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ABSTRACT 
In this paper, we introduce a research method for comparing 

computational design methods. This research method addresses 
the challenge of measuring the difference in performance of 
different design methods in a way that is fair and unbiased with 
respect to differences in modeling abstraction, accuracy and 
uncertainty representation.  The method can be used to identify 
the conditions under which each design method is most 
beneficial. To illustrate the research method, we compare two 
design methods for the design of a pressure vessel: 1) an 
algebraic approach, based on the ASME pressure vessel code, 
which accounts for uncertainty implicitly through safety factors, 
and 2) an optimization-based, expected-utility maximization 
approach which accounts for uncertainty explicitly.  The 
computational experiments initially show that under some 
conditions the algebraic heuristic surprisingly outperforms the 
optimization-based approach.  Further analysis reveals that an 
optimization-based approach does perform best as long as the 
designer applies good judgment during uncertainty elicitation. 
An ignorant or overly confident designer is better off using safety 
factors. 
 
1 INTRODUCTION 

Choosing a design method is an important step in any 
design. This choice ultimately influences both the design process 
and the final artifact. Ideally, a designer chooses a method that 
leads to the most desired design outcome.  This outcome not only 
depends on the value of the final artifact but also on the time and 
cost invested during the design process [1]. Because achieving 
higher artifact value typically requires more design effort, 
designers must choose a design method that best balances artifact 
value and design process resources for a particular design 
situation. The situation is important because design methods 
perform differently in different contextual situations. For 
example, an electrical engineering design method is not likely to 
be as valuable as a chemical engineering design method in a 

chemical engineering situation. Because the value of the design 
method may be substantial, it is important to choose the most 
appropriate design method. 

To choose the best design method, we must first be able to 
compare design methods. Real-world examples are quite limited 
for a variety of reasons. First, solving the same design problem 
with multiple design methods can take months or years and is 
thus prohibitively expensive. Second, comparing the value of 
two different final artifacts is difficult, again because of costs, 
but also because the two cannot fairly be placed in the same 
market environment without affecting each other. As a 
consequence, very few real-world comparisons are published in 
the literature, and, because context matters, any existing 
comparisons offer little help in valuing the design methods. 

Instead, researchers may use computational models and 
simulations to compare design methods. Simulation is relatively 
inexpensive and allows thus for a broad comparison across many 
design problems and situations. However, comparing design 
methods with simulations still presents many challenges. One 
challenge is to evaluate the results of those different designs 
methods, the design artifacts and design process costs, in a fair 
and unbiased way. How should one compare two design methods 
when one suggests a vessel fails, while the other suggests the 
vessel does not fail? Clearly, if one design method is used as the 
predictive analysis model then this will bias the comparison. 
Instead, the design methods could be compared using an 
unbiased third design method. This is the basis for the Design 
Decision Framing Model (DDFM), which is used in the research 
method to compare design methods. The introduction of the 
DDFM is the primary contribution of this paper. It is further 
described in the methodology section of this paper and can be 
used to best select a design method for a given context. 

To illustrate the DDFM, we compare two different design 
methods for the design of a pressure vessel, 1) an algebraic 
approach, based on the ASME pressure vessel code, which 
accounts for uncertainty implicitly through safety factors, and 2) 
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an optimization-based, expected-utility maximization approach 
which accounts for uncertainty explicitly. The design problem 
and corresponding results are provided in the motivating 
example section. Finally, we present the results and conclusions 
of the research method and the motivating example. 

 
2 RELATED WORK 

Previous work can be divided into two areas: uncertainty 
analysis in design and value of information theory in design.  

In design, uncertainty may be accounted for in many 
different ways. Most commonly, uncertainty is addressed 
implicitly using safety factors. Such safety factors may result 
from regulation or standardization, increasing with the size of the 
uncertainty and severity of the consequences of failure [2]. The 
challenge with safety factors is that they often lead to over-
design because the safety factors must be prescribed 
conservatively to cover a broad set of situations. 

Uncertainty may also be captured explicitly using 
probability theory [3]. Doing so has the advantage that it allows 
the designer to frame the design problem explicitly as a decision 
problem under uncertainty. A rational decision maker, who aims 
to act in a fashion that is consistent with his beliefs and 
preferences, would then choose the design alternative that 
maximizes his expected utility [4]. For instance, one could use 
an optimization algorithm to maximize an estimate of the 
expected utility determined using Monte Carlo simulation [5]. 
Compared to a safety-factor approach, modeling and solving 
such an optimization problem requires a lot more time and 
resources. 

Rather than framing the design problem as expected utility 
maximization, Reliability Based Design Optimization (RBDO) 
frames it as a maximization of performance while meeting a 
specified reliability. In general, RBDO suffers from similar 
computational complexity challenges as expected utility 
maximization. Researchers have therefore proposed 
simplifications, such as the first-order reliability method [6] and 
the second-order reliability method [7], which define 
performance functions and approximate those performance 
functions using first and second order Taylor expansions, 
respectively. In these approaches, accuracy of the analysis is 
sacrificed in favor of reduced computation time. Care must be 
used when the failure region is not well approximated by a first 
or second order equation. 

Some researchers have argued that probability theory does 
not apply in design when insufficient data is available to 
characterize the uncertainties [8-11]. However, such a 
conclusion is usually based on an outdated frequentist 
interpretation of probability, and no advantage over Bayesian, 
subjectivist probability theory, has been demonstrated. 

