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Expert commentary: Recently developed microtechnologies offer simple, rapid, and affordable screen-

ing of SCD and have the potential to facilitate universal screening in resource-limited settings and

developing countries. On the other hand, monitoring of SCD is more complicated compared to

diagnosis and requires comprehensive validation of efficacy. Early use of novel microdevices for patient

monitoring might come in especially handy in new clinical trial designs of emerging therapies.

1. Introduction and endothelial cell function. Observed pathophysiologic
changes in SCD include alterations in adhesion amongst sickled
red blood cells (RBCs) and activated white blood cells (WBCs)
and endothelium, and abnormal numbers of circulating
endothelial cells and hematopoietic precursor cells. The clinical
consequences of SCD are anemia, painful crisis, widespread
organ damage, and early mortality [4].

Neonatal diagnosis of SCD is critical for the management of
the disease, since undiagnosed children are especially in great
danger of early mortality due to infections and stroke. Early
diagnosis of SCD still remains a critical challenge in preventing
childhood mortality in resource limited, developing regions of
the world, such as sub-Saharan Africa, due to requirements of
skilled personnel and high cost of instrumentation and testing
associated with conventional approaches. SCD diagnosis can
be generally achieved through protein or molecular tests in
the developed world due to its genetically inherited nature.
However, monitoring of SCD patients presents insurmounta-
ble challenges due to heterogeneities among patients, as well
as in the same individual from time to time, and the multi-
system nature of the disease. Furthermore, neither conven-
tional monitoring techniques nor conventional screening tools

Sickle cell disease (SCD) is a genetically inherited debilitating
illness, caused by a point mutation in the beta-globin gene
that requires early diagnosis after birth and constant monitor-
ing throughout the life span of the patient. Sickle cell anemia
was first clinically described in the United States in 1910 [1],
and the mutated heritable sickle hemoglobin (HbS) molecule
was identified in 1949 [2]. It is estimated that 100,000
Americans and more than 14 million individuals worldwide
[3]1 have SCD, disproportionally in economically disadvantaged
populations. SCD is estimated to cost more than $1 billion per
year in health-care costs in the United States, while the full
economic burden of SCD is likely to be greater considering the
additional contributions of productivity loss, uncompensated
care, reduced quality of life, and premature mortality [4,5].
The underlying mutation of a single amino acid in the beta
chain of HbS belies the complex, highly morbid, and sometimes
life-threatening clinical phenotype of SCD [6,7]. The pathophy-
siology of SCD is a consequence of abnormal polymerization of
HbS and its effects on red cell membrane properties, shape, and
density, and subsequent critical changes in inflammatory cell
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currently available are feasible for operation at the point of
care (POC), impeding easy access to health care, as well as
exacerbating patients’ quality of life.

Micro/Nano platform technologies emerged in the last couple
of decades [8,9], through advancements in fabrication techniques
and versatile materials, offer unique advantages in overcoming
the challenges associated with conventional SCD screening and
monitoring tools. This review article describes prominent plat-
form technologies for SCD screening and monitoring and criti-
cally discusses current state of the art, potential challenges
associated with these technologies, and future directions.

2. Global scope of SCD

Even though the main birthplace of SCD is Africa, its geogra-
phical distribution is now spread worldwide due to migration.
Today, SCD is most prevalent in regions of sub-Saharan Africa,
The Americas, Saudi Arabia, India, and Mediterranean coun-
tries such as Turkey, Greece, Italy, and South East Asia [10,11].
SCD is highly prevalent in malaria endemic regions of the
world [11]. The greatest burden of SCD still lies in Africa,
where the number of newborns affected by SCD is estimated
to be more than 200,000 annually [10,12,13]. In Africa, SCD is
associated with high rate of childhood mortality, 50-90% of
African children with SCD die early in their childhood [11,14].
In other words, approximately 1000 babies are born with SCD
in Africa every day and more than half die before they are
5 years old [14]. The sickle cell carrier frequency across equa-
torial Africa is between 10% and 40%, which results in an SCD
prevalence of at least 2% [11]. In some parts of Western and
Central Africa, the prevalence of sickle cell trait is as high as
25%. SCD also has a high prevalence in central and western
regions of India, where approximately 20% of children born
with SCD die before the age of 2 [15]. Estimated number of
people with sickle trait in North America is 2-3 million,
whereas the number is 1-2 million in Brazil [10]. According
to the data available, over 6000 annual births and 100,000-
150,000 adults are affected by SCD in Latin America [16].
According to National Health Service in the United Kingdom,
the number of people affected by SCD is estimated to be
between 12,500 and 15,000, which makes SCD the most com-
mon inherited disease in the United Kingdom [17]. A percen-
tage of 4.2 of the total population in Saudi Arabia is a carrier of
sickle cell trait whereas 0.26% is affected by SCD [18]. In
Jamaica, 10% of the total population carries some sort of
genetic disorder related to SCD [19]. In the United States,
SCD is the most common inherited blood disorder, and most
of the people who suffer from SCD are of African descent.
About 100,000 Americans are affected by SCD; it occurs in
about 1 in 365 African-American births and 1 in every 16,300
Hispanic American births [11]. Sickle cell trait is estimated to
occur in about 1 in 13 African-American births [11].

3. SCD pathophysiology

The pathophysiology of SCD is a consequence of abnormal
deoxygenated HbS polymerization and its deleterious effects
on RBC membrane, shape, density, deformability, and adhe-
sion. The pathophysiology of SCD mainly consists of anemia,

inflammation, hemolysis, vaso-occlusion, and consequent tis-
sue ischemia, pain crisis, and organ damage. Though being
the first discovered molecular disease, SCD has been known to
be highly complex due to its heterogeneous characteristics in
pathophysiology, making it hard to pinpoint the underlining
biological mechanisms. Many facets of SCD pathophysiology
have been investigated, including hemoglobin polymerization
[20-22], cellular deformability [23-28], adhesion [25,29-34],
hemodynamic changes [35,36], and clinical heterogene-
ity [6,7].

The original powerful observation that RBCs show abnor-
mal adhesion to endothelial cells has since been deepened
and expanded to describe a complex pathophysiology in
which abnormal WBC adhesion also plays an important role.
Therefore, along with RBC abnormalities, any approach to
understanding SCD pathophysiology must also take into
account endothelial, WBC, and platelet activation and adhe-
sion, inflammation, and activation of coagulation [37-50].
Together, these heterotypic cellular and blood plasma
abnormalities, arising ultimately from HbS polymerization,
yield a clinical syndrome that is characterized by acute and
chronic pain, cumulative organ damage, and early mortality
[51,52].

3.1. Vaso-occlusion

Abnormal adherence to endothelium, by sickle RBCs and
WBCs, as a possible root cause of vaso-occlusion and pain,
was described in the 1980s, highlighting inflammation and
abnormal cellular adhesion as key features of SCD [48,53-55].
A myriad of interconnecting abnormal interactions can be
envisioned, amongst HbS-containing RBCs, activated WBCs,
and activated endothelial cells in SCD (Figure 1). Key clinical
and experimental studies in SCD literature, performed via flow
chambers or ex vivo rat mesocecum [29,30,54,56], have shown
that RBC adhesion and deformability, WBC adhesion and acti-
vation [57], and endothelial activation contribute to the patho-
genesis of vaso-occlusion [33,56,58,59] and may correlate with
disease severity [34,48,60,61]. Abnormal RBC adhesion to
endothelium has associated with disease activity [34,48] and
has diminished with treatment [34,62], with variable but ele-
vated adhesion at clinical baseline. Associations with clinical
status have shown using FACS analysis of membrane protein
components [63-65]. However, few longitudinal measure-
ments of adhesion at baseline and with therapy have been
performed due to lack of convenient reproducible adhesion
assays [30,34].

