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ABSTRACT

In this paper, we introduce a research method for comparing
computational design methods. This research method addresses
the challenge of measuring the difference in performance of
different design methods in a way that is fair and unbiased with
respect to differences in modeling abstraction, accuracy and
uncertainty representation. The method can be used to identify
the conditions under which each design method is most
beneficial. To illustrate the research method, we compare two
design methods for the design of a pressure vessel: 1) an
algebraic approach, based on the ASME pressure vessel code,
which accounts for uncertainty implicitly through safety factors,
and 2) an optimization-based, expected-utility maximization
approach which accounts for uncertainty explicitly. The
computational experiments initially show that under some
conditions the algebraic heuristic surprisingly outperforms the
optimization-based approach. Further analysis reveals that an
optimization-based approach does perform best as long as the
designer applies good judgment during uncertainty elicitation.
Anignorant or overly confident designer is better off using safety
factors.

1 INTRODUCTION

Choosing a design method is an important step in any
design. This choice ultimately influences both the design process
and the final artifact. Ideally, a designer chooses a method that
leads to the most desired design outcome. This outcome not only
depends on the value of the final artifact but also on the time and
cost invested during the design process [1]. Because achieving
higher artifact value typically requires more design effort,
designers must choose a design method that best balances artifact
value and design process resources for a particular design
situation. The situation is important because design methods
perform differently in different contextual situations. For
example, an electrical engineering design method is not likely to
be as valuable as a chemical engineering design method in a
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chemical engineering situation. Because the value of the design
method may be substantial, it is important to choose the most
appropriate design method.

To choose the best design method, we must first be able to
compare design methods. Real-world examples are quite limited
for a variety of reasons. First, solving the same design problem
with multiple design methods can take months or years and is
thus prohibitively expensive. Second, comparing the value of
two different final artifacts is difficult, again because of costs,
but also because the two cannot fairly be placed in the same
market environment without affecting each other. As a
consequence, very few real-world comparisons are published in
the literature, and, because context matters, any existing
comparisons offer little help in valuing the design methods.

Instead, researchers may use computational models and
simulations to compare design methods. Simulation is relatively
inexpensive and allows thus for a broad comparison across many
design problems and situations. However, comparing design
methods with simulations still presents many challenges. One
challenge is to evaluate the results of those different designs
methods, the design artifacts and design process costs, in a fair
and unbiased way. How should one compare two design methods
when one suggests a vessel fails, while the other suggests the
vessel does not fail? Clearly, if one design method is used as the
predictive analysis model then this will bias the comparison.
Instead, the design methods could be compared using an
unbiased third design method. This is the basis for the Design
Decision Framing Model (DDFM), which is used in the research
method to compare design methods. The introduction of the
DDFM is the primary contribution of this paper. It is further
described in the methodology section of this paper and can be
used to best select a design method for a given context.

To illustrate the DDFM, we compare two different design
methods for the design of a pressure vessel, 1) an algebraic
approach, based on the ASME pressure vessel code, which
accounts for uncertainty implicitly through safety factors, and 2)
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an optimization-based, expected-utility maximization approach
which accounts for uncertainty explicitly. The design problem
and corresponding results are provided in the motivating
example section. Finally, we present the results and conclusions
of the research method and the motivating example.

2 RELATED WORK

Previous work can be divided into two areas: uncertainty
analysis in design and value of information theory in design.

In design, uncertainty may be accounted for in many
different ways. Most commonly, uncertainty is addressed
implicitly using safety factors. Such safety factors may result
from regulation or standardization, increasing with the size of the
uncertainty and severity of the consequences of failure [2]. The
challenge with safety factors is that they often lead to over-
design because the safety factors must be prescribed
conservatively to cover a broad set of situations.

Uncertainty may also be captured explicitly using
probability theory [3]. Doing so has the advantage that it allows
the designer to frame the design problem explicitly as a decision
problem under uncertainty. A rational decision maker, who aims
to act in a fashion that is consistent with his beliefs and
preferences, would then choose the design alternative that
maximizes his expected utility [4]. For instance, one could use
an optimization algorithm to maximize an estimate of the
expected utility determined using Monte Carlo simulation [5].
Compared to a safety-factor approach, modeling and solving
such an optimization problem requires a lot more time and
resources.

