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Abstract

Geological carbon sequestration captures CO:2 from industrial sources and stores the
captured COz in subsurface reservoirs, a viable strategy for mitigating global climate change. In
assessing the environmental impact of the strategy, a key question is how biogeochemical
processes may respond to the elevated CO2 concentration. This study took a biogeochemical
modeling approach and investigated the influence of high CO: partial pressures on the
thermodynamics and kinetics of microbial reactions. The simulation considered common
microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction,
sulfate reduction, and methanogenesis. The modeling results showed that increasing CO2 partial
pressures decreases groundwater pH and impacts chemical speciation of dissolved inorganic
carbon and weak acids, which in turn affect microbial reactions in different ways and to different
extents. Specifically, the thermodynamic analysis showed that increasing COz partial pressure
lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but
raises the available energy of microbial iron reduction and hydrogenotrophic sulfate reduction
and methanogenesis. The kinetic modeling suggested that high COz partial pressure has the
potential of inhibiting microbial sulfate reduction, while promoting microbial iron reduction.
These results highlight the complexity in microbiological responses to elevated CO2 abundance,
and the potential power of biogeochemical modeling in evaluating and quantifying these
responses.

Keywords: biogeochemical modeling, available energy, microbial kinetics, carbon
sequestration, iron reduction, sulfate reduction

1. Introduction

Carbon capture and geological storage is one option in the range of actions that help
stabilize atmospheric COz levels despite anticipated increases in fossil fuel combustion (IPCC,
2005). Geological carbon sequestration involves capturing CO2 before its emission into the
atmosphere and injecting it into a deep subsurface reservoir (Benson and Cole, 2008). The
technology injects COz2 at depths >800 m, where CO2 would exist as a buoyant supercritical
phase (IPCC, 2005). A low-permeability caprock overlying a storage reservoir can provide
structural trapping that limits upward migration of CO2. Over time, CO2 would also be trapped
by dissolution into water, formation of minerals, and capillary trapping (Benson and Cole, 2008).
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Although geological carbon sequestration is promising, it has the potential to negatively
affect groundwater resources. CO2 or COz-rich brine from deep storage reservoirs can diffuse
through caprocks, and migrate upwards through faults and fractures, and abandoned wells
(IPCC, 2005;Celia and Nordbotten, 2009;Keating et al., 2013;Keating et al., 2014). The leakage
of CO2negatively affects the water quality of overlying freshwater aquifers, and has been
described in detail previously (e.g., Kharaka et al., 2006;Lu et al., 2010;Wilkin and Digiulio,
2010;Harvey et al., 2013;Humez et al., 2014;Lions et al., 2014;Shao et al., 2015). Briefly, CO2
leakage can lower groundwater pH, increase salinity, dissolve aquifer minerals, and mobilize
hazardous solutes (Wang and Jaffe, 2004;Zheng et al., 2009;Apps et al., 2010;Kharaka et al.,
2010;Little and Jackson, 2010;Lu et al., 2010;Wilkin and Digiulio, 2010). The COz2 could also
eventually reach the atmosphere, undermining the attempts to hold atmospheric CO: levels in
check.

CO:2 leakage affects microorganisms living in aquifers. CO:2 of extremely high pressure
can kill microbes by extracting intracellular materials, disabling enzymes, and mobilizing toxic
trace elements from minerals (Bertoloni et al., 2006;0ule et al., 2006; Wimmer and Zarevucka,
2010;Santillan et al., 2013). Nevertheless, microorganisms are likely to persist in aquifers
exposed to CO:2 leakage (Kirk et al., 2016). Numerous studies have observed microorganisms in
environments with dissolved COz levels that are high relative to those of most natural waters
(Yakimov et al., 2002;Inagaki et al., 2006;Videmsek et al., 2009;0ppermann et al.,
2010;Emerson et al., 2015). Recently, Peet et al. (2015) documented microbial growth in the
presence of supercritical CO2. Microbial tolerance to high-pressure COz is enhanced for cells that
possess Gram positive cell walls, grow within biofilms, and produce spores (Zhang et al.,
2006;Mitchell et al., 2008). Microbial survival can also be promoted by aquifer minerals capable
of rapid pH buffering (Wu et al., 2010).

Many questions still remain to be addressed in order to assess the impact of CO2 leakage
on subsurface microbiology (Harvey et al., 2013). For example, how does CO:2 leakage affect
microbial energetics and the interactions between different microorganisms? Filling this
knowledge gap is important because microorganisms can affect not only the chemical
composition of aquifers but also the flow of groundwater (Gerlach and Cunningham, 2010;Flynn
et al., 2013). Many microbial reactions consume protons, which enhances the dissolution of CO2
gas. As a result, the impact of COz leakage on aquifer microorganisms may also affect the fate of
CO:2 migrating into aquifers.

In this study, we use biogeochemical modeling to investigate how COz leakage may
influence the thermodynamics and kinetics of microbial reactions in aquifers. Specifically, we
first explore how CO2 leakage impacts aquifer geochemical properties that are relevant to
microbial reactions. We then simulate how CO: leakage affects the thermodynamics of
syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. We also carry out
kinetic modeling to explore how COz leakage influences the occurrence and activity of
microorganisms in an aquifer. Our results show that CO: leakage significantly impacts the
thermodynamics and kinetics of microbial reactions, and can change the outcome of microbial
interactions.
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2. Methods
2.1. Hypothetical aquifers

The simulation considers two hypothetical aquifers, a carbonate-free aquifer and a
calcite-rich aquifer, that are subject to CO:z leakage from deep storage reservoirs (fig 1). The
carbonate-free aquifer has no carbonate mineral, and the calcite-rich aquifer contains abundant
calcite as a representative carbonate mineral. In the aquifers, groundwater contains 10 mM Na®,
9 mM CI~, 5 mM bicarbonate, and 2 mM Ca** flows through at a flow rate of 5 cm-yr~!. Both the
chemical composition and the flow rate are within the ranges reported for deep aquifers
(Chapelle, 2001).

CO2 leaks into the hypothetical aquifers from deep reservoirs via a fault. The simulation
describes the progress of CO2 leakage by raising CO: partial pressure of the groundwater. A
wide range of COz partial pressures are possible during COz leakage. The simulation assumes a
maximum value of 30 atm, which equates to one-third of total pressure typical for underground
drinking water resources (Wilkin and Digiulio, 2010).

The inclusion of the carbonate-free and the calcite-rich aquifer is to account for the wide
range in the responses of pH to COz leakage. Specifically, CO2 leakage into groundwater of
circumneutral pH induces a hydrolysis reaction,

CO, (g)+H,0 2 CO,(aq)+H,0 2 H" +HCO;, (1)

which decreases groundwater pH. The decrease in groundwater pH depends in part on mineral
compositions of aquifers (e.g., Gunter et al., 1997;Xu et al., 2005;Kampman et al., 2009;Matter
and Kelemen, 2009). For example, proton reacts with carbonate minerals, and these reactions
buffer the change in pH. Taking calcite (CaCO3) as an example, proton reacts rapidly with this
mineral,

Calcite + H 2 Ca** +HCO;. )

Proton also reacts with silicate minerals, such as feldspars and clay minerals, releasing aluminum
and silicate into groundwater. These reactions are typically much slower than the dissolution of
carbonate minerals (Sherlock et al., 1995;Gunter et al., 1997;Gislason et al., 2010;Wilkin and
Digiulio, 2010). As a result, over relatively short time scales, these reactions are not as effective
as the dissolution of carbonate minerals in pH buffering. Another proton-consuming reaction is
the sorption onto the surface of clay minerals, metal oxides and hydroxides, and other minerals
of large surface areas. Compared to mineral dissolution, the impact of surface complexation on
groundwater pH is relatively insignificant.

2.2. Microbial reactions

Aquifers house diverse microorganisms, which can be separated into a series of
functional groups, including fermenters, syntrophs, and respirers (Jin and Roden, 2011).
Fermenting microbes degrade natural organic matter to Ha, acetate, lactate, propionate, and other
short-chain fatty acids, and to methanol, ethanol, and other primary alcohols. Syntrophs oxidize
short-chain fatty acids and primary alcohols to acetate and COz, and transfer the released
electrons to the reduction of protons to dihydrogen (Hz2). On the other hand, respirers oxidize Ha,
short-chain fatty acids and primary alcohols, and transfer the released electrons to the reduction

3
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of O2, ferric minerals, sulfate, bicarbonate, and other electron acceptors.