In this paper, to compare the quality of different design 
methods, we build on an extension of decision theory, namely, 
value of information theory [12, 13]. Its aim is to determine the 
economic value of information and to provide guidance 
regarding the price one should be willing to pay to consult a 
source of information. Information is valuable only if it may 
change the decision maker’s choice to a more valuable 

alternative. In design, the performance of an artifact is often 
predicted using models. These models serve as sources of 
information that help inform the designer in his decisions. 
Treated this way, the concepts of value of information theory can 
also apply to engineering models [14]. Valuing information 
enables decision makers to rationally choose whether to gather 
additional information until more valuable alternatives present 
themselves. To decide which actions to take, in [15], a method 
for conceptual design is prescribed in which the expected value 
of a refinement of the design space is compared with a value of 
information approach to specifying evaluation functions. Value 
of information theory has also been used to compare artifact 
refinement and analysis in design methods [16], allowing the 
decision maker to choose the next synthesis or analysis action 
based on the currently available information.  

In summary, different design methods analyze and account 
for uncertainty differently. These methods lead to different 
design choices, but also require more or less time and effort to 
be applied, so that it is not clear when one method is superior to 
another. Using value of information theory, we propose in this 
paper a research method that allows us to compare different 
design methods fairly, so that researchers can focus on further 
improving the best methods for specific contexts. 
 
3 METHODOLOGY 

Design methods are rarely compared directly. This leads to 
the questions: If multiple design methods are available but 
suggest different actions, which one should one use? How should 
design methods be compared for a given context? These are the 
questions this paper attempts to answer. In this section, we 
describe a research method for comparing different design 
methods.  The intended use of this research method is to 
characterize the performance of different design methods 
rigorously and to collect evidence in support of claims regarding 
the performance of design methods. 

 
3.1 A Metric for Comparing Design Methods 

The focus in this paper is on computational design methods 
that support design decision making. Each design method 
corresponds then to a particular way of framing a design 
decision. Tversky and Kahneman define a decision frame as “the 
decision-maker’s conception of the acts, outcomes, and 
contingences associated with a particular choice” [17]. We define 
the design frame of a design method as consisting of a specific 
design space, set of modeling assumptions, and a search strategy 
used for decision making. The design space consists of the set of 
alternatives that will be evaluated using the set of modeling 
assumptions, as instructed by the search strategy. The outcomes 
of a design method are a chosen artifact and associated design 
process costs. 

To compare design methods, we must also define the metric 
for comparison. This metric should be related to the goal of 
design, as described by Herbert Simon in his seminal work on 
the Sciences of the Artificial [18]: “Everyone designs who 
devises courses of action aimed at changing existing situations 
into preferred ones.” This improvement in situations can be 
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characterized mathematically by a value function. We adopt the 
perspective of a designer whose value function is profit, and 
more is better. The designer receives profit by designing an 
artifact and extracting value, perhaps by selling the artifact. 
However, the designer must first expend time and effort, design 
process costs, to design the artifact, whose value may not be 
realized for a considerable time. To account for the time 
difference between the value streams, a designer may use Net 
Present Value (NPV) [19, 20]. Further, because the value streams 
occur in the unknown future, the designer may be uncertain 
about the precise value of the NPV. This uncertainty presents 
itself as risk to the designer. To account for risk preferences, 
rational decision makers consider the expectation, E, of utility as 
their metric of value [4]. In this case, utility, 𝑈, is the value to the 
decision maker derives from the sale of an artifact. The objective 
of a design is then to maximize the expected utility of the NPV 
of the artifact and design process costs: 

 
𝒜: max

𝑎∈𝐴
 E [𝑈 (𝑁𝑃𝑉(𝑎, 𝐶𝐷𝑃(𝒜)))] (1) 

 
where 𝑎 is an artifact from the set of all possible artifacts, 𝐴, and 
𝐶𝐷𝑃 is the design process cost. However, we need to reframe 
Equation (1) to consider the effect of design methods. A design 
method is a sequence of design actions for selecting the artifact. 
Designers search for the best design method, which will have an 
appropriate tradeoff between the value of the artifact and the 
design process costs: 
 

𝒫:  max
𝑝∈𝑃

 E [𝑈 (𝑁𝑃𝑉(𝑎(𝑝), 𝐶𝐷𝑃(𝑝)))] (2) 
 
where 𝑃 is the set of all possible design methods. We now have 
a metric, the expected utility of the NPV, for valuing design 
methods for a specific contextual situation. This metric, and the 
value of a design method, depends on how much the design 
method benefits the designer. That is, the value of a design 
method depends on how much better it performs as compared to 
the alternative design methods, the value is relative.  

So far we have ignored the fact that the value of a design 
method depends on other factors that are included in the 
contextual situation. We need a metric for comparing across a 
range of different contextual situations, a context. A context may 
include properties of the artifact not specified by 𝑎, information 
about a competitor’s product, beliefs concerning material 
properties, etc. Design methods may perform differently in 
different contextual situations if either design method’s 
outcomes change as a result. For example, a design method that 
has many steps and requires a large quantity of time and effort 
may be inappropriate if there is limited time as the design method 
will be too costly or yield an artifact of low value. Our metric for 
comparing design methods must then also change as a range of 
contextual situations is considered. Assuming each contextual 
situation is equally likely, the metric for comparing design 
methods then becomes the average expected utility. If a design 
method has the greatest average expected utility for a given 

context, it is preferred for this context. We call such a context the 
applicability context, as this design method should be used if a 
designer’s contextual situation is within this context. 

