

A biogeochemical modeling study on microbiological response to high CO₂

Qusheng Jin*, Department of Geological Sciences, University of Oregon, Eugene, OR, USA.
Matthew F. Kirk, Department of Geology, Kansas State University, Manhattan, KS, USA.

Correspondence:

Qusheng Jin
qjin@uoregon.edu

Running title: Thermodynamics and kinetics of microbial reactions under high CO₂

Abstract

Geological carbon sequestration captures CO₂ from industrial sources and stores the captured CO₂ in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how biogeochemical processes may respond to the elevated CO₂ concentration. This study took a biogeochemical modeling approach and investigated the influence of high CO₂ partial pressures on the thermodynamics and kinetics of microbial reactions. The simulation considered common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The modeling results showed that increasing CO₂ partial pressures decreases groundwater pH and impacts chemical speciation of dissolved inorganic carbon and weak acids, which in turn affect microbial reactions in different ways and to different extents. Specifically, the thermodynamic analysis showed that increasing CO₂ partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction and hydrogenotrophic sulfate reduction and methanogenesis. The kinetic modeling suggested that high CO₂ partial pressure has the potential of inhibiting microbial sulfate reduction, while promoting microbial iron reduction. These results highlight the complexity in microbiological responses to elevated CO₂ abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

Keywords: biogeochemical modeling, available energy, microbial kinetics, carbon sequestration, iron reduction, sulfate reduction

1 Introduction

Carbon capture and geological storage is one option in the range of actions that help stabilize atmospheric CO₂ levels despite anticipated increases in fossil fuel combustion (IPCC, 2005). Geological carbon sequestration involves capturing CO₂ before its emission into the atmosphere and injecting it into a deep subsurface reservoir (Benson and Cole, 2008). The technology injects CO₂ at depths >800 m, where CO₂ would exist as a buoyant supercritical phase (IPCC, 2005). A low-permeability caprock overlying a storage reservoir can provide structural trapping that limits upward migration of CO₂. Over time, CO₂ would also be trapped by dissolution into water, formation of minerals, and capillary trapping (Benson and Cole, 2008).

47 Although geological carbon sequestration is promising, it has the potential to negatively
48 affect groundwater resources. CO₂ or CO₂-rich brine from deep storage reservoirs can diffuse
49 through caprocks, and migrate upwards through faults and fractures, and abandoned wells
50 (IPCC, 2005; Celia and Nordbotten, 2009; Keating et al., 2013; Keating et al., 2014). The leakage
51 of CO₂ negatively affects the water quality of overlying freshwater aquifers, and has been
52 described in detail previously (e.g., Kharaka et al., 2006; Lu et al., 2010; Wilkin and Digiulio,
53 2010; Harvey et al., 2013; Humez et al., 2014; Lions et al., 2014; Shao et al., 2015). Briefly, CO₂
54 leakage can lower groundwater pH, increase salinity, dissolve aquifer minerals, and mobilize
55 hazardous solutes (Wang and Jaffe, 2004; Zheng et al., 2009; Apps et al., 2010; Kharaka et al.,
56 2010; Little and Jackson, 2010; Lu et al., 2010; Wilkin and Digiulio, 2010). The CO₂ could also
57 eventually reach the atmosphere, undermining the attempts to hold atmospheric CO₂ levels in
58 check.

60 CO₂ leakage affects microorganisms living in aquifers. CO₂ of extremely high pressure
61 can kill microbes by extracting intracellular materials, disabling enzymes, and mobilizing toxic
62 trace elements from minerals (Bertoloni et al., 2006; Oule et al., 2006; Wimmer and Zarevucka,
63 2010; Santillan et al., 2013). Nevertheless, microorganisms are likely to persist in aquifers
64 exposed to CO₂ leakage (Kirk et al., 2016). Numerous studies have observed microorganisms in
65 environments with dissolved CO₂ levels that are high relative to those of most natural waters
66 (Yakimov et al., 2002; Inagaki et al., 2006; Videmsek et al., 2009; Oppermann et al.,
67 2010; Emerson et al., 2015). Recently, Peet et al. (2015) documented microbial growth in the
68 presence of supercritical CO₂. Microbial tolerance to high-pressure CO₂ is enhanced for cells that
69 possess Gram positive cell walls, grow within biofilms, and produce spores (Zhang et al.,
70 2006; Mitchell et al., 2008). Microbial survival can also be promoted by aquifer minerals capable
71 of rapid pH buffering (Wu et al., 2010).

73 Many questions still remain to be addressed in order to assess the impact of CO₂ leakage
74 on subsurface microbiology (Harvey et al., 2013). For example, how does CO₂ leakage affect
75 microbial energetics and the interactions between different microorganisms? Filling this
76 knowledge gap is important because microorganisms can affect not only the chemical
77 composition of aquifers but also the flow of groundwater (Gerlach and Cunningham, 2010; Flynn
78 et al., 2013). Many microbial reactions consume protons, which enhances the dissolution of CO₂
79 gas. As a result, the impact of CO₂ leakage on aquifer microorganisms may also affect the fate of
80 CO₂ migrating into aquifers.

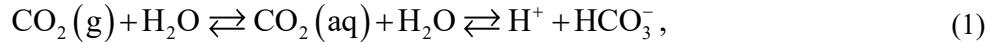
82 In this study, we use biogeochemical modeling to investigate how CO₂ leakage may
83 influence the thermodynamics and kinetics of microbial reactions in aquifers. Specifically, we
84 first explore how CO₂ leakage impacts aquifer geochemical properties that are relevant to
85 microbial reactions. We then simulate how CO₂ leakage affects the thermodynamics of
86 syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. We also carry out
87 kinetic modeling to explore how CO₂ leakage influences the occurrence and activity of
88 microorganisms in an aquifer. Our results show that CO₂ leakage significantly impacts the
89 thermodynamics and kinetics of microbial reactions, and can change the outcome of microbial
90 interactions.

93 **2. Methods**

94

95 **2.1. Hypothetical aquifers**

96


97 The simulation considers two hypothetical aquifers, a carbonate-free aquifer and a
98 calcite-rich aquifer, that are subject to CO₂ leakage from deep storage reservoirs (fig 1). The
99 carbonate-free aquifer has no carbonate mineral, and the calcite-rich aquifer contains abundant
100 calcite as a representative carbonate mineral. In the aquifers, groundwater contains 10 mM Na⁺,
101 9 mM Cl⁻, 5 mM bicarbonate, and 2 mM Ca²⁺ flows through at a flow rate of 5 cm·yr⁻¹. Both the
102 chemical composition and the flow rate are within the ranges reported for deep aquifers
103 (Chapelle, 2001).

104

105 CO₂ leaks into the hypothetical aquifers from deep reservoirs via a fault. The simulation
106 describes the progress of CO₂ leakage by raising CO₂ partial pressure of the groundwater. A
107 wide range of CO₂ partial pressures are possible during CO₂ leakage. The simulation assumes a
108 maximum value of 30 atm, which equates to one-third of total pressure typical for underground
109 drinking water resources (Wilkin and Digiulio, 2010).

110

111 The inclusion of the carbonate-free and the calcite-rich aquifer is to account for the wide
112 range in the responses of pH to CO₂ leakage. Specifically, CO₂ leakage into groundwater of
113 circumneutral pH induces a hydrolysis reaction,

114 which decreases groundwater pH. The decrease in groundwater pH depends in part on mineral
115 compositions of aquifers (e.g., Gunter et al., 1997; Xu et al., 2005; Kampman et al., 2009; Matter
116 and Kelemen, 2009). For example, proton reacts with carbonate minerals, and these reactions
117 buffer the change in pH. Taking calcite (CaCO₃) as an example, proton reacts rapidly with this
118 mineral,

119 Proton also reacts with silicate minerals, such as feldspars and clay minerals, releasing aluminum
120 and silicate into groundwater. These reactions are typically much slower than the dissolution of
121 carbonate minerals (Sherlock et al., 1995; Gunter et al., 1997; Gislason et al., 2010; Wilkin and
122 Digiulio, 2010). As a result, over relatively short time scales, these reactions are not as effective
123 as the dissolution of carbonate minerals in pH buffering. Another proton-consuming reaction is
124 the sorption onto the surface of clay minerals, metal oxides and hydroxides, and other minerals
125 of large surface areas. Compared to mineral dissolution, the impact of surface complexation on
126 groundwater pH is relatively insignificant.

127

128 **2.2. Microbial reactions**

129

130 Aquifers house diverse microorganisms, which can be separated into a series of
131 functional groups, including fermenters, syntrophs, and respirers (Jin and Roden, 2011).
132 Fermenting microbes degrade natural organic matter to H₂, acetate, lactate, propionate, and other
133 short-chain fatty acids, and to methanol, ethanol, and other primary alcohols. Syntrophs oxidize
134 short-chain fatty acids and primary alcohols to acetate and CO₂, and transfer the released
135 electrons to the reduction of protons to dihydrogen (H₂). On the other hand, respirers oxidize H₂,
136 short-chain fatty acids and primary alcohols, and transfer the released electrons to the reduction

137 of O₂, ferric minerals, sulfate, bicarbonate, and other electron acceptors.

138

139 The redox reactions catalyzed by syntrophs and respirers can be represented as

140 where D and D⁺ are electron donors and their oxidized forms, respectively, A and A⁻ are electron
141 acceptors and their reduced forms, respectively, and ν_D and others are stoichiometric
142 coefficients. In microbiology and biochemistry, the thermodynamics of redox reactions is
143 commonly characterized using reduction potential. Specifically, for the redox couple of D and
144 D⁺, the reduction potential E_D (V) is calculated according to

$$E_D = E_D^{o'} - \frac{RT}{nF} \cdot \left[\ln \left(\prod_D \gamma_D^{\nu_D} \cdot m_D^{\nu_D} \right) - \ln \left(\prod_{D^+} \gamma_{D^+}^{\nu_{D^+}} \cdot m_{D^+}^{\nu_{D^+}} \right) \right]; \quad (4)$$

145 for the redox couple of A and A⁻, the reduction potential E_A is calculated as

$$E_A = E_A^{o'} - \frac{RT}{nF} \cdot \left[\ln \left(\prod_{A^-} \gamma_{A^-} \cdot m_{A^-} \right) - \ln \left(\prod_A \gamma_A \cdot m_A \right) \right]. \quad (5)$$

146 Here $E_D^{o'}$ and $E_A^{o'}$ are standard potentials at pH 7, n is the number of electrons transferred per
147 reaction, γ_D and others are activity coefficients (M⁻¹), m_D and others are molal concentrations, R
148 is the gas constant (J·mol⁻¹·K⁻¹), F is the Faraday's constant, and T is the absolute temperature
149 (K). Table 1 lists the reduction reactions of redox couples commonly found in aquifers and the
150 standard reduction potentials ($E_D^{o'}$ and $E_A^{o'}$) at 1 atm, 25 °C, and pH 7. For the purpose of
151 comparing stoichiometric coefficients of proton and bicarbonate, the reactions are written in
152 terms of eight electron transfer ($n = 8$).

153

154 By transferring electrons, syntrophs and respirers liberate the chemical energy from redox
155 reactions, which become available to their metabolisms. The available energy ΔG_A [J·(mol
156 reaction)⁻¹, or J·mol⁻¹] is the negative of the Gibbs free energy change of redox reactions, and is
157 calculated from

$$\Delta G_A = nF \cdot (E_A - E_D), \quad (6)$$

158 the difference in the reduction potentials between electron acceptors E_A and donors E_D . Table 2
159 lists the standard available energy at 1 atm, 25 °C, and pH 7 for common redox reactions in
160 aquifers.

161

162 The rate r (M·s⁻¹) at which syntrophs and respirers catalyze redox reactions can be
163 calculated according to the thermodynamically consistent rate law (Jin and Bethke,
164 2003;2005;2007):

$$r = k \cdot [X] \cdot F_D \cdot F_A \cdot F_T, \quad (7)$$

165 where k is the rate constant [mol·(g dry weight)⁻¹·s⁻¹, or mol·g⁻¹·s⁻¹], [X] is the biomass
166 concentration [g dry weight·(kg H₂O)⁻¹, or g·kg⁻¹], F_D and F_A are the kinetic factors of electron
167 donor and acceptor, respectively, and F_T is the thermodynamic potential factor. The kinetic
168 factors are calculated according to

$$F_D = \frac{m_D}{K_D + m_D}, \quad (8)$$

$$F_A = \frac{m_A}{K_A + m_A}, \quad (9)$$

169
170 where K_D and K_A are the half-saturation constants (M) for electron donor D and acceptor A,
171 respectively. The thermodynamic factor is calculated according to

$$F_T = 1 - \exp\left(-\frac{\Delta G_A - \Delta G_C}{\chi \cdot RT}\right) \quad (10)$$

172 where ΔG_C (J·mol⁻¹) represents the energy saved by microbes, and χ is the average
173 stoichiometric number. The saved energy ΔG_C is calculated as

$$\Delta G_C = m_p \cdot \Delta G_p \quad (11)$$

174 the product of the ATP yield m_p of microbial reaction, and the phosphorylation energy ΔG_p , i.e.,
175 the energy required to synthesize ATP from ADP and phosphate in the cytoplasm of
176 microorganisms. In this study, the value of ΔG_p is taken as 45 kJ·(mol ATP)⁻¹ (Jin, 2012).

177
178 For microbial reduction of ferric minerals, its rate depends on the molal concentration
179 $m_{\text{surf,avail}}$ of bioavailable surface sites of the minerals. According to Roden (2006);2008), the rate
180 can be calculated according to

$$r = k_{\text{surf}} \cdot m_{\text{surf,avail}} \cdot \frac{[X] / m_{\text{surf,avail}}}{K_A^{\text{surf,avail}} + [X] / m_{\text{surf,avail}}} \cdot F_D \cdot F_T, \quad (12)$$

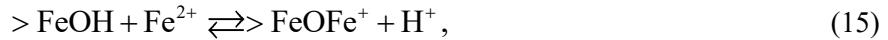
181 where k_{surf} is the bioavailable site-specific rate constant (s⁻¹), and $K_A^{\text{surf,avail}}$ is a constant in g cell
182 dry weight per mol bioavailable surface sites (g·mol⁻¹). The concentrations $m_{\text{surf,avail}}$ of
183 bioavailable surface sites are influenced by the sorption of ferrous iron on ferric minerals (Roden
184 and Urrutia, 2002).