Abnormal monocyte, neutrophil, platelet, and endothelial
cell activation and adhesion are present in SCD, and comple-
mentary models of vaso-occlusive crises (VOC) describe initial
reticulocyte and neutrophil adhesion to an activated endothe-
lium and/or subendothelial matrix (Laminin, LN; Fibronectin,
FN; von Willebrand Factor, vWF), followed by dense (irreversi-
bly sickled) red cell trapping and vaso-occlusion [33,66,67].
Further refinements in the model, based on ex vivo and in
vivo experiments, is one in which the endothelium is activated
by cytokines and white cells, primarily monocytes, which are
themselves activated by sickle RBC-derived factors [40,68-70].
These factors combine to increase the adhesiveness of RBCs
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Figure 1. A subset of interactions between cellular and sub-cellular components
in SCD. Abnormal interactions, amongst HbS-containing RBCs, soluble serum
proteins (such as thrombospondin, TSP, and von Willebrand Factor, VWF),
cytokine- and WBC- (CD11b* monocytes) activated endothelial cells (through
integrins, integrin receptors, adhesion molecules, and selectins), subendothelial
matrix components (including TSP, vWF, fibronectin, and laminin), and activated
WBCs (via MAC-1*, LFA-1*, VLA-4" neutrophils), which themselves also directly
adhere to the endothelium. (lllustration credit: Grace Gongaware, Cleveland
Institute of Art.).

and white cells, primarily neutrophils and monocytes, to each
other and to the endothelium and subendothelium, leading to
vaso-occlusion. Soluble bridging factors (Thrombospondin,
TSP; FN; VWF) are also important, although the interactions
are not simply quantified [33,41,46,57,66,69,71-75]. Further,
activated endothelial cells and hematopoietic precursor cells
circulate at an unusually high level in SCD [40,48,76] and
correlate with end-organ damage [77]. Some membrane/cel-
lular interactions have been studied during VOC [48,76,78], or
compellingly demonstrated in animal models [57,79], but
broad clinically correlative studies are absent.

3.2. RBC adhesion and deformability

A healthy biconcave HbA-containing RBC deforms easily and
passes through minuscule vessels and capillaries in the body
[80-82]. Deoxygenated HbS polymerizes inside the red cell [83],
altering its membrane, shape, and density [30,33,48,56,83-85].
These biophysical changes cause reduced deformability,
increased stiffness, and abnormal adhesion of the HbS-contain-
ing RBC (SCD RBC) and may result in blockage of blood vessels
[48,83,85,86] and reduced red cell half-life (hemolysis) [87,88].
Sympathetic tone and ‘stress’ signals, such as epinephrine,
are modulators of SCD RBC adhesion and of abnormal vascular
tone [89-93]. Importantly, intravascular heme arising from
hemolysis impairs endothelial cell function and vascular tone,
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while triggering WBC activation, inflammation, and activation
of coagulation [94-98]. In SCD, RBC membrane abnormalities
include aberrant timing or abnormal persistence during
maturation, and abnormal activation, by ‘stress signals,’ of
surface molecules such as Very Late Antigen-4 (VLA-4),
Cluster of Differentiation 36 (CD36), LW glycoprotein, and
Basal Cell Adhesion Molecule/Lutheran (BCAM/LU) [74,99-
106]. Cumulative oxidative damage, resulting in excessive
phosphatidylserine externalization on the SCD RBC mem-
brane, causes abnormal adhesion [107,108]. Anti-SCD RBC
adhesion therapy has been validated preclinically, and, impor-
tantly, these targets are beginning to reach clinical trial,
including VLA-4 blocking antibodies [109], and beta-adrener-
gic receptor blockade (via a US FDA-approved medication,
propranalol [110]) targeting epinephrine-mediated red cell
adhesion [92,99,106,111,112]. Small molecules (aVR3 integrin)
[113] and low molecular weight heparin (P-selectin) [59,114]
were utilized to target RBC adhesion to an activated endothe-
lium specifically, and an oral agent for this purpose is in phase
I/l studies in humans (P-selectin) [58,115,116].

Studies showed that heme and plasma from SCD patients
induce neutrophil extracellular traps (NETs) in murine models
of SCD [97], resulting in capture of RBCs and platelets [117,118].
It is not known why hemolysis is more active in some patients
[87], nor why hemolysis can exacerbate during severe painful
crises [119-121]. SCD RBC deformability associates with hemoly-
sis and adverse clinical outcomes [122], without definitive caus-
ality [123,124]. Adhesion to the endothelium may prolong delay
time, and increase polymer formation and fragility as the RBC
passes through the vasculature [51]. Furthermore, an association
between hemolysis and increased SCD RBC adhesion to compo-
nents of the endothelium/subendothelial surface has been
shown recently [34].

3.3. WBC adhesion

Elevated numbers of activated WBCs (monocytes [40,69,125,126]
and neutrophils [42,127,128]) in SCD patients have long been
associated with adverse outcomes in SCD, such as stroke and
even early mortality [52,69,98,129-132]. Moreover, increased
rates of endothelial activation and inflammation in SCD induce
abnormal leukocyte recruitment to the vessel wall [57,133]. The
initiation and propagation of vaso-occlusive events subse-
quently takes place due to interactions between sickle RBCs
and adherent leukocytes [39]. Using an SS mouse model and
intra-vital microscopy, Turhan et al. showed that these interac-
tions occurred in postcapillary venules and some of them indeed
caused VOC in vivo [57]. On the other hand, in mice deficient of
both E-selectin and P-selectin, vaso-occlusive events did not
develop upon tumor necrosis factor a (TNF-a) induction [57].
Adherent leukocytes and RBC-leukocyte aggregates also distort
the local microcirculation that increases the RBC transit time.
This phenomenon renders RBCs more susceptible to sickling due
to longer exposure to deoxygenation in the microvasculature
which could lead to mediated RBC-leukocyte interactions [134].

Even though both P- and E-selectin are essential for WBC
adhesion to the endothelium, E-selectin can further trigger
secondary activation signals in the WBC. These signals result
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in polarized activated ayB2 integrin (CD11b/CD18 or Mac-1)
expression at the leading edge of the crawling neutrophil, and
SCD RBC capture [135]. Surprisingly, inhibition of E-selectin
abrogates these effects, whereas inhibition of P-selectin has
only a partial effect, which was tested in vivo in VOC using the
novel synthetic pan-selectin inhibitor (GMI-1070) with maximal
activity against E-selectin [136,137]. Many studies in the litera-
ture suggest that blocking FcyRIll receptor activity on neutro-
phils by intravenous immunoglobulin infusions (IVIG) may
interrupt Mac-1 activation and RBC capture by neutrophils.
NET formation is also inhibited by FcyRIIl blockade.

3.4. Endothelial dysfunction and inflammation

A growing body of evidence suggests that interplay between
vascular dysfunction and high levels of inflammation remark-
ably contribute to the pathophysiology of SCD [40,42,138-
144]. As an endothelial mediator, nitric oxide (NO) has been
shown to correlate with the impaired endothelium functioning
in sickle cell patients [145,146]. Elevated rates of hemolysis in
SCD reduce the bioavailability of NO leading to vasoconstric-
tion and further release of pro-inflammatory cytokines into
plasma, which activates the endothelium [147]. Indeed, it has
been shown that circulating endothelial cells are significantly
increased in sickle cell patients regardless of their clinical
status [76]. Subsequently, through NO-dependent activation
pathways, the adhesion molecules such as VCAM-1, E-selectin,
P-selectin, and ICAM-1 are overexpressed on the endothelial
layer at significantly higher rates contributing to following
vaso-occlusion and painful crises [148,149]. Other than NO,
endothelium activation is also induced by the adhesion of
activated platelets in SCD [150].

Furthermore, SCD can be associated with elevated counts
of leukocytes, activated platelets, and pro-inflammatory cyto-
kines, all of which are indicators of a marked chronic inflam-
matory state [151-154]. Activated monocytes and platelet
monocyte aggregates in sickle cell patients trigger endothelial
inflammatory response through the nuclear factor kB (NF-kB)
pathway [155]. This interaction is mediated by several cyto-
kines produced by monocytes including TNF-a and interleu-
kin-1B (IL-1B) [40]. Moreover, invariant natural killer T cells
(iNKT) in sickle cell patients overexpress chemokines CXCR3
and IFN-y that has been shown to mediate pulmonary inflam-
mation [156,157].

4. SCD screening at the POC
4.1. Ongoing challenges and unmet needs in the clinic

4.1.1. Developed world

POC screening for SCD in the developed world could allow
more cost-effective identification of children at risk. Consistent
and economic screening may improve care in these regions
with less prevalent hemoglobin gene disorders and incom-
plete lab-based support. Even though a well-established uni-
versal screening program for SCD is in place in some resource-
rich countries, such as the United States and United Kingdom,
uniform newborn screening is not in place in many developed

countries due to economic and technical challenges. Recent
studies suggest that universal screening could prevent early
childhood mortality in SCD, since unscreened patients in low-
prevalence regions in developed countries are at greater risk
for life-threatening complications during early childhood
[158-161]. Moreover, prevalence of SCD is steadily increasing
in European countries due to immigration [162-166], requiring
additional health-care support and expanded screening pro-
grams. Screening platforms adapted for mobile phone use in
the developing world could increase patient engagement in
resource-rich settings, by giving patients their own mobile
diagnostic. Finally, a cheaper, more-widely available platform
could increase access for re-screening, as people reach repro-
ductive age, to allow self-identification in those at risk for
transmitting the HbS or HbC genes, i.e. those most at risk for
having children with SCD. While this could not fully evaluate
genetic risk in all patients, e.g. those with beta thalassemia
trait would likely be missed, an accessible, affordable hemo-
globin screen, although imperfect, could screen for those at
greatest risk for transmitting SCD.