Rather than framing the design problem as expected utility
maximization, Reliability Based Design Optimization (RBDO)
frames it as a maximization of performance while meeting a
specified reliability. In general, RBDO suffers from similar
computational complexity challenges as expected utility
maximization.  Researchers have therefore  proposed
simplifications, such as the first-order reliability method [6] and
the second-order reliability method [7], which define
performance functions and approximate those performance
functions using first and second order Taylor expansions,
respectively. In these approaches, accuracy of the analysis is
sacrificed in favor of reduced computation time. Care must be
used when the failure region is not well approximated by a first
or second order equation.

Some researchers have argued that probability theory does
not apply in design when insufficient data is available to
characterize the wuncertainties [8-11]. However, such a
conclusion is usually based on an outdated frequentist
interpretation of probability, and no advantage over Bayesian,
subjectivist probability theory, has been demonstrated.

In this paper, to compare the quality of different design
methods, we build on an extension of decision theory, namely,
value of information theory [12, 13]. Its aim is to determine the
economic value of information and to provide guidance
regarding the price one should be willing to pay to consult a
source of information. Information is valuable only if it may
change the decision maker’s choice to a more valuable

alternative. In design, the performance of an artifact is often
predicted using models. These models serve as sources of
information that help inform the designer in his decisions.
Treated this way, the concepts of value of information theory can
also apply to engineering models [14]. Valuing information
enables decision makers to rationally choose whether to gather
additional information until more valuable alternatives present
themselves. To decide which actions to take, in [15], a method
for conceptual design is prescribed in which the expected value
of a refinement of the design space is compared with a value of
information approach to specifying evaluation functions. Value
of information theory has also been used to compare artifact
refinement and analysis in design methods [16], allowing the
decision maker to choose the next synthesis or analysis action
based on the currently available information.

In summary, different design methods analyze and account
for uncertainty differently. These methods lead to different
design choices, but also require more or less time and effort to
be applied, so that it is not clear when one method is superior to
another. Using value of information theory, we propose in this
paper a research method that allows us to compare different
design methods fairly, so that researchers can focus on further
improving the best methods for specific contexts.

3 METHODOLOGY

Design methods are rarely compared directly. This leads to
the questions: If multiple design methods are available but
suggest different actions, which one should one use? How should
design methods be compared for a given context? These are the
questions this paper attempts to answer. In this section, we
describe a research method for comparing different design
methods. The intended use of this research method is to
characterize the performance of different design methods
rigorously and to collect evidence in support of claims regarding
the performance of design methods.

3.1 A Metric for Comparing Design Methods

The focus in this paper is on computational design methods
that support design decision making. Each design method
corresponds then to a particular way of framing a design
decision. Tversky and Kahneman define a decision frame as “the
decision-maker’s conception of the acts, outcomes, and
contingences associated with a particular choice” [17]. We define
the design frame of a design method as consisting of a specific
design space, set of modeling assumptions, and a search strategy
used for decision making. The design space consists of the set of
alternatives that will be evaluated using the set of modeling
assumptions, as instructed by the search strategy. The outcomes
of a design method are a chosen artifact and associated design
process costs.

To compare design methods, we must also define the metric
for comparison. This metric should be related to the goal of
design, as described by Herbert Simon in his seminal work on
the Sciences of the Artificial [18]: “Everyone designs who
devises courses of action aimed at changing existing situations
into preferred ones.” This improvement in situations can be

Copyright © 2017 by ASME



characterized mathematically by a value function. We adopt the
perspective of a designer whose value function is profit, and
more is better. The designer receives profit by designing an
artifact and extracting value, perhaps by selling the artifact.
However, the designer must first expend time and effort, design
process costs, to design the artifact, whose value may not be
realized for a considerable time. To account for the time
difference between the value streams, a designer may use Net
Present Value (NPV) [19, 20]. Further, because the value streams
occur in the unknown future, the designer may be uncertain
about the precise value of the NPV. This uncertainty presents
itself as risk to the designer. To account for risk preferences,
rational decision makers consider the expectation, E, of utility as
their metric of value [4]. In this case, utility, U, is the value to the
decision maker derives from the sale of an artifact. The objective
of a design is then to maximize the expected utility of the NPV
of the artifact and design process costs:

A: max E [U (NPV(a, CDP(A)))] (1)

a€eA

where a is an artifact from the set of all possible artifacts, A, and
Cpp 1s the design process cost. However, we need to reframe
Equation (1) to consider the effect of design methods. A design
method is a sequence of design actions for selecting the artifact.
Designers search for the best design method, which will have an
appropriate tradeoff between the value of the artifact and the
design process costs:

P: max E[U (VP (ap), Cor ) )] @)

where P is the set of all possible design methods. We now have
a metric, the expected utility of the NPV, for valuing design
methods for a specific contextual situation. This metric, and the
value of a design method, depends on how much the design
method benefits the designer. That is, the value of a design
method depends on how much better it performs as compared to
the alternative design methods, the value is relative.