The redox reactions catalyzed by syntrophs and respirers can be represented as
DvD+Y v A2 Y v D' +> v A, 3)
D A D* A~

where D and D" are electron donors and their oxidized forms, respectively, A and A~ are electron
acceptors and their reduced forms, respectively, and vb and others are stoichiometric
coefficients. In microbiology and biochemistry, the thermodynamics of redox reactions is
commonly characterized using reduction potential. Specifically, for the redox couple of D and
D, the reduction potential Ep (V) is calculated according to

of RT Vb Vb Vot Vit .
E,=E} —n—F-{ln[H;/D -my j—ln[H;/ voem ﬂ, 4
D D'

for the redox couple of A and A~, the reduction potential Ea is calculated as
or RT
E,=E, ———|In H7/A—'mA— —In H7/A'mA : (%)
nk A A

Here EY' and E;' are standard potentials at pH 7, 7 is the number of electrons transferred per
reaction, 7, and others are activity coefficients (M), mp and others are molal concentrations, R

is the gas constant (J-mol™"-K™), F' is the Faraday’s constant, and 7 is the absolute temperature
(K). Table 1 lists the reduction reactions of redox couples commonly found in aquifers and the

standard reduction potentials (ES and E}') at 1 atm, 25 °C, and pH 7. For the purpose of

comparing stoichiometric coefficients of proton and bicarbonate, the reactions are written in
terms of eight electron transfer (n = 8).

By transferring electrons, syntrophs and respirers liberate the chemical energy from redox
reactions, which become available to their metabolisms. The available energy AGa [J-(mol
reaction)™!, or J-mol~'] is the negative of the Gibbs free energy change of redox reactions, and is
calculated from

AG, =nF-(E, -E,), (6)
the difference in the reduction potentials between electron acceptors Ea and donors Ep. Table 2

lists the standard available energy at 1 atm, 25 °C, and pH 7 for common redox reactions in
aquifers.

The rate » (M-s~") at which syntrophs and respirers catalyze redox reactions can be
calculated according to the thermodynamically consistent rate law (Jin and Bethke,
2003;2005;2007):

r=k-[X]-Fy-F, - F;, (7
where k is the rate constant [mol-(g dry weight)~'-s™!, or mol-g~'-s7!], [X] is the biomass
concentration [g dry weight-(kg H20)™!, or g-kg™'], Fp and Fa are the kinetic factors of electron
donor and acceptor, respectively, and Fr is the thermodynamic potential factor. The kinetic
factors are calculated according to
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where Kp and Ka are the half-saturation constants (M) for electron donor D and acceptor A,
respectively. The thermodynamic factor is calculated according to
AG, —A
F; =1—exp(—M] (10)
7 RT

where AGc (J-mol™') represents the energy saved by microbes, and y is the average
stoichiometric number. The saved energy AGc is calculated as

AG. =m, -AG, (11)
the product of the ATP yield mp of microbial reaction, and the phosphorylation energy AGp, i.e.,
the energy required to synthesize ATP from ADP and phosphate in the cytoplasm of
microorganisms. In this study, the value of AGp is taken as 45 kJ-(mol ATP)~! (Jin, 2012).

For microbial reduction of ferric minerals, its rate depends on the molal concentration
Mmsurfavail Of bioavailable surface sites of the minerals. According to Roden (2006);2008), the rate
can be calculated according to

. [X]/msurf,avail F F 12
surf,avail Kzurﬂavaﬂ +[X] I'm D 4T ( )

where ksurt is the bioavailable site-specific rate constant (s™!), and K" is a constant in g cell

r= ksurf -m

surf,avail

dry weight per mol bioavailable surface sites (g'-mol™"). The concentrations msurf,avail of
bioavailable surface sites are influenced by the sorption of ferrous iron on ferric minerals (Roden
and Urrutia, 2002).

Syntrophs and respirers utilize the saved energy AGc to synthesize biomass. The rate at
which the biomass concentration [X] changes with time is calculated
d[X]
——=(u-D)-[X]. 13
o = (u=D)IX] (13)
where u is the specific growth rate (s™!), and D is the specific rate of maintenance (s™!). The
specific growth rate u is calculated according to
p=y — (14)
[X]
Here Y is the growth yield, the grams of biomass synthesized per mol reaction (g-mol™).

2.3. Model implementation

We carried out the simulation using the React program of the software package
Geochemist’s Workbench version 9.0 (Bethke, 2008). Following common practice in
geochemical reaction modeling (Bethke, 2008), the simulation assumes that aqueous chemical
speciation is at thermodynamic equilibrium, and describes these reactions on the basis of the
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updated LLNL Thermodynamic Database (Delany and Lundeen, 1990). This database was
modified to include amorphous iron sulfide (solubility product of 10->°%) (Langmuir, 1997), and
goethite (solubility product of 10!4%) (Bigham et al., 1996). The activity coefficients are
calculated according to an extended form of the Debye-Hiickel equation (Helgeson, 1969).

Aquifers may contain various ferric minerals. The simulation takes goethite as a
representative, and describes the sorption of ferrous iron onto the surface of goethite using non-
electrostatic Langmuir-style adsorption isotherms (Stumm and Morgan, 1996). Specifically, the
sorption reaction is

>FeOH + Fe** &=2> FeOFe’ +H", (15)
where >FeOH represents the native surface site that is available to bioreduction, and >FeOFe" is
ferrous iron surface species. The logarithmic equilibrium constant of the reaction is —2.50 (Jin
and Roden, 2011). The value of msurfavail 1s calculated as the difference in concentration between
the total surface sites and those occupied by sorbed ferrous iron.

3. Results and discussion
3.1. Groundwater chemistry

Figure 2, 3, and 4 shows, according to the simulation results, how groundwater chemistry
responds to the increase in CO2 partial pressure. Before CO:2 from the deep reservoir reaches the
hypothetical aquifers, the groundwater has pH of 8 and a partial pressure of CO> of 3.1x10~*
atm. Dissolved inorganic carbon occurs mainly as bicarbonate (0.5 mM), dissolved CO2 (0.01
mM), and calcium-bicarbonate complex species (CaHCO; , 0.01 mM).

3.1.1. pH and inorganic carbon

CO2 leakage raises the COz partial pressures to 30 atm. According to the simulation
results (figs 2), the increase in COz partial pressure lowers significantly groundwater pH, and
raises the concentration of dissolved CO2 in the aquifers. Specifically, in the carbonate-free
aquifer, where COz partial pressure increases from near 0 to 30 atm, pH decreases from 8 to 3.5,
and dissolved COz2 concentration increases to 1.06 M. But there is relatively little increase in the

concentration of bicarbonate or calcium-bicarbonate complex (CaHCO; ).

In the calcite-rich aquifer, the increase in COz partial pressure also raises the
concentration of dissolved COz to 1.06 M, but decreases groundwater pH only to 5. In addition,
the increase in COz2 partial pressure also increases significantly the concentrations of bicarbonate

and CaHCOj ; bicarbonate and CaHCO; concentrations increase to 60.5 mM and 10.4 mM,
respectively, at CO2 partial pressure of 30 atm.

The different responses of the two aquifers arise from COz-induced dissolution of calcite.
In the carbonate-free aquifer, the simulation does not consider any reaction that consumes
protons. As a result, most of the protons generated by CO2 dissolution stay in the groundwater,
lowering pH significantly. In comparison, in the calcite-rich aquifer, protons react with calcite,
which buffers the decrease in pH, and adds bicarbonate to the groundwater.

6
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The simulation results agree with previous assessment. The magnitude of pH decrease by
CO2 addition depends on the extent to which the environment can buffer CO: acidity as well as
the pressure, temperature, and salinity of subsurface fluids. The solubility of COz increases with
pressure and thus depth but decreases with temperature and salinity (Benson and Cole, 2008).
Decreases in the pH of fresh groundwater observed by field and laboratory studies range from
0.8 to 2.9 pH units (Lions et al., 2014). Similarly, geochemical modeling analysis indicates that,
during CO: injection experiment in the Frio Formation, the pH of basin brine under subsurface
conditions decreased from about 6.5 to 3 (Kharaka et al., 2009).

