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ABSTRACT

There are many types of systems in both nature and technol-
0gy that exhibit limit cycles under periodic forcing. Sometimes,
especially in swimming robots, such forcing is used to propel a
body forward in a plane. Due to the complexity in studying a
fluid system it is often useful to investigate the dynamics of an
analogous land model. Such analysis can then be useful in gain-
ing insight about and controlling the original fluid system. In this
paper we investigate the behavior of the Chaplygin sleigh under
the effect of viscous dissipation and sinusoidal forcing. This is
shown to behave in a similar manner as certain robotic fish mod-
els. We then apply limit cycle analysis techniques to predict the
behavior and control the net translational velocity of the sleigh
in a horizontal plane.

1 INTRODUCTION

The Chaplygin sleigh is a canonical system in the study
of nonholonomic mechanics [1], [2]. There are multiple works
which discuss control of the sleigh by various means such as a
sliding mass or an internal rotor [3], [4], [S]. However a dis-
advantage of the classical Chaplygin sleigh is that the energy
can only increase so full control over velocity is not possible.
In [6], [7], Coulomb friction was considered as a means of energy
dissipation. However this was accomplished through stick-slip
motion. The sleigh was found to exhibit piecewise-smooth dy-
namics which is not ideal for finding a useful means of control. In
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this work we consider a variant of the Chaplygin sleigh in which
we take into account viscous friction. Velocity based dissipation
can be incorporated into a model with the use of Rayleigh dissi-
pation functions and allows one to look for an efficient means of
velocity and heading control.

The introduction of viscous friction is motivated by simi-
larity between the Chaplygin sleigh and the hydrodynamic foil.
In recent work [8], [9], interaction between the foil and the fluid
through vortex shedding has been shown to be an affine nonholo-
nomic constraint. Moreover, this constraint has a formal similar-
ity to that of the constraint on the Chaplygin sleigh. In this work
we show with simulations that the sleigh with viscous dissipa-
tion and periodic input from an internal rotor emulates the be-
havior of the foil under similar forcing [10]. Sinusoidal forcing
causes the sleigh to propel itself forward with average velocity
approaching a constant value. The sleigh being a comparatively
simple mechanical system allows us to apply known analytical
techniques to study the dynamics and find an efficient means of
control. From this analysis we then get intuition similar on non-
holonomic systems like the foil.

The proposed Chaplygin sleigh system is nonlinear, time-
varying, underactuated, and contains drift terms. However due
to the consistent limit cycle behavior of the sleigh, we are able
to apply the harmonic balance method [11], [12] to predict its
asymptotic behavior. With a slight modification to this method
it becomes possible to control the average translational velocity
of the sleigh by choosing the amplitude of the input signal. Our
work can be applied to similar systems that exhibit periodic be-
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havior to produce some net motion.

2 Equations of Motion

A diagram of the sleigh system with all relevant kinematic
variables may be found in Fig. 1 (a). The sleigh has mass m
and moment of inertial /. Point P represents the sharp knife edge
at which the sleigh is not allowed to slip in the transverse direc-
tion. The axes X, and ¥}, are body fixed where Xj, is aligned with
the line between P and the center of gravity. The position of the
center of the sleigh is denoted by (x,y) and the orientation of the
sleigh is 6. The distance between P and the center of gravity is b.
The sleigh carries a balanced rotor (/,), whose center coincides
with the center of mass of the sleigh. The relative angle that the
rotor makes with the body axes is denoted by ¢. The config-
uration space for the system may be written as Q = SE2 x S'.
The equations of motion are derived herein using the Lagrange
multiplier method. The configuration space of the system is pa-
rameterized by the variables ¢ = (x,y,0,0) and ¢ = (x,y,8,¢).
Since there are no potential forces, the Lagrangian turns out to
be the kinetic energy (1).

L= %m(x2+y'2)+%192+%1,(9+¢)2 (1)

FIGURE 1. CHAPLYGIN SLEIGH WITH A BALANCED ROTOR.
THE ROTOR IS PLACED AT DISTANCE OF » FROM THE REAR
CONTACT.

The system is subject to the following nonholonomic con-
straint (2), which ensures that the transverse velocity ( along the
Y, direction) of the point of contact P be equal to zero,

—xsin® +ycos@ —bO =0 2)
with Pfaffian one form being
—sinOdx+cos8dy —bdO = 0.

