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ABSTRACT	
In designing complex systems, systems engineers strive to 

turn an existing situation into a situation that is most preferred. 
A rational decision maker would choose the alternative that 
maximizes the expected utility of the existing situation, but 
there are significant computational challenges to this approach. 
To overcome these challenges, most decision makers revert to 
heuristics. In this paper, we propose a conceptual framework 
for heuristics in design. A preliminary empirical study of 
designers for a robotics design problem was conducted to 
observe how participants apply heuristics. Participants having 
at least 2 years of experience designing robots were recruited 
to partake in a robotics design session in which participant 
were given 45 minutes to work on a design problem. A 
preliminary heuristics extraction method was developed, and 
the identified heuristics were studied to find trends within the 
overall set. These trends were the basis of a taxonomy of 
heuristics consisting of three initial classification methods: 
design phase, field of study, and action intent. The heuristics 
and classifications are presented, along with the challenges 
from extracting heuristics and recommendations for future 
work to further research design heuristics and to improve the 
method for extraction. 
1 INTRODUCTION 

To introduce the concept of heuristics and why they are 
an integral part of design, we start the story with Herbert 
Simon, who in his seminal work on the Sciences of the 
Artificial [1], indicates the key objective of design: “Everyone 
designs who devises courses of action aimed at changing 
existing situations into preferred ones.” Framed slightly more 
strongly, we could rephrase this in the context of systems 

engineering and design (SE&D): Systems engineers and 
designers should strive to change an existing situation into the 
situation that is most preferred.  

Building on the mathematics of decision or choice theory 
[2, 3], the extent to which a situation is preferred, can be 
measured as value. If a situation A is more preferred to a 
situation B, it is assigned a higher value, so that the most 
preferred situation is the one that maximizes value. Decision 
theory clarifies further that one must also take into account the 
time and the risk preferences. Starting from four simple 
axioms, von Neumann and Morgenstern [3] proved that a 
rational decision maker chooses the alternative that maximizes 
expected utility, where a utility is a nonlinear transformation 
of value constructed such that risk preferences are accounted 
for by taking the expectation. Time preference is captured 
mathematically using a discount function. Combined, this 
allows us to express the objective for systems engineering and 
design as the following equation [4]: 
 𝒜:  max!∈!  E[𝑢 𝑁𝑃𝑉 𝑎, 𝑡 𝒜 ,𝐶(𝒜) ] (1) 

In other words, a designer must search over the set of all 
artifacts, 𝒜, for the artifact, 𝑎, that maximizes the designer’s 
expected utility of the Net Present Value (NPV). Notice that 
the NPV depends not only on the value we expect to derive 
from using, trading, or selling the resulting artifact, but also on 
the time,  𝑡 𝒜  , and the cost, 𝐶 𝒜 , needed for the 
search/optimization process, that is, the cost and the time of 
design and development.  

The challenge with this framing of an SE&D problem is 
that the optimization problem in Equation (1) cannot (and 
should not) be solved in a mathematically rigorous sense, that 
is, by using optimization algorithms to find the mathematically 
guaranteed global optimum. The set of all artifacts would 
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require an infinite number of parameters to describe 
mathematically, and the analysis of all these artifacts would 
require an infinite amount of time. In addition, because the 
time and cost of searching affect the objective, the designer 
must carefully balance the value of the resources invested in 
the search process with the value of the artifact. At some point, 
continuing to search will cost more than it’s worth. 

In artificial intelligence and operations research, such 
computational complexity challenges are overcome by using 
heuristics. Heuristic search sacrifices guarantees of optimality 
and completeness of the solution set for increased solution 
speed [5]. Similarly, in design, a heuristic is a rule of thumb 
that provides guidance for choosing what action to pursue, 
given the current state of the design process. Design heuristics 
rely on experience and knowledge to suggest actions that 
provide a good tradeoff between the cost of the SE&D process 
and the value of the resulting artifact.  

We use the term “heuristic” broadly here. For simple 
detailed design decisions, a heuristic may directly constrain 
the artifact alternative. For example: “When designing a sheet-
metal hem, the hem length should be at least four times the 
sheet metal thickness.” For more important decisions that 
strongly affect the value of the artifact, a heuristic may specify 
a sequence of design steps for how to constrain the artifact 
alternative, where each step in the sequence involves 
additional heuristics. For instance, a heuristic may suggest 
framing the design decision as an optimization problem across 
a heuristically defined design-space parameterization and 
heuristically suggested analysis-model approximations and 
idealizations. Finally, heuristics could also embody planning 
guidance, as in a heuristic suggesting how to decompose a 
high-level goal into sub-goals. In all three cases, the heuristic 
knowledge reflects previous experiences regarding the value-
of-information tradeoffs [6, 7] between the accuracy and cost 
of approximating Equation (1) in the specific design context 
encountered. The resources allocated to a particular design 
choice should be commensurate with the potential impact the 
choice has on the artifact value.  

