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ABSTRACT

In designing complex systems, systems engineers strive to
turn an existing situation into a situation that is most preferred.
A rational decision maker would choose the alternative that
maximizes the expected utility of the existing situation, but

there are significant computational challenges to this approach.

To overcome these challenges, most decision makers revert to
heuristics. In this paper, we propose a conceptual framework
for heuristics in design. A preliminary empirical study of
designers for a robotics design problem was conducted to
observe how participants apply heuristics. Participants having
at least 2 years of experience designing robots were recruited
to partake in a robotics design session in which participant
were given 45 minutes to work on a design problem. A
preliminary heuristics extraction method was developed, and
the identified heuristics were studied to find trends within the
overall set. These trends were the basis of a taxonomy of
heuristics consisting of three initial classification methods:
design phase, field of study, and action intent. The heuristics
and classifications are presented, along with the challenges
from extracting heuristics and recommendations for future
work to further research design heuristics and to improve the
method for extraction.

1 INTRODUCTION

To introduce the concept of heuristics and why they are
an integral part of design, we start the story with Herbert
Simon, who in his seminal work on the Sciences of the
Artificial [1], indicates the key objective of design: “Everyone
designs who devises courses of action aimed at changing
existing situations into preferred ones.” Framed slightly more
strongly, we could rephrase this in the context of systems

Kenton B. Fillingim
Georgia Institute of
Technology
Atlanta, GA, USA

William R. Binder
Georgia Institute of
Technology
Atlanta, GA, USA

Christiaan J. J. Paredis
Georgia Institute of
Technology
Atlanta, GA, USA

engineering and design (SE&D): Systems engineers and
designers should strive to change an existing situation into the
situation that is most preferred.

Building on the mathematics of decision or choice theory
[2, 3], the extent to which a situation is preferred, can be
measured as value. If a situation A is more preferred to a
situation B, it is assigned a higher value, so that the most
preferred situation is the one that maximizes value. Decision
theory clarifies further that one must also take into account the
time and the risk preferences. Starting from four simple
axioms, von Neumann and Morgenstern [3] proved that a
rational decision maker chooses the alternative that maximizes
expected utility, where a utility is a nonlinear transformation
of value constructed such that risk preferences are accounted
for by taking the expectation. Time preference is captured
mathematically using a discount function. Combined, this
allows us to express the objective for systems engineering and
design as the following equation [4]:

A: maxge, E[u(NPV(a,t(A),C(A)))] (1)

In other words, a designer must search over the set of all
artifacts, A, for the artifact, a, that maximizes the designer’s
expected utility of the Net Present Value (NPV). Notice that
the NPV depends not only on the value we expect to derive
from using, trading, or selling the resulting artifact, but also on
the time, t(A) , and the cost, C(A), needed for the
search/optimization process, that is, the cost and the time of
design and development.

The challenge with this framing of an SE&D problem is
that the optimization problem in Equation (1) cannot (and
should not) be solved in a mathematically rigorous sense, that
is, by using optimization algorithms to find the mathematically
guaranteed global optimum. The set of all artifacts would



require an infinite number of parameters to describe
mathematically, and the analysis of all these artifacts would
require an infinite amount of time. In addition, because the
time and cost of searching affect the objective, the designer
must carefully balance the value of the resources invested in
the search process with the value of the artifact. At some point,
continuing to search will cost more than it’s worth.

In artificial intelligence and operations research, such
computational complexity challenges are overcome by using
heuristics. Heuristic search sacrifices guarantees of optimality
and completeness of the solution set for increased solution
speed [S5]. Similarly, in design, a heuristic is a rule of thumb
that provides guidance for choosing what action to pursue,
given the current state of the design process. Design heuristics
rely on experience and knowledge to suggest actions that
provide a good tradeoff between the cost of the SE&D process
and the value of the resulting artifact.

We use the term “heuristic” broadly here. For simple
detailed design decisions, a heuristic may directly constrain
the artifact alternative. For example: “When designing a sheet-
metal hem, the hem length should be at least four times the
sheet metal thickness.” For more important decisions that
strongly affect the value of the artifact, a heuristic may specify
a sequence of design steps for how to constrain the artifact
alternative, where each step in the sequence involves
additional heuristics. For instance, a heuristic may suggest
framing the design decision as an optimization problem across
a heuristically defined design-space parameterization and
heuristically suggested analysis-model approximations and
idealizations. Finally, heuristics could also embody planning
guidance, as in a heuristic suggesting how to decompose a
high-level goal into sub-goals. In all three cases, the heuristic
knowledge reflects previous experiences regarding the value-
of-information tradeoffs [6, 7] between the accuracy and cost
of approximating Equation (1) in the specific design context
encountered. The resources allocated to a particular design
choice should be commensurate with the potential impact the
choice has on the artifact value.

There is poor agreement over how humans actually use
and select heuristics. This is often the case because heuristics
are the result of experience, and users may use them without
being consciously aware of the heuristics. Even for users that
acknowledge their use of heuristics, describing the heuristics
can be challenging. Individuals typically perform on a
relatively closed set of examples, such as the design of
pressure vessels. Those designers will likely use heuristics that
may work in other scenarios, but because of their experience
they cannot describe, or do not believe the heuristic applies in
other scenarios. This presents a challenging task for research
about how heuristics are currently employed.