 
3.2 A Method to Compute the Value of Design 

Methods 
To overcome the challenges of evaluating design methods in 

the real world, we propose to use computational experiments to 
evaluate design methods. Instead, researchers may use 
computational experiments to evaluate design methods. Unlike 
real world experiments, computational experiments can repeat 
the exact same contextual situation, allowing for the expected 
utility to be calculated. Since the cost of computational 
experiments is low compared to real world experiments, the 
entire context can be explored to determine the average expected 
utility. Furthermore, computational experiments can evaluate 
design methods without the design methods mutually 
influencing each other.  

However, computational experiments introduce their own 
challenges. While real world experiments are evaluated by actual 
outcomes, computational experiments must use models of reality 
to predict the performance of a design method. But this presents 
a problem if design methods utilize different assumptions or 
models. For example, consider two design methods that 
recommend two different minimum thicknesses of a pressure 
vessel to avoid failure under the same load. For a given 
contextual situation, there is only one minimum thickness to 
avoid failure. Therefore, one or both of the design methods must 
be incorrect in determining the minimum thickness to avoid 
failure.  

In order to evaluate design methods fairly, we must be able 
to evaluate their outcomes using similar assumptions. However, 
if one of the design methods were used to evaluate the outcomes, 
there would be a clear bias towards this design method. This 
problem arises in [21], where the concept of imprecise 
probabilities is considered and compared to a probabilistic 
characterization of uncertainty. A motivating example of a 
pressure vessel is used to show how both uncertainty 
representations affect the value of a decision. To compare the 
two methods, we introduce an “omniscient supervisor” who 
knows the (artificially generated) truth, controls how much of 
this truth is revealed to the designer, and determines the value of 
artifacts and process costs resulting from each design method, so 
that the methods can be objectively compared. The omniscient 
supervisor removes the bias from choosing a particular design 
method’s computation of the artifact value. 

The above ideas form the basis of the Design Decision 
Framing Method (DDFM). Figure 1 shows the structure of the 
DDFM. To evaluate design methods, the DDFM considers the 
context, allows decision makers to use the design methods in 
developing the final artifacts, uses the omniscient supervisor to 
evaluate the “true” value of each artifact, and then combines this 
value with the associated costs of the design process to determine 
the value of the design process for each design method. Because 
no one can truly know the “truth,” researchers can then further 
reduce bias by investigating different values of the truth. In 
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Figure 1, this is equivalent to considering different contextual 
situations. The value of the design method is then averaged over 
these different contextual situations, including different truths. 
The DDFM thus provides a fair and unbiased computational 
framework for evaluating different design methods. 

The DDFM is limited by the assumptions that it relies upon. 
For one, future decisions need to be either ignored or 
straightforward such that they can be evaluated by the 
omniscient supervisor. If the decisions are complex, the research 
method may require substantial computational resources. The 
DDFM also assumes that the values and model of the truth 
reasonably approximate reality. These assumptions are a 
reasonable approximation to applying the design methods in 
practice while being executed at a comparably smaller cost that 
is suitable for academic research. 

 
3.2.1 Computational Considerations 

Computational tools are considered to make the application 
of the DDFM computationally tractable. These tools are used in 
a computational experiment to compare different design 
methods, and further described in the motivating example 
section. The experiment focuses on comparing the two design 
methods over a range of contextual situations to determine which 
is preferred.  

A design method is preferred for a context if its average 
expected utility is greater than the alternative. For a range of 
contextual situations, the omniscient supervisor can determine 
average expected utility, 𝑈†̅̅̅̅ , of the NPV based on the outcomes 
of the decision maker’s search for an artifact, 𝑝, and the 
particular contextual situation, 𝑥, from the set of possible 
contextual situations, 𝑋, and with a probability density function, 
𝑓(𝑥): 

𝑈†̅̅̅̅ = ∫ 𝑓(𝑥)𝑈†(𝑝, 𝑥)
𝑥∈𝑋

𝑑𝑥 (3) 

 
where the † denotes that the function is evalutated by the 
omniscient observer, as compared to a decision maker. Equation 
(3) requires that we know truth, and therefore the future. 
However, the future is unknowable, and we therefore do not 
know the truth. In Equation (2), this is accounted for in the 
expected utility since the truth is considered a part of the 
contextual situation, thus considering a range of truths as well.  

The average utility could then be approximated by 
computing the expectation with the Monte Carlo Method [5, 22]. 
This approximation discretizes Equation (3) and the accuracy 
depends on the number of samples, 𝑚: 
 

𝑈†̅̅̅̅ ≅
1

𝑚
 ∑ 𝑈†(𝑝, 𝑥𝑖)

𝑚

𝑖=1

 (4) 

where we replace the probability density function with 1/𝑚 
since we are using a simple average. But we are not only 
interested in computing one average utility, as we are comparing 
potentially many different design methods.  

To improve the accuracy of the expectation estimate, we use 
common random numbers [23, 24]. By using the same samples 
to determine both estimates, the variance of the difference in 
estimates is reduced when the estimates are correlated [22, 24]. 
The difference in expected utility, 𝛥𝑈, is thus estimated as: 

 

𝛥𝑈 ≅
1

𝑚
∑ 𝑈†(𝑝1, 𝑥𝑖) − 𝑈†(𝑝2, 𝑥𝑖)

𝑚

𝑖=1

 (5) 

 
Where 𝑝1 and 𝑝2 refer to the first and second design methods, 
respectively. For this paper, 𝑝1 refers to the optimization design 
method, and 𝑝2 refers to the algebraic design method. When 𝛥𝑈 
is positive, the optimization heuristic is preferred, when 
negative, the algebraic heuristic. These computational tools 
allow for a computationally efficient determination of which 
design method is preferred for a given context. 

