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ABSTRACT
In the recent past the design of many aquatic robots has been

inspired by the motion of fish. Actuated internal rotors or mov-
ing masses have been frequently used either for propulsion and
or the control of such robots. However the effect of internal pas-
sive degrees of freedom or passive appendages on the motion of
such robots is poorly understood. In this paper we present a min-
imal model that demonstrates the influence of passive degrees of
freedom on an aquatic robot. The model is of a circular cylinder
with a passive internal rotor, immersed in an inviscid fluid inter-
acting with point vortices. We show through numerics that the
motion of the cylinder containing a passive degree of freedom is
significantly different than one without. These results show that
the mechanical feedback via passive degrees of freedom could
be a useful way to control the motion of aquatic robots.

1 INTRODUCTION
Research into aquatic robots has grown significantly in the

past few decades due to their potential uses in applications such
as surveying and exploration, environmental monitoring, search
and rescue, as well as numerous military applications. It is ad-
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vantageous for such robots to have certain characteristics such as
high manuverability, energy efficiency and the capability to har-
vest energy from the currents. This has led researchers to turn
to natural swimmers for inspiration to mimick specific features
of natural swimmers, see for instance [1–4]. One such feature is
the possibility that many fish use passive dynamics of the interac-
tion of the water with the body to both improve their propulsive
efficiency as well maneuverability. In a well known series of ex-
periments, it was demonstrated that a euthanized fish could swim
upstream in a water tunnel, [5]. This propulsion was made pos-
sible due to the wake generated by an obstruction in the water
tunnel, suggesting that fish can swim passively by taking advan-
tage of the vorticity field in the fluid. Even more interestingly,
it has been suggested that the deformations of the body of a fish
or their appendages could partly be the result of fluid-structure
interaction and that such passive mechanics improve the maneu-
verability of the fish, [6].

The passive motion of appendages of segments on the body
of a fish can influence its motion through two means, one of the
which is by modifying the interaction of the body with fluid. Pas-
sive body deformations or the motion of passive segments of a
fish also change the inertia tensor of the body and can thus effect
its motion. The relative importance of these two factors is wor-
thy of investigation. In this paper we present a minimal model
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that incorporates the role of a passive degree of freedom in the

interaction of a rigid body and an inviscid fluid with singular

distributions of vorticity. The model consists of a rigid cylinder

with a passive rotor that is entirely internal to the cylinder. The

momentum that is absorbed by the passive rotor modulates the

motion of the rigid body. We derive the equations of motion that

describe the dynamics of the cylinder-fluid-passive rotor system

using Lagrange-D’Alembert method. We show that the motion

of a cylinder with a passive rotor is significantly different from

one without and discuss ways in which this could be taken ad-

vantage of to improve the maneuverability of aquatic robots.

2 Problem setup
Consider a circular cylinder of radius, rc, mass mc immersed

in an inviscid fluid. We will assume that the fluid domain is

R
2 −B, where B denotes the region occupied by the cylinder.

A passive rotor of mass mr and centroidal moment of inertia Ir is

attached to the center of the circular cylinder. The distance of the

center of mass of the rotor from the cylinder’s center is denoted

by L. The rotor is contained entirely within the cylinder and

does not directly interact with the fluid. The combined mass of

the cylinder and the rotor is such that mc +mr = ρπr2
c . Without

loss of generality we will assume that the fluid is of unit density

and the cylinder is of unit radius. While the fluid is inviscid, it

is assumed to contain N singular distributions of vorticity, the

so called point vortices. While the formulation we derive in this

paper is valid for the interaction of a circular cylinder with many

point vortices, we will focus in our computations on the specific

case of a single point vortex.

Two reference frames, shown in 1, are useful for the analysis

of the dynamics of the cylinder. The first is an inertial frame of

reference fixed at (0,0). The second is a body fixed frame of ref-

erence, Xb −Yb, that is attached to the center of the cylinder. The

body frame moves and rotates with the cylinder. The location of

the center of the cylinder with the respect to the inertial frame is

b = (xc,yc). The locations of the point vortices in the body fixed

frame are lα = (xα ,yα) where α = 1, ...,N. The circulations of

each of the point vortices are denoted by Γα respectively. Posi-

tion vectors, l in the body fixed frame are transformed to position

vectors in the inertial frame, r by the equation

r = b+Rl (1)

where R∈ SO2 gives the orientation of the body fixed frame with

respect to the inertial frame. The velocity of the cylinder in the

inertial frame, U = (ẋc, ẏc) is related to its velocity in the body

frame through the equation

U = RV (2)

X

Y

XbYb

θ
(xc,yc)

l

b

FIGURE 1: A schematic of the cylinder with an internal passive

rotor (shown in red) interacting with a single point vortex (shown

in blue). the body frame is Xb −Yb and the fixed inertial frame is

X −Y .

