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Photosynthetic Versatility in the
Genome of Geitlerinema sp. PCC
9228 (Formerly Oscillatoria limnetica
‘Solar Lake’), a Model Anoxygenic
Photosynthetic Cyanobacterium

Sharon L. Grim* and Gregory J. Dick*

Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, M, USA

Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis
are a potentially influential but poorly constrained force on Earth’s biogeochemistry.
Their versatile metabolism may have boosted primary production and nitrogen cycling
in euxinic coastal margins in the Proterozoic. In addition, they represent a biological
mechanism for limiting the accumulation of atmospheric oxygen, especially before
the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In
this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228,
formerly Oscillatoria limnetica ‘Solar Lake’, a mat-forming diazotrophic cyanobacterium
that can switch between oxygenic photosynthesis and sulfide-based anoxygenic
photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes
protein D1, a core component of the photosystem Il reaction center. Phylogenetic
analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes
that code for a D1 protein used for oxygen-sensitive processes. Another version
is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins
used under microaerobic conditions, and the third variant may be cued to high
light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene
for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative
transcriptional regulatory gene in the same operon. Another operon with a second,
distinct sqr and regulatory gene is present, and is phylogenetically related to sqr
genes used for high sulfide concentrations. The genome has a comprehensive nif
gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity.
Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase
typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of
Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with
fluctuating redox gradients and nitrogen availability that occur in benthic mats over
a diel cycle. Such dynamic geochemical conditions likely also challenged Proterozoic
cyanobacteria, modulating oxygen production. The genetic repertoire that underpins
flexible oxygenic/anoxygenic photosynthesis in cyanobacteria provides a foundation to
explore the regulation, evolutionary context, and biogeochemical implications of these
co-occurring metabolisms in Earth history.

Keywords: cyanobacteria, anoxygenic photosynthesis, great oxidation event, nitrogenase, photosystem Il D1
protein, sulfide quinone reductase
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INTRODUCTION

With a long evolutionary history and wide ecological success,
cyanobacteria are pivotal mediators of Earth’s geochemical
cycles, most notably through oxygenic photosynthesis (OP).
This metabolism emerged early in cyanobacteria (Blankenship,
2010; Farquhar et al.,, 2010), and oxygenic cyanobacteria that
colonized newly formed continental margins and shallow seas in
the Archean (Reddy and Evans, 2009; Lalonde and Konhauser,
2015) were the leading mechanism for partial oxygenation of
these shallow regions (Planavsky et al., 2014; Satkoski et al.,
2015). Although, cyanobacterial OP is the major biological force
behind Earth’s oxygenation (Blankenship, 2010; Crowe et al.,
2013; Planavsky et al, 2014), the biological and geological
processes that influence cyanobacterial oxygen production and
thus underpin Earth’s oxygenation are still under debate (Lyons
etal., 2014).

The balance of oxygenic and anoxygenic photosynthesis (AP)
has been proposed as a biological mechanism to explain the
delay and variability in oxygenation (Johnston et al., 2009). This
includes competition between AP bacteria and OP cyanobacteria,
interactions between different cyanobacterial groups with varying
degrees of AP or OP specialization, as well as cellular regulation
of the photosynthetic modes within metabolically flexible
cyanobacterial groups. Atmospheric oxygenation is considered
key evidence for OP, but the emergence and development of
AP in cyanobacteria is less clear. Assuming an early evolution
of photosynthetic flexibility in cyanobacteria, AP cyanobacteria
may have had an important role in sustaining ancient ecosystems
from the end of the Archean through the Proterozoic, especially
in times of global and local variability of O,, fixed nitrogen,
and alternative electron donors for photosynthesis such as H,S
and Fe(II) (Canfield, 1998; Scott et al., 2008; Lyons et al., 2014;
Sperling et al., 2015).

Molecular innovations equipped cyanobacteria for OP and
nitrogen fixation in a dynamic environment. The development
of OP required the linkage of two light-driven reaction centers:
photosystem II, which produces oxygen from the oxidation
of water; and photosystem I, which transfers electrons from
plastoquinone to ferredoxin (Blankenship, 2002). This coupled
system capitalized on the wide availability of H,O compared to
more limited supply of electron donors for AP such as Mn(II),
Fe(II), and H,S (Blankenship, 2002). Homologous proteins D1
and D2, encoded by the psbA and psbD genes, form the core
of PSII and anchor the water oxidizing complex (Ferreira et al.,
2004; Fischer et al., 2015). Modern cyanobacteria have multiple
versions of psbA to cope with different oxygen levels and light
regimes (Mohamed et al, 1993). Cyanobacterial adaptations
to an aerobic lifestyle are also reflected in the nif genes for
nitrogen fixation, which initially emerged in methanogens in an
anoxic environment (Raymond et al., 2004; Boyd et al.,, 2011).
Reflecting increasing oxygen levels, cyanobacterial genomes
lost and recruited nitrogenase (nif)-related genes, and shifted
expression patterns and regulation that enabled nitrogen fixation
in an oxic world (Boyd et al., 2015).

Studies of modern cyanobacteria have provided insights into
how sulfide may have modulated the balance of OP and AP in

ancient ecosystems. The influence of sulfide on cyanobacterial
photosynthesis ranges from complete inhibition at even low
levels of H,S to resilience or resistance to sulfide toxicity. In
some cyanobacteria, sulfide exposure may induce AP (Cohen
et al., 1986; Miller and Bebout, 2004), which does not include
PSII and thus does not produce O,. Instead, the sulfide quinone
reductase (SQR, coded for by the sqr gene) oxidizes sulfide to
sulfur and transfers electrons to PSI (Arieli et al., 1994; Theissen
et al., 2003). Such AP cyanobacteria have been documented in
hypersaline lakes (Cohen et al., 1975a), sinkholes (Voorhies et al.,
2012), and sulfidic springs (Chaudhary et al., 2009; Bithring et al.,
2011; Klatt et al., 2016). Studied cyanobacteria have different
mechanisms for the transition between OP and AP, such as
protein synthesis (Oren and Padan, 1978), a dependence on
light quantity and spectrum, and kinetics and affinities between
enzymes and quinones (Klatt et al., 2015a). The physiology of
AP cyanobacteria and their potential importance in modern
and ancient ecosystems have been previously explored, yet the
genomic basis for this flexible metabolism is poorly understood.