We further assume the presence of viscous dissipation at
the rear wheel. This can be accounted for using the following
Rayleigh dissipation function

R, = %c(iccos(e) +ysin(0)).

The Euler-Lagrange equations are of the following form

d (0L <
< ) =CA + Qy, 3)

dt \ dgc)  daqx

where A is the Lagrange multiplier, Cy is the coefficient corre-
sponding to one forms dg; and Q,, = —% is the dissipation
force due to dissipation at the wheel. The dissipation forces are
calculated as

0y = —c(kcos®(0) +ysin(6)cos(8))
0y = —c(ysin*(0) +isin(8) cos(8))
Qw=0.

With this formulation the following Euler-Lagrange equa-
tions are readily obtained to be

mi = —Asin(0) + Oy
my = A cos(0)+Q,
mé = —bA *Ir(ﬁ +Qp.

In order to eliminate the constraint force and obtain the re-
duced equations of motion, the velocities of the center of the cart
can be written in terms of the velocity of the point P and the
angular velocity of the sleigh, ® = 6.
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X=ucos® — wbsinO (@Y)
y=usin@ + wbcos O o)

X=11,c080 —u,sin 6 — ®*bcos O — @bsin O

V=11, 8in 0 4+ u,wcos 6 — ®*bsin 6 + @b cos O

Using the above expressions, the equations of motion can be
reduced to

0= b® — Ey (6)
m
_ —mbu® — 1o
I+ 1+mb? )
0 =o. 8)

In the absence of any actuation from the rotor, ie. ¢,
the system has one globally asymptotically stable fixed point at
(u,w) = (0,0). It was found through simulation that sinusoidal
inputs produce net forward motion in the sleigh. Furthermore,
this motion reaches a ‘steady state’ with the numerical simula-
tion indicating that a limit cycle is born in the (u,®,0) space.
We describe this behavior in detail in section 3.

3 Limit Cycle Behavior of the Chaplygin Sleigh

The input to the dynamical system (6)-(8) is ¢ or equiva-
lently the torque exerted by the rotor on the sleigh, —I,¢. Figure
2 shows the results of a simulation of (6)-(8) under input of the
form

—I,¢ = Asin(Qr) 9)

In Fig. 2 (a) we see that sinusoidal forcing causes the sleigh
to perform a snake-like motion in some fixed direction 6.. We
also see from Fig. 2 (b), (c), and (d) that there appears to be a
stable limit cycle in (4, @) as well as in (4, @, 0). This becomes
clear when we plot the trajectory in the (¢, ®) plane.

In Fig. 3 we see that, indeed « and @ appear to be converging
to a stable limit cycle that looks like a figure 8 in (u, ®) space.
The figure 8 shape can be explained by the fact that the frequency
of oscillations in u is double the frequency of oscillations in .
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FIGURE 2. SIMULATION OF CHAPLYGIN SLEIGH WITH
(1(0),®(0)) = (0,0). THE INPUT IS IN FORM (9) WITH A = 2 AND
Q=1.

1.5

FIGURE 3. TRAJECTORY OF CHAPLYGIN SLEIGH WITH
(u(0),®(0)) = (0,0) (DASHED LINE) AND PREDICTED LIMIT CY-
CLE FROM HARMONIC BALANCE METHOD (SOLID LINE). THE
INPUT IS IN FORM (9) WITHA =2 AND Q = 1.

From Fig. 2 (a) it is clear that sinusoidal forcing can cause the
sleigh to exhibit useful motion. Furthermore, it appears that on
average the sleigh is translating along 6, with some fixed average
velocity vy.;. Let us denote the period of the limit cycle by T. We
define vy, as follows. Let (x(1),y(¢1)) be a point on the limit
cycle, then v, can be expressed as
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Vier = %\/(x(n +T) = x(11))? + (1 +T) = y(11))>. (10)

The variable v, is the average translational velocity of the
center of the sleigh. It can be seen equivalently as the transla-
tion of the sleigh over one limit cycle divided by the time period.
The average velocity v, is the velocity which would actually be
useful in developing motion planning for the sleigh. The instan-
taneous velocity of the center only tells us how quickly the sleigh
is moving along its path whereas v,,; gives the net velocity in the
(x,y) plane. Since v, is defined in terms of the time period of
the limit cycle, it must be constant on the limit cycle.