4.1.2. Low-resource settings

With its origins in sub-Saharan Africa, the Indian subcontinent,
and the Arabian Peninsula, the sickle $-globin gene has spread
throughout the world. It is estimated that more than three
quarters of those homozygous for the hemoglobin S gene are
born in Africa alone, with half the global burden borne by just
three countries: Nigeria, India, and Democratic Republic of
Congo [161]. In low-income countries, limited resources for diag-
nosis and treatment, aggravated by a dearth of government
strategies to combat SCD, have led to poor patient outcomes.
The World Health Organization (WHO) estimates that more than
half of the children born with SCD in sub-Saharan Africa die
before the age of 5 years [11,164,167]. This calls for the wide-
spread implementation of affordable and evidence-based inter-
ventions that can be integrated into existing health systems to
ensure their sustainability. Evidence from high- as well as low-
income countries has shown that implementation of a range of
interventions, including newborn screening, penicillin prophy-
laxis, pneumococcal vaccination, and parental education, signifi-
cantly reduces morbidity and mortality [168-171]. However, in
low-resource settings, diagnosis of SCD is hampered by the high
cost of currently available laboratory methodologies, posing a
major barrier to implementing life-saving interventions. Further,
limited contact with health-care delivery systems requires that
screening methodologies be timely and generate easily interpre-
table results to enable initiation of interventions at the POC. The
deployment of low-cost, rapid, and accurate POC screening tools
will be transformative in helping break the diagnostic barrier.
These POC solutions lend themselves to integration into already
existing public health programs such as primary immunization, a
critical factor in ensuring sustainability in low-resource settings.
Generation of easy-to-read results that requires only minimal
training for health-care workers and adaptability to delivery via
mobile phone platforms are great assets in employing POC
techniques for widespread screening of SCD within public health
systems with limited resources.



4.2. Conventional techniques for SCD diagnosis

The diagnosis of homozygous HbSS (sickle cell anemia, SCA) and
heterozygous HbSA (sickle cell trait, SCT), HbSC disease, and HbS-
B thalassemias is based on the varying percentages and combi-
nations of HbS, HbA, HbF, HbC, and HbA2 present in RBCs. The
most basic tests used to identify the presence of HbS are the
sickling test and the sickle solubility test [172]. In sickling test,
sodium metabisulfite is used to induce polymerization of HbS
and consequent sickling of RBCs by reducing oxygen tension.
Then, the diluted blood sample is observed under a microscope
to observe the sickled RBCs. Although simple, this test cannot
differentiate between HbSS, HbSA, HbSC, or HbS-B thalassemias.

The solubility test works by making HbS insoluble in a con-
centrated phosphate buffer solution. In this reduced state, HbS
precipitates and forms tactoids that refract light creating a turbid
solution. The result is compared to positive and negative control
blood. An important issue is that these simple screening tests
cannot be performed on newborns because of the predomi-
nance of HbF at birth. It takes several months after birth for
newborns with HbSS (SCA) or HbSA (SCT) to produce significant
amounts of HbS, which can be detected with these tests. If used
at birth, the tests may produce false-negative results, if HbS is less
than 10% of the total hemoglobin.

Additional tests are needed to confirm which form of SCD
the patient has. There are four tests that are commonly used:
hemoglobin electrophoresis, isoelectric focusing (IEF), high-
performance liquid chromatography (HPLC), and DNA analysis
[173,174]. The electrophoresis-based tests work based on the
principle that different Hb types migrate with different velo-
cities when placed in an electric field due to their different net
charges. Following is a brief description of each of the afore-
mentioned techniques.

4.2.1. Bench-top hemoglobin electrophoresis

Hemoglobin electrophoresis is a laboratory method that can be
performed under alkaline or acidic conditions with a variety of
sieving materials such as gel or paper [165]. Under alkaline
conditions, hemoglobin types C, A2, S, F, and A have net negative
charges and migrate toward the positively charged electrode.
Various factors such as charges of the hemoglobin, the pore size
of the medium, and the ionic concentration of the buffer solution
determine how far each hemoglobin type migrates. The separa-
tion of hemoglobin types forms visible bands that can be used to
identify various hemoglobin disorders. Hb electrophoresis is
especially useful for the rapid screening of a small number of
samples, and its results can be quantified using densitometry,
which may suffer from inaccuracies at very low concentrations.
Alkaline Hb electrophoresis displays lower resolution between
HbS and HbF, particularly in neonates who have high HbF levels.
Finally, electrophoresis carried out in a capillary tube is known as
capillary zone electrophoresis [165]. This method allows for the
use of higher voltages and shorter run times, which renders it
especially advantageous for high-throughput screening.

4.2.2. IEF

IEF exploits the fact that the net charge of a protein varies
with the pH of the surrounding medium. Utilizing this varia-
tion, proteins are separated based on their isoelectric points
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(pl), which can be defined as the point at which a protein
possesses zero net charge. The technique uses an applied
electrical field across a gel medium with a fixed pH gradient,
in which each Hb type becomes immobilized once it reaches
its pl. IEF exhibits higher resolution than Hb electrophoresis,
thus it is capable of distinguishing between a larger number of
Hb variants [165,166]. However, due to the larger number of
bands that this higher resolution results in, IEF results are
harder to interpret [164,165]. IEF is also more expensive and,
as in hemoglobin electrophoresis, quantification is achieved
using densitometry which can be inaccurate especially at low
hemoglobin concentrations. Despite these challenges, IEF is
considered to be the standard for newborn screening, since
diagnosis is possible with very small sample volume or even
an eluate from a dried blood spot [164].

4.2.3. HPLC

HPLC separates a fluid into its components based on molecu-
lar size and charge using cation exchange chromatography to
identify the various hemoglobin types in a blood sample.
HPLC utilizes absorbent materials such as granular silica or
other polymers as a sieving medium. A pressure pump drives
the fluid through the material, and a computer detects the
separation. Unique aspects of this test are full automation and
accurate quantification of the hemoglobin levels. These
machines are relatively expensive and are not readily available
in developing countries. In resource-rich countries like the
United States, HPLC has largely replaced Hb electrophoresis
and IEF as a primary screening test. This is because Hb elec-
trophoresis and IEF are labor intensive, time consuming, and
are not designed to quantify Hb levels. The ability to quantify
Hb levels with HPLC makes it useful for monitoring patients
who are on hydroxyurea (HU) or transfusion therapies [175].

4.2.4. DNA analysis

DNA-based assays can be used to detect the mutations in 3
globin that produce abnormal Hb [176]. However, it is gener-
ally more expensive than the previously described methods.
An earlier popular method for the DNA-based assay utilizes
the point mutation on the B-globin gene with restriction
enzyme digestion and polymerase chain reaction (PCR). The
point mutation that causes SCD changes the normal -globin
gene sequence, which removes the restriction site for the
restriction enzyme Ddel. During the restriction enzyme diges-
tion of the 3-globin gene using Ddel, the gene is split into two
fragments if the mutation is not present. However, if the
mutation is present, the gene remains as a single large frag-
ment. PCR is then used to amplify the fragments for identifica-
tion using electrophoresis. Currently, the most robust testing
strategy utilizes direct sequencing of 3-globin combined with
copy number variation analysis of the beta-globin locus.

4.3. Emerging POC technologies for SCD screening

The most recent technological trend for SCD screening
focusses on adapting available diagnostic tools for feasible
operation at the POC, especially in resource-challenged
regions. The emerging technologies have veered toward over-
coming concerns of cost, fabrication complexity, portability, as
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well as the need for highly trained operators associated with
conventional techniques. According to their operating princi-
ples and detection schemes, the emerging techniques in the
past few years can be categorized into four groups: (1) paper-
based hemoglobin solubility assays, (2) lateral flow immunoas-
says, (3) density-based separation, and (4) microengineered
electrophoresis. The work reported in each of these categories
is reviewed in this section and summarized in Table 1.