There is poor agreement over how humans actually use 
and select heuristics. This is often the case because heuristics 
are the result of experience, and users may use them without 
being consciously aware of the heuristics. Even for users that 
acknowledge their use of heuristics, describing the heuristics 
can be challenging. Individuals typically perform on a 
relatively closed set of examples, such as the design of 
pressure vessels. Those designers will likely use heuristics that 
may work in other scenarios, but because of their experience 
they cannot describe, or do not believe the heuristic applies in 
other scenarios. This presents a challenging task for research 
about how heuristics are currently employed. 

In this paper, we propose a conceptual framework for 
heuristics in design after reviewing relevant literature. We 
conducted a preliminary empirical study of designers for a 
robotics design problem to research how users apply heuristics. 
We then developed a method for extracting heuristics from the 
results of the survey in order to develop a taxonomy for the 

heuristics. The focus of this paper is not to present the 
heuristics themselves, but the method used for extraction. 
There are many papers that present heuristics, but our 
heuristics are simply a byproduct of the method we are trying 
to design. Finally, we discuss the results and challenges of our 
investigation and recommend future work to further research 
into design heuristics.  The research questions are: Can the use 
of heuristics be justified from a normative decision theory 
perspective? How do human designers use design heuristics? 
What is a repeatable method for extracting heuristics from 
design observations? 
2 RELATED WORK	

For the duration of this study, a formal definition for all 
heuristics should be identified as a reference point for 
heuristics. Currently, there is no standard definition for a 
heuristic being used in literature. After studying how design 
principles are expressed in current literature, Fu et al. provides 
a formal definition of a heuristic.  
Heuristic: A context-dependent directive, based on intuition, 
tacit knowledge, or experiential understanding, which 
provides design process direction to increase the chance of 
reaching a satisfactory but not necessarily optimal solution.  
Example Heuristic: “A properly designed bolt should have at 
least one and one-half turns in the threads” (adapted from [8]). 
 Another example of heuristics used in design is Altshuller’s 
TRIZ [9]. TRIZ offers a method to solve design conflicts 
between multiple parameters in the design process. Based on 
context (the two conflicting parameters), one or more of 40 
directives are presented to increase the chance of reaching a 
satisfactory solution to the conflict. 

What is not considered a heuristic? Principles such as “F 
= ma” are not considered heuristics. Fu et al. also breaks down 
what separates design heuristics from a design principle or 
guideline. In comparison to design principles and guidelines, 
design heuristics are generally less formalized with the least 
amount of supporting evidence or experimental validation. 
Heuristics are more prescriptive and offer a certain level of 
reaching a successful solution. The prescriptive design 
heuristic should be stated in the grammatical imperative form, 
include a prescriptive action for the designer to take, and 
increase the likelihood of reaching a desirable consequence. 
On the other hand, principles and guidelines are more 
descriptive and do not have specific attributes regarding 
success [10].  

In similar studies of heuristics extraction performed by 
Yilmaz, extraction methods consisted of two coders analyzing 
sketches and verbal reasoning from study participants [11]. 
The coders performed independent analyses, and the final set 
of heuristics were presented when the coders were in mutual 
agreement. Coding identified each concept and documented 
when change occurred from one concept to the next [12]. The 
action or process initiating such change was considered a 
potential heuristic, and then generalized in a way that the 
heuristic could be applied to other design contexts. Coders 
also recognized heuristics by identifying unique design 
features not shown in the concepts of other participants [13]. 
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A retrospective interview allowed participants to explain their 
design process and provide clarification to why they made 
certain decisions in the study. In other protocol studies, coders 
worked as a team to examine each design concept until a 
consensus list of heuristics was reached [14]. 

In one study of innovative products currently on the 
market, Yilmaz et al. presents a clearly detailed method for 
extracting heuristics. The process includes identifying key 
functions or features of an innovative product compared to 
other products of the same domain. Because insight into the 
cognitive processes could not be extracted, the focus was on 
key differences between designs [15]. However, the nature of 
our protocol study produces concepts that cannot be compared 
to finished products on the market. While the Yilmaz studies 
focus on creativity and ideation heuristics, we are focusing on 
a broader spectrum of heuristics. Many of the heuristics we 
hope to observe, such as process heuristics, cannot be obtained 
by only reviewing final concepts.  

Humans use heuristics to approximate normative decision 
theories such as expected utility theory. This is often 
necessary because of an individual’s limited cognition or the 
constraints of the problem, as described by bounded rationality 
[16]. Instead of trying for unbounded rationality, Gigerenzer 
and Selten recommend bounded rationality for individuals 
who are constrained by limited resources, which in fact 
applies to all decision makers [17]. As a result, individuals use 
heuristics for challenging tasks, such as estimating 
probabilities, that often introduce biases [18]. Thus, 
individuals make decisions that are inconsistent with expected 
utility theory [19, 20]. To describe this behavior, Kahneman 
and Tversky introduce prospect theory [21]. Prospect theory 
can be used to explain phenomena such as anchoring, a 
cognitive bias that describes how humans evaluate alternatives 
against an “anchor” that typically is formed from initial 
information [22]. Even so, prospect theory had its limitations 
in explaining decision making behavior, prompting cumulative 
prospect theory [23]. Cumulative prospect theory still does not 
provide us a reliable way to consider other important aspects 
of decision making, such as the emotional state of the decision 
maker. Though our ability to describe heuristic decision-
making behavior has advanced, there is still room for 
improvement in understanding heuristics.  
3 A CONCEPTUAL FRAMEWORK FOR 