To characterize the design methods, we investigate sets of 
contextual situations. By comparing the design methods over a 
range, we can identify how much the variables influence the 
preference of each design method. The range of values of the 
variables will be the context for the motivating example, in 
addition to variables that characterize the unknown truth. In this 
way we can analyze, for example, how a designer’s beliefs of the 
truth can affect the most preferred design method. 

 
4 MOTIVATING EXAMPLE 

To explore the DDFM, an example study of a pressure vessel 
is investigated, based on the problem introduced in  [16]. The 
example is centered on a designer who must select a value for 
the wall thickness of a pressure vessel with otherwise 
predetermined geometry and dimensions. In this case, the 
decision maker is a seller of pressure vessels, and receives 
revenue for each pressure vessel, but incurs a cost for pressure 

 
Figure 1. The Design Decision Framing Method. The 

method provides an unbiased estimate of the value of 
design methods. 
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vessels that fail prematurely as well as the manufacturing costs 
of the pressure vessels. The business averages approximately 
$3.3 million in revenues per year. The nominal pressure, 𝑝, for 
this vessel operates at 1.4 MPa, with a radius, 𝑟, of 0.2286 m, 
and a length, 𝐿, of 1.2 m. A selling price, 𝑃𝑠, of $415 per pressure 
vessel was assumed for this nominal case, which correlates to the 
number of vessels sold, 𝑛 = 8,000 vessels. The decision maker 
must deal with uncertainty in the material’s ultimate strength, 
choosing the thickness that maximizes his profit. It is assumed 
that each pressure vessel’s material is randomly drawn from a 
normal distribution, modeling different qualities of material one 
would expect from a vendor’s batch. To select the thickness, two 
design methods are considered. To simplify the comparison 
between the two design methods, we restrict our focus to one 
year of revenues. The first design method is an algebraic method, 
based on the ASME pressure vessel code for thin walled pressure 
vessels. The second design method is an optimization method, 
based on value-driven design, utility theory, and thin walled 
pressure vessel assumptions.  

 
4.1 Algebraic Design Method 

The algebraic design method is a simplified form of [25], 
which calculates two thicknesses and selects the more 
conservative one, i.e., the thicker one: 

 
𝑆 =  𝜎𝑡𝑠/𝑁 (6) 

𝑡𝑎 =  𝑝 ∗ 𝑟/(𝑆 ∗ 𝐸 − 0.6 ∗ 𝑝) (7) 
𝑡𝑏 =  𝑝 ∗ 𝑟/(2 ∗ 𝑆 ∗ 𝐸 + 0.4 ∗ 𝑝) (8) 

𝑡𝑟𝑒𝑞  =  𝑚𝑎𝑥 (𝑡𝑎, 𝑡𝑏) (9) 
 
where 𝜎𝑡𝑠 is the ultimate tensile strength of the material, 𝑁 is the 
factor of safety, 𝑡𝑎 is the minimum required thickness at 
longitudinal seam welds, 𝑡𝑏 is the minimum required thickness 
at circular seam welds, 𝑝 is the internal pressure, 𝑟 is the radius 
of the spherical ends of the pressure vessel, 𝐸 is the weld 
efficiency of the seams, and 𝑡𝑟𝑒𝑞 is the minimum required 
thickness for the pressure vessel. A weld efficiency of 1 was 
assumed for all calculations. A factor of safety of 3.5 was used 
as per ASME standards when using the ultimate strength to 
determine the minimum required thickness [25]. 
 
4.2 Optimization Design Method 

The optimization design method chooses the thickness that 
maximizes the expected utility of the decision maker. The 
decision maker’s utility depends on the profitability of the 
business, 𝑃𝑟𝑜𝑓𝑖𝑡(𝑛𝑓 , 𝑡), which depends on the number of 
vessels sold, the material cost, and the failure cost: 

 

𝑉(𝑡) =
4

3
𝜋 ∗ (𝑟3 − (𝑟 − 𝑡)3) + 𝜋 ∗ 𝐿 ∗ (𝑟2 − (𝑟 − 𝑡)2) (10) 

𝐶𝑚(𝑡) = 𝑃𝑚 ∗ 𝑉(𝑡) (11) 
𝐶𝑓(𝑛𝑓) = 𝑃𝑓 ∗ 𝑛𝑓 (12) 

𝑃𝑟𝑜𝑓𝑖𝑡(𝑛𝑓 , 𝑡) =  𝑛 ∗ (𝑃𝑠 − 𝐶𝑚(𝑡)) − 𝐶𝑓(𝑛𝑓). (13) 

 

where 𝑉 is the volume of material per vessel, 𝐶𝑚 is the cost of 
materials per vessel, 𝑃𝑚 is the material cost, 𝑡 is the thickness of 
the material, 𝐶𝑓 is the cost incurred from failed vessels, 𝑃𝑓 is the 
per unit failure cost, 𝑛𝑓 is the number of vessels that fail, 𝑛 is the 
number of pressure vessels sold, and 𝑃𝑠 is the price of each 
pressure vessel sold. To determine the probability of a particular 
pressure vessel failing, 𝑃𝑟𝑓, the decision maker expresses his 
beliefs about the ultimate strength.  