4.3.1. Paper-based hemoglobin solubility assay

This technique exploits the insolubility of HbS and the filtra-
tion properties of the paper substrate used in microfluidic
paper-based analytical devices as a means to visually detect
the presence of HbS. To perform the test, a drop of blood
(20 pL) mixed with a hemoglobin solubility buffer in a 1:10
ratio is applied onto patterned chromatography paper. The
difference in capillary action transport of polymerized HbS and
other hemoglobin types results in different blood stain pat-
terns (Figure 2(a)). These patterns are used to differentiate
between HbAA, HbAS, and HbSS, and the test process can
be completed within 20 min [177-180]. Initial validation
results of this test in a resource-limited setting showed that
HbS can be visually identified with 94.2% sensitivity and
97.7% specificity [180]. Furthermore, when combined with a
custom image analysis algorithm, the relative color intensity of
the center spot can be used to quantify Hb concentration in
the sample.

This paper-based assay offers the advantages of ease of
use, low cost ($0.77 per test), simple fabrication, and minimal
sample processing as it requires only one step of mixing.
Moreover, it utilizes the natural color of blood for detection
without resorting to complex color change detection or labels.
In addition, tests can be performed individually and no batch-
ing is required.

Despite the advantages of this technique, the results may
be affected by clotting of the blood samples which would
prevent the wicking of the blood through the paper substrate.
In addition, the test relies on naked-eye detection which may
render it prone to operator error, which can be overcome by
pairing the test with an automated image processing algo-
rithm. Moreover, the validation results show that this test
cannot accurately distinguish between HbSC and HbAS even
when used with automated image processing [179,180].
Finally, high levels of HbF, especially present in newborns,
prevent the polymerization and precipitation of HbS, and
consequently hinder the application of the test to newborn
screening [171].

4.3.2. Lateral flow immunoassays

Kanter et al. reported the testing results of a lateral flow
immunosassay, known as Sickle SCAN™, developed to detect
the presence of HbA, HbS, and HbC with the unassisted eye
[181]. The assay consists of a test strip, with polyclonal anti-
bodies conjugated with colored nanoparticles immobilized on
four different test lines (Figure 2(b)). Each line corresponds to
one of the three hemoglobin types and the fourth line serves
as a control to verify proper operation of the device. Once the
test specimen consisting of 5 pL of blood in Hb solubility
buffer at a 200:1 ratio is added into the device, the solution

diffuses to the test zones where the Hb is captured forming
antibody-antigen complexes. Consequently, the appearance
of a blue line at any of the test lines signals the presence of
the targeted hemoglobin types. A readout can be obtained
from the device within 2 min. The limit of detection (LOD)
varies between different hemoglobin types. The reported LOD
values for HbA, HbS, and HbC are 40%, 1%, and 2%, respec-
tively, with sensitivity and specificity of 99%.

A recent validation study for this lateral flow assay was
reported by McGann et al. [182]. In this study, sensitivities of
98.3%, 99.5%, 100%, as well as specificity values of 94%,
92.5% and, 100%, were reported for HbA, HbS, and HbC,
respectively, with Hb concentrations as low as 2%. This
study also revealed that the presence of high concentrations
of HbF did not interfere with the detection of HbS or HbC.
Moreover, an evaluation of the shelf-life of the device was
performed. The device has been proven to function properly
even after storage at 37°C for 30 days. This technology is
proposed as an initial assessment tool since it offers the
advantages of ease of use, absence of auxiliary equipment,
and short turnaround time. However, the assay relies on
human visual interpretation, which may be critical to the
test result especially in the case where faint HbA lines in
patients with HbAS may be misinterpreted, despite the fact
that the band intensities do not correlate with correspond-
ing hemoglobin percentages [181]. Therefore, a weaker HbA
line along with a stronger HbS line might be misinterpreted
as HbSB™, instead of SCD trait. In addition, the assay is not
suited for quantitative assessment for the concentrations of
the different Hb types. Finally, the immobilization of the
antibodies conjugated with nanoparticles increases the fab-
rication complexity of the assay adding to its cost and limit-
ing its shelf-life especially at high-temperature environments
without refrigeration or air conditioning.

Recently, a new lateral flow assay has been developed
under the name HemoTypeSC™. The assay utilizes monoclonal
antibodies specific to HbA, HbS, and HbC. The assay consists
of (1) laminated fiberglass sample pads, (2) nitrocellulose
membrane with antibodies deposited on four different loca-
tions, corresponding to each of the three hemoglobin types as
well as a control, and (3) a cellulosic wick [183]. To perform the
test, 1 uL of blood is diluted in a 1:1000 ratio in distilled water.
Next, 15 pL of the diluted blood is applied to the sample pad
and the strip is dipped in a sample vial containing red-colored
colloidal gold nanoparticles rehydrated in 150 pL of assay
buffer. The strip is allowed to wick the liquids for 10 min
before it is taken out of the vial. Upon visual detection of
the test strip, the absence of a red line on one or more of the
four specific locations indicates the presence of the corre-
sponding hemoglobin type. A result is obtained from this
assay within 20 min.

This lateral flow assay was validated by testing 100 patients
with the specific Hb types. Identification of HbA, HbS, HbC was
reported to be achieved with 100% sensitivity and specificity.
The LOD was estimated at 2.7% for HbA, 3.3% for HbS, and
1.3% for HbC. The estimated cost of the materials used for the
fabrication of this assay was $0.25, while a more realistic cost
estimation per test was not provided. As in the previous lateral
flow assay, quantification of the results is not possible, and the
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Figure 2. lllustrations of the principle of operation of the emerging technologies for SCD diagnosis. (a) Paper-based Hemoglobin solubility [180] (Figure is open
access). A droplet of blood mixed with Hb solubility buffer is dropped on chromatography paper, and a blood stain is allowed to form. The stain on paper is
analyzed and the color intensity profiles are used to determine the Hb type in the sample. (b) Sickle Scan™ lateral flow immunoassay [181] (Figure is open access).
The test specimen consisting of a drop of blood mixed with Hb solubility buffer is dropped onto the sample loading zone. The solution then diffuses to the test
zones where Hb is captured by color-conjugated antibodies. The type of Hb is determined by the appearance of a blue line at the different test zones along the test
strip. (c) Density-based separation [184] (Figure is open access). The blood sample is mixed with aqueous polymeric solutions in capillary tubes. Upon centrifugation,
the precipitation of a dense RBC layer at the bottom of the tube indicates SCD. (d) Microengineered electrophoresis (HemeChip). After loading the blood sample
mixed with DI water into the chip, an applied electric field causes Hb separation. Due to the differences in mobility among Hb types, each type will travel a unique

distance across the paper strip. Full color available online.

processes involved in its fabrication are complicated. The
assay is able to distinguish between HbAA, HbAS, HbAC,
HbSS, HbSC, and HbCC. However, identification of other Hb
types such as HbF and HbA2 is not possible. In addition,
HbSp* ™2 and HbSB® gave results consistent with HbAS and
HbSS, respectively.

4.3.3. Density-based separation

Density-based separation detects sickled RBCs via cell density
measurements using aqueous multiphase systems (AMPS).
Kumar et al. developed two- and three-phase AMPS capable
of distinguishing dense SCD cells from normal cells with a
sensitivity of 90% and a specificity of 97% for the two-phase
system, whereas the detection with the three-phase system
had a sensitivity of 91% and a specificity of 88%. The esti-
mated LOD was 2.8% for dense cells and the cost per test is
around $0.5 [184].

The test requires 5 uL of blood to be mixed with aqueous
polymeric solutions. The mixture is loaded into capillary
tubes and centrifuged for 10 min. SCD is detected by the
precipitation of a dense RBC layer at the bottom of the
tubes (Figure 2(c)). In addition, the combination of larger
centrifugation time and the use of an optical reader enable
the distinction between HbSS and HbSC. Further analysis of
the sediment layer would also allow for the quantification of
the fraction of dense cells. The density-based test is simple
and rapid. However, the use of a centrifuge increases the
cost of the test and its applicability at the POC. The turn-
around time would also be affected since the samples need
to be processed in batches. Density-based separation is also
incapable of differentiating between HbAA and HbAS. It
should also be noted that this test might not be suitable
for detection of SCD in newborns since dense RBC cells are
not present yet due to high levels of HbF in the first



4-6 months of life. Also, the test might not be accurate for
patients with persistent high HbF levels, such as patients
with the Arab-Indian haplotype. Furthermore, many health
conditions, treatment processes, and prescribed medica-
tions, as well as genetic factors, influence the RBCs density
and in turn limit the validity of the test.