HEURISTICS IN DESIGN 
To explain the nature and importance of heuristics, we 

first need to provide a conceptual framework to think about 
design. We introduce a framework in which design is 
conceptualized very generically as an information-gathering 
search process. To make this search process more explicit, we 
reframe Equation (1) in terms of searching for a sequence of 
design actions: 
 𝒫:  max!∈!  E 𝑢 𝑁𝑃𝑉 𝑎 𝑝 , 𝑡 𝑝 ,𝐶 𝑝   (2) 
where the optimization occurs over the set of all sequences of 
process steps (i.e., design actions), 𝑝 ∈ 𝑃. The end result is 
still an artifact specification 𝑎 𝑝 , but it is obtained implicitly 

as the consequence of following an SE&D process, 𝑝, rather 
than explicitly through optimization over 𝒜. 

Although this reformulation of the design problem is 
equivalent to Equation (1), it reflects more directly that the 
irrevocable allocation of resources to which a designer 
commits (i.e., the design decision) is the allocation of 
resources needed for the subsequent design actions (e.g., 
further analysis, artifact refinement, physical testing, design 
optimization at a certain level of abstraction, etc.). These 
process choices are truly the decisions made by designers, as 
opposed to artifact “decisions” that can always be 
reconsidered and reversed. 

When one briefly explores what would be involved in 
solving Equation (2) rigorously, the equation implies that one 
should search across all possible processes, 𝑝, each consisting 
of a sequence of actions that lead to an artifact 
specification, 𝑎 𝑝 . One should choose the process, 𝑝, that 
maximizes the expected utility reflecting the designer’s 
preferences. However, each action in the process, 𝑝, results in 
new information and influences the best choice for subsequent 
actions. It is thus best to commit only to the first action, obtain 
the information it results in, and then consider subsequent 
actions. In addition, the information obtained from an action is 
not known in advance—it is uncertain. To determine even the 
best first action in a sequence is extremely challenging 
because it would require considering every possible outcome 
of that action and every possible outcome of each optimally 
chosen subsequent action—in essence, an infinitely deeply 
nested decision tree. Solving such a decision tree is 
computationally intractable, and reliance on approximations 
and heuristics is thus the only alternative. In summary, the 
question is therefore not: “Should we use heuristics in design 
or not?” but “Which heuristics should we use in design?” 

Before continuing the discussion, it is important to be 
more precise about what we mean by “heuristic.” At each 
point in a design process, the designer finds herself in a 
contextual situation. She has particular objectives, has certain 
information about the global socio-political-economic context, 
and has collected information during the preceding steps of the 
design process. Based on this contextual situation, a heuristic 
then constrains the actions the designer should consider for the 
subsequent action. Consider, for instance, the heuristic “When 
using a bolt connection, design it to have at least one and one-
half turns in the threads” (adapted from [8]). The condition 
“When using a bolt connection” constrains the situations in 
which this heuristic should be considered. It defines a set of 
situations, which we call the applicability context of the 
heuristic. If a designer finds herself in a situation, in which 
this condition is satisfied, the heuristics directs her to choose 
an action that is consistent with the constraint “design it to 
have at least one and one-half turns in the threads.” 
Mathematically, a heuristic, ℎ! = {𝑠! , 𝑝!} , is thus a tuple 
consisting of a set of contextual situations, 𝑠!, and a subset of 
design actions, 𝑝! , as shown in Figure 1. We call 𝑠!  the 
applicability context of the heuristic hi and pi the set of 
possible actions of hi. 𝑠! is a subset of the power set of all 
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possible applicability contexts, 𝑆, and 𝑝!  is a subset of the 
power set of all possible actions, 𝑃. 

 

Figure 1. Each heuristic relates a set of contextual 
situations,𝑠!, to a corresponding set of design actions, 𝑝! 

Note that heuristics do not specify a single action, but a 
set. While they constrain the actions to be considered, the 
designer must still choose an action from the set of possible 
actions. Which particular action to perform is left as a choice 
to the designer. Heuristics are only suggestions that help the 
designer quickly home in on the most promising design 
actions to consider. Again, consider the heuristic “When using 
a bolt connection, design it to have at least one and one-half 
turns in the threads”. In this case, the set of actions consists of 
actions directing the designer to specify certain characteristics 
of the bolt connection. The heuristic does not prescribe the 
designer to specify one particular bolt connection but provides 
a set of possible bolt connections from which the designer can 
choose (e.g., different bolt lengths, diameters, materials, etc.) 

It may occur that multiple heuristics apply (i.e., that the 
current contextual situation satisfies the applicability condition 
for multiple heuristics). Often, these heuristics constrain 
different aspects of the design action to be taken, so that the 
actions to be considered are in the intersection of the action 
sets. “When designing a robot manipulator, start by specifying 
the kinematic structure” may be combined with “When 
selecting a kinematics structure for a mechanism, consider 
first how many degrees of freedom are needed,” leading the 
designer to analyze the required number of degrees of freedom 
for the robot manipulator being designed. However, it is also 
conceivable that two heuristics have overlapping applicability 
contexts, but non-overlapping action sets. In such a situation a 
designer must apply good judgment and choose the action she 
believes to be most valuable. 