In this paper we address the problem of controlling v, by
choosing A. First we employ the harmonic balance technique to
show that given A the limit cycle can be accurately predicted.
Then we take A to be an unknown and apply averaging to reduce
the problem of controlling v, to solving a nonlinear system of
equations. We then employ the Newton-Raphson algorithm to
solve the system and obtain A. Finally, we check the accuracy of
our prediction with simulations.

4 Limit Cycle Prediction Using Harmonic Balance

Method

The harmonic balance technique assumes the outputs of a
system to be sinusoidal and attempts to use the equations of mo-
tion to predict the limiting trajectory. From simulations we see
that the assumption of a sinusoidal solution is not unreasonable.
We can also use the fact that u appears to be on frequency 2Q
and assume solutions of the form

u=u,+A,sin(2Qt) + B, cos(2Q1) (11)
® = A, sin(Qt) + B, cos(Q). (12)

In order for this solution to exist it must satisfy (6)-(7). Sub-
stituting (11) and (12) into (6)-(7) and simplifying the expres-
sions we obtain

it = A2 bm + B2 bm — 2cu, + (2A,,B,,b — 2A,c) sin(2Qx)
+ (—A2bm + B2 bm — 2B,.c) cos(2Qx)...
(—A,B,,bm+A,,B,bm — 2A,,bmu, + 2A)

o= S S sin(Qr)
(—-A4A,,bm — B,B,,bm — 2B,,bmu,)
+ S cos(Qr)...

The higher harmonics are neglected. From simply differen-
tiating (11) and (12), we get

= —2QB,sin(2Q¢) + 2QA, cos(2Qt)
® = —QB,, sin(Qr) + QA,, cos(Qr).

To determine u. and the coefficients A,, B,, A,, and B,, we
simply equate the coefficients of the above two systems. At this
point we define o = mb* +1+1, to avoid long expressions. This
yields the following system of nonlinear equations

0= Afvbm + Bgvbm —2cu,
—4mQB,, = 2A,,B,,b — 2A,c
4mQA, = —A2bm + B2 bm — 2B,c
—20QB,, = —AyuB,,bm + A,,B,bm — 2A,,b*c — 2A,,bmu, + 2A
2aQA,, = —A,A,bm — B,B,,bm — 2B,,b*c — 2B,,bmu,. (13)

The equations are highly coupled, so an algebraic solu-
tion is difficult to find. We employ the Newton-Raphson to
solve the equations numerically. In general it is not possible to
guarantee a solution using this method, however it was found
to be consistent for this problem. By chosing the parameters
and the input to be the same as for Fig. 3 we can solve (13)
and verify whether the expected limit cycle matches closely
with the simulated trajectory. Performing the calculation yields
(ue,Ay, By, Ay, Byy) = (0.6341,0.1103,0.1071,0.2069, —0.7689)
after 4 iterations. Since we do not have any information about
the phase difference in solutions, we may define C, = /A2 + B2
and C,, = \/AZ + B2, the net amplitudes of the signals. This al-
lows us to define the error between the solution and the actual
trajectory as

e=\Jlue—u)? + (G- G2+ (Cu— G (14)

where superscript * denotes the amplitude and center values ob-
tained from the simulations. The error was found to be e =
8.6e — 3. We see that there is close agreement between the sim-
ulations and the values obtained from harmonic balance method.
In Fig. 3 we can see further agreement between the analytical
solution of the limit cycle and one obtained through direct nu-
merics. The dotted graph shows a trajectory with generic initial
values of (u, ) converging to the analytically predicted limit cy-
cle (solid line).
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5 Feedforward velocity control of the sleigh

The harmonic balance method has proven successful in pre-
dicting the limit cycle trajectory of the dissipative Chaplygin
sleigh. However, in order for this technique to be useful for
control, it would be beneficial to have the ability to prescribe
a desired motion for the sleigh and obtain the input required to
produce that behavior. The asymptotic angle 6, is due to the tran-
sient phase of the motion and it is not predicted by the Harmonic
balance approach. However special cases can treated and in this
paper we develop a technique for controlling v;;;.