185
186 Syntrophs and respirers utilize the saved energy ΔG_C to synthesize biomass. The rate at
187 which the biomass concentration [X] changes with time is calculated

$$\frac{d[X]}{dt} = (\mu - D) \cdot [X], \quad (13)$$

188 where μ is the specific growth rate (s⁻¹), and D is the specific rate of maintenance (s⁻¹). The
189 specific growth rate μ is calculated according to

$$\mu = Y \cdot \frac{r}{[X]}. \quad (14)$$


190 Here Y is the growth yield, the grams of biomass synthesized per mol reaction (g·mol⁻¹).

191 192 2.3. Model implementation

193
194 We carried out the simulation using the React program of the software package
195 Geochemist's Workbench version 9.0 (Bethke, 2008). Following common practice in
196 geochemical reaction modeling (Bethke, 2008), the simulation assumes that aqueous chemical
197 speciation is at thermodynamic equilibrium, and describes these reactions on the basis of the

198 updated LLNL Thermodynamic Database (Delany and Lundeen, 1990). This database was
199 modified to include amorphous iron sulfide (solubility product of $10^{-2.96}$) (Langmuir, 1997), and
200 goethite (solubility product of $10^{1.40}$) (Bigham et al., 1996). The activity coefficients are
201 calculated according to an extended form of the Debye-Hückel equation (Helgeson, 1969).

202
203 Aquifers may contain various ferric minerals. The simulation takes goethite as a
204 representative, and describes the sorption of ferrous iron onto the surface of goethite using non-
205 electrostatic Langmuir-style adsorption isotherms (Stumm and Morgan, 1996). Specifically, the
206 sorption reaction is

207 where $>\text{FeOH}$ represents the native surface site that is available to bioreduction, and $>\text{FeOFe}^+$ is
208 ferrous iron surface species. The logarithmic equilibrium constant of the reaction is -2.50 (Jin
209 and Roden, 2011). The value of $m_{\text{surf,avail}}$ is calculated as the difference in concentration between
210 the total surface sites and those occupied by sorbed ferrous iron.

211 3. Results and discussion

212 3.1. Groundwater chemistry

213 Figure 2, 3, and 4 shows, according to the simulation results, how groundwater chemistry
214 responds to the increase in CO_2 partial pressure. Before CO_2 from the deep reservoir reaches the
215 hypothetical aquifers, the groundwater has pH of 8 and a partial pressure of CO_2 of 3.1×10^{-4}
216 atm. Dissolved inorganic carbon occurs mainly as bicarbonate (0.5 mM), dissolved CO_2 (0.01
217 mM), and calcium-bicarbonate complex species (CaHCO_3^+ , 0.01 mM).

218 3.1.1. pH and inorganic carbon

219 CO_2 leakage raises the CO_2 partial pressures to 30 atm. According to the simulation
220 results (figs 2), the increase in CO_2 partial pressure lowers significantly groundwater pH, and
221 raises the concentration of dissolved CO_2 in the aquifers. Specifically, in the carbonate-free
222 aquifer, where CO_2 partial pressure increases from near 0 to 30 atm, pH decreases from 8 to 3.5,
223 and dissolved CO_2 concentration increases to 1.06 M. But there is relatively little increase in the
224 concentration of bicarbonate or calcium-bicarbonate complex (CaHCO_3^+).

225 In the calcite-rich aquifer, the increase in CO_2 partial pressure also raises the
226 concentration of dissolved CO_2 to 1.06 M, but decreases groundwater pH only to 5. In addition,
227 the increase in CO_2 partial pressure also increases significantly the concentrations of bicarbonate
228 and CaHCO_3^+ ; bicarbonate and CaHCO_3^+ concentrations increase to 60.5 mM and 10.4 mM,
229 respectively, at CO_2 partial pressure of 30 atm.

230
231 The different responses of the two aquifers arise from CO_2 -induced dissolution of calcite.
232 In the carbonate-free aquifer, the simulation does not consider any reaction that consumes
233 protons. As a result, most of the protons generated by CO_2 dissolution stay in the groundwater,
234 lowering pH significantly. In comparison, in the calcite-rich aquifer, protons react with calcite,
235 which buffers the decrease in pH, and adds bicarbonate to the groundwater.

242

The simulation results agree with previous assessment. The magnitude of pH decrease by CO₂ addition depends on the extent to which the environment can buffer CO₂ acidity as well as the pressure, temperature, and salinity of subsurface fluids. The solubility of CO₂ increases with pressure and thus depth but decreases with temperature and salinity (Benson and Cole, 2008). Decreases in the pH of fresh groundwater observed by field and laboratory studies range from 0.8 to 2.9 pH units (Lions et al., 2014). Similarly, geochemical modeling analysis indicates that, during CO₂ injection experiment in the Frio Formation, the pH of basin brine under subsurface conditions decreased from about 6.5 to 3 (Kharaka et al., 2009).

251

252 3.1.2. Aqueous speciation

253

254 The pH decrease in groundwater has a direct impact on the speciation of dissolved
255 chemicals. Figure 3 shows how CO₂ leakage changes the relative abundances of acetate, lactate,
256 propionate, butyrate, monohydrogen sulfide (HS⁻), and their conjugate acids. These chemical
257 species directly participate in microbial redox reactions.

258

259 The response of aqueous speciation is more pronounced in the carbonate-free aquifer than
260 in the calcite-rich aquifer. In the carbonate-free aquifer (fig 3A), the relative abundances of
261 different acids increase, while the relative abundances of the conjugate bases decrease, with the
262 increase in CO₂ partial pressure. The appearance of the cross-over points for the acids and their
263 conjugate bases follows the sequence of the acidity constants. Among these acids, dihydrogen
264 sulfide (H₂S) has the largest logarithmic acidity constant pKa of 7.0 (Lide, 2003), and H₂S and
265 HS⁻ reach equal concentrations where CO₂ partial pressure increases to 4×10^{-3} atm, and
266 groundwater pH decreases to 7.0. On the other hand, lactic acid has the smallest pKa of 3.86, and
267 lactic acid and lactate take the same concentration where CO₂ partial pressure reaches 12 atm,
268 and groundwater pH drops to 3.86.

269

270 In the calcite-rich aquifer (fig 3B), only the speciation of dihydrogen sulfide shows
271 significant variations. Specifically, increases in CO₂ partial pressure converts monohydrogen
272 sulfide to dihydrogen sulfide. At CO₂ partial pressure of 2.9×10^{-2} atm and pH of 7, the two
273 species have the same concentration. The speciations of acetic acid, propionic acid, and butyric
274 acid also respond to the increase in CO₂ partial pressure, but to a much lesser extent. These acids
275 occur at relatively significant concentrations, only after CO₂ partial pressure increase over 1 atm
276 and pH decreases to 6. The modest responses of aqueous speciation in the calcite-rich aquifer
277 arises from the limited decrease in groundwater pH (fig 2C).

278

279 3.1.3. Ionic strength and activity coefficient

280

281 In the calcite-rich aquifer, CO₂ leakage also raises the ionic strength of the groundwater
282 (fig 4A). Where CO₂ partial pressure increases from 3.0×10^{-4} to 30 atm, the ionic strength
283 increases from 16.6 mM to 100 mM. This increase is mainly due to the increases in the
284 concentrations of Ca²⁺ and bicarbonate by the dissolution of calcite (fig 2D). In comparison, in
285 the carbonate-free aquifer, the ionic strength of groundwater remains constant with the increase
286 in CO₂ partial pressure (data not shown).

287

288 Ionic strength controls the thermodynamic properties of dissolved chemical species,
289 which can be quantified using activity coefficient (eq 4 and 5, fig 4B). Among different theories,
290 the extended Debye-Hückel equation, or the B-dot equation, represents a robust choice
291 applicable for Na/Cl-dominated solution of ionic strength up to 2 molal (Helgeson, 1969).
292 According to the B-dot equation, activity coefficients depend significantly on the ionic strength
293 of groundwater and the charges of chemical species. Figure 4B shows in the calcite-rich aquifer,
294 the activity coefficients of ions decrease with the increases in CO₂ partial pressure, because of
295 the increase in the ionic strength. For chemical species with +1 or -1 charge, where CO₂ partial
296 pressure increases from near 0 to 30 atm, the activity coefficients decrease by about 0.1, from
297 near 0.89 to 0.77. For those with +2 or -2 charge, the activity coefficients decrease by about 0.2,
298 from near 0.6 to 0.4. For neutral chemical species, the activity coefficients are set at unity, and
299 do not change with the ionic strength of groundwater.

300

301 **3.2. Reduction potential**

302

303 The above geochemical variations place a fundamental constraint on the thermodynamics
304 of microbial reactions. This thermodynamic impact can be evaluated using the reduction
305 potentials of redox couples in microbial reactions. Here we focus on the electron donors
306 produced by the degradation of natural organic matter, include dihydrogen (H₂), acetate, lactate,
307 propionate, butyrate, methanol, and ethanol, and consider the common electron acceptors in
308 aquifers, such as goethite, sulfate, bicarbonate, and proton (Lovley and Chapelle, 1995; Bethke et
309 al., 2011).

310

311 We compute the change in reduction potential, not absolute value, for each electron
312 donor and acceptor. In this way, we highlight the significance by which CO₂ leakage affects the
313 reduction potentials. Using the change, not absolute value, also avoids the need of the
314 concentrations of electron donors and acceptors. In aquifers, there are few concentration
315 measurements for lactate, propionate, butyrate, methanol, and ethanol. On the other hand, for the
316 electron acceptors of sulfate and bicarbonate, their concentrations vary over orders of magnitude
317 (Kirk et al., 2015). Using the changes also simplifies the discussion of ferric mineral reduction.
318 In aquifers, different ferric minerals, such as ferrihydrite, goethite, hematite, and lepidocrocite,
319 may be present. Although these ferric minerals have different reduction potentials, their
320 reduction potentials respond in the same fashion to pH variations, because the reduction of these
321 ferric minerals consumes the same number of protons per electron. Here we evaluate the changes
322 in the reduction potential of goethite, but the result is applicable to ferrihydrite, hematite, and
323 lepidocrocite.

324

325 Figure 5 shows, according to the simulation results, how reduction potentials of different
326 redox couples respond to the leakage of CO₂. In both the carbonate-free and calcite-rich aquifers,
327 the reduction potentials increase with CO₂ partial pressures. For the redox couples considered by
328 this study (see table 1), their reduction reactions consume protons and, as a result, their reduction
329 potentials increases with the decrease in groundwater pH (eqs 4 and 5).

330

331 **3.2.1. Carbonate-free aquifer**

332

333 In the carbonate-free aquifer, the significances of the changes in reduction potentials

334 depend primarily on groundwater pH and the stoichiometric coefficients of protons in the
335 reduction reactions of redox couples. Reduction reactions of different redox couples have
336 different stoichiometric coefficients of protons (table 1). For example, the reduction of H^+ to H_2
337 consumes eight protons per eight electrons, while the reduction of Fe^{2+} to goethite consumes 24
338 protons per eight electrons. As a result, the increase in the reduction potential of the redox couple
339 of H^+/H_2 is the smallest, 267.8 mV, while the increase for the couple of Fe^{2+} /goethite is the
340 largest, 639.5 mV. The reduction reaction of other redox couples consumes 9 to 10 protons per
341 eight electrons, close to the stoichiometric coefficient of protons in the redox couple of H^+/H_2 .
342 As a result, the changes in the reduction potentials of these redox couples are larger than, but
343 close to, the change in the potential of H^+ reduction to H_2 .

344

345 3.2.2. Calcite-rich aquifer

346

347 Compared to those in the carbonate-free aquifer, the increases in reduction potentials are
348 relatively small in the calcite-rich aquifer. These small increases arise from the limited decrease
349 in pH induced by CO_2 leakage. Specifically, where CO_2 partial pressure increases from near 0 to
350 30 atm, groundwater pH decreases only by 3 units (fig 2C). As a result, the reduction potential of
351 H^+/H_2 increases by 176.1 mV, and that of Fe^{2+} /goethite increases by 391.2 mV.

352

353 For the redox couples of acetate, lactate, propionate, and methanol, their reduction
354 reactions consume bicarbonate (table 1). As a result, their reduction potentials also vary with
355 bicarbonate concentration or activity. Specifically, the reduction potentials depend on the
356 stoichiometric coefficients of bicarbonate anion in reduction reactions of the redox couples, and
357 the changes in the concentration of bicarbonate. Where CO_2 partial pressure increases from near
358 0 to 30 atm, the activity of bicarbonate increases by about one order of magnitude because of the
359 increase in concentration (fig 2D). The stoichiometric coefficient of bicarbonate varies from 1
360 per eight electrons in the reduction reaction of methane to 2 per eight electrons in the reduction
361 reactions of acetate and lactate. As a result, the increases in the reduction potentials of acetate
362 and lactate with CO_2 partial pressure are faster than that of HCO_3^- /methane (fig 5B).

363

364 3.3. Available energy

365

366 The above calculation of reduction potentials illustrates the impact of CO_2 leakage on
367 individual electron donors and acceptors. But the results are not straightforward in illustrating the
368 thermodynamic response of microbial reactions. This is because, for the common redox couples
369 in aquifers (table 1), their reduction potentials all respond positively with the increase in CO_2
370 partial pressure (fig 5). A direct thermodynamic assessment of microbial reactions is the energy
371 available to microbial functional groups. The available energy is a key geochemical parameter
372 that controls both the rates of microbial reactions and the growth of functional groups (Jin,
373 2012).

374

375 We compute the energy available from microbial reactions that transfer eight electrons
376 (table 2). The only exception is the energy available from acetoclastic methanogenesis, which is
377 computed in terms of one acetate. We compute the energy available to the common functional
378 groups in aquifers, including syntrophs, ferric iron reducers, sulfate reducers, and methanogens
379 (table 2). For the same reasons in evaluating reduction potentials, we focus on the changes in the

380 available energy, not the absolute values. Figure 6 shows how the energy available to the
381 microbial functional groups responds to the leakage of CO₂.

382

383 3.3.1. Syntroph

384

385 The simulation results show that CO₂ leakage decreases the energy available to syntrophs
386 (fig 6A and E). The energy available to syntrophs depends on groundwater pH, because protons
387 are produced by the syntrophic oxidation of short-chain fatty acids and alcohols (table 2). In both
388 the carbonate-free and calcite-rich aquifers, CO₂ leakage decreases groundwater pH (fig 2A and
389 C), thereby lowering the energy available to syntrophs.