This raises the issue of the quality of a heuristic. Is it 
meaningful to say that heuristic A is good, or heuristic B is 
bad? What determines the “goodness” of a heuristic? What we 
ultimately care about is the expected value (or more precisely, 
expected utility) of the outcome as expressed in Equations (1) 
and (2). The “goodness” of a heuristic must therefore be tied 
to this same criterion. It should reflect the designer’s ability to 

achieve preferred, valuable outcomes through the application 
of the heuristic. To capture this more explicitly, we will use 
the term “value” rather than “goodness.”  

Even with this clarification, it is still not clear what the 
precise meaning is of the value of a heuristic. The outcomes, 
and thus the value, depend not only on one heuristic but also 
on any subsequent actions chosen by the designer. It is 
therefore not meaningful to refer to “value” as a property of an 
individual heuristic but only as a property of the set of all 
heuristics used by the designer. Following Koen [8], we call 
this set, the designer’s state of the art, or “sota.”  

Finally, because preference cannot be measured in 
absolute terms [3], the value of a sota also is not an absolute 
measure. Rather than saying that “sota A is good,” or “sota B 
is bad,” one can only characterize A relative to B: “sota A is 
better than sota B.” 

Next, we consider how to determine which sota is better. 
One perspective argued in the literature is that design practices 
(i.e., a sota) should be consistent with normative decision 
theory [25-27]. Practices, such as the use of system 
requirements to define a systems engineering problem, have 
been critiqued as being irrational and inconsistent with the 
normative theory. However, we need to be careful not to jump 
to conclusions. In light of Equations (1) and (2), we need to 
recognize that the use of requirements impacts not only the 
artifact being designed, but also the communication and 
synchronization between teams of engineers inside a 
potentially very large organization or possibly even across 
multiple organizations. In addition, the communication and 
synchronization processes are performed by humans as 
cognitive, emotional and social agents. In other words, a sota 
includes heuristics regarding artifacts, processes and 
organizational design, and thus needs to be assessed according 
to its impact on the overall outcomes, not only on the artifact, 
but also on the design processes and the human organizations 
responsible for executing these processes.  

Normative decision theory states that one should act in a 
way that is consistent with one’s preferences and beliefs 
regarding these overall outcomes. To the best of our 
knowledge, an assessment of consistency based on such a 
broad perspective has not been performed. Even if 
inconsistencies were identified in a sota, it should not be 
dismissed right away. While pointing out the potential 
inconsistencies can aid in identifying opportunities for 
improvement, one should only abandon a sota once an 
improved sota has been identified. 

In conclusion, a best-practice sota should use an 
approximation of the normative theory that is attuned to the 
economic and technological context and is well aligned with 
the characteristics of the human designer as cognitive, 
emotional and social agent. Comparing the relative value of 
two sotas from this perspective cannot be achieved through 
deductive reasoning based on an axiomatic, normative theory. 
It requires empirical testing and abductive reasoning. 

As a first step towards gaining a better understanding of 
the influence of the impact of human psychology on the value 

𝑆

𝑠1

𝑠2

𝑠3

𝑃

𝑝1

𝑝2

𝑝3

h1={s1,p1}

h2={s2,p2}

h3={s3,p3}
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of sotas, we have created an experiment to observe the use of 
heuristics by design engineers in academic robotics 
laboratories. We aim to observe how human designers sift 
through the sota to identify applicable heuristics and 
ultimately select a design action. From the observations, we 
hypothesize the following mechanisms: 
● Applicability.  Based on the applicability contexts of 

heuristics, quickly determine whether a heuristic is relevant. 
● Combination. Further reduce the set of possible actions by 

taking the intersection of the action sets of multiple 
heuristics that address different aspects of the design action. 

● Value assessment. Rely on experience and judgment to 
determine among the remaining actions which single action 
is adds the most value.  

In addition, most design problems are too complicated to be 
addressed in a single heuristic. The designer’s sota therefore 
includes a large number of divide-and-conquer heuristics that 
decompose high-level goals into sub-goals and suggest the 
order in which to pursue these sub-goals. 
4 STUDY OF HEURISTICS IN ROBOTICS DESIGN 

A study was designed to deepen understanding of how 
heuristics are used in the process of robotics design. The 
experimental design and method for data collection is 
described in this section (4). The method for data analysis is 
described in Section 5. 
4.1 Participants 

Participants were graduate students in robotics research 
labs at Georgia Institute of Technology, all having at least 2 
years of experience in designing robots. The 5 participants in 
this preliminary study included 2 females and 3 males, with an 
average age of 24.4 years. 
4.2 Study Design 
In this study, participants were interviewed about their own 
approach to robotics design. Then, they were given a 45 
minutes time frame to solve and to work on the following 
design problem:  
 

Objective: design wearable “third arm” robot to assist in 
everyday task requiring cooperative manipulation. For 
example, designing a robot that can grasp and hold objects 
(e.g. a flashlight) that the human wearer directly hands to it. 
You will be defining “every day task” yourself and define the 
following requirements accordingly:  
 