3.1.2. Aqueous speciation

The pH decrease in groundwater has a direct impact on the speciation of dissolved
chemicals. Figure 3 shows how CO: leakage changes the relative abundances of acetate, lactate,
propionate, butyrate, monohydrogen sulfide (HS"), and their conjugate acids. These chemical
species directly participate in microbial redox reactions.

The response of aqueous speciation is more pronounced in the carbonate-free aquifer than
in the calcite-rich aquifer. In the carbonate-free aquifer (fig 3A), the relative abundances of
different acids increase, while the relative abundances of the conjugate bases decrease, with the
increase in CO2 partial pressure. The appearance of the cross-over points for the acids and their
conjugate bases follows the sequence of the acidity constants. Among these acids, dihydrogen
sulfide (H2S) has the largest logarithmic acidity constant pKa of 7.0 (Lide, 2003), and H2S and
HS™ reach equal concentrations where CO2 partial pressure increases to 4x10~> atm, and
groundwater pH decreases to 7.0. On the other hand, lactic acid has the smallest pKa of 3.86, and
lactic acid and lactate take the same concentration where COz partial pressure reaches 12 atm,
and groundwater pH drops to 3.86.

In the calcite-rich aquifer (fig 3B), only the speciation of dihydrogen sulfide shows
significant variations. Specifically, increases in CO2 partial pressure converts monohydrogen
sulfide to dihydrogen sulfide. At CO> partial pressure of 2.9x102 atm and pH of 7, the two
species have the same concentration. The speciations of acetic acid, propionic acid, and butyric
acid also respond to the increase in CO2 partial pressure, but to a much lesser extent. These acids
occur at relatively significant concentrations, only after COz partial pressure increase over 1 atm
and pH decreases to 6. The modest responses of aqueous speciation in the calcite-rich aquifer
arises from the limited decrease in groundwater pH (fig 2C).

3.1.3. Ionic strength and activity coefficient

In the calcite-rich aquifer, CO:2 leakage also raises the ionic strength of the groundwater
(fig 4A). Where CO: partial pressure increases from 3.0x10~* to 30 atm, the ionic strength
increases from 16.6 mM to 100 mM. This increase is mainly due to the increases in the
concentrations of Ca®" and bicarbonate by the dissolution of calcite (fig 2D). In comparison, in
the carbonate-free aquifer, the ionic strength of groundwater remains constant with the increase
in CO2 partial pressure (data not shown).
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Ionic strength controls the thermodynamic properties of dissolved chemical species,
which can be quantified using activity coefficient (eq 4 and 5, fig 4B). Among different theories,
the extended Debye-Hiickel equation, or the B-dot equation, represents a robust choice
applicable for Na/Cl-dominated solution of ionic strength up to 2 molal (Helgeson, 1969).
According to the B-dot equation, activity coefficients depend significantly on the ionic strength
of groundwater and the charges of chemical species. Figure 4B shows in the calcite-rich aquifer,
the activity coefficients of ions decrease with the increases in CO: partial pressure, because of
the increase in the ionic strength. For chemical species with +1 or —1 charge, where CO: partial
pressure increases from near 0 to 30 atm, the activity coefficients decrease by about 0.1, from
near 0.89 to 0.77. For those with +2 or —2 charge, the activity coefficients decrease by about 0.2,
from near 0.6 to 0.4. For neutral chemical species, the activity coefficients are set at unity, and
do not change with the ionic strength of groundwater.

3.2. Reduction potential

The above geochemical variations place a fundamental constraint on the thermodynamics
of microbial reactions. This thermodynamic impact can be evaluated using the reduction
potentials of redox couples in microbial reactions. Here we focus on the electron donors
produced by the degradation of natural organic matter, include dihydrogen (H2), acetate, lactate,
propionate, butyrate, methanol, and ethanol, and consider the common electron acceptors in
aquifers, such as goethite, sulfate, bicarbonate, and proton (Lovley and Chapelle, 1995;Bethke et
al., 2011).

We compute the change in reduction potential, not absolute value, for each electron
donor and acceptor. In this way, we highlight the significance by which CO: leakage affects the
reduction potentials. Using the change, not absolute value, also avoids the need of the
concentrations of electron donors and acceptors. In aquifers, there are few concentration
measurements for lactate, propionate, butyrate, methanol, and ethanol. On the other hand, for the
electron acceptors of sulfate and bicarbonate, their concentrations vary over orders of magnitude
(Kirk et al., 2015). Using the changes also simplifies the discussion of ferric mineral reduction.
In aquifers, different ferric minerals, such as ferrihydrite, goethite, hematite, and lepidocrocite,
may be present. Although these ferric minerals have different reduction potentials, their
reduction potentials respond in the same fashion to pH variations, because the reduction of these
ferric minerals consumes the same number of protons per electron. Here we evaluate the changes
in the reduction potential of goethite, but the result is applicable to ferrihydrite, hematite, and
lepidocrocite.

Figure 5 shows, according to the simulation results, how reduction potentials of different
redox couples respond to the leakage of COx. In both the carbonate-free and calcite-rich aquifers,
the reduction potentials increase with COz partial pressures. For the redox couples considered by
this study (see table 1), their reduction reactions consume protons and, as a result, their reduction
potentials increases with the decrease in groundwater pH (eqgs 4 and 5).

3.2.1. Carbonate-free aquifer

In the carbonate-free aquifer, the significances of the changes in reduction potentials
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depend primarily on groundwater pH and the stoichiometric coefficients of protons in the
reduction reactions of redox couples. Reduction reactions of different redox couples have
different stoichiometric coefficients of protons (table 1). For example, the reduction of H to H2
consumes eight protons per eight electrons, while the reduction of Fe?* to goethite consumes 24
protons per eight electrons. As a result, the increase in the reduction potential of the redox couple
of H'/Hz is the smallest, 267.8 mV, while the increase for the couple of Fe?*/goethite is the
largest, 639.5 mV. The reduction reaction of other redox couples consumes 9 to 10 protons per
eight electrons, close to the stoichiometric coefficient of protons in the redox couple of H'/Hoa.
As a result, the changes in the reduction potentials of these redox couples are larger than, but
close to, the change in the potential of H" reduction to Ha.

3.2.2. Calcite-rich aquifer

Compared to those in the carbonate-free aquifer, the increases in reduction potentials are
relatively small in the calcite-rich aquifer. These small increases arise from the limited decrease
in pH induced by CO: leakage. Specifically, where COz partial pressure increases from near 0 to
30 atm, groundwater pH decreases only by 3 units (fig 2C). As a result, the reduction potential of
H'/Hz increases by 176.1 mV, and that of Fe*/goethite increases by 391.2 mV.

For the redox couples of acetate, lactate, propionate, and methanol, their reduction
reactions consume bicarbonate (table 1). As a result, their reduction potentials also vary with
bicarbonate concentration or activity. Specifically, the reduction potentials depend on the
stoichiometric coefficients of bicarbonate anion in reduction reactions of the redox couples, and
the changes in the concentration of bicarbonate. Where COz partial pressure increases from near
0 to 30 atm, the activity of bicarbonate increases by about one order of magnitude because of the
increase in concentration (fig 2D). The stoichiometric coefficient of bicarbonate varies from 1
per eight electrons in the reduction reaction of methane to 2 per eight electrons in the reduction
reactions of acetate and lactate. As a result, the increases in the reduction potentials of acetate

and lactate with COxz partial pressure are faster than that of HCO; /methane (fig 5B).

3.3. Available energy

The above calculation of reduction potentials illustrates the impact of CO2 leakage on
individual electron donors and acceptors. But the results are not straightforward in illustrating the
thermodynamic response of microbial reactions. This is because, for the common redox couples
in aquifers (table 1), their reduction potentials all respond positively with the increase in CO2
partial pressure (fig 5). A direct thermodynamic assessment of microbial reactions is the energy
available to microbial functional groups. The available energy is a key geochemical parameter
that controls both the rates of microbial reactions and the growth of functional groups (Jin,
2012).