The decision maker forms his beliefs using strength tests of 
the material. The decision maker evaluates the mean, 𝑥̅𝜎𝑡𝑠

, 
sample standard deviation, 𝑆𝜎𝑡𝑠

, and degrees of freedom, 𝜈, of 
the observed ultimate strength values and characterizes his 
beliefs using the Student’s t-distribution. Then, the probability of 
a particular pressure vessel failing is the probability that the 
ultimate strength is less than the peak stress: the t-distribution’s 
cumulative distribution function (CDF), 𝐹𝜈, evaluated at the peak 
stress. The decision maker assumes a thin walled pressure vessel, 
and so evaluates the CDF at the hoop stress, 𝜎ℎ [26]: 
 

𝜎ℎ(𝑡) =
𝑝 ∗ 𝑟

𝑡
 (14) 

𝑃𝑟𝑓(𝑡) = 𝐹𝜈(
𝜎ℎ(𝑡) − 𝑥̅𝜎𝑡𝑠

𝑆𝜎𝑡𝑠

) (15) 

 
The probability of a given number of failures is described by the 
probability mass function (pmf) of the binomial distribution:  
 

𝐵(𝑛𝑓; 𝑛, 𝑃𝑟𝑓(𝑡)) = (
𝑛

𝑛𝑓

) 𝑃𝑟𝑓
𝑛𝑓(1 − 𝑃𝑟𝑓)𝑛−𝑛𝑓 (16) 

 
Given the probability of each possible failure, the expected 
profit, E[𝑃(𝑡)], is equal to:  
 

E[𝑃(𝑡)] =  ∑ 𝐵(𝑖; 𝑛, 𝑃𝑟𝑓(𝑡)) ∗

𝑛

𝑖=0

𝑃𝑟𝑜𝑓𝑖𝑡(𝑖, 𝑡) (17) 

 
Since the decision maker is risk averse, he does not want to 

make a decision based on the expected profit, but rather choose 
the thickness which maximizes his expected utility. Although 
any monotonically increasing function can be used, we use the 
following equation for utility, which assumes a constant risk 
tolerance, R: 

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑛𝑓 , 𝑡) = 𝑅 ∗ (1 − 𝑒
−𝑃𝑟𝑜𝑓𝑖𝑡(𝑛𝑓,𝑡)

𝑅 ). (18) 

 
For businesses, a ratio of risk tolerance to sales of 0.064 has been 
commonly measured [27]. Given that sales are approximately 
$3.3 million, a risk tolerance of $212,000 is assumed.  

Risk preferences should be considered when a design 
contains uncertainty. In this case, the decision maker is uncertain 
about the material’s ultimate strength. Thus, the design method 
prescribes that the expected utility be maximized: 
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E[𝑈(𝑡)] = ∑ 𝐵(𝑖; 𝑛, 𝑃𝑟𝑓(𝑡)) ∗

𝑛

𝑖=0

𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑖, 𝑡) (19) 

  
with optimal thickness, 𝑡∗:  
 

𝑡∗ = arg max
𝑡∈𝑇

E[𝑈(𝑡)]  (20) 
 
where 𝑇 contains all positive real numbers less than the radius. 
 
4.2.1 Expert Decision Maker 

Experts are able to update their beliefs based on past 
experience. Equation (15) gives the probability of failure 
assuming that the stress is adequately described by the thin-
walled pressure vessel assumptions. However, given prior 
experience, an expert decision maker may recognize that 
Equation (15) does not properly reflect the probability of failure. 
In order to more accurately represent the probability of failure, 
the expert decision maker introduces the random variable, 𝛿, 
which is used as a multiplicative term on the hoop stress. Then, 
the decision maker’s probability of a particular pressure vessel 
failing is the expected value of the probability of failure, 
including the probability density function (PDF), 𝑓, of 𝛿: 
 

𝑃𝑟𝑓(𝑡) = ∫ 𝐹𝜈(
𝜎ℎ(𝑡) ∗ 𝛿 − 𝑥̅𝜎𝑡𝑠

𝑆𝜎𝑡𝑠

) ∗ 𝑓(𝛿)𝑑𝛿
∞

−∞

. (21) 

 
To compare the effect of experience, we will test the performance 
of the optimization design method using both Equations (15) and 
(21). The non-expert optimization design method uses Equations 
(10)-(20) while the expert optimization design method uses 
Equations (10)-(14) and (16)-(21) to select the thickness of the 
pressure vessels. 
 
4.3 Omniscient Supervisor 

The omniscient observer must evaluate the value of the two 
design methods by evaluating the pressure vessels. Therefore, 
the omniscient observer requires its own set of assumptions to 
determine failure: its own design method. To minimize bias, the 
omniscient supervisor should not use either of the design 
methods being investigated. The omniscient observer’s design 
method is similar to the optimization design method, but is made 
more conservative by calculating the Von-Mises stress from the 
tangential, radial, and longitudinal stress to reduce potential bias. 
The equations for the tangential, radial, and longitudinal stress 
are calculated in the more general thick walled pressure vessel 
case [26]: 

 

𝜎𝑡 =
𝑝 ∗ (𝑟2 + (𝑟 − 𝑡)2)

𝑟2 − (𝑟 − 𝑡)2
 (22) 

𝜎𝑟 = −𝑝 (23) 

𝜎𝑧 =
𝑝 ∗ (𝑟 − 𝑡)2

𝑟2 − (𝑟 − 𝑡)2
 (24) 