We verified that the results shown in fig. 2 are the same

either through the use of the method of the conservation of linear

and angular impulse or the Lagrange-D’Alembert approach. To

verify this the initial position of the cylinder and the point vortex

and the initial velocity of the cylinder are chosen such that the

initial impulse of the entire system to P = 0. The impulse due to

the point vortex at t = 0 is obtained from (15), RPv(0) = Γ(2−
1
2 ) ĵ. The initial velocity of the cylinder is therefore chosen to be

U(0) =
RPv(0)

(mc +ma)
. (3)

The initial angular impulse is chosen to zero as well. Therefore

the initial angular velocity of the cylinder is

Ω(0) =
1

2Ic
Γ||lα ||2. (4)
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2.1 Velocity of the fluid
The velocity field of the fluid is denoted by u= (ux,uy). The

boundary conditions for the fluid flow are that there be no nor-
mal velocity relative to the cylinder on its surface, (u−U).n = 0
where n is the unit normal vector at any point on the surface of
the cylinder. The velocity of the fluid is a linear superposition
of two components, one due to the motion of the cylinder, ub
and the other due to the presence of the point vortices, uV . Each
of these components will satisfy the boundary conditions sepa-
rately. The first component is ub(x,y) = −∇Φb where Φb is the
Kirchoff’s potential function,

Φb =Vxr2
c

x− xc

(x− xc)2 + y2 +Vyr2
c

y− yc

(x− xc)2 +(y− yc)2 (5)

where (Vx,Vy) is the velocity of the cylinder in the body frame.
The velocity field −∇Φb satisfies the required boundary condi-
tions. To satisfy the boundary conditions due to the presence of
a point vortex, the Milne-Thomson circle theorem is used, [7].
Accordingly, for a point vortex at lα an image point vortex of
circulation Γα+N = Γα is placed inside the circular cylinder at
the location lα+N = r2

c
lα
|lα |2

. The velocity field of the fluid at any
point that does not coincide with a point vortex is obtained by
superposition,

uV (r) =
N

∑
α=1

Γα

(
r− rα

||r− rα ||2
− r− rα+N

||r− rα+N ||2

)
× k̂. (6)

The total velocity field at any point r is given by Hodge decom-
position,

u(r) = ub + rV (7)

The velocity of a point vortex is the velocity of a hypotheti-
cal fluid particle at the same location less the self induced veloc-
ity of the point vortex, i.e.

ṙα = uV −Γα

r− rα

||r− rα ||
× k̂. (8)

2.2 Lagrange-D’Alembert equations
The equations of motion of the cylinder and that of the

motion of the point vortex are calculated using the Lagrange
D’Alembert approach. The fluid exerts a net force, (Fx,Fy) and a

moment, τ on the cylinder. The cylinder’s motion exerts a force
(Fx,Fy) and a moment, τ on the fluid. These forces and moment
on the fluid can be found by calculating the rate at which the lin-
ear and angular momentum of the fluid change. Technically the
linear and angular momentum of the fluid are unbounded, but we
are interested in the non singular component of these momenta,
called the linear and angular impulse, [8]. The calculations of the
linear and angular impulse of the fluid can be found in a num-
ber of recent papers, notably, [9–11] and the reader is referred
to these for details. The dynamics of the cylinder are governed
by the Lagrange D’Alembert equations where the external forces
acting on the cylinder are (−Fx,−Fy) and the external moment
is, −τ .

The configuration space of the cylinder and rotor is
parametrized by the variables, (xc,yc), the angle θ that the cylin-
der’s body frame makes with the inertial frame and the angle φ

made by the rotor with the inertial frame. The Lagrangian for the
cylinder-rotor system is

L =
1
2

mc(ẋ2 + ẏ2)+
1
2

Icθ̇
2 +

1
2

mrv2
r +

1
2

Irφ̇
2 (9)

where vr =(ẋc−Lφ̇ sinφ)î+(ẏ+Lφ̇ cosφ) ĵ is the velocity of the
center of mass of the rotor. The Lagrange D’Alembert equations
are

mẍc−mrLφ̈ sinφ −mrLφ̇
2 cosφ =−Fx

(10)

mÿc +mrLφ̈ cosφ −mrLφ̇
2 sinφ =−Fy

(11)

Icθ̈ =−τ

(12)

Ircφ̈ +mrLφ̇(ẏsinφ − ẋcosφ)−mrL(ẍsinφ + ÿcosφ) = 0
(13)

where Irc = Ir +mrL2 is the moment of inertia of the passive rod
about the center of the cylinder.