Geitlerinema sp. PCC 9228, formerly Oscillatoria
limnetica ‘Solar Lake, is a model anoxygenic photosynthetic
cyanobacterium. The organism was cultured from the low-light
sulfidic hypolimnion of Solar Lake, below a layer of green
and purple sulfur bacteria (Cohen et al., 1975b). Filamentous
cyanobacteria such as Geitlerinema are rare in oxic and
well-illuminated surface waters, and most numerous in the
euxinic hypolimnion at which they receive a fraction of surface
irradiance (Cohen et al,, 1977b). In laboratory experiments
at light intensities similar to or higher than in situ levels,
Geitlerinema performs OP, but transitions fully to sulfide-based
AP at micromolar concentrations of sulfide (Cohen et al., 1986).
Under sulfidic conditions, Geitlerinema can also fix nitrogen
and produce hydrogen (Belkin and Padan, 1978; Belkin et al.,
1982). Its SQR has been isolated (Arieli et al., 1994), sequenced
(Bronstein et al., 2000), and phylogenetically characterized
(Pham et al., 2008; Marcia et al., 2010a; Gregersen et al., 2011).
Geitlerinema is a model organism for studying the physiology of
flexible AP/OP, diazotrophic cyanobacteria and their influence
on modern and ancient systems. In this study, we analyzed a
draft genome of Geitlerinema and characterized the genes related
to nitrogen fixation, AP, and OP. These results provide a genomic
foundation for metabolic flexibility in response to varying sulfide,
oxygen, and light levels that was observed in previous physiology
studies (Belkin and Padan, 1978; Belkin et al., 1982; Cohen et al.,
1986; Shahak et al., 1987).

MATERIALS AND METHODS

Culturing and Sequencing

The original strain was isolated from the sulfidic water column
of Solar Lake, Israel (Cohen et al., 1975b), and was kindly
provided by A. Oren for culturing. A monoalgal culture was
grown in modified Chu’s 11 in Turks Island Salts medium at room
temperature (average 22.0°C) and ambient light in a 125 mL
Erhlenmeyer flask. We extracted whole community DNA using
the MPBio FastDNA SpinKit and Fastprep-24 Bead Beater (MP
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Biomedicals, Solon, OH, USA) following the default protocol,
except that 0.3 g of beads were used for bead beating. DNA was
quantified using Quant-IT PicoGreen (Invitrogen, Grand Island,
NY, USA) and submitted to the University of Michigan DNA
Sequencing Core for library preparation and Illumina HiSeq
2 x 100 bp paired-end sequencing.

Assembly

Using wrappers provided at https://github.com/Geo-omics/
scripts, reads were dereplicated with custom perl scripts,
trimmed using Sickle (version 1.33) (Joshi and Fass, 2011),
and assembled using IDBA-UD (version 1.1.1) (Peng et al,
2012) with the following parameters: —mink 65 -maxk 85 -
step 10 —pre_correction. Tetranucleotide frequency was used
to bin scaffolds by emergent self-organizing maps (Dick et al.,
2009), with a minimum contig length of 500 bp and a
window size of 10,000 bp (Supplementary Figure S1). The
cyanobacterial bin of scaffolds >1000 bp in length was submitted
to the Integrated Microbial Genomes Expert Review (IMG-
ER) automated pipeline from Joint Genomes Institute (JGI)
for annotation of genes and pathways (IMG accession number:
2660238729; Supplementary Table S1). Raw reads, assembled
scaffolds, and gene annotations were submitted to NCBI (project:
PRJNA302164).

Phylogenetic Analysis

Phylogenetic analyses of genes of interest (Table 1)
was performed with maximum likelihood and the
PROTGAMMAGTR algorithm in RAxML 8.1.15 and

bootstrapped 1000 times (Stamatakis, 2014). psbA, sqr, and
nifHDK gene phylogenies included 44 cyanobacterial isolate
genomes and genomic bins from Hot Lake and Middle Island
Sinkhole cyanobacterial mat metagenomes (Cole et al., 2014;
Voorhies et al., 2016; Supplementary Table S2). Each of these
cyanobacterial genome has at least one sqr gene, and 30 of the
44 genomes have a nifHDK gene set. sqr and nifHDK genes
from Sulfuricurvum kujiense YK-1 DSM 16994, and other
bacterial sqr genes (Supplementary Table S3) were included
for context. Translated genes (amino acid sequences) were
aligned with clustal-omega (version 1.2.0) (Sievers et al., 2011).
Alignments for nifH, nifD, and nifK were concatenated, and
the concatenated alignment was used for analysis. Halothece

TABLE 1 | Integrated Microbial Genomes (IMG) accession numbers of
genome and select genes of interest of Geitlerinema sp. PCC 9228.

Description IMG ID

Genome ID 2660238729
nifH 2663545465
nifD 2663545468
nifk 2663545469
psbA1 2663545011
PSbA2 2663544218
pPsbA3 2663548115
sqr1 2663545736
sqr2 2663547046

halophytica chILNB genes were used to root the nifHDK tree
(Boyd et al., 2015). Flavocytochrome c:sulfide dehydrogenase
(FCSD) genes formed an outgroup for the sqr tree (Marcia et al.,
2010a). The most divergent psbA from Gloeobacter kilaueensis
JS-1 was used as an outgroup for the psbA tree (Cardona et al.,
2015). Phylogenetic trees were drawn with FigTree version 1.4.2
(Rambaut, 2012).

RESULTS

Overview

The 4.77 Mb draft genome of Geitlerinema sp. PCC 9228
(henceforth “Geitlerinema”) contains 3,969 protein coding genes
on 195 scaffolds. Coverage is on average 905x across the genome.
The genome has 100% of universally conserved bacterial genes
expected to be present (Raes et al., 2007; Alneberg et al., 2014).