In this paper, we propose a conceptual framework for
heuristics in design after reviewing relevant literature. We
conducted a preliminary empirical study of designers for a
robotics design problem to research how users apply heuristics.
We then developed a method for extracting heuristics from the
results of the survey in order to develop a taxonomy for the

heuristics. The focus of this paper is not to present the
heuristics themselves, but the method used for extraction.
There are many papers that present heuristics, but our
heuristics are simply a byproduct of the method we are trying
to design. Finally, we discuss the results and challenges of our
investigation and recommend future work to further research
into design heuristics. The research questions are: Can the use
of heuristics be justified from a normative decision theory
perspective? How do human designers use design heuristics?
What is a repeatable method for extracting heuristics from
design observations?

2 RELATED WORK

For the duration of this study, a formal definition for all
heuristics should be identified as a reference point for
heuristics. Currently, there is no standard definition for a
heuristic being used in literature. After studying how design
principles are expressed in current literature, Fu et al. provides
a formal definition of a heuristic.

Heuristic: A context-dependent directive, based on intuition,
tacit knowledge, or experiential understanding, which
provides design process direction to increase the chance of
reaching a satisfactory but not necessarily optimal solution.
Example Heuristic: “A properly designed bolt should have at
least one and one-half turns in the threads” (adapted from [8]).

Another example of heuristics used in design is Altshuller’s
TRIZ [9]. TRIZ offers a method to solve design conflicts
between multiple parameters in the design process. Based on
context (the two conflicting parameters), one or more of 40
directives are presented to increase the chance of reaching a
satisfactory solution to the conflict.

What is not considered a heuristic? Principles such as “F
= ma” are not considered heuristics. Fu et al. also breaks down
what separates design heuristics from a design principle or
guideline. In comparison to design principles and guidelines,
design heuristics are generally less formalized with the least
amount of supporting evidence or experimental validation.
Heuristics are more prescriptive and offer a certain level of
reaching a successful solution. The prescriptive design
heuristic should be stated in the grammatical imperative form,
include a prescriptive action for the designer to take, and
increase the likelihood of reaching a desirable consequence.
On the other hand, principles and guidelines are more
descriptive and do not have specific attributes regarding
success [10].

In similar studies of heuristics extraction performed by
Yilmaz, extraction methods consisted of two coders analyzing
sketches and verbal reasoning from study participants [11].
The coders performed independent analyses, and the final set
of heuristics were presented when the coders were in mutual
agreement. Coding identified each concept and documented
when change occurred from one concept to the next [12]. The
action or process initiating such change was considered a
potential heuristic, and then generalized in a way that the
heuristic could be applied to other design contexts. Coders
also recognized heuristics by identifying unique design
features not shown in the concepts of other participants [13].



A retrospective interview allowed participants to explain their
design process and provide clarification to why they made
certain decisions in the study. In other protocol studies, coders
worked as a team to examine each design concept until a
consensus list of heuristics was reached [14].

In one study of innovative products currently on the
market, Yilmaz et al. presents a clearly detailed method for
extracting heuristics. The process includes identifying key
functions or features of an innovative product compared to
other products of the same domain. Because insight into the
cognitive processes could not be extracted, the focus was on
key differences between designs [15]. However, the nature of
our protocol study produces concepts that cannot be compared
to finished products on the market. While the Yilmaz studies
focus on creativity and ideation heuristics, we are focusing on
a broader spectrum of heuristics. Many of the heuristics we
hope to observe, such as process heuristics, cannot be obtained
by only reviewing final concepts.

Humans use heuristics to approximate normative decision
theories such as expected utility theory. This is often
necessary because of an individual’s limited cognition or the
constraints of the problem, as described by bounded rationality
[16]. Instead of trying for unbounded rationality, Gigerenzer
and Selten recommend bounded rationality for individuals
who are constrained by limited resources, which in fact
applies to all decision makers [17]. As a result, individuals use
heuristics for challenging tasks, such as estimating
probabilities, that often introduce biases [18]. Thus,
individuals make decisions that are inconsistent with expected
utility theory [19, 20]. To describe this behavior, Kahneman
and Tversky introduce prospect theory [21]. Prospect theory
can be used to explain phenomena such as anchoring, a
cognitive bias that describes how humans evaluate alternatives
against an “anchor” that typically is formed from initial
information [22]. Even so, prospect theory had its limitations
in explaining decision making behavior, prompting cumulative
prospect theory [23]. Cumulative prospect theory still does not
provide us a reliable way to consider other important aspects
of decision making, such as the emotional state of the decision
maker. Though our ability to describe heuristic decision-
making behavior has advanced, there is still room for
improvement in understanding heuristics.

3 A CONCEPTUAL FRAMEWORK FOR

HEURISTICS IN DESIGN

To explain the nature and importance of heuristics, we
first need to provide a conceptual framework to think about
design. We introduce a framework in which design is
conceptualized very generically as an information-gathering
search process. To make this search process more explicit, we
reframe Equation (1) in terms of searching for a sequence of
design actions:

P: maxyer E[u(NPV(ap) t@) C®))] @
where the optimization occurs over the set of all sequences of
process steps (i.e., design actions), p € P. The end result is
still an artifact specification a(p), but it is obtained implicitly

as the consequence of following an SE&D process, p, rather
than explicitly through optimization over A.