The rate at which the momentum of the fluid, P f in the do-
main AR = R2−B changes is

F =
d
dt

P f =
d
dt

∫
AR

(∇Φb +uV )dA =
d
dt

R(MaV+Pv) . (14)

The first term on the right hand side of (14) is the change in mo-
mentum of the fluid due to the rigid body motion of the cylinder.
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This is equivalent to increasing the inertia of the cylinder by Ma
the added mass tensor. For a circular cylinder immersed in a
fluid of unit density this is just Ma = 0.5πr2

c . The term Pv is the
non singular component of the momentum of the fluid due to the
vortices in the body fixed frame,

Pv =
N

∑
α=1

Γα(lα − lα+N). (15)

The force F is

F = R
(

dV
dt

+
dPv

dt

)
+RΩ× (MaV+Pv) (16)

The moment exerted by the fluid on the cylinder is obtained
by differentiating the angular momentum of the fluid about the
cylinder’s center,

−τ =
d
dt

∫
AR

l× (∇Φb +uV )dA =
d
dt

(
−1

2
Γα ||lα ||2

)
. (17)

If the cylinder did not contain a passive rotor, the equations
of motion of such a cylinder could be obtained by setting mr = 0
and Ir = 0 in equations (10)-(13). Alternatively it should be rec-
ognized that the linear impulse of the cylinder and the fluid to-
gether would be conserved, [9] and that the angular impulse of
the fluid-cylinder system about the origin of the inertial frame
would be conserved. Knowing the initial linear and angular im-
pulse of the system together with (8) gives 2N + 3 equations in
2N +3 unknowns. The velocity of the cylinder and the velocity
of the point vortices can thus be computed. Such an approach
to model the dynamics of circular cylinders and Joukowski foils
can be found in [9, 12–14] and extensions to swimming in three
dimensions in [15, 16].

When the cylinder contains a passive rotor, the combined
linear impulse of the cylinder, the rotor and the fluid would still
be conserved. Similarly the angular impulse of the combined
system about the origin of the inertial frame would be conserved.
With the additional degree of freedom that the passive rotor rep-
resents, the number of unknowns is now 2N+4 while the number
of equations that can be obtained from the conservation laws is
still 2N + 3. The increase in the number of degrees of freedom
necessitates the Lagrange-D’Alembert formulation of the equa-
tions of motion that we adopt in this paper.

3 SIMULATION RESULTS
To identify the effect of the passive rotor on the motion of

the cylinder, we first discuss simulations of the motion of a cylin-
der without a passive rotor. We restrict our attention to the case
where the number of vortices present is N = 1. Figure 2(a) shows
the trajectory of the center of the cylinder (red graph) and the
trajectory of a point vortex (blue graph) of circulation Γ = 1.
The cylinder’s initial position is at (xc,yc) = (0,0) and the initial
position of the vortex is at rα = (2,0) in the inertial frame of
reference.
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FIGURE 2: Dynamics of a cylinder and a point vortex - (a) Tra-
jectory of the center of the cylinder (red) and of the point vortex
(blue). (b) Trajectory of the point vortex in the body frame of
reference. (c)-(d) Velocity of the center of the cylinder, Ux (c)
and Uy (d).

We verified that the results shown in fig. 2 are the same
either through the use of the method of the conservation of linear
and angular impulse or the Lagrange-D’Alembert approach. To
verify this the initial position of the cylinder and the point vortex
and the initial velocity of the cylinder are chosen such that the
initial impulse of the entire system to P = 0. The impulse due to
the point vortex at t = 0 is obtained from (15), RPv(0) = Γ(2−
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1
2 ) ĵ. The initial velocity of the cylinder is therefore chosen to be

U(0) =
RPv(0)

(mc +ma)
. (18)

The initial angular impulse is chosen to zero as well. Therefore
the initial angular velocity of the cylinder is

Ω(0) =
1

2Ic
Γ||lα ||2. (19)

Figure 2(a) shows that the cylinder moves along a circular
trajectory with point vortex orbiting around it. Figure 2(b) shows
the trajectory of the point vortex in the body fixed frame of refer-
ence. This trajectory is a circle, which implies that the distance
of the point vortex from the center of the cylinder remains the
same. It can in fact be shown that the ||lα ||2 is an invariant of
the system, [11]. It follows from (19) that the angular velocity of
the cylinder remains constant. The velocity of the cylinder has a
constant magnitude, with its individual components, Ux and Uy
being periodic, as shown in 2(c) and 2(d).