Carbon Metabolism

Geitlerinema has key genes coding for proteins involved
in photosynthetic and respiratory electron flow, including
photosystem II (psbADBCEFO), succinate dehydrogenase
(sdhABC), type-1 NADPH dehydrogenase (ndhA-M),
cytochrome bé6f (petADBCE]), photosystem I (psaABCDEFK),
and cytochrome ¢ oxidation (coxABC) (Supplementary Table
S1; Mulkidjanian et al, 2006). It has genes for the Calvin-
Benson-Bassham cycle, carbon dioxide concentrating proteins
(ccmK K3 MN), and Rubisco large and small subunits (rbcLS)
for carbon fixation (Figure 1). Superoxide dismutase genes
(sodC and sodN) to cope with superoxide formation during
photosynthesis and aerobic respiration are also present in
the genome. In ancestral cyanobacteria, these enzymes would
have been critical for defense against increased production of
reactive oxygen species alongside increasing O, fluxes (Blank
and Sanchez-Baracaldo, 2010; Fischer et al., 2016).

Geitlerinema has genes encoding a complete tricarboxylic
acid (TCA) cycle, including 2-oxoglutarate dehydrogenase and
succinyl CoA synthase to link synthesis of 2-oxoglutarate
through succinyl-coA with succinate (Steinhauser et al., 2012).
The genome also has the genes for acetolactate synthases and
succinate-semialdehyde dehydrogenase to interconvert 2-OG
and succinate through succinic semialdehyde in an alternative
closure to the TCA cycle (Zhang and Bryant, 2011). Though
it has shc, encoding for squalene-hopene cyclase, Geitlerinema
lacks the hpnP gene for hopanoid methylation (Ricci et al,
2015). 2-methylhopanes, derived from 2-methylhopanoids, have
been used as a bacterial biomarker in the geologic record
(Summons and Lincoln, 2012). Geitlerinema has genes for acyl-
ACP reductase and fatty aldehyde decarbonylase, key enzymes
in an alkane biosynthesis pathway unique to cyanobacteria
(Schirmer et al., 2010; Coates et al., 2014).

In the chlorophyll synthesis pathway, we identified both
the aerobic oxidative ester cyclase chlE common to all
cyanobacteria (Mulkidjanian et al., 2006), and the oxygen
independent ester cyclase bchE. Functional bchE is common in
anoxygenic phototrophic bacteria such as green sulfur bacteria
and heliobacteria (Sousa et al., 2013), and is only rarely present in
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FIGURE 1 | Metabolic schematic of Geitlerinema sp. PCC 9228. Genes
for major processes [psbA7-3, sqri, ccm, rbclS, nifHDK, hox, arsABC, ure,
urt, focA, narK, amt, glutathione S-transferase (GST)], and associated
regulatory genes (arsR, ntcA, nifl1l») are presented. Suppression of functions
is indicated with red dashed lines ending in a flat line. Other interactions are
indicated with black dashed lines ending with open circles. Transfer and
production of key reactants and products are indicated with solid lines.
Putative arsenite import is indicated with a dotted line, and anoxygenic
photosynthesis-related processes have a solid blue line.

cyanobacteria, such as Synechocystis sp. PCC 6803 (Minamizaki
et al,, 2008). Geitlerienema has the light-dependent NADPH-
protochlorophyllide oxidoreductase that produces chlorophyllide
in the penultimate step of the pathway. This gene originated in
cyanobacteria and is limited to cyanobacteria and phototrophic
eukaryotes (Blankenship, 2002; Yang and Cheng, 2004). However,
the genome lacks the light-independent oxidoreductase chILNB,
which allows for chlorophyll synthesis in the dark and is
observed in all photosynthetic phyla (Blankenship, 2002). Due
to their homology, Geitlerinema’s genes for nifHDK are the
closest matches to H. halophytica’s chILNB. Coverage estimates
for nifHDK genes are consistent with the rest of the genome,
indicating there was no mis-assembly of chILNB reads into
nifHDK genes.

Nitrogen Metabolism

The cyanobacterial genome has genes for a variety of pathways
of nitrogen acquisition, including an ammonia transporter
gene amt, cyanate lyase cynS, nitrate/nitrite transporters narK
and focA, and nitrate assimilation-related genes nitrate and
nitrite reductases nirA, nirC, and narB (Figure 1). The
cyanobacterium also has urea transporters (urtABCD), urease
genes (ureABCDFG), and genes for transport of neutral,
branched, and polar amino acids.

Geitlerinema has a comprehensive operon for nitrogen
fixation (nifVXSU, nifHDKEB; Raymond et al., 2004). Additional
nitrogenase-related proteins are located on the same contig
(iscA, nifl|I,, ferredoxin, nifN; Figure 2; Boyd et al, 2015).
iscA is commonly observed in aerobic diazotrophs, and its
recruitment into the genome is linked to a transition to aerobic
lifestyle (Boyd et al., 2015). The cyanobacterium has glnB,
a member of the PII signal transduction protein family that
regulates nitrogen-related proteins, and ntcA, which controls
expression of glnB (Forchhammer, 2004). The nifl;I; gene is
also a member of the PII protein family, but is characteristic of
diazotrophic anaerobes that regulate their nitrogenase activity
post-translation, such as Desulfovibirio and Clostridium (Boyd
etal., 2015).

Phylogenetic analysis shows that nifHDK genes from
Geitlerinema  clusters with those from cultured
cyanobacterial genomes (Pleurocapsa sp. 7327, Microcoleus
chthonoplastes) and a cyanobacterial genome-from-meta
genomic bin  (Phormidium OSCR; bootstrap = 100;
Supplementary Figure S2). Like Geitlerinema, their nitrogenase
operons also hold nifl;I;. Geitlerinema has a bidirectional
NiFe hydrogenase gene set (hoxEFUYH and hoxW) with its
transcriptional regulator (lexA) and hydrogenase maturation
proteins (hypBAEDC) (Figure 1). Unlike Geitlerinema, typical
nitrogen-fixing cyanobacteria have an uptake hydrogenase
(hupSL) to consume Hj produced in nitrogen fixation. hupSL is
under similar transcriptional regulation as nitrogen acquisition
genes like dinitrogenase, making expression of hupSL dependent
on nitrogen limitation (Tamagnini et al., 2007). In contrast, the
bidirectional hydrogenase can be present in both diazotrophic
and non-diazotrophic cyanobacteria and is expressed under
more diverse conditions. It may, for instance, be used in
fermentation or to direct electrons during photosynthesis
(Tamagnini et al, 2007). Geitlerinema produces hydrogen
during sulfide-dependent AP in the presence of bioavailable
nitrogen, as well as in the absence of CO,, suggesting the

two

nifV niftX  nifU

—AK AR MO S m - )—

sca 11

arsA nifS

FIGURE 2 | Schematic of nitrogenase genes in Geitlerinema sp. PCC 9228. nifXSU, iscA, nifHl112DK; fdxN, and nifENB are arranged in an apparent operon.
nif/ and a regulatory arsenic-related gene arsA are located upstream of the nifHDK operon.
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nitrogenase-independent hox gene set may be responsible for
hydrogen evolution (Belkin and Padan, 1978; Belkin et al., 1982).