So far we have ignored the fact that the value of a design
method depends on other factors that are included in the
contextual situation. We need a metric for comparing across a
range of different contextual situations, a context. A context may
include properties of the artifact not specified by a, information
about a competitor’s product, beliefs concerning material
properties, etc. Design methods may perform differently in
different contextual situations if either design method’s
outcomes change as a result. For example, a design method that
has many steps and requires a large quantity of time and effort
may be inappropriate if there is limited time as the design method
will be too costly or yield an artifact of low value. Our metric for
comparing design methods must then also change as a range of
contextual situations is considered. Assuming each contextual
situation is equally likely, the metric for comparing design
methods then becomes the average expected utility. If a design
method has the greatest average expected utility for a given

context, it is preferred for this context. We call such a context the
applicability context, as this design method should be used if a
designer’s contextual situation is within this context.

3.2 A Method to Compute the Value of Design

Methods

To overcome the challenges of evaluating design methods in
the real world, we propose to use computational experiments to
evaluate design methods. Instead, researchers may use
computational experiments to evaluate design methods. Unlike
real world experiments, computational experiments can repeat
the exact same contextual situation, allowing for the expected
utility to be calculated. Since the cost of computational
experiments is low compared to real world experiments, the
entire context can be explored to determine the average expected
utility. Furthermore, computational experiments can evaluate
design methods without the design methods mutually
influencing each other.

However, computational experiments introduce their own
challenges. While real world experiments are evaluated by actual
outcomes, computational experiments must use models of reality
to predict the performance of a design method. But this presents
a problem if design methods utilize different assumptions or
models. For example, consider two design methods that
recommend two different minimum thicknesses of a pressure
vessel to avoid failure under the same load. For a given
contextual situation, there is only one minimum thickness to
avoid failure. Therefore, one or both of the design methods must
be incorrect in determining the minimum thickness to avoid
failure.

In order to evaluate design methods fairly, we must be able
to evaluate their outcomes using similar assumptions. However,
if one of the design methods were used to evaluate the outcomes,
there would be a clear bias towards this design method. This
problem arises in [21], where the concept of imprecise
probabilities is considered and compared to a probabilistic
characterization of uncertainty. A motivating example of a
pressure vessel is used to show how both uncertainty
representations affect the value of a decision. To compare the
two methods, we introduce an “omniscient supervisor” who
knows the (artificially generated) truth, controls how much of
this truth is revealed to the designer, and determines the value of
artifacts and process costs resulting from each design method, so
that the methods can be objectively compared. The omniscient
supervisor removes the bias from choosing a particular design
method’s computation of the artifact value.

The above ideas form the basis of the Design Decision
Framing Method (DDFM). Figure 1 shows the structure of the
DDFM. To evaluate design methods, the DDFM considers the
context, allows decision makers to use the design methods in
developing the final artifacts, uses the omniscient supervisor to
evaluate the “true” value of each artifact, and then combines this
value with the associated costs of the design process to determine
the value of the design process for each design method. Because
no one can truly know the “truth,” researchers can then further
reduce bias by investigating different values of the truth. In
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Figure 1, this is equivalent to considering different contextual
situations. The value of the design method is then averaged over
these different contextual situations, including different truths.
The DDFM thus provides a fair and unbiased computational
framework for evaluating different design methods.

The DDFM is limited by the assumptions that it relies upon.
For one, future decisions need to be either ignored or
straightforward such that they can be evaluated by the
omniscient supervisor. If the decisions are complex, the research
method may require substantial computational resources. The
DDFM also assumes that the values and model of the truth
reasonably approximate reality. These assumptions are a
reasonable approximation to applying the design methods in
practice while being executed at a comparably smaller cost that
is suitable for academic research.

3.2.1 Computational Considerations

Computational tools are considered to make the application
of the DDFM computationally tractable. These tools are used in
a computational experiment to compare different design
methods, and further described in the motivating example
section. The experiment focuses on comparing the two design
methods over a range of contextual situations to determine which
is preferred.