In the case of the cylinder with the passive rotor, we once
again choose rc(0) = (0,0), r1 = (2,0) and set φ = 0 and
φ̇ = 0. The initial velocity and angular velocity of the cylin-
der are chosen to be the same values as given by (18) and
(19). The velocity of the center of mass of the rotor is given
by ur = U+ Lφ̇ k̂× (cosφ î+ sinφ ĵ). At the initial time, since
φ̇ = 0, the velocity of the center of the rotor is the same as that
of the center of the cylinder. With these initial conditions, both
the linear and angular impulse of the system are zero. We choose
mr
mc

= 0.1
0.9 , i.e. the rotor is light compared to the cylinder. The sum

of the masses of the rotor and the cylinder is chosen such that the
over all body is neutrally buoyant.

The trajectory of the center of the cylinder over a period of
t = 1000 is shown in 3(a). The trajectory is no longer a circle, but
instead is aperiodic. Similarly the trajectory of the point vortex
in the body fixed frame departs from being a circle. Instead as
shown in 3(b) it fills up a circular annulus. The trajectory of
the point vortex and the cylinder are nevertheless bounded in the
plane. The space filling trajectory of the point vortex suggests
that its motion and that of the cylinder are at least quasi periodic.

The velocity of the center of the cylinder is shown in the
two panels in 3(c), Ux in top panel and Uy in bottom panel. The
angular velocity of the cylinder is shown in the top panel of 3(d)
while the angular velocity of the internal rotor is shown in the
bottom panel of 3(d).
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FIGURE 3: Dynamics of a cylinder with a passive rotor and a
point vortex - (a) Trajectory of the center of the cylinder. (b)
Trajectory of the point vortex in the body frame of reference. (c)
Velocity of the center of the cylinder, Ux (top panel) and Uy (bot-
tom panel). (d) Angular velocity of the cylinder, Ω (top panel)
and angular velocity of the passive rotor, ω (bottom panel).

4 CONCLUSION
We showed through numerical simulations that even a ‘light’

passive rotor can significantly modify the motion of a circular
cylinder moving in an inviscid fluid interacting with a single
point vortex. The presence of the passive rotor changes the tra-
jectory of the cylinder from a circle to a complicated irregular
trajectory. The passive rotor does not significantly decrease the
speed of the cylinder, as the graphs of the velocity of the cylin-
der in 2 and 3 show. The passive rotor influences the motion of
the cylinder by changing the center of mass of the cylinder and
hence its linear and angular momentum. The irregular trajecto-
ries of the cylinder and the point vortex can also be attributed
to the loss of integrability. The system of the cylinder without a
passive rotor and a point vortex is in integrable system, [9–11]
with four constants of motion, the two components of the linear
impulse, the angular impulse and the invariant ||l1||2. The last
invariant can be shown to be due to existence of a Hamiltonian
function. For the system of the cylinder with the passive rotor,
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the distance of the vortex from the center of the cylinder is no
longer constant. While it is likely that a non canonical Hamil-
tonian exists for this system, the number of degrees of freedom
for the system has increased by one due to the presence of the ro-
tor. This leads to a loss of integrability and the resulting irregular
trajectories.

A cylinder without a passive rotor is confined to a simple or-
bit and will need some form of actuation to change its trajectory
to sample even a nearby region that does not lie on its circular
orbit. The irregular trajectory of the cylinder with a passive rotor
allows it to sample a larger region. The minimal model in this
paper suggests that combinations of passive and active internal
rotors or moving masses can be a viable means of propelling and
maneuvering a swimming robot. Here it is useful to point out
that it is possible for fish like robot to swims solely due to the
actuation provided by a balanced internal rotor, [4, 12–14]. A
minimally actuated robot that contains a passive rotor could take
advantage of such passive dynamics to move easily from one re-
gion in the fluid to another.
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