4.3.4. Microengineered electrophoresis

Microengineered electrophoresis (HemeChip) has been
recently developed to identify and quantify hemoglobin
types including HbC/A2, S, F, and A, among others. As
depicted in Figure 2(d), the HemeChip consists of a microfab-
ricated polymethyl methacrylate (PMMA) chamber housing an
electrophoresis cellulose acetate paper strip, which is used to
separate hemoglobin types via an applied electric field [185].
A mobile image processing application has also been devel-
oped for automated and objective quantification of HemeChip
results at the POC.

The test starts by mixing a blood sample (<5 pL) with pure
or deionized (DI) water to lyse the cells and release Hb, and
<1 uL of the mixture is stamped onto the paper substrate
inside the chip. Next, an electric field is applied across inte-
grated electrodes. The electric field causes hemoglobin
separation with distinct bands, and due to differences in
mobility among the different hemoglobin bands, each type
will have a unique travel distance from the application point
across the paper strip. Screening is achieved in under 10 min,
and test results showed 90% sensitivity and 89% specificity in
differentiating between HbC/A2 and HbS bands, 89% sensitiv-
ity and 82% specificity in differentiating between HbS and HbF
bands, and 100% sensitivity and 86% specificity in differentiat-
ing between HbF and HbA bands. Large-scale field testing of
HemeChip with newborns is pending for assessment of clinical
sensitivity and specificity in determining healthy versus dis-
eased states and high-risk infants. Since HemeChip works on
the principles of current clinical standard electrophoresis
method, once the large-scale field testing is done, the clinical
sensitivity and specificity values of HemeChip are expected to
be comparable to those of the standard electrophoresis test
(93.1-99.9%) [172]. The assessment of the LOD for this tech-
nique was carried out using adult blood samples. The LOD for
adult SCD and SCT were determined to be around 10% for
HbS, HbF, and HbA, and 3% for HbC/A2.

HemeChip is low cost (50.9 per chip), rapid, robust, and
accurate. Moreover, hemoglobin detection and quantification
results using the HemeChip were shown to be in strong
agreement with the standard HPLC and laboratory-scale elec-
trophoresis tests. This technology also offers the advantage of
possible integration with mobile devices for more accurate
analysis. A potential challenge when using this technology,
as with any other newborn screening method, may originate
from high percentages of HbF masking other Hb types (e.g.
HbS and HbA). Additionally, HemeChip test setup currently
utilizes a bench-top power supply. However, due to the low-
power requirement for the test, this power supply can be
replaced by portable rechargeable batteries for real-world
applications.
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5. SCD monitoring at the POC
5.1. Ongoing challenges and unmet clinical needs

More than 100,000 Americans and millions worldwide have
SCD [11]. In the United States, SCD is estimated to cost >8
million dollars per patient over a 50-year life-span [4]. Life
expectancy of SCD patients has increased significantly, thanks
to the introduction of cost-effective interventions such as
prophylactic penicillin, widespread vaccination, and HU.
Nonetheless, high morbidity, from chronic complications and
organ damage, and early mortality are still having a great
impact on patients with SCD. To date, correlative studies in
SCD have ranged amongst clinical reports, based on tests,
interventions, and chart review [52,186-191], and, at the
other extreme, SCD population-based genetic analyses of
gene polymorphisms [192-195]. Despite significant advances
in the understanding of the fundamental pathophysiology of
SCD, we are still without markers that can reliably reflect the
clinical course of patients in real time. SCD is unusually sus-
ceptible to an examination of cell membrane properties and
cellular activation. RBC stiffness, RBC density, RBC & WBC
adhesion, WBC repertoire and activation, and whole blood
viscosity are excellent candidate biophysical surrogates for
disease activity, and some of which (RBC density, RBC and
WBC adhesion, and WBC repertoire and activation) are already
targets in therapeutic trials.

Many important observations about membrane and cellular
abnormalities, and their relationship to clinical complications
in SCD, have been made since the 1980s [48,53-55]. However,
most pathophysiologic studies have been undertaken in mod-
est numbers of subjects at a single time point and single
institution. Further, it has not been feasible for more than
one analysis to be performed on a single patient sample, e.g.
simultaneous evaluations of membrane properties, inflamma-
tory cell activation, and circulating endothelial cell numbers.
Often, promising ‘cutting-edge’ or biologically illuminating
correlative tests are too expensive, complex, or difficult to
‘export’ to widespread use outside of a few specialized
research centers. Widespread access to longitudinal examina-
tion of key pathophysiologic endpoints, such as intercellular
adhesion of RBCs, WBCs, and endothelium (and subendothe-
lium), if reproducible and feasible, could provide a critical
additional dimension to clinical studies that could improve
clinical care, guide clinical trial design, and decrease the phy-
sical and financial burden of SCD. Non-biased characterization
of cellular biophysical properties should enable more precise
targeting of disease modifying interventions in SCD. Most
notably, reproducible and clinically feasible serial evaluation
of RBC or WBC adhesion and WBC activation could guide
intervention if, for instance, MAC-1 activation predominated
in some clinical scenarios [196,197], P-selectin adhesion in
others [115,137], and iNKT cell expansion in a third
[156,157,198]. Finally, the burden of SCD is in resource-limited
settings. Therefore, inexpensive and simple POC discriminants
(and diagnostics) of disease activity could be extremely valu-
able tools worldwide [161,1771].

More than half of patients living with SCD are treated with HU
or are receiving regular transfusions to prevent severe and life-
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threatening complications of SCD. HU is the only FDA-approved
drug to treat SCD. Regular blood transfusions are commonly per-
formed in approximately 10% of pediatric and up to 20% of adult
patients with SCD. HU increases the overall HbF% and the percen-
tage of red cells containing detectable HbF (F cells), in children and
adults [199-201], thereby decreasing the tendency toward intra-
cellular polymerization of HbS [199,202,203]. Importantly, the deci-
sion to initiate HU therapy, especially in children, must be
thoughtful and therapy must be monitored and adjusted to
achieve optimal results. HoF is an important biomarker for efficacy
and adherence to treatment [202,204]. Greater treatment-related
increases in HbF may predict a more robust response to treatment
in children [205]. Patients require frequent (monthly or bi-monthly)
blood testing and monitoring, once HU therapy is initiated. These
safety labs comprise a CBC and reticulocyte count; the next
month’s dose is not dispensed until that day’s blood counts are
available. The dose needed for maximal clinical benefit, which may
or may not be the maximum-tolerated dose (MTD) [206], is gen-
erally identified within 6-8 months of initiating HU therapy, but
should be established and assigned only after the patient tolerates
the dose for at least 8 weeks [52,58]. Because HbF response to HU is
dose dependent, HbF levels, measured serially, help to establish
MTD in individuals [202]. Clinical trials with escalation to MTD have
reported higher percentage of HbF and Hb as well as mean
corpuscular volume (MCV) [207]. Careful attention to patients’
response to treatment and the resulting individualized therapy
has the potential to improve clinical outcomes [208]. Increases in
Hb and HbF associate with a clinical response to HU therapy, and
are sustained, especially in children [199,209,210]. Close monitor-
ing and follow-up are vital to ensure adherence to treatment and
appropriateness of dose.

Healthy RBC transfusion (HbA) can be lifesaving and is proven
to help prevent complications of SCD. Transfusion can prevent
stroke in children at high risk and, post-stroke, may prevent
recurrence [211]. Regular (monthly) blood transfusions are com-
mon therapy, utilized in approximately 10% of pediatric and 20%
of adult patients with SCD. The primary objective of long-term
transfusion programs is to maintain low proportions of HbS in
the blood [212], often at <30% HbS percentage with a total Hb
between 9 and 12 g/dL [213]. Ongoing monitoring of HbS and
HbA levels during transfusion care informs therapeutic and tech-
nical decisions (about the length and frequency of transfusions)
[214]. Accurate administration of blood transfusion limits exces-
sive transfusion and reduces the risks associated with transfu-
sion, such as alloimmunization, hemolytic reactions, and iron
overload [215]. However, current methods to monitor Hb com-
position require that samples be sent to a lab, resulting in delays
in patient feedback, provider decision-making, and treatment
modification. Patient self-efficacy and provider monitoring and
management would benefit from a POC test that delivers
immediate results.