A design method is preferred for a context if its average
expected utility is greater than the alternative. For a range of
contextual situations, the omniscient supervisor can determine
average expected utility, U, of the NPV based on the outcomes
of the decision maker’s search for an artifact, p, and the
particular contextual situation, x, from the set of possible
contextual situations, X, and with a probability density function,

f ()

Investigator Selects a Context

Omniscient Supervisor Reveals Partial
Information to Decision Maker

Decision Maker Selects a Design Frame

Decision Maker Selects the Artifact

Explore different beliefs
SIXOJU0D JUSISLIIP d10[dxXy

Omniscient Supervisor Evaluates the
Artifact and Design Process

Investigator Evaluates the Design
Method

Figure 1. The Design Decision Framing Method. The
method provides an unbiased estimate of the value of
design methods.

0= [ feoute.dx 3)
XEX

where the T denotes that the function is evalutated by the
omniscient observer, as compared to a decision maker. Equation
(3) requires that we know truth, and therefore the future.
However, the future is unknowable, and we therefore do not
know the truth. In Equation (2), this is accounted for in the
expected utility since the truth is considered a part of the
contextual situation, thus considering a range of truths as well.

The average utility could then be approximated by
computing the expectation with the Monte Carlo Method [5, 22].
This approximation discretizes Equation (3) and the accuracy
depends on the number of samples, m:

g7 y ut
= DIACED )
i=1
where we replace the probability density function with 1/m
since we are using a simple average. But we are not only
interested in computing one average utility, as we are comparing
potentially many different design methods.

To improve the accuracy of the expectation estimate, we use
common random numbers [23, 24]. By using the same samples
to determine both estimates, the variance of the difference in
estimates is reduced when the estimates are correlated [22, 24].
The difference in expected utility, AU, is thus estimated as:

IR

AU

IR

1 m
;Z Uty %) = Ut (2 %) ®)

Where p; and p, refer to the first and second design methods,
respectively. For this paper, p; refers to the optimization design
method, and p, refers to the algebraic design method. When AU
is positive, the optimization heuristic is preferred, when
negative, the algebraic heuristic. These computational tools
allow for a computationally efficient determination of which
design method is preferred for a given context.

To characterize the design methods, we investigate sets of
contextual situations. By comparing the design methods over a
range, we can identify how much the variables influence the
preference of each design method. The range of values of the
variables will be the context for the motivating example, in
addition to variables that characterize the unknown truth. In this
way we can analyze, for example, how a designer’s beliefs of the
truth can affect the most preferred design method.

4 MOTIVATING EXAMPLE

To explore the DDFM, an example study of a pressure vessel
is investigated, based on the problem introduced in [16]. The
example is centered on a designer who must select a value for
the wall thickness of a pressure vessel with otherwise
predetermined geometry and dimensions. In this case, the
decision maker is a seller of pressure vessels, and receives
revenue for each pressure vessel, but incurs a cost for pressure
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vessels that fail prematurely as well as the manufacturing costs
of the pressure vessels. The business averages approximately
$3.3 million in revenues per year. The nominal pressure, p, for
this vessel operates at 1.4 MPa, with a radius, 7, of 0.2286 m,
and a length, L, of 1.2 m. A selling price, P, of $415 per pressure
vessel was assumed for this nominal case, which correlates to the
number of vessels sold, n = 8,000 vessels. The decision maker
must deal with uncertainty in the material’s ultimate strength,
choosing the thickness that maximizes his profit. It is assumed
that each pressure vessel’s material is randomly drawn from a
normal distribution, modeling different qualities of material one
would expect from a vendor’s batch. To select the thickness, two
design methods are considered. To simplify the comparison
between the two design methods, we restrict our focus to one
year of revenues. The first design method is an algebraic method,
based on the ASME pressure vessel code for thin walled pressure
vessels. The second design method is an optimization method,
based on value-driven design, utility theory, and thin walled
pressure vessel assumptions.

4.1 Algebraic Design Method

The algebraic design method is a simplified form of [25],
which calculates two thicknesses and selects the more
conservative one, 1.e., the thicker one:

S = o,5/N (6)

ty = p*7/(S*E—0.6%p) @)
t, =px*x1r/(2*S*E+ 0.4 xp) ®)
treq = max(ta' tb) (9)

where g, is the ultimate tensile strength of the material, N is the
factor of safety, t, is the minimum required thickness at
longitudinal seam welds, t;, is the minimum required thickness
at circular seam welds, p is the internal pressure, r is the radius
of the spherical ends of the pressure vessel, E is the weld
efficiency of the seams, and t,.q is the minimum required
thickness for the pressure vessel. A weld efficiency of 1 was
assumed for all calculations. A factor of safety of 3.5 was used
as per ASME standards when using the ultimate strength to
determine the minimum required thickness [25].