390

391 The energy available to syntrophs may also depend on bicarbonate concentrations (table
392 2). Specifically, the oxidation of acetate, lactate, propionate, and methanol produces bicarbonate
393 ions. As a result, the energy released by these reactions depends on the concentrations of
394 bicarbonate; increase in bicarbonate concentration decreases the available energy. In the calcite-
395 rich aquifer, the decrease in pH is less than that in the carbonate-free aquifer, but the increase in
396 bicarbonate concentration is more significant than in the carbonate-free aquifer. Overall, the
397 effect of increasing bicarbonate concentrations takes its toll, leading to greater decreases in
398 available energies in the calcite-rich aquifer than in the carbonate-free aquifer.

399

400 In comparison, the syntrophic oxidation of butyrate and ethanol does not generate
401 bicarbonate, and thus the available energy depends primarily on groundwater pH. Because the
402 pH decrease is more significant in the carbonate-free aquifer than in the calcite-rich aquifer, the
403 available energy to butyrate- and ethanol-oxidizing syntrophs decrease more significantly in the
404 carbonate-free aquifer than in the calcite-rich aquifer.

405

406 It is interesting to note that in the carbonate-free aquifer, for both butyrate- and ethanol-
407 oxidizing syntrophs, the variations in the available energy level off at CO₂ partial pressures
408 greater than 1 atm. This is because the increase in CO₂ partial pressure decreases groundwater
409 pH, which in turn decreases the concentration of acetate (fig 3). At CO₂ partial pressures above 1
410 atm, pH decreases below 5, and acetate concentration is less than half of the total concentration
411 of acetate and acetic acid (fig 3A). Acetate is one of the products of the syntrophic oxidation of
412 butyrate and ethanol. For this reason, the decrease in acetate concentration increases the energy
413 available to butyrate- and ethanol-oxidizing syntrophs, which counteracts the decreases in the
414 available energy by the pH decrease.

415

416 In comparison, in the carbonate-rich aquifer, the available energy of butyrate- and
417 ethanol-oxidizing syntrophs decreases steadily with the increase in CO₂ partial pressure. This is
418 because of the modest pH decrease in this aquifer. At CO₂ partial pressure of 1 atm, groundwater
419 pH is about 6, and compared to acetic acid, acetate still remains as the dominant form (fig 3B).

420

421 3.3.2. Iron reducer

422

423 The simulation results show that CO₂ leakage raises the energy available to iron reducers
424 that utilize different electron donors (see table 2, fig 6B and F). Like in the above case of
425 syntrophic oxidation, pH is also a key parameter in determining the available energy. But in the

426 reduction of goethite coupled to the oxidation of different electron donors, protons are the
427 reactants and, as a result, the available energy increases with the decrease in pH. Also because
428 the pH decrease is larger in the carbonate-free aquifer than in the calcite-rich aquifer, the
429 increase in the available energy is more significant in the carbonate-free aquifer than in the
430 calcite-rich aquifer.

431

432 In both aquifers, the increase in the available energy varies among different electron
433 donors. Specifically, the decrease is most significant for H_2 oxidation, and least significant for
434 lactate oxidation to acetate. This difference arises from the different stoichiometric coefficients
435 of protons in goethite reduction coupled to the oxidation of different electron donors. The
436 stoichiometric coefficient of protons in H_2 oxidation is the largest, while that in lactate oxidation
437 to acetate is the smallest (table 2).

438

439 3.3.3. Sulfate reducer

440

441 For sulfate reducers, the responses of the energy available to CO_2 leakage are mixed. In
442 the calcite-free aquifer (fig 6C), only the available energy of H_2 -oxidizing sulfate reducer
443 increases significantly in response to CO_2 leakage. Where CO_2 partial pressure increases from
444 near 0 to 30 atm, the available energy increases by $43.8\text{ kJ}\cdot\text{mol}^{-1}$.

445

446 For sulfate reducers that oxidize other electron donors, their available energy responds to
447 CO_2 leakage, but only marginally. Specifically, for sulfate reducers that oxidize acetate,
448 propionate, and methanol, their available energy increases with CO_2 partial pressure, but only to
449 a very small extent, less than $7.0\text{ kJ}\cdot\text{mol}^{-1}$. For sulfate reducers that oxidize lactate, butyrate, and
450 ethanol, their available energy first decreases with CO_2 leakage and then increase. Again, the
451 variations remain less than $7.0\text{ kJ}\cdot\text{mol}^{-1}$ over the increase in CO_2 partial pressure from near 0 to
452 30 atm.

453

454 Sulfate reduction by the oxidation of H_2 , acetate, propionate, and methanol consumes
455 protons (table 2). As a result, the available energy increases with the increase in CO_2 partial
456 pressure and the decrease in pH. The significance of the increases depends on the stoichiometric
457 coefficients of protons in the reactions of sulfate reduction. Hydrogenotrophic sulfate reduction
458 consumes most protons, and hence its available energy increases most significantly with the
459 increase in CO_2 partial pressure.

460

461 In comparison, in sulfate reduction by the oxidation of acetate, propionate, and methanol,
462 the stoichiometric coefficients of protons are relatively small, and the increases in the available
463 energy by the pH decrease is also small. In addition, for acetate-oxidizing sulfate reduction, the
464 increase in the available energy is also limited by the speciation of acetate and acetic acid. As
465 shown in figure 3A, at CO_2 partial pressure above 1 atm, increase in the partial pressure
466 decreases significantly acetate concentration, thereby decreasing the available energy.

467

468 For sulfate reduction that oxidizes lactate, butyrate, and ethanol, the initial decrease in the
469 available energy can be explained by the production of protons under circumneutral pH
470 condition. In writing the reaction equations for sulfate reduction, we assume that dihydrogen
471 sulfide (H_2S) is the main species of dissolved sulfide. Under this assumption, no proton is

472 consumed by these reactions (table 2). But under circumneutral pH condition, a significant
473 fraction of dissolved sulfide also occurs as monohydrogen sulfide (HS^-) (fig 3). If we replaced
474 H_2S with HS^- in the reaction equations, sulfate reduction by the oxidation of lactate, butyrate,
475 and ethanol would generate protons. This explains the slight decreases in the available energy at
476 the beginning of CO_2 leakage, where pH of the groundwater is close to 7.

477

478 At CO_2 partial pressure above 0.1 atm, CO_2 leakage starts to turn groundwater from
479 circumneutral to slightly acidic ($\text{pH} < 6$). Under this condition, H_2S becomes the only dominant
480 sulfide species, no proton is produced by sulfate reduction, and the available energy is no longer
481 dependent on pH.

482

483 At pH below 6, because of the pH control on aqueous speciation (fig 3A), the decrease in
484 pH also starts to significantly lower acetate concentration. This explains the slight increase in the
485 available energy by CO_2 partial pressure. Note that the speciation effect is relatively small for
486 sulfate reduction by lactate oxidation. This is because lactate oxidation produces acetate, and the
487 concentrations of both acetate and lactate decreases with the increase in CO_2 partial pressure.

488

489 In the calcite-rich aquifer (fig 6G), the energy available to hydrogenotrophic sulfate
490 reducers increases during CO_2 leakage. For sulfate reducers using other electron donors, their
491 available energy consistently decreases with the progress of CO_2 leakage. In this aquifer, the
492 variations in the energy available to sulfate reducers results from the significant changes in both
493 bicarbonate concentration and pH (fig 2C and D). Specifically, as discussed for the carbonate-
494 free aquifer, under circumneutral pH condition, sulfate reduction by the oxidation of short-chain
495 fatty acids and primary alcohols generates protons, and thus the available energy decreases with
496 the increase in CO_2 partial pressure. For sulfate reduction that oxidizes acetate, lactate,
497 propionate, and methanol, the available energy is further decreased by the significant increase in
498 bicarbonate concentrations.

499

500 3.3.4. Methanogen

501

502 The simulation results show that in both the carbonate-free and calcite-rich aquifers, the
503 available energy to hydrogenotrophic methanogenesis increases with the progress of CO_2
504 leakage, while that to acetoclastic methanogenesis decreases with the progress (fig 6D and H).
505 The difference between the responses of the two pathways arises from the dependence of the
506 available energy on both pH and the concentrations of acetate and bicarbonate in the
507 groundwater. For hydrogenotrophic methanogenesis, it utilizes protons and bicarbonate as
508 substrates, and hence its available energy increases with the decrease in pH and the increase in
509 bicarbonate concentration. For acetoclastic methanogenesis, its available energy depends on the
510 concentrations of acetate and bicarbonate. In the calcite-rich aquifer, CO_2 leakage raises
511 significantly bicarbonate concentrations, thereby decreasing the energy available to acetoclastic
512 methanogens. On the other hand, in the carbonate-free aquifer, the significant decrease in pH by
513 CO_2 leakage converts acetate to acetic acid (fig 3A), which also decreases the available energy.

514

515 3.4. Microbial kinetics

516

517 The energy available from redox reactions controls the kinetics of microbial functional

518 groups (Jin and Bethke, 2007). According to the thermodynamically consistent rate law (eqs 7,
519 10, 13, and 14), increases in the available energy increase nonlinearly the rate of microbial
520 respiration and hence the rate of microbial growth. On the other hand, decreases in the available
521 energy decreases the rates of microbial respiration and growth. Based on the thermodynamic
522 calculations (fig 6), CO₂ leakage may inhibit the metabolisms of syntrophs and acetoclastic
523 methanogens, but promote the metabolisms of iron reducers and hydrogenotrophic sulfate
524 reducers and methanogens. To demonstrate these impacts, we take as an example the
525 hypothetical calcite-rich aquifer, and apply kinetic modeling to explore how the metabolisms of
526 different microbial functional groups respond to the leakage of CO₂.
527

528 For illustration purpose, the simulation assumes that in the aquitard, microbial
529 degradation of natural organic matter produce H₂, acetate, and lactate as the main products (fig
530 1). The simulation also assumes that these electron donors are produced at the same rate of
531 3.0×10^{-7} mol·liter⁻¹·yr⁻¹. There are very few measurements of production rates of different
532 electron donors in the subsurface, and the equal production rates in the simulation are purely
533 assumptive. Nevertheless, the assumed rates are within the ranges reported for subsurface
534 environments (Chapelle, 2001; Park et al., 2006), and are large enough to support different
535 functional groups in the aquifer.
536

537 The simulation considers the functional groups of syntrophs, iron reducers, sulfate
538 reducers, and methanogens that oxidize lactate to acetate, acetate to bicarbonate, and H₂ to
539 protons. The redox reactions catalyzed by these functional groups form a reaction network that
540 converts the degradation products of natural organic matter to bicarbonate and methane (fig 7).
541 Simulating microbial metabolism requires a series of microbial kinetic, growth, and
542 thermodynamic parameters (Jin and Roden, 2011; Jin et al., 2013). We assign the parameter
543 values on the basis of previous studies, and the results are listed in table 3. The simulation seeded
544 the functional groups with an initial biomass concentration of 10^{-9} g·liter⁻¹.
545

546 Microbial kinetics depends on pH, temperature, and pressure of the environment
547 (Ingraham, 1987), but how metabolic rates of different functional groups are controlled by these
548 environmental factors still remains to be elucidated. Here we hold microbial kinetic and growth
549 parameters constant to test whether the thermodynamic response to CO₂ leakage alone could
550 provide a mechanism for changing the rates of microbial reactions. The simulation also assumes
551 that the half-saturation constants describe the efficiency of microbes in utilizing the total
552 dissolved electron donors or acceptors, not any specific chemical species. In other words, in
553 computing kinetic factors (eqs 8 and 9), we only account for the total dissolved electron donors
554 and acceptors, or the sum of the concentrations of acids and their conjugate forms.
555

556 There are two phases in the simulation (fig 8). During the first 400 years, there is no CO₂
557 leakage, but only the flow of the groundwater through the aquifer. As a result, the metabolisms
558 of microbial functional groups depend on the chemical properties of the aquifer and the
559 production of electron donors. In the second phase between 400 and 800 years, CO₂ from the
560 deep reservoir arrives and, as a result, the partial pressure of CO₂ in the aquifer is assumed to
561 increase linearly from 1.8×10^{-3} atm at year 400 to 30 atm at year 800.
562

563 As shown above (figs 2 to 4), CO₂ leakage significantly changes the chemistry of

564 groundwater. Specifically, at the time of year 400, where the leaked CO₂ first reaches the
565 aquifer, groundwater pH decreases immediately from 8 to about 6 (fig 8B). Afterwards, pH
566 decreases gradually to 5 over the next 400 years. The sharp decrease in pH is due to (1) the
567 assumption that CO₂ partial pressure increases linearly with time to 30 atm over a period of 400
568 years, and (2) the fact that a pH drop from 8 to 6 only requires the production of about 1 μM
569 proton in groundwater. In the hypothetical calcite-rich aquifer, a relatively small increase in CO₂
570 partial pressure from near 0 to 1 atm is sufficient to generate 1 μM proton (fig 2C). The
571 subsequent gradual pH decrease can be explained by relatively large change in proton
572 concentrations. An decrease in pH from 6 to 5 requires the production of about 10 μM protons,
573 which can be generated by raising the partial pressure from 1 to 30 atm and by the simutaneous
574 dissolution of CO₂ gas and calcite mineral into the groundwater. The simutaneous dissolution of
575 CO₂ and calcite also increases bicarbonate concentration of groundwater (fig 2D).

576

577 3.4.1. Sulfate reduction

578

579 The thermodynamic analysis of microbial reactions suggests that CO₂ leakage has the
580 potential of promoting hydrogenotrophic sulfate reduction, but inhibits sulfate reducers that
581 oxidize acetate and lactate. To test this prediction, we assume that the groundwater contains 100
582 μM sulfate and 10 μM sulfide, and simulate the metabolisms of three different sulfate reducers
583 that oxidize H₂, acetate, and lactate in the hypothetical calcite-rich aquifer.

584

585 According to the simulation results (fig 9), during the first simulation phase of 0 to 400
586 years, before CO₂ leakage takes place, all of the three sulfate reducers survive in the aquifer, and
587 their metabolisms reach steady state. At steady state, microbial metabolisms produce 10.4 μM
588 sulfide, 0.25 μM lactate, 0.05 μM acetate, and 20.3 nM H₂ in groundwater. The H₂-, acetate-,
589 and lactate-oxidizing sulfate reducers reach a biomass concentration of 0.6, 1.8, and 0.5 $\mu\text{g}\cdot\text{L}^{-1}$,
590 respectively. The rates of sulfate reduction by oxidizing H₂, acetate, and lactate are 1.1×10^{-15} ,
591 4.7×10^{-15} , and $4.1\times 10^{-16} \text{ M}\cdot\text{s}^{-1}$, respectively. Thus, under the assumptions applied in the
592 simulation, the aquifer is dominated by acetotrophic sulfate reduction, which accounts for 76%
593 of total sulfate reduction.