Although this reformulation of the design problem is
equivalent to Equation (1), it reflects more directly that the
irrevocable allocation of resources to which a designer
commits (i.e., the design decision) is the allocation of
resources needed for the subsequent design actions (e.g.,
further analysis, artifact refinement, physical testing, design
optimization at a certain level of abstraction, etc.). These
process choices are truly the decisions made by designers, as
opposed to artifact “decisions” that can always be
reconsidered and reversed.

When one briefly explores what would be involved in
solving Equation (2) rigorously, the equation implies that one
should search across all possible processes, p, each consisting
of a sequence of actions that lead to an artifact
specification, a(p). One should choose the process, p, that
maximizes the expected utility reflecting the designer’s
preferences. However, each action in the process, p, results in
new information and influences the best choice for subsequent
actions. It is thus best to commit only to the first action, obtain
the information it results in, and then consider subsequent
actions. In addition, the information obtained from an action is
not known in advance—it is uncertain. To determine even the
best first action in a sequence is extremely challenging
because it would require considering every possible outcome
of that action and every possible outcome of each optimally
chosen subsequent action—in essence, an infinitely deeply
nested decision tree. Solving such a decision tree is
computationally intractable, and reliance on approximations
and heuristics is thus the only alternative. In summary, the
question is therefore not: “Should we use heuristics in design
or not?” but “Which heuristics should we use in design?”

Before continuing the discussion, it is important to be
more precise about what we mean by “heuristic.” At each
point in a design process, the designer finds herself in a
contextual situation. She has particular objectives, has certain
information about the global socio-political-economic context,
and has collected information during the preceding steps of the
design process. Based on this contextual situation, a heuristic
then constrains the actions the designer should consider for the
subsequent action. Consider, for instance, the heuristic “When
using a bolt connection, design it to have at least one and one-
half turns in the threads” (adapted from [8]). The condition
“When using a bolt connection” constrains the situations in
which this heuristic should be considered. It defines a set of
situations, which we call the applicability context of the
heuristic. If a designer finds herself in a situation, in which
this condition is satisfied, the heuristics directs her to choose
an action that is consistent with the constraint “design it to
have at least one and one-half turns in the threads.”
Mathematically, a heuristic, h; = {s;,p;}, is thus a tuple
consisting of a set of contextual situations, s;, and a subset of
design actions, p;, as shown in Figure 1. We call s; the
applicability context of the heuristic #; and p; the set of
possible actions of 4;. s; is a subset of the power set of all



possible applicability contexts, S, and p; is a subset of the
power set of all possible actions, P.

Figure 1. Each heuristic relates a set of contextual
situations,s;, to a corresponding set of design actions, p;

Note that heuristics do not specify a single action, but a
set. While they constrain the actions to be considered, the
designer must still choose an action from the set of possible
actions. Which particular action to perform is left as a choice
to the designer. Heuristics are only suggestions that help the
designer quickly home in on the most promising design
actions to consider. Again, consider the heuristic “When using
a bolt connection, design it to have at least one and one-half
turns in the threads”. In this case, the set of actions consists of
actions directing the designer to specify certain characteristics
of the bolt connection. The heuristic does not prescribe the
designer to specify one particular bolt connection but provides
a set of possible bolt connections from which the designer can
choose (e.g., different bolt lengths, diameters, materials, etc.)

It may occur that multiple heuristics apply (i.e., that the
current contextual situation satisfies the applicability condition
for multiple heuristics). Often, these heuristics constrain
different aspects of the design action to be taken, so that the
actions to be considered are in the intersection of the action
sets. “When designing a robot manipulator, start by specifying
the kinematic structure” may be combined with “When
selecting a kinematics structure for a mechanism, consider
first how many degrees of freedom are needed,” leading the
designer to analyze the required number of degrees of freedom
for the robot manipulator being designed. However, it is also
conceivable that two heuristics have overlapping applicability
contexts, but non-overlapping action sets. In such a situation a
designer must apply good judgment and choose the action she
believes to be most valuable.

This raises the issue of the quality of a heuristic. Is it
meaningful to say that heuristic A is good, or heuristic B is
bad? What determines the “goodness” of a heuristic? What we
ultimately care about is the expected value (or more precisely,
expected utility) of the outcome as expressed in Equations (1)
and (2). The “goodness” of a heuristic must therefore be tied
to this same criterion. It should reflect the designer’s ability to

achieve preferred, valuable outcomes through the application
of the heuristic. To capture this more explicitly, we will use
the term “value” rather than “goodness.”

Even with this clarification, it is still not clear what the
precise meaning is of the value of a heuristic. The outcomes,
and thus the value, depend not only on one heuristic but also
on any subsequent actions chosen by the designer. It is
therefore not meaningful to refer to “value” as a property of an
individual heuristic but only as a property of the set of all
heuristics used by the designer. Following Koen [8], we call
this set, the designer’s state of the art, or “sota.”

Finally, because preference cannot be measured in
absolute terms [3], the value of a sota also is not an absolute
measure. Rather than saying that “sota A is good,” or “sota B
is bad,” one can only characterize A relative to B: “sota A is
better than sota B.”