4.2 Optimization Design Method

The optimization design method chooses the thickness that
maximizes the expected utility of the decision maker. The
decision maker’s utility depends on the profitability of the
business, Profit(nf, t), which depends on the number of
vessels sold, the material cost, and the failure cost:

V(t) =§n* - -t +axLx(@?>—(r-1t)? (10)

Cn(t) = Py x V(1) an
Cr(ng) = Pr g (12)
Profit(nf, t)=nx(P —Cn(®) — Cf(nf). (13)

where V is the volume of material per vessel, Cp, is the cost of
materials per vessel, P, is the material cost, t is the thickness of
the material, Cf is the cost incurred from failed vessels, Py is the
per unit failure cost, ny is the number of vessels that fail, n is the
number of pressure vessels sold, and P, is the price of each
pressure vessel sold. To determine the probability of a particular
pressure vessel failing, Pry, the decision maker expresses his
beliefs about the ultimate strength.

The decision maker forms his beliefs using strength tests of
the material. The decision maker evaluates the mean, ¥,
sample standard deviation, Sy, , and degrees of freedom, v, of
the observed ultimate strength values and characterizes his
beliefs using the Student’s t-distribution. Then, the probability of
a particular pressure vessel failing is the probability that the
ultimate strength is less than the peak stress: the t-distribution’s
cumulative distribution function (CDF), E,, evaluated at the peak
stress. The decision maker assumes a thin walled pressure vessel,
and so evaluates the CDF at the hoop stress, g, [26]:

on() =P (14)
Pry(t) = Fv(—ah(t; — Yousy (15)

The probability of a given number of failures is described by the
probability mass function (pmf) of the binomial distribution:

n
B(ns;n, Pre(0)) = (nf> Prs™ (1 — Prp)" " (16)

Given the probability of each possible failure, the expected
profit, E[P(t)], is equal to:

n

E[P()] = ZB(i;n, Pry(t)) * Profit(i,t) (17)

i=0

Since the decision maker is risk averse, he does not want to
make a decision based on the expected profit, but rather choose
the thickness which maximizes his expected utility. Although
any monotonically increasing function can be used, we use the
following equation for utility, which assumes a constant risk
tolerance, R:

M) (18)

Utility(ns, t) = R * <1 —e R

For businesses, a ratio of risk tolerance to sales of 0.064 has been
commonly measured [27]. Given that sales are approximately
$3.3 million, a risk tolerance of $212,000 is assumed.

Risk preferences should be considered when a design
contains uncertainty. In this case, the decision maker is uncertain
about the material’s ultimate strength. Thus, the design method
prescribes that the expected utility be maximized:
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E[U(D)] = Z B(i;n, Pry(t)) + Utility(i, £) (19)

i=0
with optimal thickness, t*:

t* = arg max E[U(1)] (20)
where T contains all positive real numbers less than the radius.

4.2.1 Expert Decision Maker

Experts are able to update their beliefs based on past
experience. Equation (15) gives the probability of failure
assuming that the stress is adequately described by the thin-
walled pressure vessel assumptions. However, given prior
experience, an expert decision maker may recognize that
Equation (15) does not properly reflect the probability of failure.
In order to more accurately represent the probability of failure,
the expert decision maker introduces the random variable, &,
which is used as a multiplicative term on the hoop stress. Then,
the decision maker’s probability of a particular pressure vessel
failing is the expected value of the probability of failure,
including the probability density function (PDF), f, of §:

o= RO e )

- Ots

To compare the effect of experience, we will test the performance
of the optimization design method using both Equations (15) and
(21). The non-expert optimization design method uses Equations
(10)-(20) while the expert optimization design method uses
Equations (10)-(14) and (16)-(21) to select the thickness of the
pressure vessels.

4.3 Omniscient Supervisor

The omniscient observer must evaluate the value of the two
design methods by evaluating the pressure vessels. Therefore,
the omniscient observer requires its own set of assumptions to
determine failure: its own design method. To minimize bias, the
omniscient supervisor should not use either of the design
methods being investigated. The omniscient observer’s design
method is similar to the optimization design method, but is made
more conservative by calculating the Von-Mises stress from the
tangential, radial, and longitudinal stress to reduce potential bias.
The equations for the tangential, radial, and longitudinal stress
are calculated in the more general thick walled pressure vessel
case [26]:

P+ -0?