594

595 The simulation results show that during the second phase of 400 to 800 years, the CO₂
596 leakage inhibts the metabolism of acetotrophic sulfate reducer, which agrees with the prediction
597 of microbial thermodynamics. Specifically, both the biomass concentration and sulfate reduction
598 rate decrease sharply – by 22% – during the first 90 years of CO₂ leakage. Afterwards, the
599 biomass concentration and rate decrease almost linearly with time, and decrease to 1.1 $\mu\text{g}\cdot\text{L}^{-1}$
600 and $2.9\times 10^{-15} \text{ M}\cdot\text{s}^{-1}$, respectively, at year 800. Corresponding to the rate decrease, acetate
601 concentration first increase to 0.12 μM at year 90, and then gradually increase to 0.17 μM at year
602 400.

603

604 The inhibition comes from the decrease in the available energy by CO₂ leakage, and can
605 be evaluated using the themrodynamic factor F_T . This factor quantifies how the available energy,
606 relative to the saved energy, controls microbial rate. As shown in figure 9E, before the CO₂
607 leakage, the energy available to acetotrophic sulfate reducer is 40.1 $\text{kJ}\cdot\text{mol}^{-1}$, slightly larger than
608 the saved energy, which is 33.75 $\text{kJ}\cdot\text{mol}^{-1}$ (eq 11 and table 3). As a result, the themrodynamic
609 factor takes a value of 0.35 (fig 9F). In the second phase, where CO₂ leakage takes place, the

610 available energy drops by $3.8 \text{ kJ}\cdot\text{mol}^{-1}$ during the first 90 years, and then decreases gradually to
611 $35.5 \text{ kJ}\cdot\text{mol}^{-1}$ at year 800. The decrease in the available energy pulls down the thermodynamic
612 factor to 0.11 at year 800.

613
614 The simulation also predicts that the CO_2 leakage ultimately drives acetotrophic sulfate
615 reducers out of the aquifer. As shown in figure 9G, in addition to the thermodynamic factor,
616 acetotrophic sulfate reduction is also limited by acetate and sulfate. The kinetic factors F_D and
617 F_A quantify the extent by which acetate and sulfate limit the rate of sulfate reduction. Before the
618 CO_2 leakage, because of small acetate concentration, the kinetic factor F_D of acetate is also
619 small, only about 0.01. The kinetic factor of sulfate is relatively large, 0.72. Substituting these
620 values, together with the thermodynamic factor F_T and the rate constant (see table 3) to the rate
621 law (eq 7), acetotrophic sulfate reducer takes a specific growth rate of $1.0 \times 10^{-8} \text{ s}^{-1}$, which
622 equates the assumed rate of specific maintenance, and hence allows the growth to reach a steady
623 state.

624
625 But after the CO_2 leakage starts, the specific growth rate decreases because of the
626 decrease in the available energy and the rate of acetotrophic sulfate reduction. Although the
627 deceleration of acetotrophic sulfate reduction raises the concentration and hence the kinetic
628 factor of acetate, the increase is not sufficient to offset the decrease by the decreasing available
629 energy. As a result, the specific growth rate decreases below the specific maintenance rate, and
630 the population size starts to decline and ultimately disappears from the aquifer.

631
632 The simulation results also show that during the second phase of 400 to 800 years, the
633 CO_2 leakage has little influence on the metabolism of H_2 - or lactate-oxidizing sulfate reducers.
634 According to the simulation results (fig 9C and D), both the biomass concentration and sulfate
635 reduction rate of lactate-oxidizing sulfate reducer remain constant during CO_2 leakage. The
636 biomass concentration and sulfate reduction rate of H_2 -oxidizing sulfate reducer increase, but
637 only slightly – less than 6%.

638
639 In the case of sulfate reduction by lactate oxidation, the lack of response is due to the fact
640 that in the hypothetical aquifer, this microbial reaction is not limited by the thermodynamic
641 control. As shown in figure 9G, before the leakage of CO_2 , the available energy from lactate
642 oxidation and sulfate reduction is $218.0 \text{ kJ}\cdot\text{mol}^{-1}$. After the CO_2 leakage, the available energy
643 drops to $190.0 \text{ kJ}\cdot\text{mol}^{-1}$. These values are much larger than the energy saved by the lactate-
644 oxidizing sulfate reducers, which is $101.25 \text{ kJ}\cdot\text{mol}^{-1}$ (see eq 11 and table 3). As a result, the
645 thermodynamic factor F_T stays close to unity before and after the CO_2 leakage. In other words,
646 although CO_2 leakage decreases the available energy, the decrease is not large enough to have
647 any impact on microbial rates.

648
649 In the case of hydrogenotrophic sulfate reduction, the lack of response arises from the
650 opposing effects of the increasing available energy and the decreasing H_2 concentration in
651 groundwater. As shown in figure 9E and F, before CO_2 leakage, the energy available to
652 hydrogenotrophic sulfate reducer is $47.4 \text{ kJ}\cdot\text{mol}^{-1}$, very close to the saved energy, which is 45
653 $\text{kJ}\cdot\text{mol}^{-1}$ (eq 11 and table 3). The thermodynamic factor F_T takes a value of 0.02. H_2
654 concentration is 21 nM , smaller than the assumed half-saturation constant of $1.1 \mu\text{M}$ (table 3).
655 The kinetic factor F_D takes a value of 0.02.

656
657 After the CO₂ leakage starts, the available energy increases, raising the thermodynamic
658 factor F_T . At year 800, the available energy increases to 58.3 kJ·mol⁻¹, and the thermodynamic
659 factor increases to 0.59, which increases the rate of H₂ oxidation. On the other hand, the increase
660 in the rate of H₂ oxidation decreases the concentration of H₂, decreasing the kinetic factor F_D . At
661 year 800, H₂ concentration decreases to 5.2 nM, and the kinetic factor F_D decreases to 0.005.
662 According to the rate law (eq 7), the product of the thermodynamic and kinetic factors
663 determines the rate of hydrogenotrophic sulfate reduction. Because the rate increase by
664 increasing available energy balances the rate decrease by decreasing H₂ concentration, sulfate
665 reduction rate does not change significantly by the leakage of CO₂.

666
667 **3.4.2. Microbial competition**

668
669 Microbial kinetics is a key to understanding the interactions among microbial functional
670 groups. The above thermodynamic analysis suggests that CO₂ leakage promotes microbial iron
671 reduction, but inhibits sulfate reducers that utilize short-chain fatty acids. As a result, CO₂
672 leakage may change the outcome of the competition between iron reducers and sulfate reducers.
673

674 To test this prediction, we simulate the metabolisms of iron reducers and sulfate reducers
675 that oxidize H₂, acetate, and lactate in the hypothetical calcite-rich aquifer. We assume that the
676 aquifer contains 1% goethite, and that the groundwater contains 1.0 mM sulfate, 10 μM sulfide,
677 and 10 μM Fe²⁺. The assumed sulfate concentration is much larger than the half-saturation
678 constants of sulfate reducers (table 3), which alleviates the limitation of sulfate on sulfate
679 reduction rate. To consider other potential microbial interactions, the simulation also includes the
680 metabolisms of lactate-oxidizing syntroph and hydrogenotrophic and acetoclastic methanogens.
681 In this way, a total of nine functional groups are considered in the simulation.
682

683 Figure 10 show the results of the simulation. In the first 400 years, before CO₂ leakage
684 takes place, out of the nine functional groups, only three survive in the aquifer, including lactate-
685 oxidizing iron reducer, and hydrogenotrophic and acetotrophic sulfate reducers. In other words,
686 under the assumptions applied in the simulation, lactate-oxidizing iron reducer competes
687 successfully against its counterpart of sulfate reducers, but for both hydrogenotrophic and
688 acetotrophic iron reducers, they are driven out of the aquifer by their counterparts of sulfate
689 reducers. As a result, the production of H₂, acetate, and lactate in the aquitard supports
690 simultaneously iron reduction and sulfate reduction in the aquifer.
691

692 After the metabolisms of the three groups reach steady state, the groundwater contains
693 5.8 μM Fe²⁺, 5.0 μM sulfide, 0.16 μM lactate, 25.2 nM acetate, and 11.4 nM H₂ in groundwater
694 (fig 10A and B). In addition, there are two species on the surface of goethite, free or bioavailable
695 surface sites (>FeOH) and sorbed ferrous iron (>FeOFe⁺), and their bulk concentrations are
696 about 2 mM (fig 10C). At the steady state, the lactate-oxidizing iron reducer has a biomass
697 concentration of 1.6 μg·L⁻¹, and the biomass concentrations of hydrogenotrophic and
698 acetotrophic sulfate reducers are 0.57 and 2.45 μg·L⁻¹, respectively (fig 10D). The rate of iron
699 reduction by lactate oxidation is 1.1×10⁻¹⁵ M·s⁻¹; the rates of hydrogenotrophic and acetotrophic
700 sulfate reduction are 1.1×10⁻¹⁵ and 6.5×10⁻¹⁵ M·s⁻¹, respectively (fig 10E).
701

702 Between year 400 and 800, CO_2 leakage promotes the metabolism of acetotrophic and
703 hydrogenotrophic iron reducers, and excludes acetotrophic and hydrogenotrophic sulfate reducer
704 from the aquifer. At steady state, the aquifer contains acetotrophic and hydrogenotrophic iron
705 reducers at 5.1 and $1.2 \mu\text{g}\cdot\text{L}^{-1}$, respectively. Acetotrophic and hydrogenotrophic iron reduction
706 proceeds at a rate of 6.8×10^{-15} and $1.2 \times 10^{-15} \text{ mol}\cdot\text{L}^{-1}\cdot\text{s}^{-1}$, respectively (fig 10D and E).

707
708 The CO_2 leakage promotes acetotrophic and hydrogenotrophic iron reduction by raising
709 the energy available from the reduction of goethite. As shown in figure 10F, the CO_2 leakage
710 increases significantly the energy available from goethite reduction coupled to the oxidation of
711 acetate and H_2 . At year 400, the available energy is only $64.0 \text{ kJ}\cdot\text{mol}^{-1}$ for acetotrophic iron
712 reduction, and $66.7 \text{ kJ}\cdot\text{mol}^{-1}$ for hydrogenotrophic iron reduction. Both values are smaller than
713 the energy saved by the two iron reducers; acetotrophic and hydrogenotrophic iron reducers save
714 67.5 and $90.0 \text{ kJ}\cdot\text{mol}^{-1}$ of energy, respectively. Within 90 years, because of the sharp decrease in
715 pH, the available energy of acetotrophic iron reduction increases to $260.0 \text{ kJ}\cdot\text{mol}^{-1}$, and that of
716 hydrogenotrophic iron reduction increases to $283.0 \text{ kJ}\cdot\text{mol}^{-1}$. As a result, the thermodynamic
717 factors of the two iron reducers increase from 0 at year 400 to near unity at year 490, and stay
718 close to unity afterwards.

719
720 The CO_2 leakage also promotes microbial iron reduction by decreasing the concentration
721 of sorbed ferrous iron and increasing the concentrations of bioavailable surface sites (fig 10C and
722 eq 12). According to the rate law (eq 12), the rate of microbial iron reduction depends on the
723 concentration of bioavailable surface sites of ferric minerals, which in turn depends on the
724 sorption of ferrous iron. Ferrous iron sorption is controlled by pH; more ferrous iron sorbs onto
725 the surface sites of goethite at large pH, and vice versa (Dixit and Hering, 2006). As shown in
726 figure 10C, the decrease in pH by CO_2 leakage removes the sorbed ferrous iron from the surface
727 sites of goethite, and thus makes available nearly all surface sites of goethite to iron reducers.

728
729 The increases in the available energy and the concentration of bioavailable surface sites
730 raise the rates of iron reduction, which enable both hydrogenotrophic and acetotrophic iron
731 reducers to compete successfully against sulfate reducers. Specifically, acetate and H_2 oxidation
732 by the iron reducers decrease acetate and H_2 concentrations below 10 and 1 nM, respectively (fig
733 10A). The small acetate and H_2 concentrations decreases the specific growth rates of sulfate
734 reducers below the specific maintenance rates, which leads to the death of the sulfate reducers.

735
736 Lactate-oxidizing syntroph and hydrogenotrophic and acetoclastic methanogens do not
737 survive in the hypothetical aquifer, either before or after the leakage of CO_2 . The absence of
738 these functional groups is accounted for by the limited availability of electron donors, and by the
739 relatively small yields Y of biomass synthesis. For example, at steady state, because of the small
740 lactate concentration, the kinetic factor F_D of lactate for the syntroph is very small, only
741 3.2×10^{-6} . Neglecting the thermodynamic control, and substituting the kinetic factor and the
742 growth yield to the rate law (eqs 7 and 13), the syntroph has a specific growth rate of 4.4×10^{-10}
743 s^{-1} , much smaller than the specific maintenance rate of 10^{-8} s^{-1} (table 3).

744
745 **3.5. Implications for CO_2 trapping**

746
747 CO_2 gas is buoyant and thus has the potential to migrate to the surface and escape to the

748 atmosphere. However, many microbial reactions consume protons, and thus have the potential of
749 trapping CO₂ (table 2). By consuming protons, these reactions drive CO₂ hydrolysis reaction (eq
750 1) forward, converting CO₂ into bicarbonate and trapping CO₂ in the subsurface. By converting
751 CO₂ into bicarbonate, carbon can be more securely stored within the aqueous phase and
752 potentially precipitate as a carbonate mineral such as calcite, magnesite (MgCO₃), and siderite
753 (FeCO₃). Mineral trapping is considered to be the most secure form of subsurface carbon
754 trapping (Gunter et al., 1997).

755

756 The predicted changes in microbial activity by CO₂ leakage are favorable for CO₂
757 trapping. Because iron reduction consumes many more protons than sulfate reduction or
758 methanogenesis (table 2), it has a much greater potential to generate bicarbonate. Per mole of
759 acetate consumed, for example, iron reduction can generate 17 moles of bicarbonate whereas
760 sulfate reduction only generates 3 moles of bicarbonate. As CO₂ is added into aquifers, a shift
761 toward iron reduction would increase conversion of CO₂ into bicarbonate. Thus, an increase in
762 the rate of iron reduction relative to the other reactions would act as a positive feedback
763 mechanism on CO₂ trapping (Kirk et al., 2013).

