical characterization of
397 the transverse properties of bamboo. Digital image correlation analysis permitted an almost
398 complete picture of strain profiles through the wall thickness in order to explain typical
399 failures in tension and compression tests. Nonetheless, the compression test is significantly
400 easier to conduct and is proposed to be promulgated in international standards, setting
401 limits for the maximum variations of thickness and diameter of the specimens, in order to
402 be consistent with the assumed circular geometry.

403 High ratios of outer and inner circumferential moduli predicted using all three assumed
404 distribution functions (Eq. 14) are in agreement with the higher density of fibers near the
405 outer boundary of the culm. This gradation should be taken into account in the analysis of
406 bamboo elements for a more accurate estimation of the stress and strain distribution
407 through the culm wall. Such advanced analyses will permit a better understanding of
408 bamboo properties and be particularly useful in connection design. The circumferential
409 gradation also explains the observed shift in the normalized position of the neutral axis
410 (0.59-0.68) with respect to that estimated with a homogeneous model (0.53-0.59). This shift
411 for Tre Gai bamboo falls within the range of 0.65 to 0.80 reported by Sharma [10].

412 As the effective elastic modulus depends on the position along the culm height [9, 17] and
413 an exact provenance of the culms was not available, there is a wide scatter in the results.
414 For instance, effective elastic moduli for the middle third of Guadua culms reported by
415 Torres et al. [17] of 485 MPa is different from the average effective elastic modulus of 860
416 MPa reported here using the same protocol. On the other hand, average effective moduli
417 for Moso and Tre Gai (1355 and 662 MPa) are also different from those reported by
418 Sharma et al. [10] of 526 and 492 for Moso and Tre Gai respectively, and that reported by
419 Torres et al.[17] for Moso of 1690 MPa. However, some specimens exhibited elastic
420 modulus in the range reported by the aforementioned authors. This dispersion only
421 demonstrates the natural variation that may be affects by such factors including, height
422 along the culm, culm age and climate at harvest, and the nature of processing, treatment and
423 storage prior to testing.

424 Jiang et al. [24] used uniaxial and biaxial compression edge bearing test and DIC to analyze
425 the circumferential mechanical properties of bamboo rings of *Sinocalmus affinis*, however
426 no strain values are provided and no discussion is made about the elastic modulus and its
427 variation through the wall thickness. Other studies [10, 19] have reported strain profiles
428 taking extreme values at the inner and outer face of the culm wall and assuming a linear
429 behavior between these, which for thin wall bamboo rings appears to be a good approach.
430 However for thick wall bamboo rings the strain profiles depicts substantial nonlinearities
431 (Figures7 and 12).

432 Failure strains ranging from 5270 – 6270 $\mu\epsilon$ on the inner surface reported by Lee et al.
433 [19], and 1362-3011 $\mu\epsilon$ reported by Sharma et al. [10] for the outer surface are near the
434 experimental range reported in this study (1808-20412 $\mu\epsilon$). In particular, the failure strains

435 documented by Lee et al. for thin rings are similar to the mean values found in this study
436 for the thin rings of Moso and Guadua, that were $6693 \mu\epsilon$ and $5948 \mu\epsilon$, respectively.

437 For the thin-walled Moso and Guadua, the circumferential elastic modulus variation was
438 relatively well fitted with the three functions used. In a thin-walled ring, this is not
439 surprising since the change in properties will not be terribly significant over a small
440 thickness (see Figure 10). These functions showed differences among species, which
441 suggest that these distributions are, nonetheless, species dependent. Results showed that
442 Moso is the stiffer species followed for Tre Gai and Guadua.

443 The main limitation of this study was that the strain failures on the outer surface could not
444 be measured due to the special device needed to accomplish the tension test. However,
445 finite element models can be used to estimate these strains.

446 **5. CONCLUSIONS**

447 • A consistent behavior was observed between the tension and compression tests. Both,
448 the effective elastic moduli and the observed shift of the neutral axis position, were similar
449 in both tests. The compression test is recommended as it is simpler to be performed.
450 • Moso bamboo showed greater circumferential modulus than Tre Gai and Guadua.
451 • Loading curves and strain profiles permitted determining the transverse distribution of
452 elastic modulus with reasonable precision using linear, exponential and parabolic
453 distributions. All functions were able to simulate elastic distribution through the wall
454 thickness of bamboo as other studies have shown. These elastic distributions showed being
455 specie dependent.

456 • The normalized position of the neutral axis and tensile failure strain were similar in the
457 thin wall bamboo species, Moso and Guada.

458 • DIC measurements allowed the determination of strain profiles in the critical positions
459 and also helped to explain apparently anomalous test results.

460 • It is showed that in compression test, failures in quadrants different to North and South
461 positions are due the presence of flaws in the material. Therefore, this type of failures
462 should be discarded in field testing specimens.

463 • Variation in the circumferential elastic modulus through the thickness must be
464 considered in the FE models of bamboo members for a more accurate prediction of their
465 mechanical behavior.