Next, we consider how to determine which sota is better.
One perspective argued in the literature is that design practices
(i.e., a sota) should be consistent with normative decision
theory [25-27]. Practices, such as the use of system
requirements to define a systems engineering problem, have
been critiqued as being irrational and inconsistent with the
normative theory. However, we need to be careful not to jump
to conclusions. In light of Equations (1) and (2), we need to
recognize that the use of requirements impacts not only the
artifact being designed, but also the communication and
synchronization between teams of engineers inside a
potentially very large organization or possibly even across
multiple organizations. In addition, the communication and
synchronization processes are performed by humans as
cognitive, emotional and social agents. In other words, a sota
includes heuristics regarding artifacts, processes and
organizational design, and thus needs to be assessed according
to its impact on the overall outcomes, not only on the artifact,
but also on the design processes and the human organizations
responsible for executing these processes.

Normative decision theory states that one should act in a
way that is consistent with one’s preferences and beliefs
regarding these overall outcomes. To the best of our
knowledge, an assessment of consistency based on such a
broad perspective has not been performed. Even if
inconsistencies were identified in a sota, it should not be
dismissed right away. While pointing out the potential
inconsistencies can aid in identifying opportunities for
improvement, one should only abandon a sota once an
improved sota has been identified.

In conclusion, a best-practice sota should use an
approximation of the normative theory that is attuned to the
economic and technological context and is well aligned with
the characteristics of the human designer as cognitive,
emotional and social agent. Comparing the relative value of
two sotas from this perspective cannot be achieved through
deductive reasoning based on an axiomatic, normative theory.
It requires empirical testing and abductive reasoning.

As a first step towards gaining a better understanding of
the influence of the impact of human psychology on the value



of sotas, we have created an experiment to observe the use of
heuristics by design engineers in academic robotics
laboratories. We aim to observe how human designers sift
through the sota to identify applicable heuristics and
ultimately select a design action. From the observations, we
hypothesize the following mechanisms:
e Applicability. Based on the applicability contexts of
heuristics, quickly determine whether a heuristic is relevant.

o Combination. Further reduce the set of possible actions by
taking the intersection of the action sets of multiple
heuristics that address different aspects of the design action.

® Value assessment. Rely on experience and judgment to
determine among the remaining actions which single action
is adds the most value.

In addition, most design problems are too complicated to be
addressed in a single heuristic. The designer’s sota therefore
includes a large number of divide-and-conquer heuristics that
decompose high-level goals into sub-goals and suggest the
order in which to pursue these sub-goals.

4 STUDY OF HEURISTICS IN ROBOTICS DESIGN

A study was designed to deepen understanding of how
heuristics are used in the process of robotics design. The
experimental design and method for data collection is
described in this section (4). The method for data analysis is
described in Section 5.

4.1 Participants

Participants were graduate students in robotics research
labs at Georgia Institute of Technology, all having at least 2
years of experience in designing robots. The 5 participants in
this preliminary study included 2 females and 3 males, with an
average age of 24.4 years.

4.2 Study Design

In this study, participants were interviewed about their own
approach to robotics design. Then, they were given a 45
minutes time frame to solve and to work on the following
design problem:

Objective: design wearable “third arm” robot to assist in
everyday task requiring cooperative manipulation. For
example, designing a robot that can grasp and hold objects
(e.g. a flashlight) that the human wearer directly hands to it.
You will be defining “every day task” yourself and define the
following requirements accordingly:

Performance requirements

e Payload

® Speed

® Maneuverability (obstacle avoidance)

e Sensing for grasping objects and for determining human
intent from motion cues (e.g. when to open/close grasper,
where to move)

Technical areas

o Controls

® Mechanism design

o Optimization

Computer vision
Machine learning
Signal processing
Human factors

Participants were asked to brainstorm, to sketch concepts,
to write out thoughts, use resources such as the internet,
calculate and/or analyze while designing. In addition, they
were asked to speak their thoughts out loud as they worked on
the design problem. Participants were video and audio
recorded to capture their design process and behaviors.
Participants were allowed to use any kind of resources and
methods to help them approach the design task and record the
design process. Audio and video data were used to extract
heuristics that were used by each participant to complete the
design task. The method for extracting heuristics is described
next.

5 METHOD FOR DESIGN HEURISTIC EXTRACTION
AND CLASSIFICATION

5.1 Extracting Heuristics

After data collection was complete, heuristics were
extracted by two independent coders. The coders watched the
recorded design process once before extraction for each
participant in order to capture the context of the design, the
design process and the concepts being generated. While coders
were reviewing the video recordings, each coder wrote down
identifiable actions and behaviors of the participants and the
reasoning behind them, both verbal and written.

Among the actions taken by the participant, heuristics
were identified based on the design context, participant’s
reasoning, and any other characteristics of a heuristic
associated with the action. The intermediate set of possible
heuristics was refined once more to generalize any heuristics
that may be applicable to other robotics design contexts. Then,
the coders discussed and came to an agreement on a final set
of robotics design heuristics. The initial comparison between
two coders reached a 77.8% match among all extracted
heuristics.