764

765 Although it is well established that microbial reactions help neutralize acid mine water
766 (e.g., Tuttle et al., 1969; Dean et al., 2013; Lindsay et al., 2015), the possibility that they could
767 provide the same ecosystem service in geological carbon storage settings has received relatively
768 little attention. The question of whether microbial reactions can contribute significantly to
769 bicarbonate generation relative to mineral reactions remains open. In carbonate aquifers, reaction
770 between carbonic acid and carbonate minerals is likely the dominant source of bicarbonate
771 production. However, in silicic aquifers, we hypothesize that the bicarbonate contribution of
772 microbial reactions can be dominant, depending on the rate at which electron donors are
773 supplied. Where the flux of electron donors into the system is relatively high, microbial reactions
774 have the potential to generate bicarbonate more rapidly than mineral reactions. Simulations
775 designed to predict the fate of CO₂ within such systems may underestimate the rate of carbon
776 trapping if they do not account for microbial reactions (Kirk et al., 2013).

777

778 3.6. Implications for water quality

779

780 In contrast to the benefit of enhanced CO₂ trapping, an increase in the relative
781 significance of iron reduction has the potential to negatively affect water quality by leading to
782 higher dissolved iron concentrations and affecting the stability of oxide and sulfide minerals.
783 Both solid-phases provide important sinks for many hazardous solutes in aqueous environments.
784 Arsenic, for example, can strongly sorb to iron oxides and oxyhydroxides or be sequestered by
785 sulfide minerals such as pyrite (Smedley and Kinniburgh, 2002). If CO₂ leakage shifts the
786 balance between iron reduction and sulfate reduction, as predicted by our analysis, then the rate
787 at which sulfide minerals form and remove arsenic from water would decrease while the rate at
788 which oxides dissolve and release arsenic increases. Shifts in microbial activity predicted by our
789 analysis, therefore, favor enhance mobility of hazardous solutes such as arsenic.

790

791 3.7. Concluding comments

792

793 We carried out biogeochemical modeling to analyze how CO₂ leakage impacts the

794 thermodynamics and kinetics of microbial reactions in two different aquifers – a carbonate-free
795 aquifer of limited pH buffering capacity and a calcite-rich aquifer that effectively buffers pH
796 change. The simulation results showed that CO₂ leakage influences the thermodynamics of
797 microbial reactions, including reduction potentials of different redox couples and the energy
798 available to microbial functional groups. For the common electron donors and acceptors in
799 aquifers (table 1), their reduction potentials increase with the increase in CO₂ partial pressure.
800 The increases are different for different electron donors and acceptors, and are larger in the
801 carbonate-free aquifer than in the calcite-rich aquifer.
802

803 The available energy of different functional groups responds differently to the leakage of
804 CO₂. With the increase in CO₂ partial pressure, the energy available to syntrophs and to
805 acetoclastic methanogen decreases, while the energy available to iron reducers and
806 hydrogenotrophic sulfate reducer and methanogen increases. Considering the control of the
807 available energy on microbial rates, these results suggest that CO₂ leakage may inhibit the
808 metabolisms of syntrophs and acetoclastic methanogen, but promote the metabolisms of iron
809 reducers and hydrogenotrophic sulfate reducer and methanogen.
810

811 We tested these predictions by carrying out two kinetic simulations of microbial
812 metabolisms in the hypothetical calcite-rich aquifer. The first simulation focused on the response
813 of H₂-, acetate-, and lactate-oxidizing sulfate reducers, and the second explored the competition
814 between sulfate reducers and iron reducers. The results showed that CO₂ leakage favors
815 microbial iron reduction and inhibits microbial sulfate reduction, which are consistent with the
816 predictions from the thermodynamics. The results also show that, in the absence of iron reducers,
817 CO₂ leakage has little impact on hydrogenotrophic sulfate reduction, a prediction that differs
818 from the thermodynamic prediction.
819

820 These modeling exercises illustrate the complexity in microbiological response to CO₂
821 leakage. Our analysis is limited in that it only considered the overall reactions of microbial
822 respiration, without accounting for biochemical mechanism or microbial physiology.
823 Nevertheless, the results suggest that the impact of CO₂ leakage on aquifer microorganisms is
824 complex – different microbial reactions respond differently to CO₂ leakage: some metabolisms
825 are favored, others are depressed, and still others remain unchanged. Because high CO₂
826 abundance impacts the physiology of microorganisms, it is tempting to speculate that actual
827 microbiological responses would be more complex than what we have demonstrated here.
828

829 These modeling exercises also illustrate the power of coupled thermodynamic and kinetic
830 analysis of microbial reactions. Thermodynamic and kinetic analyses are routine tasks in today's
831 biogeochemical studies. The thermodynamic analysis is on the basis of chemical thermodynamic
832 properties, and tells whether or not, under given geochemical conditions, a microbial reaction is
833 favored by thermodynamics. The kinetic modeling combines thermodynamic properties of
834 chemical substances with kinetic parameters of microbial metabolisms, and predicts how fast
835 microbes catalyze chemical reactions and reproduce themselves.
836

837 So far the thermodynamic and kinetic analyses have often been carried out separately.
838 This study combined the two analyses to predict the microbiological impact of CO₂ leakage. The
839 results of both methods support the conclusion that different microbial reactions respond

840 differently to the leakage of CO₂. Importantly, the kinetic analysis places a quantitative
841 constraint on the thermodynamic predictions. For example, the thermodynamic analysis
842 suggested that CO₂ leakage promotes hydrogenotrophic sulfate reduction, but depresses sulfate
843 reduction by lactate oxidation. The kinetic analysis showed that CO₂ leakage does not change
844 significantly the rates of the two reactions. For lactate-oxidizing sulfate reduction, this is because
845 the change in the available energy is relatively small; for hydrogenotrophic sulfate reduction, the
846 rate increase by increasing available energy is balanced by the rate decrease by decreasing H₂
847 availability in the environment. These predictions represent example hypotheses generated by the
848 thermodynamic and kinetic analysis that can be further tested using laboratory and field
849 experiments.

850 **References**

851 Apps, J.A., Zheng, L., Zhang, Y., Xu, T., and Birkholzer, J.T. (2010). Evaluation of potential
852 changes in groundwater quality in response to CO₂ leakage from deep geologic storage.
853 *Transport in Porous Media* 82, 215-246.

854 Benson, S.M., and Cole, D.R. (2008). CO₂ sequestration in deep sedimentary formations.
855 *Elements* 4, 325-331.

856 Bertoloni, G., Bertucco, A., De Cian, V., and Parton, T. (2006). A study on the inactivation of
857 micro-organisms and enzymes by high pressure CO₂. *Biotechnology and Bioengineering*
858 95, 155-160.

859 Bethke, C.M. (2008). *Geochemical and Biogeochemical Reaction Modeling*. Cambridge, UK:
860 Cambridge University Press.

861 Bethke, C.M., Sanford, R.A., Kirk, M.F., Jin, Q., and Flynn, T.M. (2011). The thermodynamic
862 ladder in geomicrobiology. *American Journal of Science* 311, 183-210.

863 Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., and Wolf, M. (1996).
864 Schwertmannite and the chemical modeling of iron in acid sulfate waters. *Geochimica et*
865 *Cosmochimica Acta* 60, 2111-2121.

866 Celia, M.A., and Nordbotten, J.M. (2009). Practical modeling approaches for geological storage
867 of carbon dioxide. *Ground Water* 47, 627-638.

868 Chapelle, F.H. (2001). *Ground-Water Microbiology and Geochemistry*. New York: John Wiley
869 & Sons, Inc.

870 Dean, A.P., Lynch, S., Rowland, P., Toft, B.D., Pittman, J.K., and White, K.N. (2013). Natural
871 wetlands are efficient at providing long-term metal remediation of freshwater systems
872 polluted by acid mine drainage. *Environmental Science & Technology* 47, 12029-12036.

873 Delany, J.M., and Lundein, S.R. (1990). "The LLNL thermodynamical database". Lawrence
874 Livermore National Laboratory Report UCRL-21658).

875 Dixit, S., and Hering, J.G. (2006). Sorption of Fe(II) and As(III) on goethite in single- and dual-
876 sorbate systems. *Chemical Geology* 228, 6-15.

877 Emerson, J.B., Thomas, B.C., Alvarez, W., and Banfield, J.F. (2015). Metagenomic analysis of a
878 high carbon dioxide subsurface microbial community populated by chemolithoautotrophs
879 and bacteria and archaea from candidate phyla. *Environmental Microbiology*.

880 Flynn, T.M., Sanford, R.A., Ryu, H., Bethke, C.M., Levine, A.D., Ashbolt, N.J., and Santo
881 Domingo, J.W. (2013). Functional microbial diversity explains groundwater chemistry in
882 a pristine aquifer. *BMC Microbiology* 13.

883 Gerlach, R., and Cunningham, A.B. (2010). "Influence of Biofilms on Porous Media
884 Hydrodynamics," in *Porous Media: Applications in Biological Systems and*
885 *Biotechnology*, ed. K. Vafai. (New York: CFC Press), 173-230.

886 Gislason, S.R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E.H., Gunnlaugsson, E.,
887 Sigurdardottir, H., Sigfusson, B., Broecker, W.S., Matter, J.M., Stute, M., Axelsson, G.,
888 and Fridriksson, T. (2010). Mineral sequestration of carbon dioxide in basalt: A pre-
889 injection overview of the CarbFix project. *International Journal of Greenhouse Gas*
890 *Control* 4, 537-545.

891 Gunter, W.D., Wiwchar, B., and Perkins, E.H. (1997). Aquifer disposal of CO₂-rich greenhouse
892 gases: Extension of the time scale of experiment for CO₂-sequestering reactions by
893 geochemical modelling. *Mineralogy and Petrology* 59, 121-140.

894 Harvey, O.R., Qafoku, N.P., Cantrell, K.J., Lee, G., Amonette, J.E., and Brown, C.F. (2013).
895 Geochemical implications of gas leakage associated with geological CO₂ storage - a
896 qualitative review. *Environmental Science & Technology* 47, 23-36.

897 Helgeson, H.C. (1969). Thermodynamics of hydrothermal systems at elevated temperatures and
898 pressures. *American Journal of Science* 267, 729-804.

899 Humez, P., Negrel, P., Lagneau, V., Lions, J., Kloppmann, W., Gal, F., Millot, R., Guerrot, C.,
900 Flehoc, C., Widory, D., and Girard, J.F. (2014). CO₂-water-mineral reactions during CO₂
901 leakage: Geochemical and isotopic monitoring of a CO₂ injection field test. *Chemical
902 Geology* 368, 11-30.

903 Inagaki, F., Kuypers, M.M.M., Tsunogai, U., Ishibashi, J., Nakamura, K., Treude, T., Ohkubo,
904 S., Nakaseama, M., Gena, K., Chiba, H., Hirayama, H., Nunoura, T., Takai, K.,
905 Jorgensen, B.B., Horikoshi, K., and Boetius, A. (2006). Microbial community in a
906 sediment-hosted CO₂ lake of the southern Okinawa Trough hydrothermal system.
907 *Proceedings of the National Academy of Sciences of the United States of America* 103,
908 14164-14169.

909 Ingraham, J.L. (1987). "Effect of temperature, pH, water activity, and pressure on growth," in
910 *Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology*, eds. F.C.
911 Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter & H.E. Umbarger.
912 (Washington, D.C.: American Society for Microbiology), 1543-1554.

913 Ipcc (2005). "Special Report on Carbon Capture and Storage". Available at <http://www.ipcc.ch/>.

914 Jin, Q. (2012). Energy conservation of anaerobic respiration. *American Journal of Science* 312,
915 573-628.

916 Jin, Q., and Bethke, C.M. (2003). A new rate law describing microbial respiration. *Applied and
917 Environmental Microbiology* 69, 2340-2348.

918 Jin, Q., and Bethke, C.M. (2005). Predicting the rate of microbial respiration in geochemical
919 environments. *Geochimica et Cosmochimica Acta* 69, 1133-1143.

920 Jin, Q., and Bethke, C.M. (2007). The thermodynamics and kinetics of microbial metabolism.
921 *American Journal of Science* 307, 643-677.

922 Jin, Q., and Roden, E.E. (2011). Microbial physiology-based model of ethanol metabolism in
923 subsurface sediments. *Journal of Contaminant Hydrology* 125, 1-12.

924 Jin, Q., Roden, E.E., and Giska, J.R. (2013). Geomicrobial kinetics: extrapolating laboratory
925 studies to natural environments. *Geomicrobiology Journal* 30, 173-185.

926 Kampman, N., Bickle, M., Becker, J., Assayag, N., and Chapman, H. (2009). Feldspar
927 dissolution kinetics and Gibbs free energy dependence in a CO(2)-enriched groundwater
928 system, Green River, Utah. *Earth and Planetary Science Letters* 284, 473-488.

929 Keating, E., Newell, D., Dempsey, D., and Pawar, R. (2014). Insights into interconnections
930 between the shallow and deep systems from a natural CO₂ reservoir near Springerville,
931 Arizona. *International Journal of Greenhouse Gas Control* 25, 162-172.

932 Keating, E.H., Newell, D.L., Viswanathan, H., Carey, J.W., Zyvoloski, G., and Pawar, R. (2013).
933 CO₂/Brine Transport into Shallow Aquifers along Fault Zones. *Environmental Science &
934 Technology* 47, 290-297.

935 Kharaka, Y.K., Cole, D.R., Hovorka, S.D., Gunter, W.D., Knauss, K.G., and Freifeld, B.M.
936 (2006). Gas-water-rock interactions in Frio Formation following CO₂ injection:
937 Implications for the storage of greenhouse gases in sedimentary basins. *Geology* 34, 577-
938 580.

939 Kharaka, Y.K., Thordsen, J.J., Hovorka, S.D., Nance, H.S., Cole, D.R., Phelps, T.J., and Knauss,
940 K.G. (2009). Potential environmental issues of CO₂ storage in deep saline aquifers:
941 Geochemical results from the Frio-I Brine Pilot test, Texas, USA. *Applied Geochemistry*
942 24, 1106-1112.

943 Kharaka, Y.K., Thordsen, J.J., Kakouros, E., Ambats, G., Herkelrath, W.N., Beers, S.R.,
944 Birkholzer, J.T., Apps, J.A., Spycher, N.F., Zheng, L.E., Trautz, R.C., Rauch, H.W., and
945 Gullickson, K.S. (2010). Changes in the chemistry of shallow groundwater related to the
946 2008 injection of CO₂ at the ZERT field site, Bozeman, Montana. *Environmental Earth
947 Sciences* 60, 273-284.

948 Kirk, M.F., Altman, S.J., Santillan, E.F.U., and Bennett, P.C. (2016). Interplay between
949 microorganisms and geochemistry in geological carbon storage. *International Journal of
950 Greenhouse Gas Control* 47, 386-395.