We compute the energy available from microbial reactions that transfer eight electrons
(table 2). The only exception is the energy available from acetoclastic methanogenesis, which is
computed in terms of one acetate. We compute the energy available to the common functional
groups in aquifers, including syntrophs, ferric iron reducers, sulfate reducers, and methanogens
(table 2). For the same reasons in evaluating reduction potentials, we focus on the changes in the
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available energy, not the absolute values. Figure 6 shows how the energy available to the
microbial functional groups responds to the leakage of COx.

3.3.1. Syntroph

The simulation results show that CO2 leakage decreases the energy available to syntrophs
(fig 6A and E). The energy available to syntrophs depends on groundwater pH, because protons
are produced by the syntrophic oxidation of short-chain fatty acids and alcohols (table 2). In both
the carbonate-free and calcite-rich aquifers, CO2 leakage decreases groundwater pH (fig 2A and
C), thereby lowering the energy available to syntrophs.

The energy available to syntrophs may also depend on bicarbonate concentrations (table
2). Specifically, the oxidation of acetate, lactate, propionate, and methanol produces bicarbonate
ions. As a result, the energy released by these reactions depends on the concentrations of
bicarbonate; increase in bicarbonate concentration decreases the available energy. In the calcite-
rich aquifer, the decrease in pH is less than that in the carbonate-free aquifer, but the increase in
bicarbonate concentration is more significant than in the carbonate-free aquifer. Overall, the
effect of increasing bicarbonate concentrations takes its toll, leading to greater decreases in
available energies in the calcite-rich aquifer than in the carbonate-free aquifer.

In comparison, the syntrophic oxidation of butyrate and ethanol does not generate
bicarbonate, and thus the available energy depends primarily on groundwater pH. Because the
pH decrease is more significant in the carbonate-free aquifer than in the calcite-rich aquifer, the
available energy to butyrate- and ethanol-oxidizing syntrophs decrease more significantly in the
carbonate-free aquifer than in the calcite-rich aquifer.

It is interesting to note that in the carbonate-free aquifer, for both butyrate- and ethanol-
oxidizing syntrophs, the variations in the available energy level off at CO: partial pressures
greater than 1 atm. This is because the increase in CO: partial pressure decreases groundwater
pH, which in turn decreases the concentration of acetate (fig 3). At COz partial pressures above 1
atm, pH decreases below 5, and acetate concentration is less than half of the total concentration
of acetate and acetic acid (fig 3A). Acetate is one of the products of the syntrophic oxidation of
butyrate and ethanol. For this reason, the decrease in acetate concentration increases the energy
available to butyrate- and ethanol-oxidizing syntrophs, which counteracts the decreases in the
available energy by the pH decrease.

In comparison, in the carbonate-rich aquifer, the available energy of butyrate- and
ethanol-oxidizing syntrophs decreases steadily with the increase in COz2 partial pressure. This is
because of the modest pH decrease in this aquifer. At COz2 partial pressure of 1 atm, groundwater
pH is about 6, and compared to acetic acid, acetate still remains as the dominant form (fig 3B).

3.3.2. Iron reducer
The simulation results show that CO2 leakage raises the energy available to iron reducers

that utilize different electron donors (see table 2, fig 6B and F). Like in the above case of
syntrohic oxidation, pH is also a key parameter in determining the available energy. But in the
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reduction of goethite coupled to the oxidation of different electron donors, protons are the
reactants and, as a result, the available energy increases with the decrease in pH. Also because
the pH decrease is larger in the carbonate-free aquifer than in the calcite-rich aquifer, the
increase in the available energy is more significant in the carbonate-free aquifer than in the
calcite-rich aquifer.

In both aquifers, the increase in the available energy varies among different electron
donors. Specifically, the decrease is most significant for H2 oxidation, and least significant for
lactate oxidation to acetate. This difference arises from the different stoichiometric coefficients
of protons in goethite reduction coupled to the oxidation of different electron donors. The
stoichiometric coefficient of protons in H> oxidation is the largest, while that in lactate oxidation
to acetate is the smallest (table 2).

3.3.3. Sulfate reducer

For sulfate reducers, the responses of the energy available to COz leakage are mixed. In
the calcite-free aquifer (fig 6C), only the available energy of Hz-oxidizing sulfate reducer
increases significantly in response to COz leakage. Where COz partial pressure increases from
near 0 to 30 atm, the available energy increases by 43.8 kJ-mol™".

For sulfate reducers that oxidize other electron donors, their available energy responds to
COz leakage, but only marginally. Specifically, for sulfate reducers that oxidize acetate,
propionate, and methanol, their available energy increases with COz2 partial pressure, but only to
a very small extent, less than 7.0 kJ-mol~'. For sulfate reducers that oxidize lactate, butyrate, and
ethanol, their available energy first decreases with CO2 leakage and then increase. Again, the
variations remain less than 7.0 kJ-mol~! over the increase in CO: partial pressure from near 0 to
30 atm.

Sulfate reduction by the oxidation of Ha, acetate, propionate, and methanol consumes
protons (table 2). As a result, the available energy increases with the increase in CO2 partial
pressure and the decrease in pH. The significance of the increases depends on the stoichiometric
coefficients of protons in the reactions of sulfate reduction. Hydrogenotrophic sulfate reduction
consumes most protons, and hence its available energy increases most significantly with the
increase in COz partial pressure.

In comparison, in sulfate reduction by the oxidation of acetate, propionate, and methanol,
the stoichiometric coefficients of protons are relatively small, and the increases in the available
energy by the pH decrease is also small. In addition, for acetate-oxidizing sulfate reduction, the
increase in the available energy is also limited by the speciation of acetate and acetic acid. As
shown in figure 3A, at CO2 partial pressure above 1 atm, increase in the partial pressure
decreases significantly acetate concentration, thereby decreasing the available energy.

For sulfate reduction that oxidizes lactate, butyrate, and ethanol, the initial decrease in the
available energy can be explained by the production of protons under circumneutral pH
condition. In writing the reaction equations for sulfate reduction, we assume that dihydrogen
sulfide (H2S) is the main species of dissolved sulfide. Under this assumption, no proton is
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consumed by these reactions (table 2). But under circumneutral pH condition, a significant
fraction of dissolved sulfide also occurs as monohydrogen sulfide (HS") (fig 3). If we replaced
Ha>S with HS™ in the reaction equations, sulfate reduction by the oxidation of lactate, butyrate,
and ethanol would generate protons. This explains the slight decreases in the available energy at
the beginning of COz2 leakage, where pH of the groundwater is close to 7.

At COz partial pressure above 0.1 atm, CO: leakage starts to turn groundwater from
circumneutral to slightly acidic (pH < 6). Under this condition, H2S becomes the only dominant
sulfide species, no proton is produced by sulfate reduction, and the available energy is no longer
dependent on pH.

At pH below 6, because of the pH control on aqueous speciation (fig 3A), the decrease in
pH also starts to significantly lower acetate concentration. This explains the slight increase in the
available energy by CO: partial pressure. Note that the speciation effect is relatively small for
sulfate reduction by lactate oxidation. This is because lactate oxidation produces acetate, and the
concentrations of both acetate and lactate decreases with the increase in COz partial pressure.

In the calcite-rich aquifer (fig 6G), the energy available to hydrogenotrophic sulfate
reducers increases during CO:z leakage. For sulfate reducers using other electron donors, their
available energy consistently decreases with the progress of CO:z leakage. In this aquifer, the
variations in the energy available to sulfate reducers results from the significant changes in both
bicarbonate concentration and pH (fig 2C and D). Specifically, as discussed for the carbonate-
free aquifer, under circumneutral pH condition, sulfate reduction by the oxidation of short-chain
fatty acids and primary alcohols generates protons, and thus the available energy decreases with
the increase in COz partial pressure. For sulfate reduction that oxidizes acetate, lactate,
propionate, and methanol, the available energy is further decreased by the significant increase in
bicarbonate concentrations.