𝜎𝑣 = √𝜎𝑡
2 + 𝜎𝑟

2 + 𝜎𝑧
2. (25) 

where 𝜎𝑡, 𝜎𝑟, 𝜎𝑧, and 𝜎𝑣 are the tangential stress, radial stress, 
longitudinal stress, and Von-Mises stress, respectively. In this 
case, the omniscient supervisor compares the Von-Mises stress 
to the ultimate strength to determine the true probability of 
failure, 𝑃𝑟𝑓

†, based on the ultimate strength’s true mean, 𝜇𝜎𝑡𝑠
, 

and variance, 𝑣𝑎𝑟𝜎𝑡𝑠
: 

 

𝑃𝑟𝑓
†(𝑡) = 𝐹𝜈(

𝜎𝑣(𝑡) − 𝜇𝜎𝑡𝑠

√𝑣𝑎𝑟𝜎𝑡𝑠

). (26) 

 
Here the ultimate strength’s true mean and standard deviation are 
used, as the omniscient supervisor has no uncertainty concerning 
the distribution of ultimate strengths. The omniscient supervisor 
evaluates the probability of failure based on the normal 
distribution’s CDF, which reflects the true distribution of 
ultimate strengths.  

In addition to determining the probability of failure, the 
omniscient supervisor also accounts for the design process costs. 
The omniscient supervisor explicitly considers the additional 
computational cost,  𝐶𝑂, based on the amount of time, 𝑡𝑖𝑚𝑒, 
necessary to determine 𝑡∗ for a given contextual situation, 𝑥𝑖, to 
determine the omniscient supervisor’s evaluation of profit: 

 
𝐶𝑂 = 𝑃𝑂 ∗ 𝑡𝑖𝑚𝑒(𝑥𝑖) (27) 

𝑃𝑟𝑜𝑓𝑖𝑡†(𝑛𝑓 , 𝑡) = 𝑛(𝑃𝑠 − 𝐶𝑚(𝑡)) − 𝐶𝑓(𝑛𝑓) − 𝐶𝑂. (28) 
 
Thus, for a particular contextual situation and a given thickness, 
the omniscient supervisor can determine the expected utility, 
𝐸[𝑈†(𝑡)]: 
 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦†(𝑛𝑓 , 𝑡) = 𝑅 ∗ (1 − 𝑒
−𝑃𝑟𝑜𝑓𝑖𝑡†(𝑛𝑓,𝑡)

𝑅 ). (29) 

E[𝑈†(𝑡)] = ∑ 𝐵(𝑖; 𝑛, 𝑃𝑟𝑓
†(𝑡)) ∗

𝑛

𝑖=0

𝑈𝑡𝑖𝑙𝑖𝑡𝑦†(𝑖, 𝑡). (30) 

 
The omniscient supervisor uses Equations (22)-(30) to evaluate 
each of the design methods: the algebraic, non-expert 
optimization, and expert optimization. By comparing the 
expected utility for each design method, the most preferred 
design method can be determined for a given contextual 
situation. However, we are concerned about more than one 
particular contextual situation. 

In this computational experiment, we aim to determine 
which method is best across a given context—the range of 
contextual situations in which the design methods are more 
preferred than the other. Table 1 shows the variables and their 
bounds delineating the context. The variable, 𝑟, is the radius of 
the spherical ends of the cylindrical pressure vessel. The rated 
pressure, 𝑝, is the specified internal pressure of the pressure 
vessel relative to the external pressure. The length, 𝐿, is the 
length of the cylindrical portion of the pressure vessel, excluding 
the spherical caps. To allow for a fair comparison between the 
methods, the market price is assumed independent of the method, 
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but varying across the contextual situations. It is determined by 
applying a profit margin, 𝑃𝑀, applied to the costs associated 
with the optimal thickness, 𝑡†, as determined by the omniscient 
supervisor under perfect information: 

 

𝑃𝑠 =
𝑃𝑟𝑓

†(𝑡†)𝑃𝑓 + 𝐶𝑚(𝑡†)

1 − 𝑃𝑀
 (31) 

 
Because only material and failure costs are considered, the lower 
and upper bounds of the profit margin are chosen to be quite high 
so both design methods result in reasonable profits. The per unit 
material cost, 𝑃𝑚, is the cost of a cubic meter of steel. The per 
unit failure cost, 𝑃𝑓, includes payment for expected damage to 
property and nearby individuals. The per unit computing cost, 
𝑃𝑂, is included to account for the additional cost of the 
optimization design method over the algebraic design method. 
The costs for model and code development are ignored for both 
design methods, and the time to run the algebraic design method 
is considered negligible. The optimization cost is based on the 
average cost of using Amazon’s EC2 m3.large and m3.2xlarge 
on demand computing services using Windows [28]. The true 
mean of the ultimate strength, 𝜇𝜎𝑡𝑠

, and the true standard 
deviation of the ultimate strength, 𝜎𝜎𝑡𝑠

, are characteristics of the 
distribution of ultimate strengths in delivered steel. The values, 
and choice of normal distribution, are those of delivered high 
grade streel [29]. The decision maker is given information about 
this distribution in the form of strength tests that reveal the 
ultimate strength of a plate of steel, randomly selected from the 
true distribution. The number of strength tests, 𝑛𝑠𝑡, reflects the 
amount of information available to the decision maker. The 
strength tests are samples of the ultimate strength from the true 
distribution. The decision maker then uses those samples and 
determines the sample mean, 𝑥̅𝜎𝑡𝑠

, sample standard deviation, 
𝑆𝜎𝑡𝑠

, and the number of degrees of freedom, 𝜈, to use as his 
beliefs in Equation (15) for the non-expert optimization design 

method, and Equation (16) for the expert optimization design 

method. The algebraic design method uses only the sample mean 
as the ultimate strength in Equation (6). 