5.2. Currently available methods for SCD monitoring in
clinical research

Conventional monitoring of SCD patients in the clinic relies on
measurement of different blood components quantitatively
and qualitatively, including amount of cell types and proteins

to physical properties of cells via complete blood count (CBC)
test and biochemical assays [216-219]. Even though other
techniques, including flow cytometry, ektacytometry, and
flow chambers, have been occasionally utilized in clinical
research and in some clinical trials [220-223], they are not
integrated into routine patient monitoring. Apart from these
modalities, HPLC, which was described in detail in Section 4.2,
is used for hemoglobin quantification to monitor patients
undergoing HU therapy or transfusion therapy [224,225].

5.2.1. CBC

A typical CBC test includes WBC count (number of WBCs/pL),
RBC count (number of RBCs/uL), hemoglobin (g/dL), hemato-
crit (percentage of RBCs in blood), MCV (average size of a
single RBC), mean corpuscular hemoglobin (average amount
of hemoglobin in a single RBC), red cell distribution width
(RDW, variation in RBC size), reticulocyte count (amount of
immature RBCs), and platelet count. Homozygous SS and
heterozygous S/B° patients typically have lower RBC count,
hemoglobin, and hematocrit due to the hemolytic anemia.
On the other hand, WBC count, platelet count, and reticulo-
cyte count are elevated, though they can fluctuate.
Reticulocyte counts may alter depending on the degree of
anemia, due to hemolysis or other causes (including seques-
tration), and bone marrow responsiveness to anemia. MCV has
shown to rise in SCD patients treated with HU. Furthermore,
RDW is elevated in SCD patients due to increased heteroge-
neity within RBC subpopulations. Even though CBC is widely
used and provides valuable information on blood cell proper-
ties, it is insufficient to provide an integrated and complete
evaluation of the patient’s status.

5.2.2. Biochemical assays

Enzymatic and non-enzymatic biochemical markers in blood,
measured via activity, reactivity, and immunosorbent assays,
can be direct indicators of hepatic dysfunction, kidney
damage, endothelial damage, inflammation, and intravascular
hemolysis. In SCD patients, plasma levels of lactate dehydro-
genase (LDH), total bilirubin, aspartate aminotransferase (AST),
and alanine aminotransferase (ALT) are used as principal
hemolytic markers. ALT, AST, and total bilirubin, along with
alkaline phosphatase are also indicators of hepatic dysfunc-
tion. Serum cystatin c and creatinine levels are used as indi-
cators for kidney function and elevated levels in SCD patients
are associated with renal decline. Elevated c-reactive protein
levels in blood plasma are associated with acute and chronic
inflammation. Moreover, soluble adhesion molecules, includ-
ing VCAM-1, ICAM-1, E-selectin, and P-selectin, are associated
with increased cell adhesion and VOC and can be quantified
via enzyme-linked immunosorbent assay (ELISA) [226,227].
Even though these soluble adhesion molecules utilized to
better understand the SCD pathophysiology and targeted in
some clinical trials [37], these markers need thorough valida-
tion before clinical use. Overall, biochemical assays can be
important in measuring several protein and enzymatic mar-
kers that are associated with end-organ damage and vasculo-
pathy; however, they are time- and labor-intensive.



5.2.3. Flow cytometry

Surface characteristics of blood cells are typically measured
with conventional techniques, such as fluorescent-activated
cell sorting (FACS), immunohistochemistry, or microscopic
imaging methods. In FACS, cells of interest are isolated, exten-
sively processed, incubated with a fluorescent-labeled anti-
body raised against a cellular protein (e.g. integrin, receptor,
adhesion molecule), and sorted by optical recognition.
Measurement by flow cytometry of aberrant surface molecule
expression or activation has served as a surrogate for directly
measuring abnormal adhesion in humans with SCD
[63,196,228]. However, quantitative changes in surface mole-
cule expression (e.g. BCAM/LU) do not always faithfully reca-
pitulate qualitative changes [102,229]. Furthermore, FACS
requires high-cost instrumentation, skilled personnel, and
time- and labor-intensive operation, which limits its applica-
tion in most clinical and research settings.

5.2.4. Ektacytometry

Ektacytometry has been widely utilized in deformability mea-
surement of RBCs in SCD [197,198]. Ektacytometry involves a
stationary inner cylinder and an outer cup, and between the
two a narrow gap where blood fills in [230]. Varying levels of
shear stress can be generated on blood when the outer cup is
rotated at different speeds and osmotic gradient is varied from
below physiological osmolality to above physiological levels.
Elliptical diffraction patterns of sheared cells are obtained
using a laser and a lens, and deformability is calculated from
the dimensions of the elliptical diffraction pattern [230]. Despite
its frequent use in SCD research studies, ektacytometry lacks
physiologically relevant flow conditions that are present in the
blood vessels. Further, it is not feasible as a POC analysis tool at
the clinic due to high-cost and need for skilled personnel.

5.2.5. Flow chambers

Flow chambers are composed of a gasket, with inlet, outlet,
and vacuum ports, assembled on a glass slide either functio-
nalized with biomolecules or coated with endothelial cells
[231]. Gasket thickness determines the height of the chamber
and flow rates pumped into the chamber can be optimized to
simulate physiological shear stress levels in the blood vessels.
Flow chambers were widely utilized in the early SCD literature
to mimic blood cell and vessel endothelium interactions. In
particular, they were employed frequently in SCD research to
mimic post-capillary venules, where vaso-occlusion occurs,
and analyze abnormal adhesion of RBCs to endothelium and
endothelium-associated proteins [29,54]. Even though flow
chambers provide high-throughput analysis of cell interactions
and ability to mimic physiologically relevant conditions, they
require complicated equipment and skilled personnel for
operation, which limits their wide-spread application in the
clinic and as a research tool.

5.3. Emerging technologies for SCD monitoring in
clinical research

Despite vast knowledge gained in identifying and targeting
cellular abnormalities and interactions in SCD over the last
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30 years, such expertise has not been translated into clinical
care or trial design due to requirements for complicated cus-
tom-designed devices, trained technicians, specially collected
patient blood samples, and extensive sample processing and
manipulation. Groundbreaking studies on cellular adhesion
and deformability in SCD relied on complex systems requiring
skilled personnel, which include laser diffraction ektacytome-
try, FACS, and parallel flow chambers. These important proof-
of-concept studies used techniques that required extensive
preprocessing, separation of cellular populations, and washing
of RBCs [29,30,56]. Further, preprocessing wash steps typically
removed plasma proteins that contribute to cellular adhesion
[25,232]. Complex and labor-intensive techniques to measure
cellular adhesive interactions have not been used in longitu-
dinal analyses or in large-scale clinical studies, applied at more
than one center. These significant technological barriers have
hindered the widespread evaluation of abnormal cellular char-
acteristics, clinically and as a research tool.

Recent advances in micro and nano-fabrication technolo-
gies have yielded microfluidic platforms that can probe single
cell behavior and tissue response simultaneously under pre-
cisely controlled biological, biophysical, and flow conditions,
mimicking physiological systems at baseline and with disease
[27,233-244]. These technologies have been used to model
SCD vasculature [83,240,244], and are likely to yield important
insights about SCD pathophysiology. Furthermore, such
advanced modeling of in vivo microvasculature conditions
might produce simple, reliable, and rapid platform technolo-
gies for personalized medicine applications, from therapeutics
to monitoring.

5.3.1. Endothelialized microchannels

Endothelial cells play an essential role in the pathophysiologi-
cal manifestations of SCD [33,55,245]. Activation of the
endothelial layer mediates cell adhesion and aggregation by
further inducing inflammatory response and subsequent com-
plications. In that sense, several researchers have recently
directed their focus toward fabricating endothelialized parallel
flow chambers and microfluidic devices to better recapitulate
the biophysical and hemodynamic properties of the microvas-
culature environment [246,247]. For example, utilizing Human
Umbilical Vein Endothelial Cells (HUVEC)-coated flow chamber
assays, Zennadi et al. [111] demonstrated that epinephrine-
mediated sickle RBC adhesion to the endothelium through
LW-avB3 interactions. In addition, epinephrine-stimulated
RBCs were shown to activate peripheral blood mononuclear
cells (PBMC) and promote PBMC adhesion to the endothelium
increasing the risk of vaso-occlusive events. Matsui et al. [59]
reported elevated sickle RBC adhesion to thrombin-treated
HUVECs in a parallel flow chamber under normoxic conditions.
The rolling adhesion of cells showed P-selectin pathway
dependency while firm adhesion required additional path-
ways. Unfractionated heparin was shown to block the
P-selectin dependent pathways by diminishing the thrombin-
enhanced rolling adhesion of cells [59]. Stimulation of
endothelial cells in vitro through IL-13 was also shown to
enhance sickle RBC adhesion to the endothelium in a time-
dependent manner [68]. During the early stages of the activa-
tion, RBC adhesion to the HUVEC monolayer exhibited a
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negligible dependency on integrin a431 on the RBC surface.
However, 9 h following the IL-f1 stimulation, the adhesion
was both a4f1 and VCAM-I mediated. Even though these
studies provided valuable insight into cellular adhesive inter-
actions in SCD, they relied on extensive sample preprocessing,
removing soluble adhesion molecules and other activation
factors in plasma that are critical in vivo.