Photosystem Il Assembly

The core proteins in photosystem II are encoded by psbA and
psbD (Blankenship, 2002). Geitlerinema has one version of psbD
and three versions of the psbA gene (Figure 1). The standard
psbA, hereafter referred to as psbA3, is in a large clade of typical

oxygenic psbA designated “group 4” after (Cardona et al., 2015)
(Figure 3). All but one of the isolate genomes in this analysis have
at least one copy of this form of psbA, which is used in OP in
aerobic conditions (Supplementary Table S2). Coverage estimates
and paired-end information suggest that Geitlerinema has two
copies of psbA3. It is the sole gene on its contig, and pairs of reads
that map to the ends of the psbA3 match to the ends or beginnings
of four other contigs. Those portions have 100% identity to the
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~80 bp beginning and end of psbA3. The De Bruijn graph-based
assembly algorithm used in this analysis frequently prematurely
assembles identical copies of genes (Nagarajan and Pop, 2013).
The approach accurately assembled the two copies of psbA3, but
could not automatically bridge the copies.

One additional version of psbA, henceforth referred to as
psbAI, has 85% sequence identity to psbA3 (blastx). psbAl
is located in a different operon but on the same scaffold
near ntcA and photosynthetic subunits psbN and psbH. psbAl
is in a well-supported clade with genes from Geitlerinema
sp. PCC 7105 (2510100750) and Geitlerinema sp. BBD 1991
(BBD_1000995126; bootstrap = 81; Figure 3). This gene is
also in a larger “group 2” (Cardona et al., 2015) that includes
psbA genes from cyanobacterial genomic bins (MIS_1001011011,
MIS_100039089) sourced from a low-oxygen cyanobacterial mat
in the Middle Island Sinkhole (Voorhies et al., 2016). Group 2
genes encode DI proteins used under growth conditions that
do not favor water oxidation (Cardona et al., 2015), such as
heterotrophy in the dark (Park et al., 2013), photosynthetic
electron transport inhibition (Kiss et al., 2012), or oxygen-
sensitive processes such as nitrogen fixation (Toepel et al,
2008; Wegener et al., 2015). Finally, the third variant, psbA2,
is 59-88% similar to psbAl (discontinuously; tblastx), and
90% similar to psbA3 (over 99% of their lengths; blastx).
psbA2 is in a clade with genes from a Middle Island Sinkhole
cyanobacterium (MIS_100299244), Geitlerinema sp. BBD1991
(BBD_1000995127) and Phormidium sp. OSCR (2609132164;
bootstrap = 94). Proteins from these “group 3” psbA genes
(Cardona et al, 2015) are expressed under microaerobic
conditions, with modified electron transfer to cope with the
changing redox environment (Figure 1; Sicora et al., 2004, 2009;
Sugiura et al., 2012).

Sulfide Oxidation

Two copies of the gene for sulfide quinone reductase, sqr, are in
the genome of Geitlerinema (Supplementary Figure S4). This
gene is involved in the oxidation of sulfide for detoxification
or to harvest electrons for AP, such as in purple and green
sulfur bacteria (Theissen et al., 2003; Marcia et al., 2009, 2010a;
Gregersen et al., 2011). Each sgr is located upstream of arsenic
resistance arsR-type genes, putatively involved in transcriptional
regulation of sqr under conditions such as sulfide exposure (Nagy
et al, 2014). One sqr, referred to as sqrl hereafter, matches
the previously cloned and sequenced sqr gene of Geitlerinema
(Bronstein et al., 2000). This enzyme mediates the reduction of
plastoquinone and oxidation of sulfide in sulfide-dependent AP
(Arieli et al., 1994). On the sqr phylogenetic tree, Geitlerinema’s
canonical sqr groups with other cyanobacterial versions that are
considered type I (Marcia et al., 2010a; Gregersen et al., 2011;
bootstrap = 100; Figure 4; Supplementary Figure S5). Hydrogen
sulfide affinities for cyanobacterial sqr in this cluster are high,
with Ky, in the micromolar range (Arieli et al., 1991; Bronstein
etal., 2000). Geitlerinema, Coleofasciculus (formerly Microcoleus),
Halothece, and proteobacterial members in this cluster have been
shown to grow with this sqr on sulfide-induced AP (Oren and
Padan, 1978; Cohen et al., 1986; Jorgensen et al., 1986; Schiitz
etal., 1999).

The second sqr gene, referred to as sqr2 hereafter, is
25-50% identical over discontinuous fragments to the sqrl
gene (tblastx). It is most similar (tblastx 48-63% identity to
overlapping fragments that span the length of the gene) to
that of Chloroherpeton thalassium ATCC35110, a green sulfur
bacterium, with similar identity to the sqr genes of other sulfur
oxidizing bacteria. sqr2 clusters phylogenetically with two other
cyanobacterial sqr [Geitlerinema sp. PCC 7105 and BBD 1991
(bootstrap = 97)], among a group of known type VI versions
(bootstrap = 100; Figure 4; Supplementary Figure S5). They
include sqr from thiotrophic proteobacteria (Marcia et al., 2010a)
and green sulfur bacteria (Gregersen et al., 2011), including that
of Chlorobium tepidum used in sulfide oxidation when sulfide
exceeds 4 mM (Chan et al., 2009).