3.3.4. Methanogen

The simulation results show that in both the carbonate-free and calcite-rich aquifers, the
available energy to hydrogenotrophic methanogenesis increases with the progress of CO2
leakage, while that to acetoclastic methanogenesis decreases with the progress (fig 6D and H).
The difference between the responses of the two pathways arises from the dependence of the
available energy on both pH and the concentrations of acetate and bicarbonate in the
groundwater. For hydrogenotrohic methanogenesis, it utilizes protons and bicarbonate as
substrates, and hence its available energy increases with the decrease in pH and the increase in
bicarbonate concentration. For acetoclastic methanogenesis, its available energy depends on the
concentrations of acetate and bicarbonate. In the calcite-rich aquifer, CO2 leakage raises
significantly bicarbonate concentrations, thereby decreasing the energy available to acetoclastic
methanogens. On the other hand, in the carbonate-free aquifer, the significant decrease in pH by
CO2 leakage converts acetate to acetic acid (fig 3A), which also decreases the available energy.

3.4. Microbial Kinetics

The energy available from redox reactions controls the kinetics of microbial functional
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groups (Jin and Bethke, 2007). According to the thermodynamically consistent rate law (eqs 7,
10, 13, and 14), increases in the available energy increase nonlinearly the rate of microbial
respiration and hence the rate of microbial growth. On the other hand, decreases in the available
energy decreases the rates of microbial respiration and growth. Based on the thermodynamic
calculations (fig 6), CO2 leakage may inhibit the metabolisms of syntrophs and acetoclastic
methanogens, but promote the metabolisms of iron reducers and hydrogenotrophic sulfate
reducers and methanogens. To demonstrate these impacts, we take as an example the
hypothetical calcite-rich aquifer, and apply kinetic modeling to explore how the metabolisms of
different microbial functional groups respond to the leakage of CO..

For illustration purpose, the simulation assumes that in the aquitard, microbial
degradation of natural organic matter produce Ha, acetate, and lactate as the main products (fig
1). The simulation also assumes that these electron donors are produced at the same rate of
3.0x1077 mol-liter '-yr~!. There are very few measurements of production rates of different
electron donors in the subsurface, and the equal production rates in the simulation are purely
assumptive. Nevertheless, the assumed rates are within the ranges reported for subsurface
environments (Chapelle, 2001;Park et al., 2006), and are large enough to support different
functional groups in the aquifer.

The simulation considers the functional groups of syntrophs, iron reducers, sulfate
reducers, and methanogens that oxidize lactate to acetate, acetate to bicarbonate, and Hz to
protons. The redox reactions catalyzed by these functional groups form a reaction network that
converts the degradation products of natural organic matter to bicarbonate and methane (fig 7).
Simulating microbial metabolism requires a series of microbial kinetic, growth, and
thermodynamic parameters (Jin and Roden, 2011;Jin et al., 2013). We assign the parameter
values on the basis of previous studies, and the results are listed in table 3. The simulation seeded
the functional groups with an initial biomass concentration of 10~ g:liter'.

Microbial kinetics depends on pH, temperature, and pressure of the environment
(Ingraham, 1987), but how metabolic rates of different functional groups are controlled by these
environmental factors still remains to be elucidated. Here we hold microbial kinetic and growth
parameters constant to test whether the thermodynamic response to CO:z leakage alone could
provide a mechanism for changing the rates of microbial reactions. The simulation also assumes
that the half-saturation constants describe the efficiency of microbes in utilizing the total
dissolved electron donors or acceptors, not any specific chemical species. In other words, in
computing kinetic factors (eqs 8 and 9), we only account for the total dissolved electron donors
and acceptors, or the sum of the concentrations of acids and their conjugate forms.

There are two phases in the simulation (fig 8). During the first 400 years, there is no CO2
leakage, but only the flow of the groundwater through the aquifer. As a result, the metabolisms
of microbial functional groups depend on the chemical properties of the aquifer and the
production of electron donors. In the second phase between 400 and 800 years, CO2 from the
deep reservoir arrives and, as a result, the partial pressure of COz2 in the aquifer is assumed to
increase linearly from 1.8x10 atm at year 400 to 30 atm at year 800.

As shown above (figs 2 to 4), CO2 leakage significantly changes the chemistry of
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groundwater. Specifically, at the time of year 400, where the leaked COz first reaches the
aquifer, groundwater pH decreases immediately from 8 to about 6 (fig 8B). Afterwards, pH
decreases gradually to 5 over the next 400 years. The sharp decrease in pH is due to (1) the
assumption that COz2 partial pressure increases linearly with time to 30 atm over a period of 400
years, and (2) the fact that a pH drop from 8 to 6 only requires the production of about 1 uM
proton in groundwater. In the hypothetical calcite-rich aquifer, a relatively small increase in CO2
partial pressure from near 0 to 1 atm is sufficient to generate 1 uM proton (fig 2C). The
subsequent gradual pH decrease can be explained by relatively large change in proton
concentrations. An decrease in pH from 6 to 5 requires the production of about 10 uM protons,
which can be generated by raising the partial pressure from 1 to 30 atm and by the simutaneous
dissolution of CO2 gas and calcite mineral into the groundwater. The simutaneous dissolution of
CO2 and calcite also increases bicarbonate concentration of groundwater (fig 2D).

3.4.1. Sulfate reduction

The thermodynamic analysis of microbial reactions suggests that CO2 leakage has the
potential of promoting hydrogenotrophic sulfate reduction, but inhibits sulfate reducers that
oxidize acetate and lactate. To test this prediction, we assume that the groundwater contains 100
uM sulfate and 10 uM sulfide, and simulate the metabolisms of three different sulfate reducers
that oxidize Ha, acetate, and lactate in the hypothetical calcite-rich aquifer.

According to the simulation results (fig 9), during the first simulation phase of 0 to 400
years, before CO2 leakage takes place, all of the three sulfate reducers survive in the aquifer, and
their metabolisms reach steady state. At steady state, microbial metabolisms produce 10.4 uM
sulfide, 0.25 uM lactate, 0.05 uM acetate, and 20.3 nM Hz in groundwater. The Hz-, acetate-,
and lactate-oxidizing sulfate reducers reach a biomass concentration of 0.6, 1.8, and 0.5 ug-L~",
respectively. The rates of sulfate reduction by oxidizing Ha, acetate, and lactate are 1.1x10715,
4.7x107'% and 4.1x1071¢ M-s7!, respectively. Thus, under the assumptions applied in the
simulation, the aquifer is dominated by acetotrophic sulfate reduction, which accounts for 76%
of total sulfate reduction.

The simulation results show that during the second phase of 400 to 800 years, the CO2
leakage inhibts the metabolism of acetotrophic sulfate reducer, which agrees with the prediction
of microbial thermodynamics. Specifically, both the biomass concentration and sulfate reduction
rate decrease sharply — by 22% — during the first 90 years of CO: leakage. Afterwards, the
biomass concentration and rate decrease almost linearly with time, and decrease to 1.1 ug-L~!
and 2.9 x107"° M:s™!, respectively, at year 800. Corresponding to the rate decrease, acetate

concentration first increase to 0.12 uM at year 90, and then gradually increase to 0.17 uM at year
400.

The inhibition comes from the decrease in the available energy by CO: leakage, and can
be evaluated using the themrodynamic factor Fr. This factor quantifies how the available energy,
relative to the saved energy, controls microbial rate. As shown in figure 9E, before the CO2
leakage, the energy available to acetotrophic sulfate reducer is 40.1 kJ-mol~, slightly larger than
the saved energy, which is 33.75 kJ-mol~! (eq 11 and table 3). As a result, the themrodynamic
factor takes a value of 0.35 (fig 9F). In the second phase, where CO: leakage takes place, the
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available energy drops by 3.8 kJ-mol™" during the first 90 years, and then decreases gradually to
35.5 kJ-mol! at year 800. The decrease in the available energy pulls down the themrodynamic
factor to 0.11 at year 800.

The simulation also predicts that the CO:2 leakage ultimately drives acetotrophic sulfate
reducers out of the aquifer. As shown in figure 9G, in addition to the themrodynamic factor,
acetotrophic sulfate reduction is also limited by acetate and sulfate. The kinetic factors b and
Fa quantify the extent by which acetate and sulfate limit the rate of sulfate reduction. Before the
CO: leakage, because of small acetate concentration, the kinetic factor Fp of acetate is also
small, only about 0.01. The kinetic factor of sulfate is relatively large, 0.72. Substituting these
values, together with the themrodynamic factor F and the rate constant (see table 3) to the rate
law (eq 7), acetotrophic sulfate reducer takes a specific growth rate of 1.0x107% s~!, which
equates the assumed rate of specific maintenance, and hence allows the growth to reach a steady
state.