5.2 Grounded Theory for a Taxonomy of Heuristics

Grounded theory is an inductive research technique,
rooting in social science, in which researchers take an iterative
approach to extracting categories within empirical qualitative
data. Qualitative data, like the transcripts of the audio data
collected here, is first reviewed and examined to extract
common themes, and tagged with codes. These codes are
grouped into emergent categories that then allow for
classification and trends to be extracted from the data. The
categories are then compared to existing literature for
corroboration and refinement, and the data is analyzed again
to adjust the first pass of coding and categorization [28, 29].

Using a grounded theory approach, the set of extracted
heuristics are iteratively grouped into a proposed theoretical
classification or taxonomy. With a broader goal of creating a
taxonomy that could apply to heuristics beyond those
extracted from the results of this study, the set of potential
attributes that might be considered are:



General Applicability Attributes
e Phase of the design process
e Type of design process
o Parametric
o Variant
o New product
e Ficld of engineering
o Mechanical, etc.
e Type of system
o Complexity
o Level of uncertainty and risk
o Level of software intensity
o Level of cybersecurity
e Available resources
o Human resources
o Material resources
o Time
e Action Intent
o Planning
o Analysis
o Synthesis
This set of attributes is not meant to be exhaustive, but an
illustrative starting point for future work.

Table 1. Classification Methods & Sub-categories

Design Phase
Task Conceptual |Embodiment Detail
Clarification| Design Design Design
Action Intent

Planning | Analysis | Synthesis

Field of Engineering Study

Computer

g Chemical Other
Science

Mechanical| Electrical

The taxonomy presented here, based upon the heuristics
extracted from this study, is organized according to several
attributes characterizing the applicability of the heuristics. In
this study, three classification methods were used to identify
and to categorize heuristics that each coder found, shown in
Table 1, including design phase, field of engineering study,
and action intent classification. Each classification method has
its own sub-categories. After studying most standardized
engineering design, Pahl and Beitz provides a formal
definition for most of the categories [30]. After identifying
these categories, the coders independently classified the
heuristics according to each category and subcategory. Using
Cohen’s kappa inter-rater agreement, the coders were at an
average agreement level of 0.71 as shown in Table 2.

Design Phase Classifications
Task Clarification: “to collect information about the
requirements that have to be fulfilled by the product, and also
about the existing constraints and their importance” [30].

Conceptual Design: determines the principle solution “by
abstracting the essential problems, establishing function
structures, searching for suitable working principles and then
combining those principles into a working structure” [30].
Embodiment Design: “determine the construction structure
(overall layout) of a technical system in line with technical
and economic criteria” [30].

Detail Design: “the arrangement, forms, dimensions, and
surface properties of all of the individual parts are finally laid
down, the materials specified, production possibilities
assessed, costs estimated, and all the drawings and other
production documents produced” [30].

Action Intent Classifications
Planning: an action to define, to structure or to arrange the
given problem, and to identify the essential from the non-
essential elements of the system [30].
Analysis: an action to resolve or to decompose of anything
complex into its elements and to further study the
interrelationships between these elements [30].
Synthesis: an action to select a specific part or product or to
combine parts or elements together for new effects, and to
demonstrate that the combination of parts creates an ordered
system [30].

Field of Engineering Classifications
Mechanical: field that relates to physical structure, geometry,
material properties, kinematics, forces, or assembly
Electrical: field that uses or involves an electronic device or
electricity
Computer Science: field that involves computation,
programing, algorithms, or numerical analysis
Chemical: field that involves any kind of chemical reaction or
extraction
Other: any other field that does not fit into one of above
categories.

Table 2. Cohen’s Kappa Values for Each Classification by

participant
Cohen's Kappa Value
Design Phase Litilaie Action Intent
Eng. Study
A 0.68 0.89 0.52
B 0.72 0.81 0.71
C 0.75 0.72 0.60
D 0.82 0.63 0.75
E 0.73 0.75 0.66 Total Avg.
Avg. 0.74 0.76 0.65 0.71

6 METHODOLOGICAL CHALLENGES FOR
EXTRACTING HEURISTICS

Significant challenges were faced during the extraction of
heuristics from the design study data. These challenges are
presented to show what conflicts arise during the extraction
process and how the methodology could improve with the
resolution of these conflicts.



The limited duration of a controlled experiment excludes
the observation of heuristics that result in actions that take
longer than the duration of the experiment. In other words, the
designer may leave some actions out because they know it will
take more than the allotted 45 minutes to carry out. It may also
force the designer to incorporate required actions that would
not ordinarily reflect the participant’s design process. These
actions must be identified and labeled as not a true heuristic
but an action influenced by given prompt. These instances
may affect whether or not we are adequately identifying the
participant’s usual design process, so future studies will
analyze the supplemental interview to compare the
participant’s idea of their own design process to what is
actually done in the study.

The knowledge base of the participant may be broader in
some areas than the coder’s knowledge. If a participant has a
background in computer science and refers to a specific
software program unfamiliar to the coder, the coder will need
to closely follow the verbal reasoning or perform research to
get a general understanding of the product’s function.