Ry CyoY (22)
Or = —Pp (23)

% (r — )2
g o P07 (24)

Z rz—(r—1t)?

o, =+ 0.2+ 0,2+ 0,2 (25)

where oy, 0,, 0,, and o0, are the tangential stress, radial stress,
longitudinal stress, and Von-Mises stress, respectively. In this
case, the omniscient supervisor compares the Von-Mises stress
to the ultimate strength to determine the true probability of
failure, PrfT, based on the ultimate strength’s true mean, pg,,
and variance, vary, :

o,
[var, )- (26)

Here the ultimate strength’s true mean and standard deviation are
used, as the omniscient supervisor has no uncertainty concerning
the distribution of ultimate strengths. The omniscient supervisor
evaluates the probability of failure based on the normal
distribution’s CDF, which reflects the true distribution of
ultimate strengths.

In addition to determining the probability of failure, the
omniscient supervisor also accounts for the design process costs.
The omniscient supervisor explicitly considers the additional
computational cost, C,, based on the amount of time, time,
necessary to determine t* for a given contextual situation, x;, to
determine the omniscient supervisor’s evaluation of profit:

Co = P, * time(x;) 27)
Profitt(ns, t) = n(P — C(®) — C(ns) — Co. (28)

Thus, for a particular contextual situation and a given thickness,
the omniscient supervisor can determine the expected utility,
E[Ut(®)]:

—profitt(npt)
Utilityt(ns, t) = R * (1 —-e R ) (29)
n

E[Ut(6)] = z B(i;n, Pr,T (D)) * Utility' (i, ). (30)
i=0

The omniscient supervisor uses Equations (22)-(30) to evaluate
each of the design methods: the algebraic, non-expert
optimization, and expert optimization. By comparing the
expected utility for each design method, the most preferred
design method can be determined for a given contextual
situation. However, we are concerned about more than one
particular contextual situation.

In this computational experiment, we aim to determine
which method is best across a given context—the range of
contextual situations in which the design methods are more
preferred than the other. Table 1 shows the variables and their
bounds delineating the context. The variable, r, is the radius of
the spherical ends of the cylindrical pressure vessel. The rated
pressure, p, is the specified internal pressure of the pressure
vessel relative to the external pressure. The length, L, is the
length of the cylindrical portion of the pressure vessel, excluding
the spherical caps. To allow for a fair comparison between the
methods, the market price is assumed independent of the method,
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but varying across the contextual situations. It is determined by
applying a profit margin, PM, applied to the costs associated
with the optimal thickness, t, as determined by the omniscient
supervisor under perfect information:

B = Pry T (tDP; + Co(th) 31
1—-PM
Because only material and failure costs are considered, the lower
and upper bounds of the profit margin are chosen to be quite high
so both design methods result in reasonable profits. The per unit
material cost, B, is the cost of a cubic meter of steel. The per
unit failure cost, Pr, includes payment for expected damage to
property and nearby individuals. The per unit computing cost,
Py, is included to account for the additional cost of the
optimization design method over the algebraic design method.
The costs for model and code development are ignored for both
design methods, and the time to run the algebraic design method
is considered negligible. The optimization cost is based on the
average cost of using Amazon’s EC2 m3.large and m3.2xlarge
on demand computing services using Windows [28]. The true
mean of the ultimate strength, us , and the true standard
deviation of the ultimate strength, g, , are characteristics of the
distribution of ultimate strengths in delivered steel. The values,
and choice of normal distribution, are those of delivered high
grade streel [29]. The decision maker is given information about
this distribution in the form of strength tests that reveal the
ultimate strength of a plate of steel, randomly selected from the
true distribution. The number of strength tests, ng;, reflects the
amount of information available to the decision maker. The
strength tests are samples of the ultimate strength from the true
distribution. The decision maker then uses those samples and
determines the sample mean, X, , sample standard deviation,
Sos» and the number of degrees of freedom, v, to use as his
beliefs in Equation (15) for the non-expert optimization design

Table 1. Variables in the context

Lower Upper
Symbol Bound Bound
Pressure vessel radius [m] T 0.183 0.274
Pressure vessel length [m] L 0.96 1.44
Rated pressure [MPa] p 11.2 16.8
Profit margin [%] PM 64.8 73.4
Material cost [$/m?] B, 4,040 6,060
Failure cost [$/vessel] Pr 80,000 120,000
Computing cost [$/hour] P, 0.518 0.777
True mean of the ultimate
strength [MPa] Hors 340 >10
True variance of the
ultimate strength [MPa] Vot 16.2 244
Number of strength tests ng, 24 36
[samples]

method, and Equation (16) for the expert optimization design

method. The algebraic design method uses only the sample mean
as the ultimate strength in Equation (6).