But after the CO2 leakage starts, the specific growth rate decreases because of the
decrease in the available energy and the rate of acetotrophic sulfate reduction. Although the
deceleration of acetotrophic sulfate reduction raises the concentration and hence the kinetic
factor of aceate, the increase is not sufficient to offset the decrease by the decreasing available
energy. As a result, the specific growth rate decreases below the specific maintenance rate, and
the population size starts to decline and ultimately disappears from the aquifer.

The simulation results also show that during the second phase of 400 to 800 years, the
CO2 leakage has little influcence on the metabolism of Hz- or lactate-oxidizing sulfate reducers.
According to the simulation results (fig 9C and D), both the biomass concentration and sulfate
reduction rate of lactate-oxidizing sulfate reducer remain constant during CO2 leakage. The
biomass concentration and sulfate reduction rate of H2-oxidizing sulfate reducer increase, but
only slightly — less than 6%.

In the case of sulfate reduction by lactate oxidation, the lack of response is due to the fact
that in the hypothetical aquifer, this microbial reaction is not limited by the thermodynamic
control. As shown in figure 9G, before the leakage of CO2, the available energy from lactate
oxidation and sulfate reduction is 218.0 kJ-mol~!. After the CO: leakage, the avilable energy
drops to 190.0 kJ-mol~!. These values are much larger than the energy saved by the lactate-
oxidizing sulfate reducers, which is 101.25 kJ-mol™! (see eq 11 and table 3). As a result, the
themrodynamic factor F'r stays close to unity before and after the CO2 leakage. In other words,
although CO: leakage decreases the available energy, the decrease is not large enough to have
any impact on microbial rates.

In the case of hydrogentrophic sulfate reduction, the lack of response arises from the
opposing effects of the increasing available energy and the decreasing H2 concentration in
groundwater. As shown in figure 9E and F, before CO2 leakage, the energy available to
hydrogenotrophic sulfate reducer is 47.4 kJ-mol™!, very close to the saved energy, which is 45
kJ-mol~! (eq 11 and table 3). The thermodynamic factor Fr takes a value of 0.02. H>
concentration is 21 nM, smaller than the assumed half-saturation constant of 1.1 pM (table 3).
The kinetic factor Fp takes a value of 0.02.
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After the CO2 leakage starts, the available energy increases, raising the thermodynamic
factor Frr. At year 800, the available energy increases to 58.3 kJ-mol™', and the thermodynamic
factor increases to 0.59, which increases the rate of H2 oxidation. On the other hand, the increase
in the rate of Hz oxidation decreases the concentration of Hz, decreasing the kinetic factor Fp. At
year 800, H2 concentration decreases to 5.2 nM, and the kinetic factor /b decreases to 0.005.
According to the rate law (eq 7), the product of the themrodynamic and kinetic factors
determines the rate of hydrogenotrophic sulfate reduction. Because the rate increase by
increasing available energy balances the rate decrease by decreasing H2 concentration, sulfate
reduction rate does not change significantly by the leakage of COsx.

3.4.2. Microbial competition

Microbial kinetics is a key to understanding the interactions among microbial functional
groups. The above thermodynamic analysis suggests that CO2 leakage promotes microbial iron
reduction, but inhibits sulfate reducers that utilize short-chain fatty acids. As a result, CO2
leakage may change the outcome of the competition between iron reducers and sulfate reducers.

To test this prediction, we simulate the metabolisms of iron reducers and sulfate reducers
that oxidize Ho, acetate, and lactate in the hypothetical calcite-rich aquifer. We assume that the
aquifer contains 1% goethite, and that the groundwater contains 1.0 mM sulfate, 10 uM sulfide,
and 10 pM Fe?*. The assumed sulfate concentration is much larger than the half-saturation
constants of sulfate reducers (table 3), which alleviates the limitation of sulfate on sulfate
reduction rate. To consider other potential microbial interactions, the simulation also includes the
metabolisms of lactate-oxidizing syntroph and hydrogenotrophic and acetoclastic methanogens.
In this way, a total of nine functional groups are considered in the simulation.

Figure 10 show the results of the simulation. In the first 400 years, before CO2 leakage
takes place, out of the nine functional groups, only three survive in the aquifer, including lactate-
oxidizing iron reducer, and hydrogenotrophic and acetotrophic sulfate reducers. In other words,
under the assumptions applied in the simulation, lactate-oxidizing iron reducer competes
successfully against its counterpart of sulfate reducers, but for both hydrogenotrophic and
acetotrophic iron reducers, they are driven out of the aquifer by their counterparts of sulfate
reducers. As a result, the production of H», acetate, and lactate in the aquitard supports
simultaneously iron reduction and sulfate reduction in the aquifer.

After the metabolisms of the three groups reach steady state, the groundwater contains
5.8 uM Fe?*, 5.0 uM sulfide, 0.16 uM lactate, 25.2 nM acetate, and 11.4 nM H> in groundwater
(fig 10A and B). In addition, there are two species on the surface of goethite, free or bioavailable
surface sites (>FeOH) and sorbed ferrous iron (>FeOFe"), and their bulk concentrations are
about 2 mM (fig 10C). At the steady state, the lactate-oxidizing iron reducer has a biomass
concentration of 1.6 pg-L~!, and the biomass concentrations of hydrogenotrophic and
acetotrophic sulfate reducers are 0.57 and 2.45 pug-L™!, respectively (fig 10D). The rate of iron
reduction by lactate oxidation is 1.1x107!> M-s~!; the rates of hydrogenotrophic and acetotrophic
sulfate reduction are 1.1x107'% and 6.5x107"> M-s™!, respectively (fig 10E).
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Between year 400 and 800, CO2 leakage promotes the metabolism of acetotrophic and
hydrogenotrophic iron reducers, and excludes acetotrophic and hydrogentrophic sulfate reducer
from the aquifer. At steady state, the aquifer contains acetotrophic and hydrogenotrophic iron
reducers at 5.1 and 1.2 pg-L~!, respectively. Acetotrophic and hydrogenotrophic iron reduction
proceeds at a rate of 6.8x107!° and 1.2x107"° mol-L~"-s™!, respectively (fig 10D and E).

The CO2 leakage promotes acetotrophic and hydrogentrophic iron reduction by raising
the energy available from the reduction of goethite. As shown in figure 10F, the CO2 leakage
increases significantly the energy available from goethite reduction coupled to the oxidation of
acetate and Hz. At year 400, the available energy is only 64.0 kJ-mol~! for acetotrophic iron
reduction, and 66.7 kJ-mol~! for hydrogenotrophic iron reduction. Both values are smaller than
the energy saved by the two iron reducers; acetotrophic and hydrogenotrophic iron reducers save
67.5 and 90.0 kJ-mol~! of energy, respectively. Within 90 years, because of the sharp decrease in
pH, the available energy of acetotrophic iron reduction increases to 260.0 kJ-mol~!, and that of
hydrogenotrophic iron reduction increases to 283.0 kJ-mol~!. As a result, the thermodynamic
factors of the two iron reducers increase from 0 at year 400 to near unity at year 490, and stay
close to unity afterwards.

The COz leakage also promotes microbial iron reduction by decreasing the concentration
of sorbed ferrous iron and increasing the concentrations of bioavailable surface sites (fig 10C and
eq 12). According to the rate law (eq 12), the rate of microbial iron reduction depends on the
concentration of bioavailable surface sites of ferric minerals, which in turn depends on the
sorption of ferrous iron. Ferrous iron sorption is controlled by pH; more ferrous iron sorbs onto
the surface sites of goethite at large pH, and vice versa (Dixit and Hering, 2006). As shown in
figure 10C, the decrease in pH by COz leakage removes the sorbed ferrous iron from the surface
sites of goethite, and thus makes available nearly all surface sites of goethite to iron reducers.