Performance requirements 
● Payload  
● Speed  
● Maneuverability (obstacle avoidance) 
● Sensing for grasping objects and for determining human 

intent from motion cues (e.g. when to open/close grasper, 
where to move) 

 

Technical areas  
● Controls  
● Mechanism design 
● Optimization 

● Computer vision 
● Machine learning 
● Signal processing 
● Human factors 

 

Participants were asked to brainstorm, to sketch concepts, 
to write out thoughts, use resources such as the internet, 
calculate and/or analyze while designing. In addition, they 
were asked to speak their thoughts out loud as they worked on 
the design problem. Participants were video and audio 
recorded to capture their design process and behaviors. 
Participants were allowed to use any kind of resources and 
methods to help them approach the design task and record the 
design process. Audio and video data were used to extract 
heuristics that were used by each participant to complete the 
design task. The method for extracting heuristics is described 
next. 
5 METHOD FOR DESIGN HEURISTIC EXTRACTION 

AND CLASSIFICATION 
5.1 Extracting Heuristics 

After data collection was complete, heuristics were 
extracted by two independent coders. The coders watched the 
recorded design process once before extraction for each 
participant in order to capture the context of the design, the 
design process and the concepts being generated. While coders 
were reviewing the video recordings, each coder wrote down 
identifiable actions and behaviors of the participants and the 
reasoning behind them, both verbal and written. 

Among the actions taken by the participant, heuristics 
were identified based on the design context, participant’s 
reasoning, and any other characteristics of a heuristic 
associated with the action. The intermediate set of possible 
heuristics was refined once more to generalize any heuristics 
that may be applicable to other robotics design contexts. Then, 
the coders discussed and came to an agreement on a final set 
of robotics design heuristics. The initial comparison between 
two coders reached a 77.8% match among all extracted 
heuristics.  

5.2 Grounded Theory for a Taxonomy of Heuristics	
Grounded theory is an inductive research technique, 

rooting in social science, in which researchers take an iterative 
approach to extracting categories within empirical qualitative 
data. Qualitative data, like the transcripts of the audio data 
collected here, is first reviewed and examined to extract 
common themes, and tagged with codes. These codes are 
grouped into emergent categories that then allow for 
classification and trends to be extracted from the data. The 
categories are then compared to existing literature for 
corroboration and refinement, and the data is analyzed again 
to adjust the first pass of coding and categorization [28, 29].  

Using a grounded theory approach, the set of extracted 
heuristics are iteratively grouped into a proposed theoretical 
classification or taxonomy. With a broader goal of creating a 
taxonomy that could apply to heuristics beyond those 
extracted from the results of this study, the set of potential 
attributes that might be considered are: 
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General Applicability Attributes 
● Phase of the design process 
● Type of design process  

○ Parametric 
○ Variant 
○ New product 

● Field of engineering 
○ Mechanical, etc. 

● Type of system 
○ Complexity 
○ Level of uncertainty and risk 
○ Level of software intensity 
○ Level of cybersecurity 

● Available resources 
○ Human resources 
○ Material resources 
○ Time 

● Action Intent 
○ Planning 
○ Analysis 
○ Synthesis 

 

This set of attributes is not meant to be exhaustive, but an 
illustrative starting point for future work. 

 

Table 1. Classification Methods & Sub-categories 

 
 

The taxonomy presented here, based upon the heuristics 
extracted from this study, is organized according to several 
attributes characterizing the applicability of the heuristics. In 
this study, three classification methods were used to identify 
and to categorize heuristics that each coder found, shown in 
Table 1, including design phase, field of engineering study, 
and action intent classification. Each classification method has 
its own sub-categories. After studying most standardized 
engineering design, Pahl and Beitz provides a formal 
definition for most of the categories [30]. After identifying 
these categories, the coders independently classified the 
heuristics according to each category and subcategory. Using 
Cohen’s kappa inter-rater agreement, the coders were at an 
average agreement level of 0.71 as shown in Table 2. 

 

Design Phase Classifications 
Task Clarification: “to collect information about the 
requirements that have to be fulfilled by the product, and also 
about the existing constraints and their importance” [30]. 
 

Conceptual Design: determines the principle solution “by 
abstracting the essential problems, establishing function 
structures, searching for suitable working principles and then 
combining those principles into a working structure” [30]. 
Embodiment Design: “determine the construction structure 
(overall layout) of a technical system in line with technical 
and economic criteria” [30]. 
Detail Design: “the arrangement, forms, dimensions, and 
surface properties of all of the individual parts are finally laid 
down, the materials specified, production possibilities 
assessed, costs estimated, and all the drawings and other 
production documents produced” [30]. 
 

Action Intent Classifications 
Planning: an action to define, to structure or to arrange the 
given problem, and to identify the essential from the non-
essential elements of the system [30]. 
Analysis: an action to resolve or to decompose of anything 
complex into its elements and to further study the 
interrelationships between these elements [30]. 
Synthesis: an action to select a specific part or product or to 
combine parts or elements together for new effects, and to 
demonstrate that the combination of parts creates an ordered 
system [30]. 
 