Recently, Tsai et al. developed a microfluidic platform with
an inner surface coated by a confluent monolayer of endothe-
lial cells for modeling vascular occlusion and thrombosis in
hematologic diseases, such as SCD (Figure 3(a)) [244].
Comparison of the flow behavior of whole blood samples
from two patient populations, receiving (HU") and not-receiv-
ing (HU") HU treatment, revealed that HU* blood achieved
higher average velocities within the channels. Moreover, HU™
samples caused greater levels of obstruction indicating the
efficacy of the drug in SCD. Furthermore, interaction of TNF-
a activated Human Lung Microvascular Endothelial Cells with
TNF-a activated leukocytes resulted in a significant increase in
the obstruction of flow as well as a decrease in flow rate.

Despite their advantages in high-fidelity mimicking of micro-
vasculature, endothelium-based models are not yet widely
applicable to large numbers of patients, because of the
requirement for labor-intensive and technically challenging
tools, and a need for a constant supply of cultured endothelial
cells.

5.3.2. Sickle blood rheology in microfluidic channels

The rheology of blood is dominated by RBC deformability,
which is affected by changes in local flow conditions, such
as high shear rate induced by vessel size [248]. In SCD, hemo-
globin polymerization triggered by deoxygenation and subse-
quent decrease in cell deformability dramatically affects blood
rheology (e.g. increase in viscosity), most specifically during
microcirculation when a single RBC occupies the vessel.
Moreover, low deformability dramatically decreases the shear
thinning capability of blood, which is imperative to prevent
any occlusion in postcapillary venules. The flowing suspension
of soft cells (RBCs) that change their morphology and rheology
relatively quickly upon deoxygenation is a key source for the
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Figure 3. Emerging POC technologies for SCD monitoring. (a) An endothelialized microfluidic platform to model microvascular occlusion in vitro [247]. Brightfield
microscopy shows the immobilized endothelial cells 48 hours after the cells are seeded in the microfluidic device. The cultured cells round up the rectangular cross-
section mimicking in vivo blood vessel geometry and size scale. The endothelialized microfluidic platform can recapitulate altered blood flow and occlusive events in
physiologically relevant flow conditions. The influence of hydroxyurea treatment of sickle cell patients on cell adhesion and subsequent microvascular occlusion is
also observed using fluorescent microscopy. Reprinted with permission from J. Vis. Exp. (b) A microfluidic platform to probe blood rheology of SCD patient blood
samples in physiologically relevant flow and oxygen tension conditions [243]. Blood flow conductance can be measured in microfluidic channels at the bottom layer,
whereas the channel at the top layer are filled with N, to deoxygenate the blood through gas diffusion across the separating PDMS membrane. Reprinted with
permission from AAAS. (c) SCD Biochip as a functional RBC adhesion assay to monitor SCD [34]. Adhesion of RBCs to endothelium and sub-endothelium associated
proteins in physiologically relevant size scale and flow conditions are analyzed and associated with clinical course of SCD patients. SCD Biochip provides rapid, fully
enclosed, standardized, and pre-processing-free analysis of RBC adhesion in whole SCD patient blood samples, enabling longitudinal studies.



vaso-occlusion heterogeneity in SCD. Two fundamental time
scales in vaso-occlusion are the polymerization time (rp) and
kinetic time (ty). The polymerization time scale is a function of
HbS concentration whereas the kinetic time scale is a function
of the pressure gradient, vessel diameter, and the effective
viscosity of blood. The ratio of these two time scales governs
the vaso-occlusion phenomenon [242].

Microfluidic systems provide several advantages in study-
ing rheological properties of blood in SCD, including physio-
logically relevant size scale and flow conditions. In the SCD
literature, microfluidic channels have been utilized to probe
both individual sickle RBC rheology (occurs at a length scale of
10 pm) [240], and whole blood rheology along with vaso-
occlusion dynamics (occurs at a length scale of 100 pm)
[243]. Du et al. [240] developed a microfluidic system incor-
porating micropillar arrays forcing single RBCs to squeeze and
deform through microgaps. Moreover, microfluidic channels
were deoxygenated by gas diffusion through a PDMS mem-
brane separating another layer of microchannels injected with
N,, allowing analysis of RBC deformability at hypoxic
conditions.

To study the effect of deoxygenation on kinematic rheol-
ogy and vaso-occlusion process, Higgins et al. [242] and Wood
et al. [243] utilized a polydimethylsiloxane microfluidic chan-
nel, fabricated via photolithography and soft lithography.
Blood in the microfluidic channels was deoxygenated by gas
diffusion through a gas membrane separating a second layer
of microchannels (Figure 3(b)) [242,243]. Decreased rate of
conductance upon deoxygenation was analyzed in SCD
patient blood samples and associated with clinical course of
the corresponding patients [243]. Blood samples from benign
SCD patients showed no drop of conductance upon deoxy-
genation, whereas blood samples from severe SCD patients
showed large and rapid change in conductance following
deoxygenation. Furthermore, the effect of HbF fraction on
the rate of conductance was analyzed and it was shown that
conductance rate of HU-treated patients, with increased HbF
levels, was comparable to untreated severe samples.

5.3.3. RBC adhesion in microphysiological flow

Despite the remarkable insights about abnormal RBC adhesion in
SCD that have been made, there remain gaps in knowledge
about these complex adhesive interactions. Because of their
technically challenging and labor-intensive nature, currently
available techniques do not allow rapid measurement of diverse
cellular adhesive events in the clinic simultaneously, e.g. abnor-
mal RBC adhesion to fibronectin, laminin, and P-selectin. Further,
there is no established ‘atlas’ of abnormal adhesive events,
examined longitudinally and in a standardized manner in a
large heterogeneous population of SCD patients (HbSS and
HbSC, children, and adults) under a range of clinical circum-
stances and with and without treatment. Neither the topography
of adhesive events for an individual patient, nor for the SCD
population as a whole is known. Better knowledge of the nature
and scope of abnormal adhesive events is critical to the goals of
establishing associations with clinical outcomes and successfully
identifying therapeutic targets in clinical trials.
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Recently, a versatile microfluidic platform (SCD Biochip,
Figure 3(c)) mimicking the dimensions of the postcapillary
venule was developed for evaluation of RBC adhesion and
deformability. Whole blood samples were flowed through
microchannels functionalized with endothelium-associated
proteins (FN and LN) at physiological shear stress levels (1-
5 dyne/cmz). The SCD Biochip allows rapid, standardized, and
preprocessing-free analysis of whole blood samples, incorpor-
ating effects of both cellular and plasma components [27]. No
work prior to SCD Biochip has analyzed cellular adhesion
directly using whole blood (taken from patients being seen
in clinic) at the micro-vasculature scale.

In SCD Biochip, among blood samples with different hemo-
globin phenotypes, the number of adhered RBCs was signifi-
cantly higher in HbSS blood samples compared to HbSC/SB*-
thalassemia blood samples or HbAA blood samples, both for
FN and LN [34,249]. It was shown that HbS-containing RBCs
were heterogeneous in deformability, adhesion strength, and
in the number of adhesion sites [27,28]. Based on morpholo-
gical and biophysical characteristics (i.e. deformation in flow),
adhered HbS-containing RBCs were categorized as deformable
or non-deformable. While deformable RBCs formed a single
attachment site, non-deformable RBCs displayed multiple
attachment points.

Moreover, RBC adhesion to FN- and LN-coated microchan-
nels in SCD patient blood samples was analyzed, focusing on
markers of hemolysis, including an elevated reticulocyte count
and an elevated serum LDH [95,250,251] level, since hemolysis
may play a critical role in VOC and organ damage in SCD [252].
Non-deformable HbS-containing RBCs adhered more strongly
to FN under flow conditions, which may be the result of their
multiple attachment sites. Deformable and non-deformable
HbS-containing RBCs at a physiologically relevant shear stress
(1 dyne/cm?) [27] were quantified, and shown to have a sig-
nificant association between adhered non-deformable RBCs
(%) and serum LDH levels in adult SCD subjects. It is plausible
that adherent non-deformable cells are causally associated
with hemolysis, due to prolonged delay time in the vascula-
ture [51,253]. These findings from the SCD Biochip support an
association between deformability of adhered RBCs and
hemolysis. In addition, RBC adhesion to FN or LN was signifi-
cantly higher in subjects with low HbF (<8%) compared with
those from subjects with high HbF (=8%). This is in agreement
with the known beneficial effect of fetal hemoglobin in SCD
[254-256].