5.1 Derivation of v,., and control approach

Equations (6) and (7) are independent of 6, so the eventual
value of the heading does not influence the average speed of the
sleigh. Therefore in calculating v,,; we may set 8, = 0. This
simplifies v, to

1
Vet = ?(x(tl +T)—x(t1)). (15)
This is equivalent to the averaging problem
1 t+T 4 16
Vnet T /t1 X (16)

which can then be put in terms of u and ® using (4)

1 tH+T
Viet = ?/ ucos 0 — wbsin Odt.

I

Since vy, is defined for any #; we may chose #; = 0. We also
split up the above integral using the distributive property

1 /T 1 /T
Viet = —/ ucos 0dt — —/ wbsin 0dt. 17
T Jo T Jo

Recall that @ = . Using this and % = 6 the second integral
of (17) simplifies to

6(T)
_;)"/9(0)T sin0do = ;(COS(O(T))—COS(Q(O)),

Now we may use the fact that v, is defined on the limit cycle
again and the result we obtained using harmonic balance method

to assume the solutions for u# and @ defined by (11)-(12) must
hold. Furthermore we can obtain 0(¢) by integrating @

0(t,Aw,By) :/a)dt
= /AW sin(Q¢) + B,, cos(Qr)dt

B A
= EW sin(Qt) — EW cos(Q)

Notice that from (17) we now get an expression for v, in terms
of u., Ay, By, A, and B,,.

l T
Vit = 7 / (1,1, A, Ba) cos(8.(1, Av, Byy) di
0

+ ; (cos(G(T,AW,BW))
—cos(6(0,A,,By))). (18)

The integral leftover in (18) cannot be evaluated analytically,
however in our formulation it will not matter since an iterative al-
gorithm can solve the integral numerically during each iteration.
By now taking A to be an unknown (18) together with (13) form
a system of 6 equations and 6 unknowns (u,A,,By,A,By,A).
Solving this system for some desired v, and finding the A re-
quired will allow us to control the velocity of the sleigh. In order
to attempt to solve the system we once again employ the Newton-
Raphson algorithm.

5.2 Feedforward control of the Chaplygin sleigh

Suppose we want the sleigh to be on a limit
cycle such that v, = 0.2. Solving system (18),
(13)  yields the  solution  (u.,A,,By,Aw,By,A) =
(0.2106,0.0466,0.0208, —0.0400,0.4571,—1.1403)  after 9
iterations. This means that we must chose A = —1.1403 to get a
translational speed of v,,.,; = 0.2. A natural definition of the error
in the analytical approximation due to the Harmonic balance
approach is

ey = |[Vner — Vet | (19)

where v}, is the v, found from the simulation using (15). A
simulation of the sleigh under the chosen input is shown in Fig.
4.

The actual net translational velocity was found to be v}, =

0.20049 giving us an error of 4.9¢ —4. A plot of the error against
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FIGURE 4. SIMULATION OF CHAPLYGIN SLEIGH WITH
(4(0),®(0)) = (0,0). THE INPUT IS IN FORM (9) WITH A =
~1.1403 AND Q = 1.

t; can be seen in Fig. 5. It was shown that the proposed approach
can quickly and accurately calculate required input amplitudes to
produce desired motion in the (x,y) plane.
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FIGURE 5. ERROR IN v,, FOR THE CHAPLYGIN SLEIGH
WITH (1(0),w(0)) = (0,0). THE INPUT IS IN FORM (9) WITH
A=—1.1403AND Q = 1.

6 Conclusion and Discussion

The Chaplygin sleigh was found to exhibit a stable limit cy-
cle under the effect of viscous dissipation. We were able to cal-
culate a limit cycle solution with the use of the harmonic balance
method. Furthermore, with a small adjustment to the harmonic
balance method we were able to predict its net translational ve-
locity v, and control it by adjusting the amplitude of the input
signal. The utility of the proposed approach was demonstrated
through simulations and error estimates. Control of heading (6,.)
will be discussed in future work, however preliminary work sug-
gests this can be accomplished with some type of state feedback.

The harmonic balance method is robust to both time variant
and time invariant systems. Our work can be applied other non-
holonomic dynamic systems that are subjected to periodic inputs
and exhibit limit cycle behavior.
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