To gain a deeper understanding of the difference in
performance between the two design methods, we performed a
10-level full factorial across the number of strength tests and the
failure cost. We focus on these two variables because they
emphasize the difference between the two design methods:
implicitly versus explicitly accounting for uncertainty and risk.
The number of strength tests determines the amount of
information available to the decision maker and hence his or her
uncertainty about the material properties while the failure cost
strongly influences the risk faced by the designer.

Finally, the experiments are performed for both a risk
neutral and a risk averse decision maker to investigate the effect
of risk preferences on the choice of design methods.

5 RESULTS

We first focus on the comparison for the non-expert
optimization design method and the algebraic design method.
Figure 2 shows the difference in expected profit between the
non-expert optimization and algebraic design methods for the
risk neutral and risk averse cases. It is important to note that
positive values refer to the non-expert optimization design
method being preferred. The algebraic design method is only
preferred in two regions for the risk neutral case. The first region
is the area at the top of the figure, where the non-expert is well
informed about the material strength. Counterintuitively, this
suggests that a non-expert decision maker with available
information may actually be worse off by using the optimization
design method. As available information increases, uncertainty
about the material strength decreases. Thus, to maintain a similar
probability of failure, the thickness of the pressure vessel can be
decreased. However, the non-expert optimization design method
incorrectly characterizes the probability of failure as compared
to the omniscient supervisor. By assuming that Equation (14) is
a fair approximation of the max stress in the pressure vessel, the
non-expert is too aggressive in sizing the pressure vessel,
recommending overly thin pressure vessels. Aggressive sizing of
the pressure vessels also occurs for the risk averse case, but the
risk aversion causes the design method to be more conservative
even in the high available information region. For this region, the
uncertainty in the material strength is dwarfed by the error in
judgment introduced by Equation (14). Thus, even with perfect
information, the algebraic design method may be preferred for
certain per unit failure costs. If the optimization design method
more accurately modeled the probability of failure, additional
information would benefit the optimization design method. This
is confirmed by Figure 3, which shows the comparisons of the
expert optimization design method and the algebraic design
method for the risk neutral and risk averse cases. Now, the expert
optimization design method is always more preferred as
additional information becomes available.

The results of Figure 3 also show that the expert
optimization design method is preferred more as the per unit
failure cost decreases. This is true even when considering risk
aversion. The slope of the difference in expected profit as a
function of available information decreases as compared to the
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risk neutral case. Conversely, the slope increases as a function of
the per unit failure cost., is a maximum at the lowest per unit
failure cost, where available information has little influence on
the difference in expected profit. In the extreme, if the per unit
failure cost was zero, then the problem becomes a minimization
of material cost: a minimization of thickness, where knowledge
of the material strength is irrelevant.

The algebraic design method recommends a thickness
independent of information or failure cost. With sufficient Monte
Carlo samples, the average thickness recommended by the
algebraic design method is related to the true mean strength of
the material, and thus approximately constant at 28 mm. The
algebraic design method implicitly accounts for the probability
of failure and the per unit failure cost in Equations (6) through
(9), by using safety factors. If these implicit assumptions do not
match the contextual situation well, the design method may not
perform well, as is the general case. Typically, the algebraic
design method is too conservative, recommending a pressure
vessel that is too thick. Figure 4 shows the average thickness
recommended by the expert optimization design method for the
risk neutral and risk averse cases. Except in the region to the
lower right, the thickness is less than the algebraic design
method’s thickness of 28 mm. While being excessively
conservative decreases the average performance of the design
method by increasing the material cost, it prevents extremely
poor performance. This allows the algebraic design method to
outperform the non-expert and expert optimization design
methods when available information is limited and the per unit
failure cost is high.

In general, the optimization design method performs better
than the algebraic design method, but can suffer from occasional
poor performance. This is readily seen from Figure 3 in the lower
right region. The cause for the poor performance is twofold: the
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Figure 2. Contour plots of the difference in expected
profits between the non-expert optimization and
algebraic design methods for the risk neutral (left) and
risk averse (right) cases. Positive values indicate
preference for the non-expert optimization design
method in the risk neutral case.