951 Kirk, M.F., Jin, Q., and Haller, B.R. (2015). Broad-scale evidence that pH influences the balance
952 between microbial iron and sulfate reduction. *Groundwater*, n/a-n/a.

953 Kirk, M.F., Santillan, E.F.U., Sanford, R.A., and Altman, S.J. (2013). CO₂-induced shift in
954 microbial activity affects carbon trapping and water quality in anoxic bioreactors.
955 *Geochimica et Cosmochimica Acta* 122, 198-208.

956 Langmuir, D. (1997). *Aqueous Environmental Geochemistry*. Upper Saddle River, New Jersey:
957 Prentice-Hall, Inc.

958 Lide, D.R. (2003). *Handbook of Chemistry and Physics* Boca Raton, Florida: CRC Press.

959 Lindsay, M.B.J., Moncur, M.C., Bain, J.G., Jambor, J.L., Ptacek, C.J., and Blowes, D.W. (2015).
960 Geochemical and mineralogical aspects of sulfide mine tailings. *Applied Geochemistry*
961 57, 157-177.

962 Lions, J., Devau, N., De Lary, L., Dupraz, S., Parmentier, M., Gombert, P., and Dictor, M.C.
963 (2014). Potential impacts of leakage from CO₂ geological storage on geochemical
964 processes controlling fresh groundwater quality: A review. *International Journal of
965 Greenhouse Gas Control* 22, 165-175.

966 Little, M.G., and Jackson, R.B. (2010). Potential impacts of leakage from deep CO₂
967 geosequestration on overlying freshwater aquifers. *Environmental Science & Technology*
968 44, 9225-9232.

969 Liu, C., Kota, S., Zachara, J.M., Fredrickson, J.K., and Brinkman, C.K. (2001). Kinetic analysis
970 of the bacterial reduction of goethite. *Environmental Science and Technology* 35, 2482-
971 2490.

972 Lovley, D.R., and Chapelle, F.H. (1995). Deep subsurface microbial processes. *Reviews of
973 Geophysics* 33, 365-382.

974 Lu, J.M., Partin, J.W., Hovorka, S.D., and Wong, C. (2010). Potential risks to freshwater
975 resources as a result of leakage from CO₂ geological storage: a batch-reaction
976 experiment. *Environmental Earth Sciences* 60, 335-348.

977 Matter, J.M., and Kelemen, P.B. (2009). Permanent storage of carbon dioxide in geological
978 reservoirs by mineral carbonation. *Nature Geoscience* 2, 837-841.

979 Mitchell, A.C., Phillips, A.J., Hamilton, M.A., Gerlach, R., Hollis, W.K., Kaszuba, J.P., and
980 Cunningham, A.B. (2008). Resilience of planktonic and biofilm cultures to supercritical
981 CO₂. *Journal of Supercritical Fluids* 47, 318-325.

982 Noguera, D.R., Brusseau, G.A., Rittmann, B.E., and Stahl, D.A. (1998). A unified model
983 describing the role of hydrogen in the growth of *Desulfovibrio vulgaris* under different
984 environmental conditions. *Biotechnology and Bioengineering* 59, 732 - 746.

985 Oppermann, B.I., Michaelis, W., Blumberg, M., Frerichs, J., Schulz, H.M., Schippers, A.,
986 Beaubien, S.E., and Kruger, M. (2010). Soil microbial community changes as a result of
987 long-term exposure to a natural CO₂ vent. *Geochimica et Cosmochimica Acta* 74, 2697-
988 2716.

989 Oule, M.K., Tano, K., Bernier, A.M., and Arul, J. (2006). *Escherichia coli* inactivation
990 mechanism by pressurized CO₂. *Canadian Journal of Microbiology* 52, 1208-1217.

991 Park, J., Sanford, R.A., and Bethke, C.M. (2006). Geochemical and microbiological zonation of
992 the Middendorf aquifer, South Carolina. *Chemical Geology* 230, 88-104.

993 Peet, K.C., Freedman, A.J.E., Hernandez, H.H., Britto, V., Boreham, C., Ajo-Franklin, J.B., and
994 Thompson, J.R. (2015). Microbial Growth under Supercritical CO₂. *Applied and*
995 *Environmental Microbiology* 81, 2881-2892.

996 Price, P.B., and Sowers, T. (2004). Temperature dependence of metabolic rates for microbial
997 growth, maintenance, and survival. *Proceedings of the National Academy of Sciences*
998 101, 4631-4636.

999 Roden, E.E. (2006). Geochemical and microbiological controls on dissimilatory iron reduction.
1000 *Comptes Rendus Geosciences* 338, 456-467.

1001 Roden, E.E. (2008). "Microbiological controls on geochemical kinetics 1: Fundamentals and
1002 case study on microbial Fe(III) oxide reduction," in *Kinetics of Water-Rock Interaction*,
1003 eds. S.L. Brantley, J.D. Kubicki & A.F. White. (New York: Springer), 335-415.

1004 Roden, E.E., and Urrutia, M.M. (2002). Influence of biogenic Fe(II) on bacterial crystalline
1005 Fe(III) oxide reduction. *Geomicrobiology Journal* 19, 209-251.

1006 Santillan, E.U., Kirk, M.F., Altman, S.J., and Bennett, P.C. (2013). Mineral influence on
1007 microbial survival during carbon sequestration. *Geomicrobiology Journal* 30, 578-592.

1008 Shao, H.B., Qafoku, N.P., Lawter, A.R., Bowden, M.E., and Brown, C.F. (2015). Coupled
1009 geochemical impacts of leaking CO₂ and contaminants from subsurface storage reservoirs
1010 on groundwater quality. *Environmental Science & Technology* 49, 8202-8209.

1011 Sherlock, E.J., Lawrence, R.W., and Poulin, R. (1995). On the neutralization of acid rock
1012 drainage by carbonate and silicate minerals. *Environmental Geology* 25, 43-54.

1013 Smedley, P.L., and Kinniburgh, D.G. (2002). A review of the source, behaviour, and distribution
1014 of arsenic in natural waters. *Applied Geochemistry* 17, 517-568.

1015 Stumm, W., and Morgan, J.J. (1996). *Aquatic Chemistry. Chemical Equilibria and Rates in*
1016 *Natural Waters*. New York: John Wiley & Sons, Inc.

1017 Tuttle, J.H., Dugan, P.R., and Randles, C.I. (1969). Microbial sulfate reduction and its potential
1018 utility as an acid mine water pollution abatement procedure. *Applied Microbiology* 17,
1019 297- 302.

1020 Videmsek, U., Hagn, A., Suhadolc, M., Radl, V., Knicker, H., Schloter, M., and Vodnik, D.
1021 (2009). Abundance and diversity of CO₂-fixing bacteria in grassland soils close to natural
1022 carbon dioxide springs. *Microbial Ecology* 58, 1-9.

1023 Wang, S., and Jaffe, P.R. (2004). Dissolution of a mineral phase in potable aquifers due to CO₂
1024 releases from deep formations; effect of dissolution kinetics. *Energy Conversion and*
1025 *Management* 45, 2833-2848.

1026 Wilkin, R.T., and Digiulio, D.C. (2010). Geochemical impacts to groundwater from geologic
1027 carbon sequestration: Controls on pH and inorganic carbon concentrations from reaction
1028 path and kinetic modeling. *Environmental Science & Technology* 44, 4821-4827.

1029 Wimmer, Z., and Zarevucka, M. (2010). A review on the effects of supercritical carbon dioxide
1030 on enzyme activity. *International Journal of Molecular Sciences* 11, 233-253.

1031 Wu, B., Shao, H.B., Wang, Z.P., Hu, Y.D., Tang, Y.J.J., and Jun, Y.S. (2010). Viability and
1032 metal reduction of *Shewanella oneidensis* MR-1 under CO₂ stress: Implications for
1033 ecological effects of CO₂ leakage from geologic CO₂ sequestration. *Environmental*
1034 *Science & Technology* 44, 9213-9218.

1035 Xu, T.F., Apps, J.A., and Pruess, K. (2005). Mineral sequestration of carbon dioxide in a
1036 sandstone-shale system. *Chemical Geology* 217, 295-318.

1037 Yakimov, M.M., Giuliano, L., Crisafi, E., Chernikova, T.N., Timmis, K.N., and Golyshin, P.N.
1038 (2002). Microbial community of a saline mud volcano at San Biagio-Belpasso, Mt. Etna
1039 (Italy). *Environmental Microbiology* 4, 249-256.

1040 Zhang, J., Davis, T.A., Matthews, M.A., Drews, M.J., Laberge, M., and An, Y.H. (2006).
1041 Sterilization using high-pressure carbon dioxide. *Journal of Supercritical Fluids* 38, 354-
1042 372.

1043 Zheng, L.G., Apps, J.A., Zhang, Y.Q., Xu, T.F., and Birkholzer, J.T. (2009). On mobilization of
1044 lead and arsenic in groundwater in response to CO₂ leakage from deep geological storage.
1045 *Chemical Geology* 268, 281-297.

1046

1047 Table 1. Reduction reactions of common electron donors and acceptors in aquifers, and their
 1048 standard reduction potentials $E^{\circ'}$ at pH 7^(a).

Half-reaction	$E^{\circ'}$ (mV)
$8\text{H}^+ + 8\text{e}^- \rightarrow 4\text{H}_2(\text{aq})$	-506.2
$2\text{Acetate} + 2\text{HCO}_3^- + 10\text{H}^+ + 8\text{e}^- \rightarrow 2\text{Lactate} + 4\text{H}_2\text{O}$	-438.0
$2\text{Acetate} + 10\text{H}^+ + 8\text{e}^- \rightarrow 2\text{Ethanol} + 2\text{H}_2\text{O}$	-390.3
$8\text{Goethite} + 24\text{H}^+ + 8\text{e}^- \rightarrow 8\text{Fe}^{2+} + 16\text{H}_2\text{O}$	-389.7
$\frac{4}{3}\text{HCO}_3^- + \frac{28}{3}\text{H}^+ + 8\text{e}^- \rightarrow \frac{4}{3}\text{Methanol} + \frac{8}{3}\text{H}_2\text{O}$	-373.7
$4\text{Acetate} + 10\text{H}^+ + 8\text{e}^- \rightarrow 2\text{Butyrate} + 4\text{H}_2\text{O}$	-284.8
$2\text{HCO}_3^- + 9\text{H}^+ + 8\text{e}^- \rightarrow \text{Acetate} + 4\text{H}_2\text{O}$	-279.1
$\frac{4}{3}\text{Acetate} + \frac{4}{3}\text{HCO}_3^- + \frac{28}{3}\text{H}^+ + 8\text{e}^- \rightarrow \frac{4}{3}\text{Propionate} + 4\text{H}_2\text{O}$	-278.7
$\text{HCO}_3^- + 9\text{H}^+ + 8\text{e}^- \rightarrow \text{CH}_4(\text{aq}) + 3\text{H}_2\text{O}$	-259.6
$\text{SO}_4^{2-} + 9\text{H}^+ + 8\text{e}^- \rightarrow \text{HS}^- + 4\text{H}_2\text{O}$	-217.0

1049
 1050 (a) Standard reduction potential at 1 atm, 25 °C, and pH 7 is calculated from the updated LLNL
 1051 Thermodynamic Database (Delany and Lundeen, 1990).

1052 Table 2. Redox reactions, standard available energy at pH 7.

Redox reaction	$\Delta G_A^{\circ'}$ (kJ·mol ⁻¹)
Syntrophic oxidation	
1. Acetate+4H ₂ O \rightleftharpoons 4H ₂ (aq)+2HCO ₃ ⁻ +H ⁺	-175.25
2. 2Lactate+4H ₂ O \rightleftharpoons 2Acetate + 4H ₂ (aq)+2HCO ₃ ⁻ +2H ⁺	-52.65
3. $\frac{4}{3}$ Propionate+4H ₂ O \rightleftharpoons $\frac{4}{3}$ Acetate + 4H ₂ (aq)+ $\frac{4}{3}$ HCO ₃ ⁻ + $\frac{4}{3}$ H ⁺	-175.58
4. 2Butyrate+4H ₂ O \rightleftharpoons 4Acetate + 4H ₂ (aq)+2H ⁺	-170.90
5. $\frac{4}{3}$ Methanol+ $\frac{8}{3}$ H ₂ O \rightleftharpoons 4H ₂ (aq)+ $\frac{4}{3}$ HCO ₃ ⁻ + $\frac{4}{3}$ H ⁺	-102.24
6. 2Ethanol+2H ₂ O \rightleftharpoons 2Acetate + 4H ₂ (aq)+2H ⁺	-89.42
Goethite reduction	
7. 4H ₂ (aq)+8Goethite+16H ⁺ \rightleftharpoons 16H ₂ O+8Fe ²⁺	89.90
8. Acetate+8Goethite+15H ⁺ \rightleftharpoons 2HCO ₃ ⁻ +12H ₂ O +8Fe ²⁺	-85.35
9. 2Lactate+8Goethite+14H ⁺ \rightleftharpoons 2Acetate+2HCO ₃ ⁻ +12H ₂ O +8Fe ²⁺	37.25
10. $\frac{4}{3}$ Propionate+8Goethite+12 $\frac{2}{3}$ H ⁺ \rightleftharpoons $\frac{4}{3}$ Acetate+ $\frac{4}{3}$ HCO ₃ ⁻ +12H ₂ O +8Fe ²⁺	-85.68
11. 2Butyrate+8Goethite+14H ⁺ \rightleftharpoons 4Acetate+12H ₂ O +8Fe ²⁺	-81.00
12. $\frac{4}{3}$ Methanol+8Goethite+ $\frac{44}{3}$ H ⁺ \rightleftharpoons $\frac{4}{3}$ HCO ₃ ⁻ +8Fe ²⁺ + $\frac{40}{3}$ H ₂ O	-12.34
13. 2Ethanol+8Goethite+14H ⁺ \rightleftharpoons 2Acetate + 8Fe ²⁺ +14H ₂ O	0.48
Sulfate reduction	
14. 4H ₂ (aq)+SO ₄ ²⁻ +2H ⁺ \rightleftharpoons H ₂ S+4H ₂ O	223.23
15. Acetate+SO ₄ ²⁻ + H ⁺ \rightleftharpoons 2HCO ₃ ⁻ + H ₂ S	47.97

16. 2Lactate+SO ₄ ²⁻ \rightleftharpoons	2Acetate+2HCO ₃ ⁻ + H ₂ S	170.57
17. $\frac{4}{3}$ Propionate+SO ₄ ²⁻ + $\frac{2}{3}$ H ⁺ \rightleftharpoons	$\frac{4}{3}$ Acetate+ $\frac{4}{3}$ HCO ₃ ⁻ + H ₂ S	47.64
18. 2Butyrate+SO ₄ ²⁻ \rightleftharpoons	4Acetate + H ₂ S	52.33
19. $\frac{4}{3}$ Methanol+SO ₄ ²⁻ + $\frac{2}{3}$ H ⁺ \rightleftharpoons	H ₂ S+ $\frac{4}{3}$ H ₂ O+ $\frac{4}{3}$ HCO ₃ ⁻	120.98
20. 2Ethanol+SO ₄ ²⁻ \rightleftharpoons	2Acetate + H ₂ S+2H ₂ O	133.80

Methanogenesis

21. 4H ₂ (aq)+H ⁺ +HCO ₃ ⁻ \rightleftharpoons	CH ₄ (aq)+3H ₂ O	190.33
22. Acetate + H ₂ O \rightleftharpoons	HCO ₃ ⁻ +CH ₄ (aq)	15.07

1053

1054 Table 3. Redox reactions, kinetic parameters (rate constant k , and half-saturation constant K_D and K_A), growth parameters (growth yield Y and
 1055 specific maintenance rate D), and thermodynamic parameters (ATP yield m_P and average stoichiometric number χ) of microbial functional
 1056 groups.