Trace Metal Resistance

Arsenic resistance genes arsB (an arsenite efflux pump) and arsC
(arsenate reductase; Slyemi and Bonnefoy, 2011; van Lis et al,
2013), and arsR, the putative regulatory protein of sqr, are in an
arsRBC operon downstream of sqr2. Upstream of sqr2 are genes
encoding glutathione S-transferase and a multidrug efflux pump
(Supplementary Figure S4). Another arsB is located downstream
of sqrl but in a different operon. In combination with arsB,
two arsenite-tranporting ATPases arsA genes are present in the
genome, one located on the same scaffold as the nitrogenase
gene suite and the other on the longest scaffold in the dataset.
Geitlerinerna does not have known arsenite oxidizing genes
(aioAB, arxA) or respiratory arsenate reductase genes (arrA),
based on gene annotation and BLAST searches against known
genes (Hoeft et al., 2010; Slyemi and Bonnefoy, 2011). It has
an annotated chromate transporter (chrA) on another scaffold
that has 52% positive match (blastp) to a similarly annotated
gene in Synechocystis sp. PCC6803 that functions as an arsenite
uptake transporter for arsenite oxidation (Nagy et al., 2014;
Figure 1). On another scaffold, a gene belonging to the DUF302
protein superfamily of unknown function is quite similar (75%
positive, 56% identical blastp) to a Synechocystis gene in the sqrl
plasmid operon, as well as to a potential arsenic oxidase gene in
Agrobacterium (61% positive, 44% identical, blastp; Nagy et al.,
2014). Geitlerinema also has a methyltransferase similar (84%
positive, blastx) to the arsM gene of Synechocystis used in arsenite
methylation for detoxification (Yin et al., 2011).

DISCUSSION

Previous investigations of cyanobacterial cultures capable of OP
and sulfide-dependent AP targeted physiology, biochemistry,
and limited genetic analyses (Cohen et al., 1986; Arieli et al,,
1994; Bronstein et al., 2000; Miller and Bebout, 2004; Klatt
et al., 2015a). However, the broader genetic characteristics of
this cyanobacterial metabolic flexibility have not been thoroughly
evaluated. In this study, we analyzed the genome of a model
anoxygenic photosynthetic cyanobacterium, Geitlerinema sp.
PCC 9228. The organism was isolated from a sulfidic, low-
light environment, and numerous physiology studies have
documented its ability to fix nitrogen, its high affinity
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for sulfide, and its oxygenic and anoxygenic photosynthetic
capabilities (Cohen et al., 1975b, 1986; Belkin et al., 1982). We
comprehensively evaluated the draft genome of Geitlerinema for
key metabolic genes for oxygen, nitrogen, and carbon cycling, and
provide the genetic evidence of its metabolic versatility.

Photosynthesis Is Optimized for Light

and Redox

Our results indicate that Geitlerinema sp. PCC 9228 and
other sulfide-tolerant and/or sulfide-using cyanobacteria have
multiple different types of psbA genes that are inferred to meet
physiological and biochemical needs under changing light and
redox conditions. The psbA gene encodes the D1 protein that
directly supports the water-oxidizing cluster in PSII (Ferreira
et al, 2004; Fischer et al., 2015). Due to its role in water
oxidation, this protein experiences high levels of oxidative
damage and degradation. By impacting water oxidation, changes
in redox such as sulfide inhibition of the water oxidizing
complex in PSIT (Miller and Bebout, 2004) and/or non-optimal
light conditions lead to excessive energy (Klatt et al., 2015b)
and influence the risk and magnitude of oxidative damage
to D1 (Aro et al,, 1993). Thus, cyanobacteria that experience
such dynamic conditions may use another of the multiple

psbA genes in their genomic repertoire under different light
and oxygen regimes to mitigate oxidative damage (Schaefer
and Golden, 1989; Campbell et al., 1999; Sicora et al., 2009;
Gan et al., 2014; Cardona et al, 2015 Ho et al, 2016).
Geitlerinema has two copies of psbA for OP under high oxygen
and/or light levels (both psbA3; group 4), one gene for non-
oxygen evolving PSII (psbAl; group 2), and one gene for
microaerobic conditions (psbA2; group 3; Figures 1 and 3).
We infer that these distinct photosynthetic genes reflect the
adaptation of Geitlerinema to a variably lit, low-oxygen, and
sulfidic lifestyle.

During high light conditions, when Geitlerinema conducts
OP (Cohen et al, 1975a, 1986), the psbA3 (group 4) genes
are likely used to reduce photoinhibition and oxidative stress,
as observed in Synechococcus sp. PCC 7942, Synechocystis sp.
PCC6803, and Thermosynechococcus elongatus (Schaefer and
Golden, 1989; Sicora et al., 2006; Koés et al., 2008; Sugiura
etal,, 2010). Other cyanobacteria synthesize identical D1 proteins
from different genes at high light versus regular light conditions
(Sugiura et al., 2010). Two copies of psbA3 in its genome may
equip Geitlerinema to continue OP in times of sufficient and/or
high light, such as when mixed up into the epilimnion or in
holomixis. Given that psbA3 clusters with standard and high-
light variant genes (Figure 3), it remains to be seen if one
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or both of Geitlerinema’s two copies of psbA3 is cued to the
different light intensities the organism may experience in its
natural habitat.

The psbAl and psbA2 genes likely provide Geitlerinema
with the flexibility to conduct photosynthesis and nitrogen
fixation under varying oxygen and/or sulfide concentrations.
With sufficient light, the cyanobacterium may rely upon psbA2
(group 3), which is keyed for microaerobic conditions. Changing
redox environment promotes synthesis of psbA2-like variants
(group 3) in Thermosynechococcus elongatus (Sugiura et al,
2012) and Synechocystis sp. PCC6803 (Sicora et al., 2004).
However, light levels are lower than required for OP in the
hypolimnion of Solar Lake, the prime habitat of Geitlerinema.
Together with continuous sulfide exposure, these conditions
often favor AP in cyanobacteria (Klatt et al., 2015a, 2016)
and in green sulfur bacteria (Hanson et al., 2013; Findlay
et al, 2015). Groups 2 and 3 psbA genes in the current
study are in close chromosomal proximity to sqr genes
(Figure 3), suggesting an intriguing but currently untested
linkage between modified PSII and sulfide exposure. Alternative
D1 proteins have been hypothesized to be directly involved in
the transfer of electrons from donors other than water (Murray,
2012), such as in sulfide oxidation during nitrogen fixation
(Becraft et al., 2015; Olsen et al., 2015). However, whether
alternative D1 proteins are directly participating in this unusual
photochemistry or serve to inactivate PSII in AP, remains to be
tested.