To gain a deeper understanding of the difference in 
performance between the two design methods, we performed a 
10-level full factorial across the number of strength tests and the 
failure cost. We focus on these two variables because they 
emphasize the difference between the two design methods: 
implicitly versus explicitly accounting for uncertainty and risk. 
The number of strength tests determines the amount of 
information available to the decision maker and hence his or her 
uncertainty about the material properties while the failure cost 
strongly influences the risk faced by the designer.  

Finally, the experiments are performed for both a risk 
neutral and a risk averse decision maker to investigate the effect 
of risk preferences on the choice of design methods. 
5 RESULTS 

We first focus on the comparison for the non-expert 
optimization design method and the algebraic design method. 
Figure 2 shows the difference in expected profit between the 
non-expert optimization and algebraic design methods for the 
risk neutral and risk averse cases. It is important to note that 
positive values refer to the non-expert optimization design 
method being preferred. The algebraic design method is only 
preferred in two regions for the risk neutral case. The first region 
is the area at the top of the figure, where the non-expert is well 
informed about the material strength. Counterintuitively, this 
suggests that a non-expert decision maker with available 
information may actually be worse off by using the optimization 
design method. As available information increases, uncertainty 
about the material strength decreases. Thus, to maintain a similar 
probability of failure, the thickness of the pressure vessel can be 
decreased. However, the non-expert optimization design method 
incorrectly characterizes the probability of failure as compared 
to the omniscient supervisor. By assuming that Equation (14) is 
a fair approximation of the max stress in the pressure vessel, the 
non-expert is too aggressive in sizing the pressure vessel, 
recommending overly thin pressure vessels. Aggressive sizing of 
the pressure vessels also occurs for the risk averse case, but the 
risk aversion causes the design method to be more conservative 
even in the high available information region. For this region, the 
uncertainty in the material strength is dwarfed by the error in 
judgment introduced by Equation (14). Thus, even with perfect 
information, the algebraic design method may be preferred for 
certain per unit failure costs. If the optimization design method 
more accurately modeled the probability of failure, additional 
information would benefit the optimization design method. This 
is confirmed by Figure 3, which shows the comparisons of the 
expert optimization design method and the algebraic design 
method for the risk neutral and risk averse cases. Now, the expert 
optimization design method is always more preferred as 
additional information becomes available.  

The results of Figure 3 also show that the expert 
optimization design method is preferred more as the per unit 
failure cost decreases. This is true even when considering risk 
aversion. The slope of the difference in expected profit as a 
function of available information decreases as compared to the 

Table 1. Variables in the context 

 Symbol Lower 
Bound 

Upper 
Bound 

Pressure vessel radius [m] 𝑟 0.183 0.274 
Pressure vessel length [m] 𝐿 0.96 1.44 

Rated pressure [MPa] 𝑝 11.2 16.8 
Profit margin [%] 𝑃𝑀 64.8 73.4 

Material cost [$/m3] 𝑃𝑚 4,040 6,060 
Failure cost [$/vessel] 𝑃𝑓 80,000 120,000 

Computing cost [$/hour] 𝑃𝑂 0.518 0.777 
True mean of the ultimate 

strength [MPa] 𝜇𝜎𝑡𝑠
 340 510 

True variance of the 
ultimate strength [MPa] 𝑣𝑎𝑟𝜎𝑡𝑠

 16.2 24.4 

Number of strength tests 
[samples] 𝑛𝑠𝑡 24 36 
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risk neutral case. Conversely, the slope increases as a function of 
the per unit failure cost., is a maximum at the lowest per unit 
failure cost, where available information has little influence on 
the difference in expected profit. In the extreme, if the per unit 
failure cost was zero, then the problem becomes a minimization 
of material cost: a minimization of thickness, where knowledge 
of the material strength is irrelevant.  

The algebraic design method recommends a thickness 
independent of information or failure cost. With sufficient Monte 
Carlo samples, the average thickness recommended by the 
algebraic design method is related to the true mean strength of 
the material, and thus approximately constant at 28 mm. The 
algebraic design method implicitly accounts for the probability 
of failure and the per unit failure cost in Equations (6) through 
(9), by using safety factors. If these implicit assumptions do not 
match the contextual situation well, the design method may not 
perform well, as is the general case. Typically, the algebraic 
design method is too conservative, recommending a pressure 
vessel that is too thick. Figure 4 shows the average thickness 
recommended by the expert optimization design method for the 
risk neutral and risk averse cases. Except in the region to the 
lower right, the thickness is less than the algebraic design 
method’s thickness of 28 mm. While being excessively 
conservative decreases the average performance of the design 
method by increasing the material cost, it prevents extremely 
poor performance. This allows the algebraic design method to 
outperform the non-expert and expert optimization design 
methods when available information is limited and the per unit 
failure cost is high.  