The observation of a participant’s action does not provide
sufficient information to extract the corresponding heuristic.
To go from an instance of an action choice to a heuristic
requires generalization, and the generalized applicability set
and action set of the heuristic that was used by the participant
cannot be inferred without subsequent corroboration. A
participant may not be aware or have the ability to articulate
the reasoning behind an action, so the coders must be aware of
avoiding implied reasoning during heuristics extraction
process and avoid bias and influence during corroboration.
However, implicit understanding of the design process must
play a role in the coding of the heuristics in applicability sets.
The participants will rarely verbalize, for example, whether
they are in the planning and task clarification phase or
computer science domain, but this is knowledge that must be
inferred by the viewer.

As the coders advanced from participant A to participant
E in extracting and classifying heuristics, certain heuristics
were considered adequate to combine and evolve into a
generalized condition. Some heuristics were also considered
too broad and broken into multiple heuristics. For example,
“install motor for the robotic arm” and “put DC motor in the
shoulder and elbow joints” were combined to say, “use motor
on the robotic arm.” Additionally, “use smartphone to connect
to robot” was extracted from “put functions on a smartphone
app to control robotic arm and read data.” This portion of the
methodology leaves enough room for subjectivity that biases
can begin to form. The lack of formal specificity of granularity
is a challenge to extracting heuristics that will only improve as
a formal extraction method is created.

The method presented here for extraction and
classification of heuristics is preliminary, and can be improved
by addressing any or all the above challenges. The greatest
and most philosophical challenge in extracting heuristics is
one that many psychologists often face - how can we, as
researchers, be sure of what is happening in someone else’s

mind? Therefore, at this time, we cannot comment on the
conscious use of heuristics, though this is a key future
direction for this work.

7 INITIAL OBSERVATIONS: HEURISTICS IN

ROBOTICS DESIGN

A total of 110 heuristics were extracted from 5
participants. The heuristics are broken down in Appendix A
into each classification followed by the action taken. For
example, in the embodiment phase and mechanical
engineering domain with an intent to synthesize, one action
would be to “use backpack to mount battery and processing”.
At this point, the context of the heuristic is very broad. As our
classifications become more specific, the context of the
heuristic will also become more specific.

A total of 20 heuristics were used by multiple participants.
One example of this is “Attach Bluetooth onto the robotic arm”
(embodiment phase, electrical engineering domain, synthesis
intent). Participant B used this for a major feature of the
design by connecting the arm to a mobile phone app. The app
could be used to store data as well as send commands to the
robotic arm. Participant E used the Bluetooth feature as a
means to charge the robotic arm with no disconnection
required. The high number of unique heuristics found could be
due to a lack of similar design processes in robotics, a high
level of creativity among the participants, or diversity of
backgrounds between each participant.

Table 3 presents the quantities and the percentages of
heuristics in each of the classifications and sub-categories,
organized by participant. Initial observations of the
classifications reveal a significant shortage of planning and
task clarification heuristics. Over half of the participants used
two or fewer task clarification heuristics before moving onto
conceptual design, and none of the participants progressed to
the detail design phase. The authors hypothesize that this
could be driven by a short design solving time window, which
influenced participants to move into the conceptual design
phase earlier than usual and to exclude the detail design phase
from their processes. Another explanation could be that the
design prompt defines the task so clearly and specifically that
the participants felt comfortable enough to move onto the
conceptual design phase without missing any crucial details
that would otherwise have been hashed out in the task
clarification phase.

Some participants tended to simply follow the suggested
requirements and technical areas in the same order as they
appeared on the prompt. This trend would not only potentially
eliminate some typical planning heuristics, but also would lead
to having less time available for the areas on the bottom of the
list, such as machine learning and signal processing. Having
less time for these areas could have resulted in fewer
heuristics used in certain field of engineering study categories,
such as computer science. In contrast, mechanical and
electrical engineering categories accounted for the majority of
heuristics, such as mounting the robot arm, battery, motor, and
processing unit. Computer science accounted for far fewer



heuristics on average. Another possibility is that the lack of
computer science heuristics is related to factors like the
phrasing of the prompt or the background of each participant,
but a larger sample size would be required to further inspect
these hypotheses.

Table 4 shows the cross-categorization of heuristics
between action intent classification method and the other two
classification methods. Most heuristics were mechanical and
in the conceptual design phase. Planning action heuristics tend

Table 3. Quantities, Percentages and
Classification of Heuristics by Participant

Avg. # of
Heuristic

Design
Phase

ma:;i‘;ﬁm 3 (11%| 7 [30% 20%| 2 [10%] 0 | 0% | 28 |14%

2

Conceptual | 19 [68% | 11 |48%| 6 |60% | 12 | 60%| 19 | 58%| 134 | 59%
2
0

Avg %

Embodiment [ 6 [21%| 5 |22% 20%| 6 |30%| 14 [42%]| 6.6 |27%

Detail 0 0% 0 0% 0% 0 0% 0 0% 0 0%
Total 28 [100%| 23 [100%| 10 |100%| 20 [100%| 33 |100%
Field of Avg. # of o
Eng. Study a B = © 2 Heuristic pHU

35%] 20 | 61%| 10.6 |[43%
30%] 9 [27%]| 62 |25%

15%( 2 6% 34 [ 20%

Mechanical | 13 | 46% | 10 | 43% 30%
Electrical 9 132%| 6 |26% 10%

3
1
Computer
4 14%( 3 13%(| 5 |[50%
0
1

Science
Chemical 0 0% 0 0% 0% 0% 0 0% 0 0%

Other 2 7% | 4 [1T% 10% 20%| 2 | 6% | 26 |12%
Total 28 [100%| 23 [100%] 10 [100%| 20 |100%| 33 |100%