466

467 **ACKNOWLEDGEMENTS**

468

469 The first author is grateful to Administrative Department of Science, Technology and
470 Innovation COLCIENCIAS for financial support through national doctoral grant No. 617.
471 All authors are thankful to The University of Pittsburgh for the use their laboratories and
472 equipment and the Universidad del Valle for giving them the resources to undertake this
473 study. The presented work was also supported by the US State Department IIE Global
474 Innovation Institute (GII) award, which allowed for the collaboration between The
475 University of Pittsburgh and Coventry University.

476

477

478

479 **REFERENCES**

480 [1] Ghavami K. and Culzoni R. Utilizaçao do Bambu como Material em Habitaçao de
481 Baixo Custo. Simposio Internacional de Habitaçao, Sao Paulo; 1987.

482 [2] Laroque P. Design of a low cost bamboo footbridge. Master Engineering Thesis of
483 Degree. Massachusetts Institute of Technology; Massachusetts, United States; 2007.

484

485 [3] Hidalgo O. Bamboo the gift of the gods. Bogotá, Colombia: Editorial D'Vinni; 2003.

486 [4] Ciro H., Osorio J., Vélez J. Determinación de la resistencia mecánica a tensión y
487 cizalladura de la Guadua *angustifolia* Kunth. Revista de la Facultad de Ciencias
488 Agropecuarias. Universidad Nacional de Medellín 2005; 58(1): 2709-2715.

489 [5] Janssen, J.J.A. Designing and building with bamboo. Technical report No. 20.
490 International Network for Bamboo and Rattan; 2000.

491 [6] García J., Rangel C. and Ghavami K. Experiments with rings to determine the
492 anisotropic elastic constants of bamboo. Construction and Building Materials 2012; 31: 52–
493 57.

494 [7] Villegas L, Moran R, Garcia J. A new joint to assemble light structures of bamboo slats.
495 Construction and Building Materials 2015; 98: 61–68

496 [8] Amada, S., Munekata, T., Nagase, Y., Ichikawa, Y., Kirigai A., and Zhifei, Y. Fiber
497 texture and mechanical graded structure of bamboo. Composites: Part B 1997; 28B:13-20.

498 [9] Ghavami, K., Rodrigues, C. S. and Paciornik, S. Bamboo: functionally graded
499 composite material. Asian journal of civil engineering (building and housing) 2003; 4 (1).

500 [10] Sharma B., Harries K., Ghavami K. Methods of determining transverse mechanical
501 properties of full-culm bamboo, *Constr. Build. Mater.* 2013; 38:627–637.

502 [11] Ghavami K, Moreira L. Development of a new joint for bamboo space structures.
503 *Transactions on the Built Environment* 1996; 21.

504 [12] Moreira L, Ghavami K. Limits states analysis for bamboo pin connections. *Key*
505 *Engineering Materials* 2012; 517: 3-12.

506 [13] Arce-Villalobos, O.A. Fundamentals of the design of bamboo structures. Doctoral
507 Dissertation, *Eindhoven University of Technology*, Netherlands; 1993.

508 [14] López L., Correal J. Exploratory study of the glued laminated bamboo *Guadua*
509 *angustifolia* as a structural material. *Maderas. Ciencia Y Tecnología* 2009; 11: 171–182.

510 [15] Ghavami, K., Marinho, A.B. Propriedades físicas e mecânicas do colmo inteiro do
511 bambu da espécie *Guadua angustifolia*. *Revista Brasileira de Engenharia Agrícola e*
512 *Ambiental* 2005; 9:107-114.

513 [16] Nogata and H. Takahashi. Intelligent functionally graded material: bamboo.
514 *Composites Engineering* 1995; 5(7): 743-751.

515 [17] L.A. Torres, K. Ghavami, J.J. García, Determination of the circumferential Young's
516 modulus of bamboo with diametric compression tests, *Latin American Applied Research*.
517 2007; 37: 255–260.

518 [18] Mitch, D., Harries, K.A., and Sharma, B. Characterization of Splitting Behavior of
519 Bamboo Culms, *ASCE Journal of Materials in Civil Engineering* 2010; 22(11): 1195-1199.

520

521 [19] Lee P., Odlin M., Yin H. Development of a hollow cylinder test for the elastic
522 modulus distribution and the ultimate strength of bamboo. *Construction and Building*
523 *Materials* 2014; 51: 235–243.

524

525 [20] Harries, K.A., Bumstead, J., Richard, M.J. and Trujillo, D. (in review) Geometric and
526 Material Effects on Bamboo Buckling Behavior, *ICE Structures and Buildings* special issue
527 on bamboo structures.

528 [21] Beer F, Jonhston E, Dewolf J, Mazurek D. Mechanic of materials. 6th ed. New York:
529 McGraw-Hill; 2012.

530 [22] Young WC. Roark's formulas for Stress and Strain. 6th ed. New York: McGraw-Hill;
531 1989.

532 [23] Richard M., Harries K. On inherent bending in tension tests of bamboo. *Wood Science*
533 *Technology*. Springer, 2014.

534 [24] Jian Z., Chen F., Wang G., Liu X., Shi S. and Cheng H. The circumferential
535 mechanical properties of bamboo with uniaxial and biaxial compression tests. *Bio*
536 *Resources* 7 (4) - 2012, pp. 4806-4816.

537