Functional group	Redox reaction ^(a)	Kinetic parameter ^(b)			Growth parameter		Thermodynamic parameter ^(c)	
		k (mol·g ⁻¹ ·s ⁻¹)	K_D (molal)	K_A (molal)	Y ^(c) (g·mol ⁻¹)	D ^(d) (s ⁻¹)	m_P	χ
Syntroph ^(e)	2	1.0×10^{-5}	5.0×10^{-2}	— ^(f)	13.8	10^{-8}	2.76	4
Iron reducers	7	$1.5 \times 10^{-5(g)}$	1.0×10^{-6}	$7.0^{(h)}$	7.8	10^{-8}	2.0	8
	8	$1.5 \times 10^{-5(g)}$	1.2×10^{-5}	$7.0^{(h)}$	5.6	10^{-8}	1.5	8
	9	$1.5 \times 10^{-5(g)}$	$5.2 \times 10^{-4(i)}$	$7.0^{(h)}$	14.7	10^{-8}	3.0	8
Sulfate reducers	14	1.0×10^{-6}	1.1×10^{-6}	3.9×10^{-5}	5.0	10^{-8}	1.0	6
	15	1.0×10^{-6}	5.0×10^{-6}	3.9×10^{-5}	4.6	10^{-8}	0.75	6
	16	1.0×10^{-6}	2.0×10^{-4}	3.9×10^{-5}	14.6	10^{-8}	2.25	6
Methanogens	21	1.0×10^{-6}	4.7×10^{-6}	— ^(f)	1.25	10^{-8}	0.25	2
	22	1.0×10^{-6}	2.3×10^{-5}	— ^(f)	2.5	10^{-8}	0.5	2

1057 (a) See table 2.

1058 (b) Jin and Roden (2011)

1059 (c) Jin (2012)

1060 (d) Price and Sowers (2004)

1061 (e) Parameters are estimated based on the experimental observations of Noguera et al. (1998, their fig 3).

1062 (f) No electron acceptor dependence.

1063 (g) Unit is s⁻¹.

1064 (h) Unit is g cell dry weight per mol of bioavailable surface sites, i.e., g·mol⁻¹.

1065 (i) Liu et al. (2001)

1067 **Figure legends**

1068

1069 Figure 1. Conceptual model for biogeochemical reaction modeling. Na-Cl water containing
1070 sulfate flows through a quartzite aquifer confined between aquitards. In the aquitards, natural
1071 organic matter is degraded to H₂, acetate, lactate, and other electron donors (D), which diffuse
1072 into the aquifer. CO₂ from a deep storage reservoir migrates upwards along a fault into the
1073 aquifer. The aquifer is seeded with small initial populations of microbial functional groups that
1074 can grow on lactate, acetate, and H₂ by using goethite, sulfate, bicarbonate, and proton as
1075 electron acceptors.

1076

1077 Figure 2. Variations in pH and concentrations of calcium (Ca²⁺), dissolved CO₂(aq), bicarbonate,
1078 and calcium-bicarbonate complex (CaHCO₃⁺) with CO₂ partial pressure in a hypothetical
1079 carbonate-free (A and B) and calcite-rich aquifer (C and D).

1080

1081 Figure 3. Variations in relative abundances of monohydrogen sulfide (HS⁻), acetate, lactate,
1082 propionate, butyrate, and their conjugate acids with CO₂ partial pressure in a hypothetical
1083 carbonate-free (A) and calcite-rich aquifer (B).

1084

1085 Figure 4. Variations in the ionic strength of groundwater (A) and the activity coefficients of ions
1086 (B) with CO₂ partial pressure in a hypothetical calcite-rich aquifer.

1087

1088 Figure 5. Variations in reduction potentials *E* of redox couples with CO₂ partial pressure in a
1089 hypothetical carbonate-free (A) and calcite-rich aquifer (B). Labels show the redox couples; see
1090 table 1 for reduction reactions.

1091

1092 Figure 6. Variations in the available energy ΔG_A to syntrophic oxidation, goethite reduction,
1093 sulfate reduction, and methanogenesis in a hypothetical carbonate-free (A to D) and calcite-rich
1094 (E to H) aquifer. Labels show the electron donors of redox reactions; see table 2 for reaction
1095 equations.

1096

1097 Figure 7. Functional groups supported by the electron donors of H₂, acetate, and lactate, and the
1098 resulting reaction network (also see table 2). FeRM, ferric iron reducer; SRM, sulfate reducer;
1099 MG, methanogen; Syn, syntroph.

1100

1101 Figure 8. Variations with time in CO₂ partial pressure (A) and pH (B) in a hypothetical calcite-
1102 rich aquifer.

1103

1104 Figure 9. Variations with time in the concentrations of H₂, acetate, lactate (A), and sulfide (B),
1105 the biomass concentrations of sulfate reducers (C), the rates of sulfate reduction (D), the energy
1106 available to sulfate reducers (E), the thermodynamic factor *F_T* (F), the kinetic factor of sulfate
1107 (F_A), H₂, and acetate (F_D), and specific growth rate of acetotrophic sulfate reducer in the
1108 hypothetical calcite-rich aquifer.

1109

1110 Figure 10. Variations with time in the concentrations of H₂, acetate, lactate (A), sulfide, ferrous
1111 iron (B), the bioavailable surface sites >FeOH, and sorbed ferrous iron >FeOFe⁺ (C), the
1112 biomass concentrations of iron reducers and sulfate reducers (D), the rates of iron reduction and
1113 sulfate reduction (E), the energy available to iron reducers (F), and the thermodynamic factor *F_T*
1114 of iron reducers (G) in the hypothetical calcite-rich aquifer.