Aol w (o=

Avg. # of

Action Intent A B C D 15 Heuristic Avg %

Planning 9 [32%| 13 |57%]| 3 |30%| 2 [10%| 4 |12%| 6.2 |28%
Analysis 10 [36%) 2 [ 9% | 4 [40%]| 9 |45%]| 13 |39%| 76 |34%
Synthesis 9 |32%| 8 [35%] 3 [30%]| 9 |45%]| 16 | 48% 9 38%

Total 28 [100%| 23 [100%] 10 [100%| 20 |100%| 33 ]100%

Table 4. Cross-Categorized Heuristics by Participant

Action Intent

Planning Analysis Synthesis
A|B|(C|D|(E(A|B|C|D(E|A(B|C|D|E
5 Task Clarification| 3 (6 2| 1]0[0|1]|0f[1|0]0]O|O|0O]O
> Conceptual 61711491 (4]|7|13|4|3]|1]|4]|2
% Embodiment ojojofojoj1fojoj1|of5]|5]12(5(14
5 Detail 0]0]0|0]0]JOJO[0O]O]OJO|0O]O]O]O
Mechanical 817|13(1]3]2(0({0]3]|9|3|3]|0]|3]|8
] § Electrical 0]1|0[(0]0]|3|0[0]2|1]|6|5]|1]|4]8
%‘:ﬂ Computer Science| 0|2 |0|o|1|4]|1|3|2]|1]0]0]|2[1]0
~ 8 Chemistry olofo|o|ojo]|o|o|o|oflofo|o]|o]o
Other 113(of1joj1f{rj1ry2f2fojojoftrfo

to be mostly mechanical engineering, while the majority of
synthesis action heuristics tend to be in electrical engineering.
Another interesting trend is that in the task clarification design
phase, heuristics tend to be mostly planning actions, with a
couple of analysis action and no synthesis action heuristics.
Embodiment design phase heuristics tended to also be
synthesis action heuristics.

For heuristics based on the participant’s experience,
heuristics such as “put functions on the smartphone app to
control robotic arm and read data” led to a new way of
thinking about heuristics for the coders. This heuristic not only

shows the participant’s experience with designing wireless
connections, but also the participant’s own social experiences
with current technology. Because the participant has
experienced the rise of smartphones and the internet of things
over the past decade, this heuristic may be a product of living
with today’s technology. This reference to a time period in
technological advancement links this finding directly to
Koen’s definition of sota, which he states must “be dated with
a timestamp to indicate when it is safe for use” [8].

8 DISCUSSION AND FUTURE WORK

As our knowledge of heuristics and how heuristics play a
part in the design process expands, the methodology should
become more formal, with a distinct line of open ended
questions for extracting heuristics.

There are other aspects of the data still to be analyzed.
The preliminary interviews may be used to determine:

e How does the participant’s view of their own design
process compare to that which was extracted in the form
of heuristics?

e How can the interview process be adjusted or expanded
after the design task in order to validate the heuristics
extracted by the coders?

Heuristics can be presented in way to guide a designer through
a robotics design process if they are less experienced in some
aspects of robotics design. If a designer has a mechanical
background, a set of heuristics for the computer science design
elements can be presented. The applicability attributes
presented in the taxonomy section can be used to achieve this
goal. More applicability attributes can be added to form a tree
structure for decision making. The designer could follow the
structure and use heuristics to guide her design process as she
navigates from one branch to the next. The heuristics will also
come back to the broader aim of the research and bridge the
gap between normative and descriptive perspectives of design.
After learning how a designer approaches the design process,
we can work toward presenting a method of how they should
do design.

Some initial hypotheses that the authors have formulated
as to how designers use heuristics are presented next. These
hypotheses are open for inquiry in future research.

1. Applicability contexts are simple so that they can be easily
remembered and evaluated by designers in determining
whether to use a heuristic. This is founded on the concept
that a heuristic used by a designer must be chosen relatively
quickly, as it is meant to be inexpensive guidance towards
promising, valuable actions.

2.Designers rely on planning heuristics to identify sub-goals
for which more specific heuristics are applicable. If reaching
a goal requires a sequence of elementary design actions,
then associating this sequence with one applicability region
becomes difficult to memorize. In addition, it is likely that
different contextual situations require variants of the long
sequence so that it is easier to break the large problem down
into a sequence of smaller, manageable problems.



3. Transferring heuristics from one context to another is based
on abstraction and mapping, rooted in analogical thinking
skills.

4. Designers assess heuristics’ value based on its utility in a
given context.

5. Designers update their value assessments of heuristics based
on experience, improved understanding, learning,
observation of other designers, and other forms of new
knowledge that expand their understanding of how, when,
and why a heuristic is useful.