Field of Engineering Classifications 
Mechanical: field that relates to physical structure, geometry, 
material properties, kinematics, forces, or assembly 
Electrical: field that uses or involves an electronic device or 
electricity 
Computer Science: field that involves computation, 
programing, algorithms, or numerical analysis 
Chemical: field that involves any kind of chemical reaction or 
extraction 
Other: any other field that does not fit into one of above 
categories. 
 
 
 

Table 2. Cohen’s Kappa Values for Each Classification by 
participant 

 

	

6 METHODOLOGICAL CHALLENGES FOR 
EXTRACTING HEURISTICS  
Significant challenges were faced during the extraction of 

heuristics from the design study data. These challenges are 
presented to show what conflicts arise during the extraction 
process and how the methodology could improve with the 
resolution of these conflicts.  
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The limited duration of a controlled experiment excludes 
the observation of heuristics that result in actions that take 
longer than the duration of the experiment. In other words, the 
designer may leave some actions out because they know it will 
take more than the allotted 45 minutes to carry out. It may also 
force the designer to incorporate required actions that would 
not ordinarily reflect the participant’s design process. These 
actions must be identified and labeled as not a true heuristic 
but an action influenced by given prompt. These instances 
may affect whether or not we are adequately identifying the 
participant’s usual design process, so future studies will 
analyze the supplemental interview to compare the 
participant’s idea of their own design process to what is 
actually done in the study.  

The knowledge base of the participant may be broader in 
some areas than the coder’s knowledge. If a participant has a 
background in computer science and refers to a specific 
software program unfamiliar to the coder, the coder will need 
to closely follow the verbal reasoning or perform research to 
get a general understanding of the product’s function.  

The observation of a participant’s action does not provide 
sufficient information to extract the corresponding heuristic. 
To go from an instance of an action choice to a heuristic 
requires generalization, and the generalized applicability set 
and action set of the heuristic that was used by the participant 
cannot be inferred without subsequent corroboration. A 
participant may not be aware or have the ability to articulate 
the reasoning behind an action, so the coders must be aware of 
avoiding implied reasoning during heuristics extraction 
process and avoid bias and influence during corroboration. 
However, implicit understanding of the design process must 
play a role in the coding of the heuristics in applicability sets. 
The participants will rarely verbalize, for example, whether 
they are in the planning and task clarification phase or 
computer science domain, but this is knowledge that must be 
inferred by the viewer. 

As the coders advanced from participant A to participant 
E in extracting and classifying heuristics, certain heuristics 
were considered adequate to combine and evolve into a 
generalized condition. Some heuristics were also considered 
too broad and broken into multiple heuristics. For example, 
“install motor for the robotic arm” and “put DC motor in the 
shoulder and elbow joints” were combined to say, “use motor 
on the robotic arm.” Additionally, “use smartphone to connect 
to robot” was extracted from “put functions on a smartphone 
app to control robotic arm and read data.” This portion of the 
methodology leaves enough room for subjectivity that biases 
can begin to form. The lack of formal specificity of granularity 
is a challenge to extracting heuristics that will only improve as 
a formal extraction method is created.  

The method presented here for extraction and 
classification of heuristics is preliminary, and can be improved 
by addressing any or all the above challenges. The greatest 
and most philosophical challenge in extracting heuristics is 
one that many psychologists often face - how can we, as 
researchers, be sure of what is happening in someone else’s 

mind? Therefore, at this time, we cannot comment on the 
conscious use of heuristics, though this is a key future 
direction for this work. 
7 INITIAL OBSERVATIONS: HEURISTICS IN 

ROBOTICS DESIGN 
A total of 110 heuristics were extracted from 5 

participants. The heuristics are broken down in Appendix A 
into each classification followed by the action taken. For 
example, in the embodiment phase and mechanical 
engineering domain with an intent to synthesize, one action 
would be to “use backpack to mount battery and processing”. 
At this point, the context of the heuristic is very broad. As our 
classifications become more specific, the context of the 
heuristic will also become more specific.  

A total of 20 heuristics were used by multiple participants. 
One example of this is “Attach Bluetooth onto the robotic arm” 
(embodiment phase, electrical engineering domain, synthesis 
intent). Participant B used this for a major feature of the 
design by connecting the arm to a mobile phone app. The app 
could be used to store data as well as send commands to the 
robotic arm. Participant E used the Bluetooth feature as a 
means to charge the robotic arm with no disconnection 
required. The high number of unique heuristics found could be 
due to a lack of similar design processes in robotics, a high 
level of creativity among the participants, or diversity of 
backgrounds between each participant.  

Table 3 presents the quantities and the percentages of 
heuristics in each of the classifications and sub-categories, 
organized by participant. Initial observations of the 
classifications reveal a significant shortage of planning and 
task clarification heuristics. Over half of the participants used 
two or fewer task clarification heuristics before moving onto 
conceptual design, and none of the participants progressed to 
the detail design phase. The authors hypothesize that this 
could be driven by a short design solving time window, which 
influenced participants to move into the conceptual design 
phase earlier than usual and to exclude the detail design phase 
from their processes. Another explanation could be that the 
design prompt defines the task so clearly and specifically that 
the participants felt comfortable enough to move onto the 
conceptual design phase without missing any crucial details 
that would otherwise have been hashed out in the task 
clarification phase.  