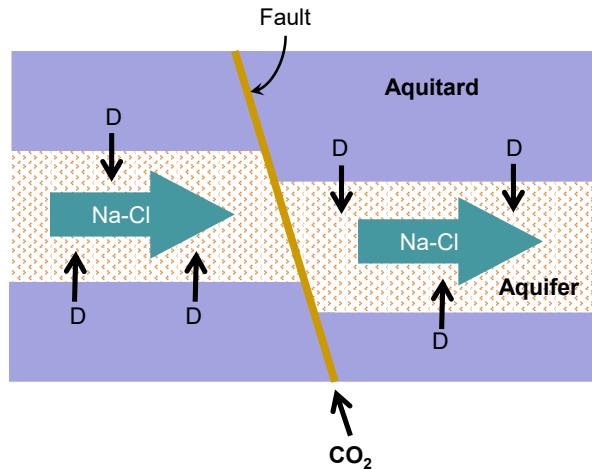


Fig. 1

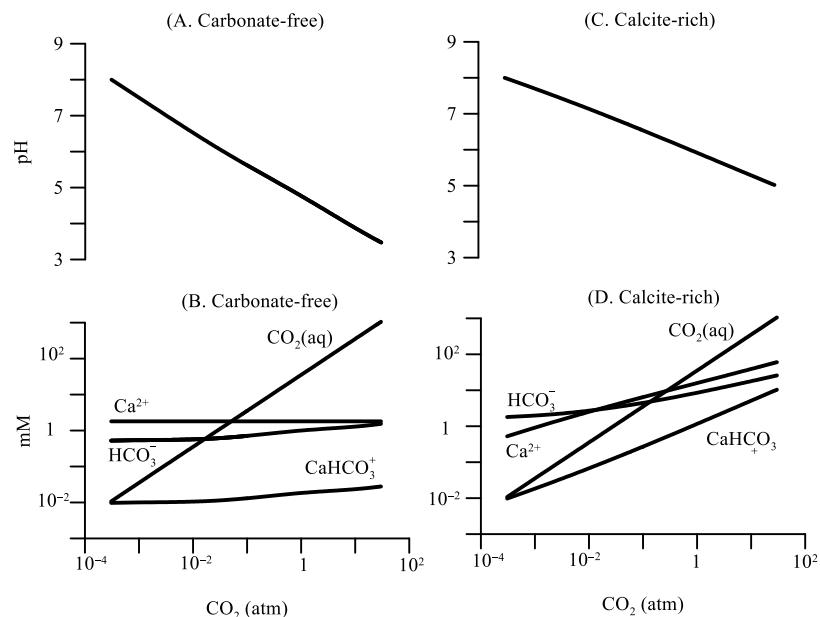


Fig. 2

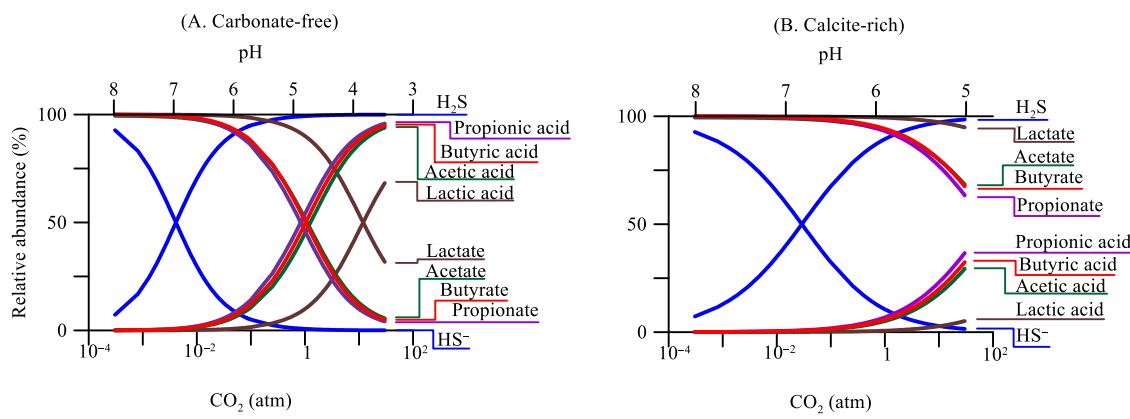


Fig. 3

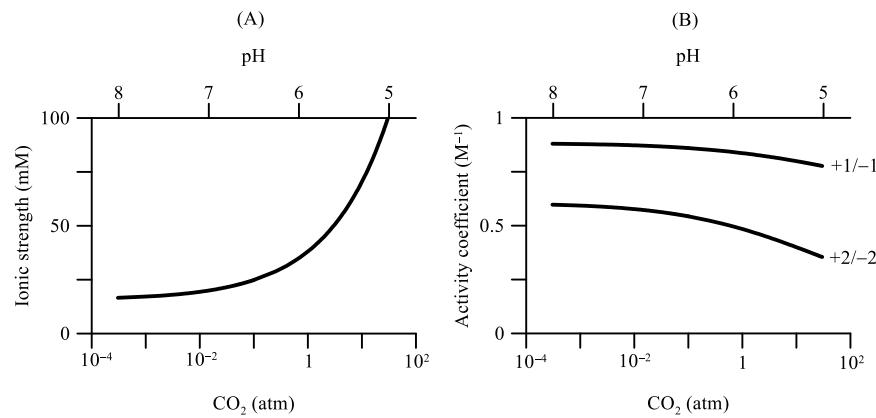


Fig. 4

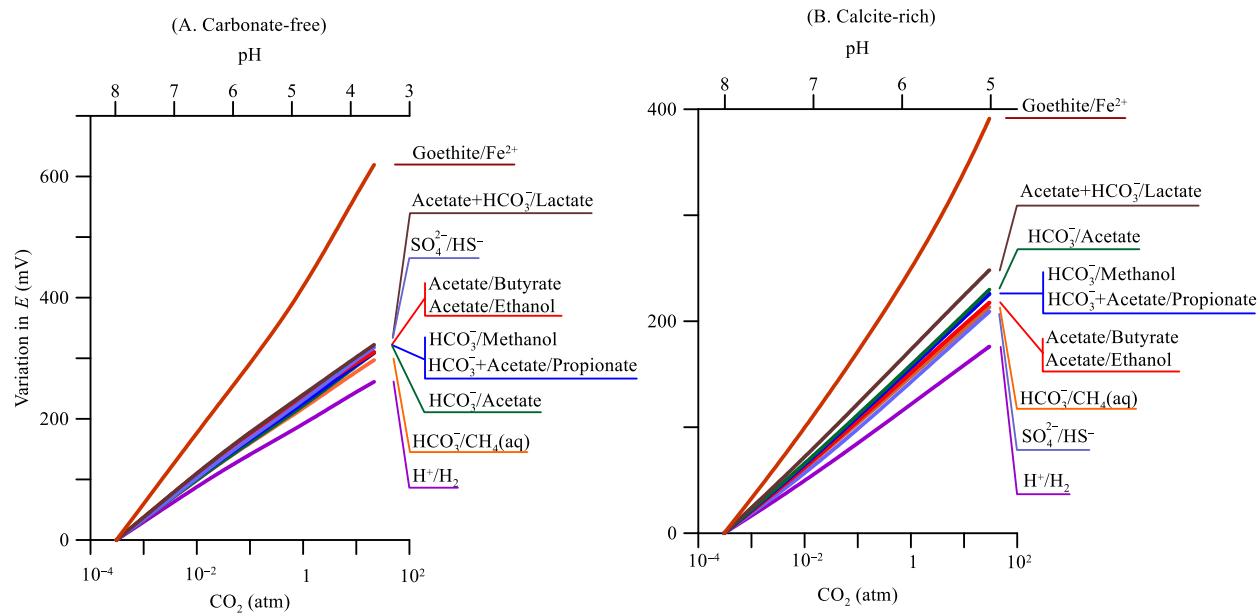


Fig. 5

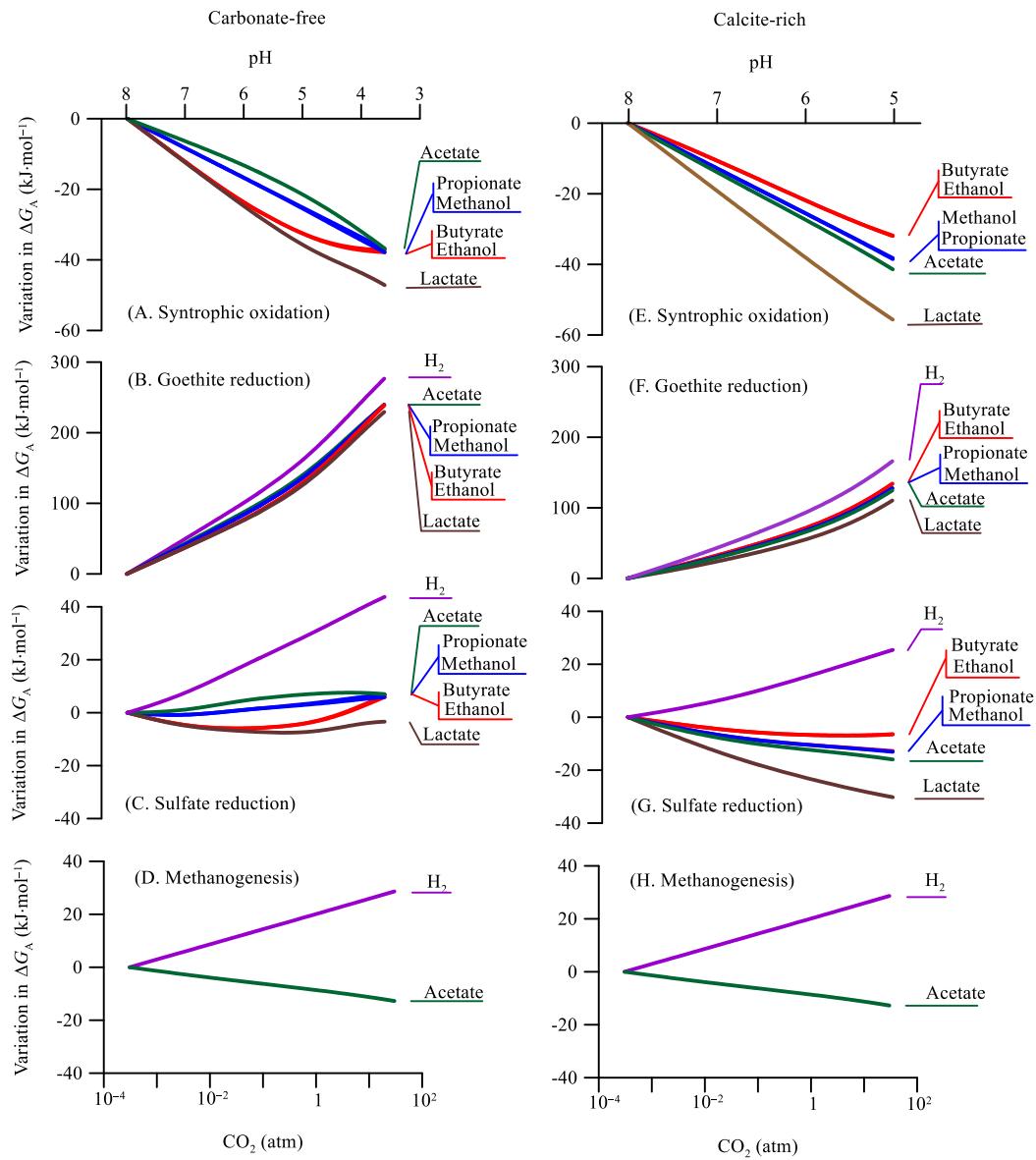


Fig. 6

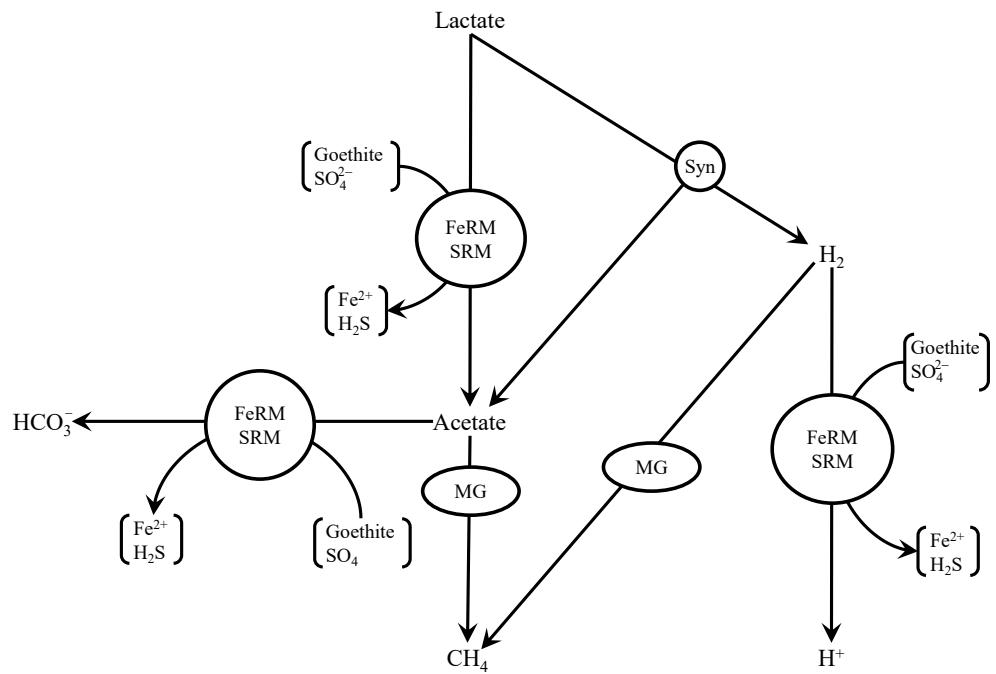


Fig. 7

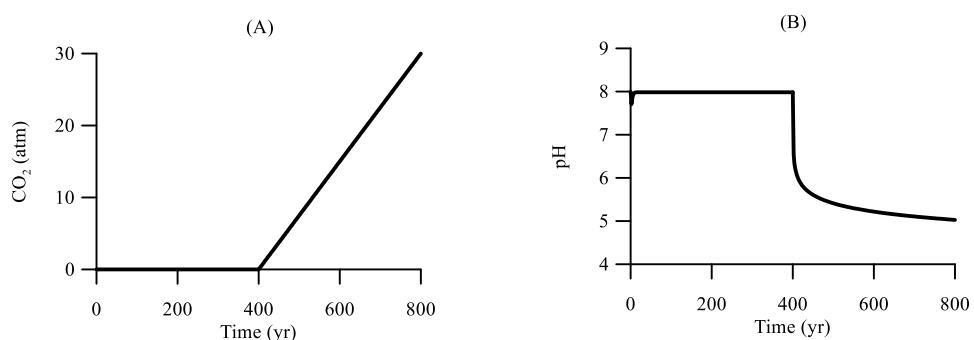


Fig. 8

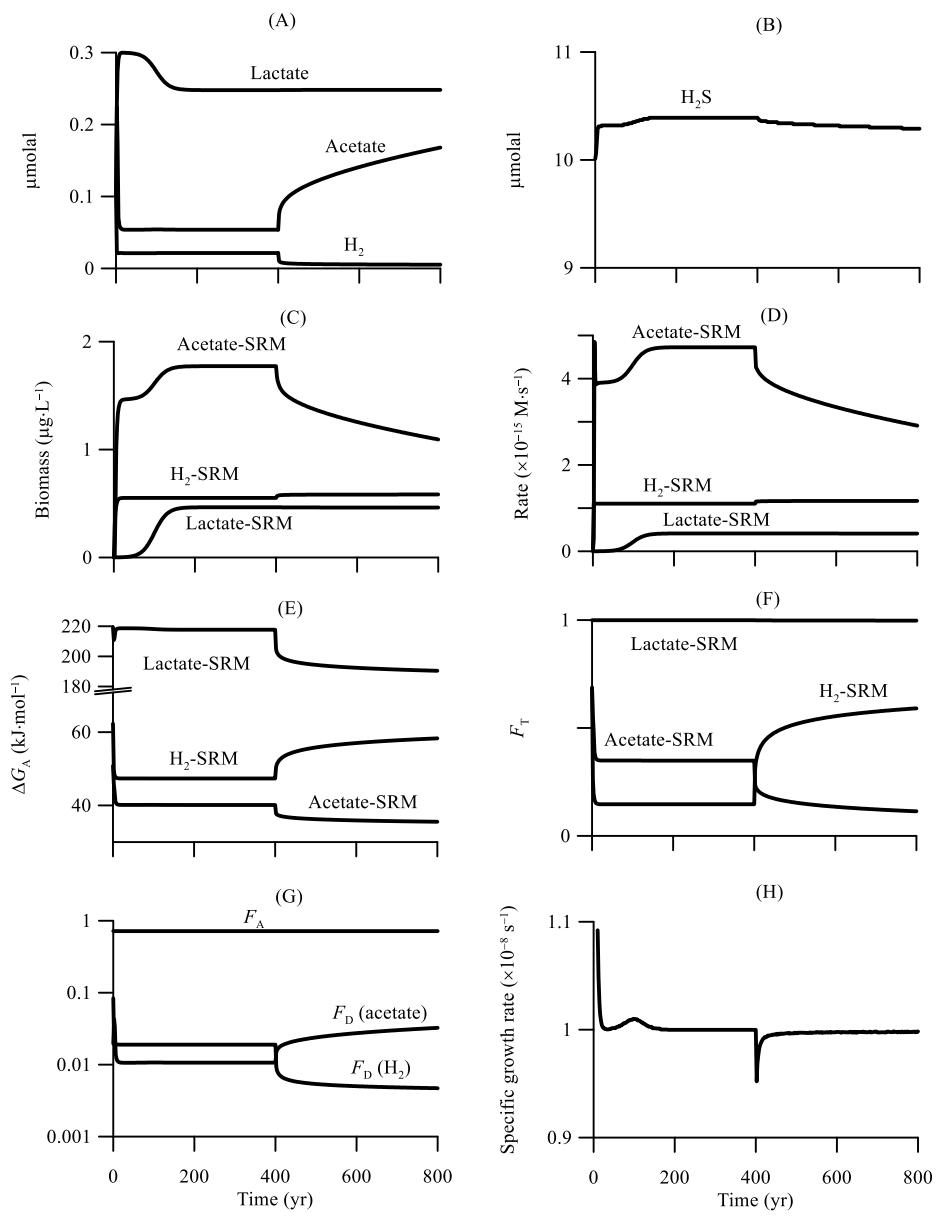


Fig. 9

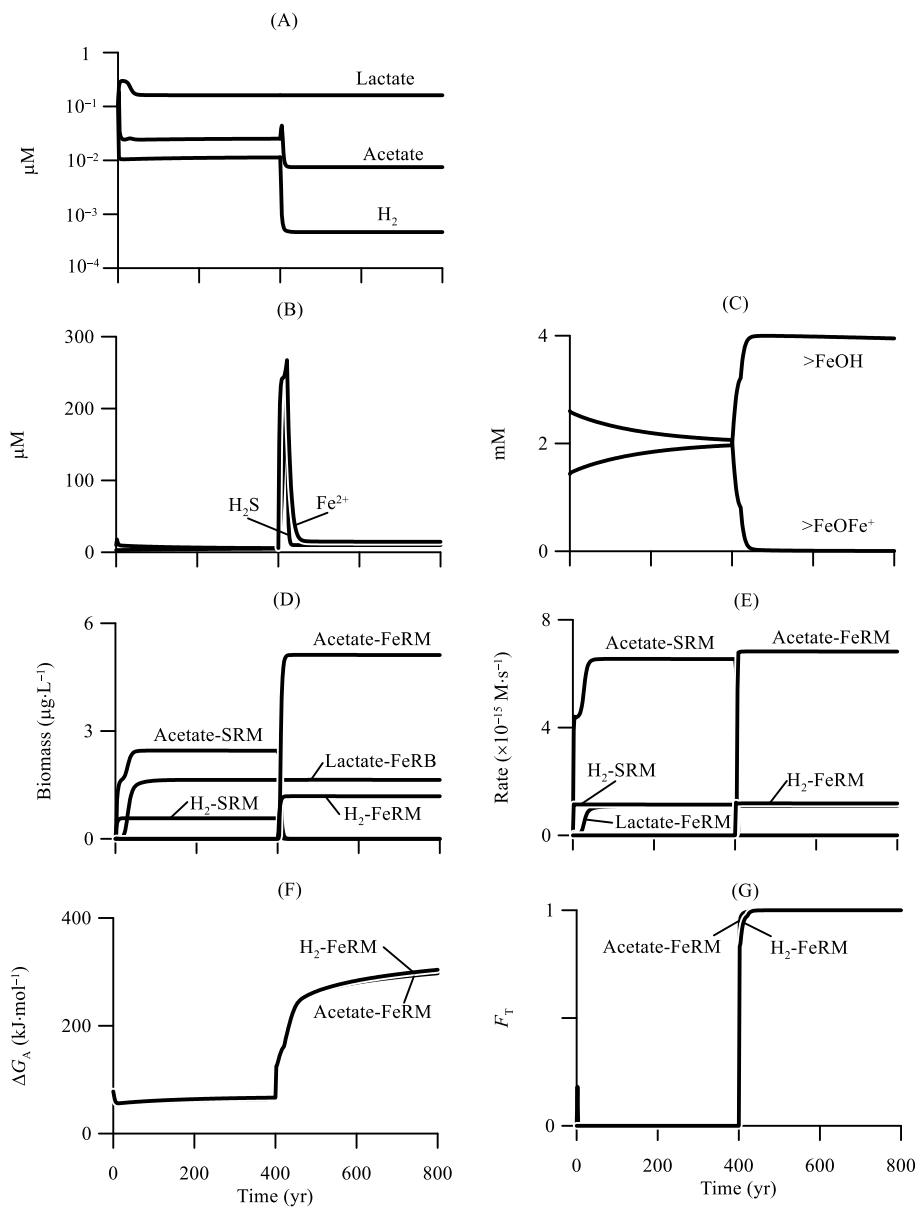


Fig. 10