Very little sulfide is required to limit OP in Geitlerinema
(Cohen et al,, 1986), and in the transition between oxygenic
to AP, continuous exposure induces synthesis of proteins
such as SQR (Arieli et al., 1991). SQR has a higher affinity
for plastoquinone than PSII (Klatt et al., 2015a), thus in
this induction period and with continual sulfide exposure,
Geitlerinema may also reformulate its photosystem II machinery
to reduce oxygen production. Finally, the psbAl (group 2)
gene is also likely used to disable oxygen production during
times of nitrogen fixation. Non-oxygen producing group 2
enzymes have been implicated as structural ‘placeholders’
that may allow oxygen-sensitive processes such as nitrogen
fixation to occur (Sicora et al., 2009; Murray, 2012; Wegener
et al., 2015). Further experiments targeting gene and protein
expression will confirm the physiological roles of the variant psbA
genes.

Variant psbA genes such as those observed in Geitlerinema
likely permitted ancestral and potentially AP-capable
cyanobacteria to meet metabolic requirements in dynamic
physicochemical ~conditions. The importance of AP
cyanobacteria and their metabolisms on Archean and
Proterozoic oxygen levels is linked to the timing of OP.
Mat-forming cyanobacteria in modern hypersaline and hot
spring ecosystems likely face the same environmental challenges
as their stromatolite-forming ancestors (Stal, 1995; Grotzinger
and Knoll, 1999). As in modern systems, the metabolisms and
mat-building lifestyles of ancestral cyanobacterial populations
would have promoted light and redox dynamics on spatial
(depth) and temporal (diel) scales (Canfield, 2005; Blank
and Sanchez-Baracaldo, 2010; Lalonde and Konhauser, 2015;

Sumner et al., 2015). Genomic and physiological studies on
contemporary mat-forming cyanobacteria and their responses to
changing environmental parameters, such as different versions
of psbA keyed to light and/or oxygen levels, inform potential
genetic and physiological strategies in ancient cyanobacteria.
Given the long geologic history of variable and low atmospheric
oxygen concentrations, the first appearance of alternative
psbA in cyanobacteria is uncertain. The functional differences
and potential heterotachy in these homologous genes dictate
caution when evaluating their timing and evolutionary order.
However, the basal arrangements of group 2 to group 3/4,
and group 3 to group 4 in the phylogenetic tree hint at an
ancestral development of water oxidation when atmospheric
oxygen was low (Cardona et al, 2015). The perpetuation of
diverse and evolutionarily old psbA genes in cyanobacterial
genomes allow for efficient metabolic functioning regardless of
oxygen levels/needs (Murray, 2012). These variant genes were
likely retained in cyanobacterial genomes for oxygen-sensitive
processes, such as nitrogen fixation, in an increasingly oxidizing
environment.

Nitrogen Acquisition Strategies in

Variable Redox Conditions

Geitlerinema has a suite of genes for uptake of nitrogen (nitrate,
nitrite, urea) as well as nitrogen fixation through a comprehensive
nitrogenase gene suite (Figures 1 and 2). Sulfide-dependent
AP was measured in select strains grown in nitrogen-replete
media, including Geitlerinema sp. PCC 9228, Coleofasciculus
chthonoplastes, and Pseudanabaena FS39, suggesting nitrate
assimilation occurs under AP conditions (Cohen et al., 1986;
Klatt et al., 2015a). Geitlerinema is also capable of AP-dependent
nitrogen fixation (Belkin et al., 1982), potentially using sulfide to
scavenge residual oxygen or donate electrons to nitrogenase (Stal,
2012).

Clues about the cyanobacterial transition from an anaerobic
to aerobic lifestyle are apparent in regulatory genes for
nitrogen acquisition. Due to its evolution under anoxia and
strict requirement for anaerobic conditions, cyanobacterial
diazotrophy in an increasingly oxidizing environment required
new adaptations (Boyd et al., 2011; Stiieken et al, 2015). In
the nif operon of Geitlerinema is nifl;I;, which encodes a
signal transduction protein of the PII family that is present
in diazotrophic archaea and select anaerobic bacteria, but has
not been studied in cyanobacteria (Forchhammer, 2004; Boyd
et al., 2015). In those organisms, Nifl;I, inhibits nitrogenase
activity when the cell is no longer nitrogen limited (Kessler
etal., 2001). Geitlerinema’s nifHDK gene suite is phylogenetically
grouped with those from three other cyanobacterial genomes that
also have nifl|I, in their nitrogenase operons (Supplementary
Figure S2), and members of this cluster are adapted to low-
oxygen and/or sulfidic conditions. C. chthonoplastes can continue
to operate OP at low sulfide concentrations and is also capable
of sulfide-dependent AP (Cohen et al., 1986). Similar to
Geitlerinema and its psbA1l, Pleurocapsa sp. PCC 7327 also has
a psbA gene that codes for a rogue D1 protein typically used in
anoxic conditions (Wegener et al., 2015).
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Geitlerinema Possesses Genetic