Some participants tended to simply follow the suggested 
requirements and technical areas in the same order as they 
appeared on the prompt. This trend would not only potentially 
eliminate some typical planning heuristics, but also would lead 
to having less time available for the areas on the bottom of the 
list, such as machine learning and signal processing. Having 
less time for these areas could have resulted in fewer 
heuristics used in certain field of engineering study categories, 
such as computer science. In contrast, mechanical and 
electrical engineering categories accounted for the majority of 
heuristics, such as mounting the robot arm, battery, motor, and 
processing unit. Computer science accounted for far fewer 
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heuristics on average. Another possibility is that the lack of 
computer science heuristics is related to factors like the 
phrasing of the prompt or the background of each participant, 
but a larger sample size would be required to further inspect 
these hypotheses.  

Table 4 shows the cross-categorization of heuristics 
between action intent classification method and the other two 
classification methods. Most heuristics were mechanical and 
in the conceptual design phase. Planning action heuristics tend 

to be mostly mechanical engineering, while the majority of 
synthesis action heuristics tend to be in electrical engineering. 
Another interesting trend is that in the task clarification design 
phase, heuristics tend to be mostly planning actions, with a 
couple of analysis action and no synthesis action heuristics. 
Embodiment design phase heuristics tended to also be 
synthesis action heuristics. 

For heuristics based on the participant’s experience, 
heuristics such as “put functions on the smartphone app to 
control robotic arm and read data” led to a new way of 
thinking about heuristics for the coders. This heuristic not only 

shows the participant’s experience with designing wireless 
connections, but also the participant’s own social experiences 
with current technology. Because the participant has 
experienced the rise of smartphones and the internet of things 
over the past decade, this heuristic may be a product of living 
with today’s technology. This reference to a time period in 
technological advancement links this finding directly to 
Koen’s definition of sota, which he states must “be dated with 
a timestamp to indicate when it is safe for use” [8]. 

 

8 DISCUSSION AND FUTURE WORK 
As our knowledge of heuristics and how heuristics play a 

part in the design process expands, the methodology should 
become more formal, with a distinct line of open ended 
questions for extracting heuristics.  

There are other aspects of the data still to be analyzed. 
The preliminary interviews may be used to determine: 
● How does the participant’s view of their own design 

process compare to that which was extracted in the form 
of heuristics? 

● How can the interview process be adjusted or expanded 
after the design task in order to validate the heuristics 
extracted by the coders?  
 

Heuristics can be presented in way to guide a designer through 
a robotics design process if they are less experienced in some 
aspects of robotics design. If a designer has a mechanical 
background, a set of heuristics for the computer science design 
elements can be presented. The applicability attributes 
presented in the taxonomy section can be used to achieve this 
goal. More applicability attributes can be added to form a tree 
structure for decision making. The designer could follow the 
structure and use heuristics to guide her design process as she 
navigates from one branch to the next. The heuristics will also 
come back to the broader aim of the research and bridge the 
gap between normative and descriptive perspectives of design. 
After learning how a designer approaches the design process, 
we can work toward presenting a method of how they should 
do design. 

Some initial hypotheses that the authors have formulated 
as to how designers use heuristics are presented next. These 
hypotheses are open for inquiry in future research. 

 

1. Applicability contexts are simple so that they can be easily 
remembered and evaluated by designers in determining 
whether to use a heuristic. This is founded on the concept 
that a heuristic used by a designer must be chosen relatively 
quickly, as it is meant to be inexpensive guidance towards 
promising, valuable actions. 

2. Designers rely on planning heuristics to identify sub-goals 
for which more specific heuristics are applicable. If reaching 
a goal requires a sequence of elementary design actions, 
then associating this sequence with one applicability region 
becomes difficult to memorize. In addition, it is likely that 
different contextual situations require variants of the long 
sequence so that it is easier to break the large problem down 
into a sequence of smaller, manageable problems. 
 

Table 3. Quantities, Percentages and 
Classification of Heuristics by Participant 

Table 4. Cross-Categorized Heuristics by Participant 
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3. Transferring heuristics from one context to another is based 
on abstraction and mapping, rooted in analogical thinking 
skills. 

4. Designers assess heuristics’ value based on its utility in a 
given context.  

5. Designers update their value assessments of heuristics based 
on experience, improved understanding, learning, 
observation of other designers, and other forms of new 
knowledge that expand their understanding of how, when, 
and why a heuristic is useful. 