optimization design method is overly conservative, and a series
of failed pressure vessels increases the average failure cost. The
optimization design method recommends on average an overly
thick pressure vessel, but will occasionally recommend an overly
thin pressure vessel. First, it can be easily seen from Figure 4 that
the average thickness in the lower right is greater than that of the
algebraic design method for both the risk neutral and risk averse
cases. This occurs because the amount of information is so
limited that the decision maker in the optimization design
method must consider extremely low material strengths as
reasonably likely. In turn, the optimization design method
recommends very thick pressure vessels to reduce the probability
of failure. The expected thickness tends to decrease with
increasing strength test samples as the decision maker becomes
more confident in the shape of the underlying distribution. Said
another way, because the number of degrees of freedom
increases, the sample standard deviation tends to decrease, and
the decision maker no longer needs to consider very low ultimate
strengths as reasonably likely. Second, Figure 5 shows the
average failure cost for the expert optimization design method,
with a quickly rising peak occurring in the lower right region.
This occurs because of the relatively limited number of strength
test samples. While on average the expected thickness is greatest
in this region, there are cases where a cluster of high strength test
samples misleads the decision maker into believing the ultimate
strength has a comparatively higher mean and lower standard
deviation than the true distribution would suggest. This belief
will mislead a rational decision maker into choosing a very thin
pressure vessel, and result in a high number of failures. The
fewer strength test samples are taken, the more likely this type
of event can occur. Thus, despite the thickness being greater on
average, the occasional thin pressure vessel greatly increases the
expected costs associated with failure. This phenomenon also
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Figure 3. Contour plots of the difference in expected
profits between the expert optimization and algebraic
design methods for the risk neutral (left) and risk
averse (right) cases. Positive values indicate
preference for the non-expert optimization design
method in the risk neutral case.
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Figure 4. Contour plots of the expected thickness for the
expert optimization design method for the risk neutral
(left) and risk averse (right) cases.

appears for the algebraic design method, although not to the
same degree because of the safety factor. As a result, expected
costs associated with failure for the algebraic design method are
extremely close to zero for all contextual situations investigated.
Clustering never benefits the decision maker, as even when
strength test samples group on the lower end of the strength tests,
the decision maker will be more conservative and choose a
greater thickness than is truly necessary. Any deviation between
the decision maker’s beliefs and the true distribution of the
ultimate strength has a negative effect on profitability for both
design methods, but especially so for the optimization design
method, and even more so in cases where the ultimate strength
is overestimated.

6 CONCLUSIONS

Two design methods for the design of pressure vessels have
been investigated. The design methods were compared using a
design decision framing method to determine each design
method’s relative value for different contextual situations. The
design decision framing method uses an omniscient supervisor
who provides a fair and unbiased comparison of the design
methods. Comparing the design methods, the expert
optimization design method was preferred over a larger
applicability context. However, the algebraic design method was
preferred in some regions, in particular when compared to the
non-expert design method.

The expert optimization design method outperformed the
non-expert optimization design method by using good judgment.
In this case, the expert used his experience to update his beliefs
about the probability of failure to approximate reality more
accurately. Designers that ensure their models and methods are
accurate representations of reality benefit over those who do not.
However, even expert designers who exercise good judgment
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Figure 5. A contour plot of the expected total costs
associated with failure for the expert optimization design
method in the risk averse case.

may be misled in special cases where available information is
limited, as was the case for limited available information and a
high failure cost. This emphasizes the need for good designers to
gain sufficient information to be confident in their knowledge
and to use applicable methods.

A design method should only be used in its applicability
context, and care must be exercised when the applicability
context is not explicit. One example is the algebraic design
method, which makes assumptions for the failure cost and the
material cost. In regions of low failure cost, the algebraic design
method performed very poorly as compared to both the non-
expert and expert optimization design methods.

There are limitations to the design decision framing method.
While the DDFM is based on normative decision theory and
information theory, additional tests and investigations are
necessary to prove it is generally applicable to all design methods
that recommend actions. Also, in our motivating example, we
did not consider any future actions that would depend on the
chosen alternative. Including such actions would greatly increase
the computational complexity. It is also necessary for the
compared design methods to be similar, that is, to recommend
similar types of actions. In our motivating example, we only
investigated design methods that recommended a pressure
vessel’s thickness. If the two design methods recommend
dissimilar actions, they cannot be compared in a straightforward
manner. One way to compare dissimilar design methods is to
consider sets of design methods that perform similar functions
when used together. In addition to the above limitations, the
design decision framing method also requires a design method
to act as the omniscient supervisor. If this design method is not
a good model of reality, then the results will similarly not be
appropriate.
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In future work, we will compare design methods to analyze
and design flexible systems, systems that may modify their
configuration because of the changing environment. Currently
these systems are analyzed using a real options analysis and
many new design methods are being proposed. The design
decision framing method may be able to characterize such design
methods and identify the conditions under which a given design
method should be used.
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