Versatility for Sulfide Oxidation

Sulfide quinone reductase (SQR, encoded by sqr) oxidizes sulfide
to elemental sulfur, and this process can be coupled with
lithotrophic or phototrophic growth in bacteria and archaea or
detoxification of sulfide in eukaryotes (Theissen et al., 2003;
Marcia et al., 2010a). The genome of Geitlerinema sp. PCC
9228 holds two sqr operons. The first operon has the well-
studied high-affinity sqrl (type I), which is translated after a
few hours of exposure to micromolar levels of H,S (Oren and
Padan, 1978) and enables Geitlerinema to grow by sulfide-
based AP (Cohen et al., 1986). The transcriptional regulatory
gene arsR, located downstream of sqrl, likely controls its
expression (Nagy et al, 2014). Though lateral gene transfer
has distributed various sqr types among bacteria, archaea, and
eukarya (Theissen et al., 2003), type I sqr genes in cyanobacteria
such as Geitlerinema sqrl form a distinct and well-supported
cyanobacterial phylogenetic subclade within a bacterial clade
(Figure 4). This cyanobacterial clade includes genes from AP-
capable or sulfide-tolerant members such as C. chthonoplastes,
Synechocystis sp. PCC6803, H. halophytica, and Geitlerinema sp.
BBD (Cohen et al., 1986; Theissen et al., 2003; Marcia et al.,
2010a; Nagy et al, 2014; Den Uyl et al, 2016). SQR is an
evolutionarily ancient enzyme that was widespread in organisms
during the Proterozoic (Theissen et al., 2003), during which
the oceans had variable redox conditions including euxinia.
Although the evolutionary history of sqr in cyanobacteria appears
to be complex and remains unresolved, the sqrl gene is thought
to be endogenous to cyanobacteria (Theissen et al., 2003). As
a critical component of sulfide-based AP, this gene would have
enabled ancestral cyanobacteria to thrive during the Proterozoic,
when periods of photic zone euxinia would have favored AP and
tempered oxygen production (Johnston et al., 2009). Whether
the endogenous type I SQR may have permitted ancestral
cyanobacteria to oxidize sulfide for energy, or cyanobacteria
retooled this detoxifying enzyme for AP, is an open question.

The role of the second sqr operon in Geitlerinema is unknown.
In addition to sulfide consumption through sqri-based AP (Oren
and Padan, 1978), Geitlerinema has a second sulfide donation
site on the immediate donor side of PSI, which is not inducible
(i.e., does not require protein synthesis) and does not significantly
contribute to proton translocation (Shahak et al., 1987). However,
this response operates at even higher concentrations of sulfide
(Ky in the mM range) without saturation (Shahak et al., 1987;
Arieli et al., 1991). The enzyme mediating this response to high
sulfide is unknown, thus it could be encoded by this sqr2. Only
10 of the 44 cyanobacterial genomes and genomic bins examined
in this study (including Geitlerinema sp. PCC 9228) have more
than one version of sqr. Seven genomes in this subset, such as
Synechocystis sp. PCC6803 (Nagy et al., 2014), each have two
versions sqr, one of which is phylogenetically similar to sqr1, and
the other a eukaryotic homolog (type II). Only three genomes,
all of them Geitlerinema species, have genes phylogenetically
similar to sqr2 (type VI) as well as an sqri-like version. The
sulfide physiology of Geitlerinema sp. PCC7105 is unknown, but
Geitlerinema sp. BBD is a known sulfide-resistant photosynthetic

cyanobacterium (Den Uyl et al., 2016). Green sulfur bacteria,
thiotrophic proteobacteria, and members of Aquificaceae have
multiple versions of sqr or homologs with a range of sulfide
affinities. Aquifex aeolicus expresses its types I and VI sqr,
similar to Geitlerinema’s sqrl and sqr2, even when not growing
thiotrophically (Marcia et al., 2010a,b). On the other hand,
Chlorobium is capable of sulfide-dependent growth at mM H,S
by using its type VI sqr, and other versions are used at lower
sulfide concentrations (Chan et al., 2009). Phylogenetic clustering
of sqr2 with green sulfur bacterial sgrs, including one used
at high sulfide levels, supports a similar role in Geitlerinema.
Like sqrl, sqr2 also has a transcriptional regulatory gene arsR
in the operon. These observations raise the possibility that
Geitlerinema is capable of growing phototrophically on different
sulfide levels through its sqr! and sqr2. Our results also suggest
that such versatility was likely achieved through a combination of
evolutionary processes including vertical descent within ancestral
cyanobacteria (sqrl, type I clade) as well as lateral transfer from
other groups (sqr2, type VI clade). When these genes became part
of the AP-cyanobacterial repertoire is uncertain.

Chromosomal examination of cyanobacterial sqr and groups
2 and 3 psbA genes underscores a potential relationship
between sulfide exposure and reformulation of the water-
oxidizing complex in periods of AP and/or OP. Of the evaluated
cyanobacterial genomes with sqr, 15 of the genomes have sqr
types I, II, or VI in close genetic proximity to low-oxygen
or anaerobic psbA genes. These genomes include metagenomic
bins from Middle Island Sinkhole, where sulfide-based AP has
been demonstrated (Voorhies et al., 2012), two other species
of Geitlerinema, four Cyanothece species, and two Leptolyngbya
species, among others. Because of variable contig lengths, it is
unknown if psbAI and/or psbA2 of Geitlerinema sp. PCC 9228
are in proximity to one or both of its sqr genes. However, the
small intergenetic spaces between anoxygenic/micro-oxygenic
psbA varieties and sqr in the other genomes hints at potential
linked transcriptional regulation of these genes. Additionally, of
the cyanobacterial sqr genes, 27 were in close proximity to arsR-
like transcriptional regulators. These genes and conditions of
their expression are an attractive target for further studies.

Potential Trace Metal Oxidation

Different versions of sqr in Geitlerinema sp. PCC 9228 may
also be linked to trace metal metabolism and resistance. In
close proximity to sqr2 there are genes for arsC, arsB, arsR,
and glutathione (GST) S-transferase, and on other contigs there
are genes for arsenite transporting ATP-ases arsA, another arsB,
a methyltransferase similar to arsenite methylator arsM, and
a chromate transporter similar to a cyanobacterial arsenite
importer. These genes are involved in arsenate reduction,
arsenite transport, transcriptional regulation, and mediation of
arsenic resistance (Oden et al., 1994; Mukhopadhyay et al,
2002; Cameron and Pakrasi, 2010; Slyemi and Bonnefoy, 2011).
Synechocystis sp. PCC6803 uses an arsR gene to regulate genomic
arsBHC expression during arsenic exposure (Lopez-Maury et al.,
2003), and is able to grow in mM concentrations of arsenite and
arsenate (Sanchez-Riego etal., 2014). An arsR-like transcriptional
regulator is also adjacent to sqrl in Geitlerinema (Bronstein
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et al., 2000), and the proximity of arsR to sqr2 suggests a similar
regulatory role. Arsenic resistance genes are widely distributed
among bacteria and archaea, and may be found in environments
that do not have measurable arsenite (Mukhopadhyay et al.,
2002; Oremland and Stolz, 2005). The hydrology of the habitat
of Geitlerinema, Solar Lake, is driven primarily by seawater
seepage through the sand bar, with minor meteoric input (Cohen
et al., 1977a). Usual sources of arsenic, such as hydrothermal hot
springs in hypersaline environments or weathering of arsenic-
rich clays (Oremland et al., 2009), are absent from this system.
As such, these genes may have been inherited from ancestral
cyanobacteria inhabiting a metal-rich environment (Oremland
et al., 2009), be used to detoxify other metals such as antimony
(Nagy et al., 2014), or cope with reactive oxygen species and
oxidative stress (Latifi et al., 2009; Takahashi et al., 2011).