Using SCD Biochip, samples from over 100 SCD patients,
obtained primarily during outpatient clinic visits, were exam-
ined. Furthermore, a small number of these individuals were
examined longitudinally using SCD Biochip, performed
>1 month apart [34]. For example, in UPN 67 (Unique Patient
Identifier 67), monitored over 6 months, RBC adhesion to FN
decreased after two episodes of transfusion (Figure 3(c)).
Overall, these results obtained via SCD Biochip support the
idea that changes in RBC adhesion can reflect clinical state and
treatment response in SCD. However, these results need to be
validated and expanded by increasing the number of subjects,
expanding the longitudinal scope, and broadening the range
of adhesive interactions that are studied.



14 (&) Y.ALAPAN ET AL.

6. Expert commentary

WHO has declared SCD as a public health priority [164,167,257].
More recently, American Society of Hematology, in partnership
with other organizations, launched the ‘Sickle Cell Disease
Coalition’ and called for action to improve the patient care in
SCD [11]. Estimated 50-80% of the babies born with SCD in Africa
die before the age of five due to lack of diagnosis followed by
basic treatment and care [14,167]. Current laboratory-based
screening platforms, although widely available in developed
countries, are not feasible for operation at the POC in the
resource-limited settings and in the developing world due to
high infrastructure and operational costs, as well as the need for
skilled operators. Moreover, typical turnaround time for screen-
ing test results in low-resource environment is too long (2-
6 weeks). In such settings, it is critical to screen the baby, obtain
the results, and inform the parents before they leave the testing
center, otherwise, tested newborns may be lost to follow-up
before the test results are available. Therefore, there is a need
for simple, rapid, and mobile analyses of hemoglobin types in
newborn blood with which to screen for hemoglobinopathies
while the baby is still on-site. WHO estimates that more than 70%
of SCD-related deaths are preventable with simple, cost-efficient
interventions, such as early POC newborn screening followed by
treatment and care [258]. Recently developed novel micro-
technologies offer simple, rapid, and affordable screening of
SCD and have the potential to facilitate universal screening in
developing countries. Smart utilization and wide-spread applica-
tion of these technologies may revolutionize SCD screening in
resource-limited settings and dramatically decrease early mortal-
ity due to SCD.

Efficacy in both HU and transfusions is reflected in changes
in Hb composition. Close monitoring of HbF can reflect adher-
ence to treatment and appropriateness of HU dose. Current
monitoring relies on laboratory tests causing significant delays
in patient feedback and treatment optimization. A rapid POC
test that quantifies HbS, HbF, and HbA, performed during a
scheduled HU monitoring visit, would allow for personalized
and precise dose adjustment. Importantly, communication of
results immediately and directly to the patient (without the
wait for lab results) may improve adherence to, and clinical
efficacy of, HU therapy. Furthermore, it is known that real-time
assessment of HbS and HbA levels prior to and during transfu-
sions can improve the accuracy of treatment. There is no rapid
real-time POC monitoring test for HbS and HbA levels in
blood. A rapid POC test that quantifies HbS and HbA would
help clinical management, monitor therapeutic response,
improve clinical efficacy and safety, and may ultimately reduce
the cost of care while improving patient satisfaction.

In SCD monitoring, current analyses performed at the clinic
to evaluate the course of the disease only provide single-
faceted information and largely lack complex cellular/tissue
level response, which have restricted our ability to integrate
complex biophysical phenomena into our understanding of
SCD. Further, the relative contribution of red cell versus white
cell interactions as well as endothelium response and rheolo-
gical changes in individual patients with SCD, at baseline, with
clinical disease activity, and following therapeutic interven-
tions has not been studied in a sizable SCD population,

using reproducible, unbiased, and standardized evaluations.
Development of novel microtechnologies for measuring the
impact of interventions on cell/tissue biophysical properties,
such as RBC adhesion and deformability, may accelerate the
development or adoption of new pharmaceutical and treat-
ment approaches. Clinically feasible measurements are espe-
cially important as abnormal adhesive interactions emerge as
therapeutic targets [116,136,137,259,260]. Indeed, we do not
yet have the tools to tell us whether there is a difference
amongst patients in degree or type of aberrant cellular adhe-
sion; that is, though some patients show exaggerated RBC
adhesion when compared with other patients, who show
exaggerated WBC adhesion. Absent a clinical adhesion assay,
current and future studies of anti-adhesion strategies in SCD,
antibody- or drug-based, may underestimate the response of
patients who have predominant abnormalities in one targeted
pathway more than another, e.g. differential sensitivity to
agents that target MAC-1 activation, BCAM/LU phosphoryla-
tion, or selectin binding. Alternatively, overall cellular adhesion
of all cell types, and therefore sensitivity to a range of targeted
agents, may increase in a patient who has striking abnormal-
ities in a single cell type.

7. Five-year view and future perspectives

POC technologies for disease screening and patient monitor-
ing are attracting increasing attention with each passing year
due to improvements in their cost-effectiveness, speed, and
user-friendly operation. Such technologies not only enable a
better access to health care by millions of underserved people
but also improve patients’ quality of life by allowing quick
result turnaround at home or at the clinical site.

7.1. Diagnosis

Some of the screening platforms for SCD described in this
review are already in field trials in sub-Saharan Africa, whereas
others have been validated in local hospitals in the United
States. Therefore, it is plausible for these technologies to be in
market in the next couple of years, especially in developing
regions of the world including Africa, India, and Southeast
Asia, where the need is more urgent and the demand is the
greatest. High HbF levels have shown to be problematic for all
screening platforms, decreasing sensitivity and specificity of
the test. However, HbF levels continually decrease in babies
over the course of the first 6 months after birth, and at
6 weeks, HbF level decreases to be around 60%. This timing
is especially opportune for POC screening as this time frame
aligns well with typical immunization schedules for children in
Africa. When these devices are proved to be effective, reliable,
and cost-efficient in the developing world, there is a great
potential for their use in developed countries: (1) where the
infrastructure for universal screening is not in place, as in most
European Countries, and (2) where these cost-efficient diag-
nostic alternatives can replace bulky, complicated, and costly
traditional techniques, as in the United States.



7.2. Monitoring

On the monitoring front, which is much more complicated in
comparison to diagnosis and requires thorough validation of
efficacy, early use of the novel microdevices might come in
especially handy in the design of clinical trials for emerging
therapies, most of which are performed in developed countries.
Since all these advanced microtechnologies are based on
mimicking human microvasculature features and biophysical
properties, measurements and evaluations performed in these
devices reflect cellular/tissue level responses, such as cell adhe-
sion and vaso-occlusion. Therefore, such platforms can be uti-
lized in therapeutic clinical trials targeting biophysical
interactions in human vasculature. These platforms may be
used for selective patient enrollment in trials and evaluating
impact of therapeutics in enrolled patient blood samples.
However, the long-term goal for all of these microtechnologies
are patient monitoring at the POC, whether it can be home or
clinic, either as a complimentary to other blood tests or a stand-
alone monitoring modality. Successful development of such
novel monitoring technologies can also provide a glimpse of
hope for SCD patients in the developing world, where insuffi-
cient number of health-care providers and infrastructure
impedes proper patient tracking and follow-ups.

Key Issues

® SCD affects 100,000 Americans and more than 14 million
people globally, disproportionally in economically disad-
vantaged populations.

® SCD requires early diagnosis after birth and constant mon-
itoring throughout the life-span of the patient.

® Currently available screening and monitoring tools are not
feasible for operation at the point of care (POC), which
increase the economic burden with hospital visits and
costly tests, as well as exacerbate patients’ quality of life.

® The emerging POC technologies offer cost-efficient, rapid,
and reliable screening of SCD, which is essential to facilitate
universal screening programs in developing countries.

® The emerging microfluidic platforms mimicking and model-
ing biophysical conditions of SCD microvasculature can
reflect cellular/tissue level responses, providing unique cap-
abilities for efficient, reliable, and convenient monitoring of
SCD patients at clinical baseline, with disease, and under
treatment.
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