Finally, it is important to distinguish between a value
assessment by a designer, and a value assessment by a design
researcher. A value assessment of a heuristic by a designer
must be made quickly and inexpensively. A value assessment
by a researcher, however, is not bound by such constraints. It
may be very valuable for researcher to determine carefully and
at great expense which action should be chosen in a particular
set of situational contexts, so that this value assessment can be
shared with practitioners to inform their rapid, in-the-field
assessments.
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APPENDIX A: PRELIMINARY EXTRACTED HEURISTICS

Design Field .
Phase of Eng. Intent Action

C CS A Consider embedded or transmitted computation

C CS A Decompose machine learning testing process
Give robot different grasping methods for different

C CS A .
objects

C CS A Have pre-programmed gestures
Include feedback learning and reinforcement

C CS A . . .
learning for the machine learning

C cs A Inclu@e learning by demonstration in machine
learning

C CS A Let robot rank objects in order of usefulness

C CS A List expected system inputs and outputs
Put functions on the smartphone app to control

C CS A .
robotic arm and read data

C CS A Use forward and inverse kinematic processing
Divide controls based on range of frequencies (low,

C EE A .
high, and task)

C EE A éIlrrlr\;:-:stlgate where EEG or EMG can be attached on

C EE A List out all the possible sensors that can be used
Use other device for microphone access rather than

EE A . .

mounting onto the arm itself

C ME A Consider arm design of metal and plastic, rigid
parts, and motor actuator

C ME A Cor}mder snake-like actuation for robotic arm
design

C ME A Consider unique end effectors like coffee-filled
balloon

C ME A ?re:r\l/e a total of 6 degrees of freedom for the robotic

C ME A ?re:r\l/e a total of 5 degrees of freedom for the robotic

C ME A List pros/cons for design alternatives

C ME A List requirements for material properties

C ME A Make arm retractable

C ME A Make the elbow joint belt-driven

C ME A Re}earch motor placement and connection to ball
joint

C ME A Sketch mechanical design

C other A Cor}mder robotic arm as a personal assistant format
design

C other A Consider rgbotlc arm as an optimal prosthesis
format design

C other A Create a user study for robot predictability

C other A Sketch QraW1ngs to explain and understand design
schematics

C other A US§ logical architecture for perception, cognition,
action
Use vision data from camera to calculate distance

E CS A S .
and identify motion cues

E ME A Design motor as large as human can comfortably
carry
Design hardware then software subsystems

TC other A individually, then combine for overall architecture
Mechanical design > sensor design > command

TC other A generation design = vision system design >
control system design

C CS P Design robot to reciprocate human movements

C EE P Place sensing human intent system on top of
shoulder

C ME P Attach arm to back / shoulder

C ME P Attach robotic arm on the front of the human body

C ME P Begm design process by sketching mechanical
design

C ME P Consider ergonomics

C ME P Design anthropomorphic gripper

C ME P Design end effector with an opposable thumb

C ME P Design robotic arm based on off the shelf parts

C ME P Design the robotic arm similar to the human arm
structure

C ME P Embed all electrical components into the robotic

arm

10

Design

Field

Phase of Eng. Intent Action
C ME P Give §everal joints & degree of freedom for the
robotic arm
C ME P Have an adjustable mounting system
C ME P Set measure of success for robot grasping
C other P Sketch early concepts
Design planning system and control system before
TC CS P :
performance requirements
TC ME P Define payload range
TC ME P Give several different degrees of freedom to the
end effector
TC ME P Limit the total weight of the robotic arm
TC ME P Do not set the robot arm location in the design
concept phase
TC ME P Set robotic arm speed to mirror human body arm
speed
TC other P Focus on function over aesthetics
TC other P Start with mechanical design before sensing system
C CS S Keep computation attached to robot
C cs S Use viewing system to estima_te human pose ar}d
apply skeleton model to identify human vs. object
C EE S Use battery and processing system to operate robot
C EE S Use current sensing as a safety feature
Use market feedback controllers for ease of
C EE S L
designing joints
Use vision based and touch based sensing features
C EE S
on the end effector
C ME S Add gripping material to the end effector
C ME S Use backpack weight for counterbalancing
C ME S Use light/stiff links for speed/accuracy
C ME S Use pneumatic/ hydraulic actuator on robotic arm
C ME S Use traditional serial arm
E cs S Compare 3D CAD models and PCL segmentation
for object labeling
E EE S Add force sensors for gripping or for safety reasons
E EE S Add force sensors to other parts of robot for safety
reasons
E EE S Attach Bluetooth onto the robotic arm
E EE S Put encoders to every joints
E EE S Put servos for the wrist
E EE S Put tAorAque/pressure sensor on the end effector and
arm joints
E EE S Use camera for sensing system
E EE S Use camera to get vision data
E EE S Use cameras so robot sees what human sees
E EE S Use microphone for voice recognition
E EE S Use motor on the robotic arm
E EE S Use RGB-D sensor as a viewing system
E EE S Use same camera for obstacle avoidance and gaze
following
E EE S Use smartphone to connect to robot
E ME S add a ball joint for the robotic arm
E ME S Mount arm using backpack
E ME S Place microphone on shoulder
E ME S Use backpack to mount battery and processing
E ME S Use harness/strap to mount robotic arm onto human
body
E ME S Use leather material for the shoulder girdle
E other S Set the "stand still" motion as a safety behavior

A = analysis, P = planning, S = synthesis, TC = task clarification, C = conceptual
design, E = embodiment design, D = detail design