The proximity of the sqr2 to arsenic-related genes (arsRBC,
glutathione S-transferase), taken together with experimental
results from related organisms and genes, hints at an unexplored
potential metabolism in Geitlerinema: AP using arsenite as
the electron donor, as in anoxygenic bacteria (Kulp et al,
2008; Hoeft et al., 2010; Edwardson et al., 2014). Oscillatoria-
like cyanobacterial biofilms in an arsenic-rich hot spring, and
Synechocystis sp. PCC 6803, can perform light-dependent arsenite
oxidation (Kulp et al., 2008; Nagy et al., 2014). In Synechocystis
sp. PCC 6803, the same sqr and arsR genes from its plasmid
sqr operon, which enable light-dependent sulfide oxidation, are
expressed during arsenite (As(III)) oxidation in the light (Nagy
et al., 2014). The cyanobacterium imports arsenite through a
chromate transporter (suoT, on the same plasmid operon), stores
mM arsenite intracellularly without detriment, and exports excess
arsenite through arsB (Nagy et al, 2014). The arrangement
of Geitlerinema’s arsenic-related genes on its sqr2 operon is
similar to the plasmid sqr operon of Synechocystis sp. PCC
6803. Arsenite oxidation has been linked to electron transfer
to quinones (Jiang et al, 2009) and energetics support the
potential of cyanobacterial plastoquinone as an arsenite oxidant
(Nagy et al., 2014), but this pathway has not been explored in
cyanobacteria. The co-transcription of sqrI in Synechocystis with
arsenite uptake genes during arsenite exposure (Nagy et al., 2014),
and the well-characterized electron-stripping mechanism of sqrlI
on sulfide (Arieli et al., 1994), hints at a role for sqr in arsenite
oxidation.

Arsenite-dependent cyanobacterial AP is intriguing due to
the role of arsenite-based primary production on ancient Earth.
Arsenic was likely more abundant on Earth’s surface during
the Archean than present (Oremland et al., 2009). In anoxic
marine basins that dominated the biosphere 2.7 Ga ago, arsenite-
dependent microbial autotrophy putatively cycled nitrogen,
carbon, and arsenic (Sforna et al, 2014). This metabolism
continues in modern hypersaline hot springs and subsurface
aquifers that have elevated arsenic levels (Oremland and Stolz,
2005; Kulp et al, 2008; Hoeft et al., 2010). The genome of
Geitlerinema lacks proteobacterial arsenite-oxidizing genes, and
instead has genes similar to those used for light-dependent
arsenite oxidation in Synechocystis sp. PCC 6803 (Nagy
et al., 2014). Verifying arsenite-dependent AP in cyanobacteria,
and conclusively linking the sqr2 gene in Geitlerienema to

that process, would clarify the potential role of anoxygenic
cyanobacteria in arsenic cycling in both modern and ancient
ecosystems.

In summary, analysis of the genome of Geitlerinema sp.
PCC9228 complements prior physiology studies by providing
the genetic foundation for its metabolisms of nitrogen fixation,
facultative OP, and sulfide-based AP. We find multiple versions
of psbA, encoding a key protein for water oxidation, which
may enable a sensitive response to varying conditions of light,
oxygen and sulfide. Nitrogen fixation is linked to oxygen level
and production via the nifl;I, regulator in the nif operon and
via non-oxygen producing psbA, respectively. Multiple versions
of sqr likely address a range of sulfide concentrations and may
also be linked to responses to metals and oxidative stress and
perhaps even arsenite oxidation. Aerobic versatility encoded
in the genome of Geitlerinema, coupled with diazotrophic
regulation and concentration-specific sulfide responses, permit
Geitlerinema to thrive in periodic sulfidic, microoxic, and poorly
lit conditions of Solar Lake (Cohen et al., 1975a). Such dynamic
geochemical conditions likely also challenged cyanobacteria
during variable sulfide and oxygen levels of the Archean and
Proterozoic (Satkoski et al., 2015; Sperling et al., 2015). This
study of Geitlerinema and its unique gene assemblage addresses
both the ambiguous role of Archean cyanobacteria in oxygen
production/mitigation prior to the development of OP and
the Great Oxidation Event, as well as the contributions of AP
cyanobacteria to Proterozoic biogeochemistry. The phylogeny
and diversity of genes responsible for metabolic versatility
in Geitlerinema suggest a blend of genetic strategies for the
anoxic early environment—such as methanogen-like modulation
of nitrogen fixation and non-water oxidizing photosynthetic
proteins—with post-oxidation strategies such as specific
photosynthetic proteins for micro-oxic as well as oxic conditions,
and different SQRs for fluctuating sulfide concentrations.
Phototrophs capable of versatile AP/OP, such as Geitlerinema,
would have had the advantage over organisms metabolically
limited to either oxic or sulfidic conditions. Their continuous
photosynthesis likely supported other microorganisms with fixed
nitrogen and carbon, sulfide removal, and intermittent oxygen
production. Furthermore, conditional production of oxygen
at variable concentrations would have had strong influences
on the structure and metabolic needs of their associated
microbial communities through development of oxygen refugia
and/or oases. Further research into Geitlerinema’s growth and
transcriptional regulation will uncover the fine-tuned response
of AP/OP cyanobacteria to changing redox conditions. In turn,
we can relate the scope of these dual metabolisms and their
modern physiologies to their ancestors’ impacts on ecology
and geochemistry as Earth slowly and discontinuously became
oxygenated.
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