The increases in the available energy and the concentration of bioavailable surface sites
raise the rates of iron reduction, which enable both hydrogenotrophic and acetotrophic iron
reducers to compete successfully against sulfate reducers. Specifically, acetate and H> oxidation
by the iron reducers decrease acetate and H2 concentrations below 10 and 1 nM, respectively (fig
10A). The small acetate and H2 concentrations decreases the specific growth rates of sulfate
reducers below the specific maintenance rates, which leads to the death of the sulfate reducers.

Lactate-oxidizng syntroph and hydrogenotrophic and acetoclastic methanogens do not
survive in the hypothetical aquifer, either before or after the leakage of CO2. The absence of
these functional groups is accounted for by the limited availability of electron donors, and by the
relatively small yields Y of biomass synthesis. For example, at steady state, because of the small
lactate concentration, the kinetic factor Fp of lactate for the syntroph is very small, only
3.2x107°. Neglecting the thermodynamic control, and substituting the kinetic factor and the
growth yield to the rate law (eqs 7 and 13), the syntroph has a specific growth rate of 4.4x10~1°
s~!, much smaller than the specific maintenance rate of 10~ s~! (table 3).

3.5. Implications for CO: trapping
CO2 gas is buoyant and thus has the potential to migrate to the surface and escape to the

17



748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793

atmosphere. However, many microbial reactions consume protons, and thus have the potential of
trapping COz (table 2). By consuming protons, these reactions drive CO2 hydrolysis reaction (eq
1) forward, converting COz into bicarbonate and trapping COz2 in the subsurface. By converting
CO:z into bicarbonate, carbon can be more securely stored within the aqueous phase and
potentially precipitate as a carbonate mineral such as calcite, magnesite (MgCOs3), and siderite
(FeCOs3). Mineral trapping is the considered to be the most secure form of subsurface carbon
trapping (Gunter et al., 1997).

The predicted changes in microbial activity by CO: leakage are favorable for CO2
trapping. Because iron reduction consumes many more protons than sulfate reduction or
methanogenesis (table 2), it has a much greater potential to generate bicarbonate. Per mole of
acetate consumed, for example, iron reduction can generate 17 moles of bicarbonate whereas
sulfate reduction only generates 3 moles of bicarbonate. As CO: is added into aquifers, a shift
toward iron reduction would increase conversion of COz into bicarbonate. Thus, an increase in
the rate of iron reduction relative to the other reactions would act as a positive feedback
mechanism on CO: trapping (Kirk et al., 2013).

Although it is well established that microbial reactions help neutralize acid mine water
(e.g., Tuttle et al., 1969;Dean et al., 2013;Lindsay et al., 2015), the possibility that they could
provide the same ecosystem service in geological carbon storage settings has received relatively
little attention. The question of whether microbial reactions can contribute significantly to
bicarbonate generation relative to mineral reactions remains open. In carbonate aquifers, reaction
between carbonic acid and carbonate minerals is likely the dominant source of bicarbonate
production. However, in silicic aquifers, we hypothesize that the bicarbonate contribution of
microbial reactions can be dominant, depending on the rate at which electron donors are
supplied. Where the flux of electron donors into the system is relatively high, microbial reactions
have the potential to generate bicarbonate more rapidly than mineral reactions. Simulations
designed to predict the fate of CO2 within such systems may underestimate the rate of carbon
trapping if they do not account for microbial reactions (Kirk et al., 2013).

3.6. Implications for water quality

In contrast to the benefit of enhanced COz trapping, an increase in the relative
significance of iron reduction has the potential to negatively affect water quality by leading to
higher dissolved iron concentrations and affecting the stability of oxide and sulfide minerals.
Both solid-phases provide important sinks for many hazardous solutes in aqueous environments.
Arsenic, for example, can strongly sorb to iron oxides and oxyhydroxides or be sequestered by
sulfide minerals such as pyrite (Smedley and Kinniburgh, 2002). If CO2 leakage shifts the
balance between iron reduction and sulfate reduction, as predicted by our analysis, then the rate
at which sulfide minerals form and remove arsenic from water would decrease while the rate at
which oxides dissolve and release arsenic increases. Shifts in microbial activity predicted by our
analysis, therefore, favor enhance mobility of hazardous solutes such as arsenic.

3.7. Concluding comments

We carried out biogeochemical modeling to analyze how COz leakage impacts the
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thermodynamics and kinetics of microbial reactions in two different aquifers — a carbonate-free
aquifer of limited pH buffering capacity and a calcite-rich aquifer that effectively buffers pH
change. The simulation results showed that CO: leakage influences the thermodynamics of
microbial reactions, including reduction potentials of different redox couples and the energy
available to microbial functional groups. For the common electron donors and acceptors in
aquifers (table 1), their reduction potentials increase with the increase in CO: partial pressure.
The increases are different for different electron donors and acceptors, and are larger in the
carbonate-free aquifer than in the calcite-rich aquifer.

The available energy of different functional groups responds differently to the leakage of
COz. With the increase in COz partial pressure, the energy available to syntrophs and to
acetoclastic methanogen decreases, while the energy available to iron reducers and
hydrogenotrophic sulfate reducer and methanogen increases. Considering the control of the
available energy on microbial rates, these results suggest that CO2 leakage may inhibit the
metabolisms of syntrophs and acetoclastic methanogen, but promote the metabolisms of iron
reducers and hydrogenotrophic sulfate reducer and methanogen.

We tested these predictions by carrying out two kinetic simulations of microbial
metabolisms in the hypothetical calcite-rich aquifer. The first simulation focused on the response
of H»-, acetate-, and lactate-oxidizing sulfate reducers, and the second explored the competition
between sulfate reducers and iron reducers. The results showed that CO: leakage favors
microbial iron reduction and inhibits microbial sulfate reduction, which are consistent with the
predictions from the thermodynamics. The results also show that, in the absence of iron reducers,
CO2 leakage has little impact on hydrogenotrophic sulfate reduction, a prediction that differs
from the thermodynamic prediction.

These modeling exercises illustrate the complexity in microbiological response to CO2
leakage. Our analysis is limited in that it only considered the overall reactions of microbial
respiration, without accounting for biochemical mechanism or microbial physiology.
Nevertheless, the results suggest that the impact of COz leakage on aquifer microorganisms is
complex — different microbial reactions respond differently to CO:2 leakage: some metabolisms
are favored, others are depressed, and still others remain unchanged. Because high CO-
abundance impacts the physiology of microorganisms, it is tempting to speculate that actual
microbiological responses would be more complex than what we have demonstrated here.

These modeling exercises also illustrate the power of coupled thermodynamic and kinetic
analysis of microbial reactions. Thermodynamic and kinetic analyses are routine tasks in today’s
biogeochemical studies. The thermodynamic analysis is on the basis of chemical thermodynamic
properties, and tells whether or not, under given geochemical conditions, a microbial reaction is
favored by thermodynamics. The kinetic modeling combines thermodynamic properties of
chemical substances with kinetic parameters of microbial metabolisms, and predicts how fast
microbes catalyze chemical reactions and reproduce themselves.

So far the thermodynamic and kinetic analyses have often been carried out separately.

This study combined the two analyses to predict the microbiological impact of CO:z leakage. The
results of both methods support the conclusion that different microbial reactions respond
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differently to the leakage of CO2. Importantly, the kinetic analysis places a quantitative
constraint on the thermodynamic predictions. For example, the thermodynamic analysis
suggested that CO2 leakage promotes hydrogenotrophic sulfate reduction, but depresses sulfate
reduction by lactate oxidation. The kinetic analysis showed that CO: leakage does not change
significantly the rates of the two reactions. For lactate-oxidizing sulfate reduction, this is because
the change in the available energy is relatively small; for hydrogenotrophic sulfate reduction, the
rate increase by increasing available energy is balanced by the rate decrease by decreasing Hz
availability in the environment. These predictions represent example hypotheses generated by the
thermodynamic and kinetic analysis that can be further tested using laboratory and field
experiments.
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1047  Table 1. Reduction reactions of common electron donors and acceptors in aquifers, and their

1048  standard reduction potentials £ at pH 7@,

Half-reaction E° (mV)
8H" +8e” — 4H,(aq) -506.2
2Acetate+2HCO; +10H" + 8¢~ — 2Lactate+4H,0O —438.0
2Acetatet+10H" +8¢” — 2Ethanol+2H,0 -390.3
8Goethite+24H" + 8¢~ — 8Fe** +16H,0 -389.7
iHCO;+§H+ +8¢ — iMethanol+§H20 -373.7
3 3 3 3

4Acetatet10H" +8e™ — 2Butyratet4H,0 2848
2HCO;+9H" +8¢™ — Acetate+4H,0 -279.1
4 4 2 4 .