 

Finally, it is important to distinguish between a value 
assessment by a designer, and a value assessment by a design 
researcher. A value assessment of a heuristic by a designer 
must be made quickly and inexpensively. A value assessment 
by a researcher, however, is not bound by such constraints. It 
may be very valuable for researcher to determine carefully and 
at great expense which action should be chosen in a particular 
set of situational contexts, so that this value assessment can be 
shared with practitioners to inform their rapid, in-the-field 
assessments. 
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APPENDIX A: PRELIMINARY EXTRACTED HEURISTICS  
 

Design 
Phase 

Field 
of Eng. Intent Action 

C CS A Consider embedded or transmitted computation 
C CS A Decompose machine learning testing process 

C CS A Give robot different grasping methods for different 
objects 

C CS A Have pre-programmed gestures 

C CS A Include feedback learning and reinforcement 
learning for the machine learning 

C CS A Include learning by demonstration in machine 
learning 

C CS A Let robot rank objects in order of usefulness 
C CS A List expected system inputs and outputs 

C CS A Put functions on the smartphone app to control 
robotic arm and read data 

C CS A Use forward and inverse kinematic processing 

C EE A Divide controls based on range of frequencies (low, 
high, and task) 

C EE A Investigate where EEG or EMG can be attached on 
arm 

C EE A List out all the possible sensors that can be used 

C EE A Use other device for microphone access rather than 
mounting onto the arm itself 

C ME A Consider arm design of metal and plastic, rigid 
parts, and motor actuator 

C ME A Consider snake-like actuation for robotic arm 
design 

C ME A Consider unique end effectors like coffee-filled 
balloon 

C ME A Have a total of 6 degrees of freedom for the robotic 
arm 

C ME A Have a total of 5 degrees of freedom for the robotic 
arm 

C ME A List pros/cons for design alternatives 
C ME A List requirements for material properties 
C ME A Make arm retractable 
C ME A Make the elbow joint belt-driven 

C ME A Research motor placement and connection to ball 
joint 

C ME A Sketch mechanical design 

C other A Consider robotic arm as a personal assistant format 
design 

C other A Consider robotic arm as an optimal prosthesis 
format design 

C other A Create a user study for robot predictability 

C other A Sketch drawings to explain and understand design 
schematics 

C other A Use logical architecture for perception, cognition, 
action 

E CS A Use vision data from camera to calculate distance 
and identify motion cues 

E ME A Design motor as large as human can comfortably 
carry 

TC other A Design hardware then software subsystems 
individually, then combine for overall architecture 

TC other A 
Mechanical design à  sensor design à  command 
generation design à vision system design à 
control system design 

C CS P Design robot to reciprocate human movements 

C EE P Place sensing human intent system on top of 
shoulder 

C ME P Attach arm to back / shoulder 
C ME P Attach robotic arm on the front of the human body 

C ME P Begin design process by sketching mechanical 
design 

C ME P Consider ergonomics 
C ME P Design anthropomorphic gripper 
C ME P Design end effector with an opposable thumb 
C ME P Design robotic arm based on off the shelf parts 

C ME P Design the robotic arm similar to the human arm 
structure 

C ME P Embed all electrical components into the robotic 
arm 

    

	 	 	 	
    

Design 
Phase 

Field 
of Eng. Intent Action 

C ME P Give several joints & degree of freedom for the 
robotic arm 

C ME P Have an adjustable mounting system 
C ME P Set measure of success for robot grasping 
C other P Sketch early concepts 

TC CS P Design planning system and control system before 
performance requirements 

TC ME P Define payload range 

TC ME P Give several different degrees of freedom to the 
end effector 

TC ME P Limit the total weight of the robotic arm 

TC ME P Do not set the robot arm location in the design 
concept phase 

TC ME P Set robotic arm speed to mirror human body arm 
speed 

TC other P Focus on function over aesthetics 
TC other P Start with mechanical design before sensing system 
C CS S Keep computation attached to robot 

C CS S Use viewing system to estimate human pose and 
apply skeleton model to identify human vs. object 

C EE S Use battery and processing system to operate robot 
C EE S Use current sensing as a safety feature 

C EE S Use market feedback controllers for ease of 
designing joints 

C EE S Use vision based and touch based sensing features 
on the end effector 

C ME S Add gripping material to the end effector 
C ME S Use backpack weight for counterbalancing 
C ME S Use light/stiff links for speed/accuracy 
C ME S Use pneumatic/ hydraulic actuator on robotic arm 
C ME S Use traditional serial arm 

E CS S Compare 3D CAD models and PCL segmentation 
for object labeling 

E EE S Add force sensors for gripping or for safety reasons 

E EE S Add force sensors to other parts of robot for safety 
reasons 

E EE S Attach Bluetooth onto the robotic arm 
E EE S Put encoders to every joints 
E EE S Put servos for the wrist 

E EE S Put torque/pressure sensor on the end effector and 
arm joints 

E EE S Use camera for sensing system 
E EE S Use camera to get vision data 
E EE S Use cameras so robot sees what human sees 
E EE S Use microphone for voice recognition 
E EE S Use motor on the robotic arm 
E EE S Use RGB-D sensor as a viewing system 

E EE S Use same camera for obstacle avoidance and gaze 
following 

E EE S Use smartphone to connect to robot 
E ME S add a ball joint for the robotic arm 
E ME S Mount arm using backpack 
E ME S Place microphone on shoulder 
E ME S Use backpack to mount battery and processing 

E ME S Use harness/strap to mount robotic arm onto human 
body 

E ME S Use leather material for the shoulder girdle 
E other S Set the "stand still" motion as a safety behavior 

A = analysis, P = planning, S = synthesis, TC = task clarification, C = conceptual 
design, E = embodiment design, D = detail design 

 