In general, the optimization design method performs better 
than the algebraic design method, but can suffer from occasional 
poor performance. This is readily seen from Figure 3 in the lower 
right region. The cause for the poor performance is twofold: the 

optimization design method is overly conservative, and a series 
of failed pressure vessels increases the average failure cost. The 
optimization design method recommends on average an overly 
thick pressure vessel, but will occasionally recommend an overly 
thin pressure vessel. First, it can be easily seen from Figure 4 that 
the average thickness in the lower right is greater than that of the 
algebraic design method for both the risk neutral and risk averse 
cases. This occurs because the amount of information is so 
limited that the decision maker in the optimization design 
method must consider extremely low material strengths as 
reasonably likely. In turn, the optimization design method 
recommends very thick pressure vessels to reduce the probability 
of failure. The expected thickness tends to decrease with 
increasing strength test samples as the decision maker becomes 
more confident in the shape of the underlying distribution. Said 
another way, because the number of degrees of freedom 
increases, the sample standard deviation tends to decrease, and 
the decision maker no longer needs to consider very low ultimate 
strengths as reasonably likely. Second, Figure 5 shows the 
average failure cost for the expert optimization design method, 
with a quickly rising peak occurring in the lower right region. 
This occurs because of the relatively limited number of strength 
test samples. While on average the expected thickness is greatest 
in this region, there are cases where a cluster of high strength test 
samples misleads the decision maker into believing the ultimate 
strength has a comparatively higher mean and lower standard 
deviation than the true distribution would suggest. This belief 
will mislead a rational decision maker into choosing a very thin 
pressure vessel, and result in a high number of failures. The 
fewer strength test samples are taken, the more likely this type 
of event can occur. Thus, despite the thickness being greater on 
average, the occasional thin pressure vessel greatly increases the 
expected costs associated with failure. This phenomenon also 

 
Figure 2. Contour plots of the difference in expected 

profits between the non-expert optimization and 
algebraic design methods  for the risk neutral (left) and 

risk averse (right) cases. Positive values indicate 
preference for the non-expert optimization design 

method in the risk neutral case. 

 
Figure 3. Contour plots of the difference in expected 
profits between the expert optimization and algebraic 

design methods for the risk neutral (left) and risk 
averse (right) cases. Positive values indicate 

preference for the non-expert optimization design 
method in the risk neutral case. 
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appears for the algebraic design method, although not to the 
same degree because of the safety factor. As a result, expected 
costs associated with failure for the algebraic design method are 
extremely close to zero for all contextual situations investigated. 
Clustering never benefits the decision maker, as even when 
strength test samples group on the lower end of the strength tests, 
the decision maker will be more conservative and choose a 
greater thickness than is truly necessary. Any deviation between 
the decision maker’s beliefs and the true distribution of the 
ultimate strength has a negative effect on profitability for both 
design methods, but especially so for the optimization design 
method, and even more so in cases where the ultimate strength 
is overestimated. 

 
6 CONCLUSIONS 

Two design methods for the design of pressure vessels have 
been investigated. The design methods were compared using a 
design decision framing method to determine each design 
method’s relative value for different contextual situations. The 
design decision framing method uses an omniscient supervisor 
who provides a fair and unbiased comparison of the design 
methods. Comparing the design methods, the expert 
optimization design method was preferred over a larger 
applicability context. However, the algebraic design method was 
preferred in some regions, in particular when compared to the 
non-expert design method. 

The expert optimization design method outperformed the 
non-expert optimization design method by using good judgment. 
In this case, the expert used his experience to update his beliefs 
about the probability of failure to approximate reality more 
accurately. Designers that ensure their models and methods are 
accurate representations of reality benefit over those who do not. 
However, even expert designers who exercise good judgment 

may be misled in special cases where available information is 
limited, as was the case for limited available information and a 
high failure cost. This emphasizes the need for good designers to 
gain sufficient information to be confident in their knowledge 
and to use applicable methods. 

A design method should only be used in its applicability 
context, and care must be exercised when the applicability 
context is not explicit. One example is the algebraic design 
method, which makes assumptions for the failure cost and the 
material cost. In regions of low failure cost, the algebraic design 
method performed very poorly as compared to both the non-
expert and expert optimization design methods. 

There are limitations to the design decision framing method. 
While the DDFM is based on normative decision theory and 
information theory, additional tests and investigations are 
necessary to prove it is generally applicable to all design methods 
that recommend actions. Also, in our motivating example, we 
did not consider any future actions that would depend on the 
chosen alternative. Including such actions would greatly increase 
the computational complexity. It is also necessary for the 
compared design methods to be similar, that is, to recommend 
similar types of actions. In our motivating example, we only 
investigated design methods that recommended a pressure 
vessel’s thickness. If the two design methods recommend 
dissimilar actions, they cannot be compared in a straightforward 
manner. One way to compare dissimilar design methods is to 
consider sets of design methods that perform similar functions 
when used together. In addition to the above limitations, the 
design decision framing method also requires a design method 
to act as the omniscient supervisor. If this design method is not 
a good model of reality, then the results will similarly not be 
appropriate. 

 

Figure 4. Contour plots of the expected thickness for the 
expert optimization design method for the risk neutral 

(left) and risk averse (right) cases. 

 

Figure 5. A contour plot of the expected total costs 
associated with failure for the expert optimization design 

method in the risk averse case. 
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In future work, we will compare design methods to analyze 
and design flexible systems, systems that may modify their 
configuration because of the changing environment. Currently 
these systems are analyzed using a real options analysis and 
many new design methods are being proposed. The design 
decision framing method may be able to characterize such design 
methods and identify the conditions under which a given design 
method should be used.  
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