3 Acetate+ 3 HCO; + ?8 H" +8 — 3 Propionate+4H,0 —-278.7
HCO;+9H" + 8¢~ — CH, (aq)+3H,0 2259.6
SO, +9H" + 8¢~ — HS +4H,0 -217.0

1049
1050  (a) Standard reduction potential at 1 atm, 25 °C, and pH 7 is calculated from the updated LLNL
1051  Thermodynamic Database (Delany and Lundeen, 1990).
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1052  Table 2. Redox reactions, standard available energy at pH 7.

Redox reaction AGY
(kJ-mol™")
Syntrophic oxidation
1. Acetate+4H,0 = 4H,(aq)+2HCO; +H" —-175.25
2. 2Lactate+4H,0 < 2Acetate + 4H, (aq)+2HCO; +2H" -52.65
3. % Propionate+4H,0 = % Acetate +4H, (aq)+§ HCO; + % H* —175.58
4. 2Butyrate+4H,0 = 4Acetate + 4H, (aq)+2H" —-170.90
5. gMethanoH%HzO =g 4H2(aq)+gHCO; +gH+ —-102.24
6. 2Ethanol+2H,0 = 2Acetate + 4H, (aq)+2H" ~89.42
Goethite reduction
7. 4H, (aq) + 8Goethite+16H* => 16H,0+8Fe* 89.90
8. Acetate+8Goethite+15H" = 2HCO; +12H,0 +8Fe** ~85.35
9. 2Lactate+8Goethite+14H" = 2Acetate+2HCO; +12H,0 + 8Fe** 37.25
10. g Propionate+8Goethite+12 % H & g Acetatet g HCO;+12H,0 + 8Fe** —85.68
11. 2Butyrate+8Goethite+14H" = 4Acetate+12H,0 + 8Fe** —-81.00
12. % Methanol+8Goethite+ % H & % HCO; + 8Fe™" + ? H,O -12.34
13. 2Ethanol+8Goethite+14H" = 2Acetate + 8Fe’* +14H,0 0.48
Sulfate reduction
14. 4H,(aq)+SO* +2H" 2 H,S$+4H,0 223.23
15. Acetate+SO; +H" = 2HCO; +H,S 47.97
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16. 2Lactate+SO; < 2Acetate+2HCO; + H,S

17. g Propionate+SO; + % H 2 %AcetateﬁLg HCO; +H,S

18. 2Butyrate+SO; = 4Acetate + H,S

19. # Methanol+SO> + 2 H' 2 HLS+ 2 H,0+ +HCO;
3 3 3 3

20. 2Ethanol+SO;” = 2Acetate + H,S+2H,0

Methanogenesis
21. 4H,(aq)+H"+HCO; = CH,(aq) +3H,0

22. Acetate+H,0 = HCO;+CH, (aq)

170.57

47.64

52.33

120.98

133.80

190.33

15.07

1053
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1054  Table 3. Redox reactions, kinetic parameters (rate constant &, and half-saturation constant Kp and Ka), growth parameters (growth yield Y and
1055  specific maintenance rate D), and thermodynamic parameters (ATP yield mp and average stoichiometric number y) of microbial functional
1056  groups.

Redox Kinetic parameter® Growth parameter Thermodynamic parameter®
Functional group reaction @
k(molg's™)  Kp(molal)  Ka (molal) Y9 (gmol™) DY (s mp 7
Syntroph© 2 1.0x107° 5.0x1072 —® 13.8 1078 2.76 4
Iron reducers 7 1.5x107°® 1.0x107° 7.0 7.8 107 2.0 8
8 1.5x107%® 1.2x107 7.0 5.6 107 1.5 8
9 1.5x107%® 5.2x10740 7.0M 14.7 107 3.0 8
Sulfate reducers 14 1.0x10°¢ 1.1x10°° 3.9x10°° 5.0 1078 1.0 6
15 1.0x10°° 5.0x10°° 3.9x10°° 4.6 1078 0.75 6
16 1.0x10°° 2.0x107* 3.9x107 14.6 107 2.25 6
Methanogens 21 1.0x107° 4.7x10° —® 1.25 10°® 0.25 2
22 1.0x10°¢ 2.3x107 —® 25 107 0.5 2
1057
1058 (a) See table 2.
1059 (b) Jin and Roden (2011)
1060 (¢) Jin (2012)
1061 (d) Price and Sowers (2004)
1062 (e) Parameters are estimated based on the experimental observations of Noguera et al. (1998, their fig 3).
1063 (f) No electron acceptor dependence.
1064 (g) Unitis s,
1065 (h) Unit is g cell dry weight per mol of bioavailable surface sites, i.e., g-mol™".
1066 (i) Liuetal. (2001)
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Figure legends

Figure 1. Conceptual model for biogeochemical reaction modeling. Na-Cl water containing
sulfate flows through a quartzite aquifer confined between aquitards. In the aquitards, natural
organic matter is degraded to Hz, acetate, lactate, and other electron donors (D), which diffuse
into the aquifer. CO:z from a deep storage reservoir migrates upwards along a fault into the
aquifer. The aquifer is seeded with small initial populations of microbial functional groups that
can grow on lactate, acetate, and Hz by using goethite, sulfate, bicarbonate, and proton as
electron acceptors.

Figure 2. Variations in pH and concentrations of calcium (Ca?"), dissolved CO2(aq), bicarbonate,
and calcium-bicarbonate complex (CaHCO3") with COz partial pressure in a hypothetical
carbonate-free (A and B) and calcite-rich aquifer (C and D).

Figure 3. Variations in relative abundances of monohydrogen sulfide (HS"), acetate, lactate,
propionate, butyrate, and their conjugate acids with COz partial pressure in a hypothetical
carbonate-free (A) and calcite-rich aquifer (B).

Figure 4. Variations in the ionic strength of groundwater (A) and the activity coefficients of ions
(B) with CO:z partial pressure in a hypothetical calcite-rich aquifer.

Figure 5. Variations in reduction potentials £ of redox couples with CO2 partial pressure in a
hypothetical carbonate-free (A) and calcite-rich aquifer (B). Labels show the redox couples; see
table 1 for reduction reactions.

Figure 6. Variations in the available energy AGa to syntrophic oxidation, goethite reduction,
sulfate reduction, and methanogenesis in a hypothetical carbonate-free (A to D) and calcite-rich
(E to H) aquifer. Labels show the electron donors of redox reactions; see table 2 for reaction
equations.

Figure 7. Functional groups supported by the electron donors of H», acetate, and lactate, and the
resulting reaction network (also see table 2). FeRM, ferric iron reducer; SRM, sulfate reducer;
MG, methanogen; Syn, syntroph.

Figure 8. Variations with time in COz partial pressure (A) and pH (B) in a hypothetical calcite-
rich aquifer.

Figure 9. Variations with time in the concentrations of Hz, acetate, lactate (A), and sulfide (B),
the biomass concentrations of sulfate reducers (C), the rates of sulfate reduction (D), the energy
available to sulfate reducers (E), the thermodynamic factor Fr (F), the kinetic factor of sulfate
(Fa), Hz, and acetate (Fp), and specific growth rate of acetotrophic sulfate reducer in the
hypothetical calcite-rich aquifer.

Figure 10. Variations with time in the concentrations of Hz, acetate, lactate (A), sulfide, ferrous
iron (B), the bioavailable surface sites >FeOH, and sorbed ferrous iron >FeOFe" (C), the
biomass concentrations of iron reducers and sulfate reducers (D), the rates of iron reduction and
sulfate reduction (E), the energy available to iron reducers (F), and the thermodynamic factor Fr
of iron reducers (G) in the hypothetical calcite-rich aquifer.
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