
Near-Optimal and Practical Algorithms for Graph Scan Statistics

Jose Cadena∗ Feng Chen† Anil Vullikanti∗

Abstract

Scan statistics is a popular approach used for detecting
“hotspots” and “anomalies” in spatio-temporal and
network data. This methodology involves maximizing
a score function over all connected subgraphs, which is
NP-hard in general. A number of heuristics have been
proposed for these problems, but they do not provide
any quality guarantees. In this paper, we develop a
framework for designing algorithms for optimizing a
large class of scan statistics for networks, subject to
connectivity constraints. Our algorithms run in time
that scales linearly on the size of the graph and depends
on a parameter we call the “effective solution size”,
while providing rigorous approximation guarantees. In
contrast, most prior methods have super-linear running
times in terms of graph size. Extensive empirical
evidence demonstrates the effectiveness and efficiency
of our proposed algorithms in comparison with state-
of-the-art methods. Our approach improves on the
performance relative to all prior methods, giving up to
over 25% increase in the score. Further, our algorithms
scale to networks with up to a million nodes, which is 1-2
orders of magnitude larger than all prior applications.

1 Introduction

A number of methods have been proposed for anomaly
detection in different applications, but the paradigm of
scan statistics is among the most powerful and widely
used—these typically involve formalizing a notion of
“anomalousness” and finding a subset that optimizes
this metric (e.g., [23]). These methods were originally
developed for spatial data and involve finding clusters
that maximize a discrepancy score [11, 13, 16]. Recently,
scan statistics have been extended to network data by
considering scores for connected subgraphs [23, 5] and
have been applied to a number of domains, such as
epidemiology [22], systems biology [12, 8], and social
network analysis [5] (see Section 7 for more details).

Depending on whether the notion of anomalousness
is with respect to an underlying model for the data or
historical values, the scan statistics can be parametric or
non-parametric (Section 2). As a result of the diversity
of applications, a large number of scan statistics have

∗Dept. of Computer Science and BI. Virginia Tech
†Dept. of Computer Science. University at Albany - SUNY

been developed. Maximizing functions over connected
subgraphs generalizes Network Design problems—this
includes well-known graph optimization problems, such
as the Steiner Tree problem and its variants, Prize-
Collecting Steiner Tree (PCST) and NetWorth, all NP-
hard. Heuristics for these problems have been used for
network scan statistics [4, 18, 23, 22], but they do not
give any rigorous guarantees on the solution quality.
Our contributions are:
1. Rigorous algorithms: We develop a unified frame-
work for optimizing a large class of parametric and non-
parametric scan statistics for networks with connectiv-
ity constraints, which scales linearly in the network size
and is a function of a parameter defined as the “effec-
tive solution size”. We also give rigorous bounds on the
solution quality (summarized in Theorem 3.1). In other
words, our framework encompasses many different net-
work scan statistics—this contrasts with all prior meth-
ods, which are developed for specific statistics; further,
our approach also holds for the extensions of these func-
tions with both node and edge weights, which generalize
Steiner connectivity problems. In practice, the effective
solution size parameter is very small (see Section 5.6),
making the time complexity of our algorithms better
than prior methods, which are super-linear in the net-
work size.
2. Scaling: We develop a preprocessing and refine-
ment technique that reduces the solution size without
degrading the quality score beyond a provable constant
factor (Section 3.4). The resulting algorithms are able
to scale to graphs with over a million nodes in minutes
and are significantly faster than state-of-the-art meth-
ods (Figure 1), which have only been run on graphs of
up to 104 nodes.
3. Experimental results: We show that our algo-
rithms give significant improvement over the scores com-
puted by different baselines, with over 25% improve-
ment in some instances, compared to the best baseline
method (Section 5.3 and Table 1 below). Better objec-
tive scores also translate to higher anomaly detection
power with 3% improvement on accuracy and F1 score
over state-of-the-art methods. Our algorithmic frame-
work has the added advantage that different score func-
tions can be optimized by just modifying the specific
objective function within the same implementation.

Table 1: Non-parametric scan statistics optimiza-
tion. Our algorithm FastColCodeNP obtains higher
scores than previous methods in real-world datasets. (Sec-
tion 5.3)

Berk-Jones Scan Statistic
FastColCodeNP GS EL GL DFS NPHGS

CitHepPh 1138.011 1135.029 559.176 1118.352 1130.874 1118.353
NEast 68.525 64.214 23.366 23.211 55.541 17.696
Traffic 128.740 128.722 116.732 125.824 14.412 121.632
Twitter 1722.790 1722.388 1722.388 1722.388 1720.243 1457.410
BWSN 602.164 599.972 530.850 530.457 536.200 531.280

102 103 104 105 106

Number of nodes

10-2

10-1

100

101

102

103

104

105

R
u
n
n
in

g
 t

im
e
 i
n
 s

e
co

n
d
s

Scalability of Graph Scan Statistics Algorithms

ColCodeNP

GS

EL

GL

DFS

NPHGS

Figure 1: Scalability. Running time as a function of
number of nodes. (Section 5.5)

For brevity, some of the results, including hardness
of the problems, proof details, and pseudocode, are
deferred to the supplementary material1.

2 Preliminaries

We are given a graph G = (V,E), where V is a set
of n vertices or nodes, and E ⊆ V × V is a set of m
edges. Each vertex v ∈ V has two values associated
with it: (1) a population count, b(v), which indicates
the count that we expect to see at the node v, e.g., the
number of people in a county, corresponding to node v,
and (2) an event count, c(v), which indicates how many
occurrences of an event of interest are seen at the node,
e.g., the number of cases of a disease in a county. These
values vary over time, but we will not indicate the time
in the notation in order to keep it simple. The notation
used in this paper is summarized in Table 3.

2.1 Non-Parametric Scan Statistics. Non-
parametric scan statistics do not assume an underlying
distribution or process on the graph. Instead, they
first estimate a p-value for each vertex based on
empirical calibration by comparing the current feature
(c(v) and b(v)) of this vertex with its features in the
historical data. The problem of anomaly detection has
been formalized as a hypothesis testing problem for
testing whether the empirical p-values are uniformly
distributed on [0, 1] [17, 19, 16]. Let α ∈ [0, 1] be
significance level and let w(v, α) denote the weight of
a node v as a function of α. For a set of nodes S, let
W (S, α) =

∑
v∈S w(v, α) and N(S) be a function of

1http://people.cs.vt.edu/~jcadena/

sdm17-scan-statistics/sdm17-scan-statistics-supp.pdf

the cardinality of the set. Then, the score functions
can be expressed in the following general form:

F (S) = max
α≤αmax

φ(W (S, α), N(S), α),(2.1)

The significance level α can be optimized between 0 and
some constant αmax. We use w(v) and W (S) to denote
w(v, α) and W (S, α), respectively, whenever α is clear
from the context. For clarity, in the rest of the paper,
we consider the specific case when N(S) = |S| is the
cardinality of S and w(v, α) is 1 if the p-value of v is less
than α, 0 otherwise —we say these nodes are significant
at level α. Then, W (S, α) is the number of significant
nodes in S. It is easy to generalize our results to other
functions W (S, α) and N(S). Table 2 shows examples
of non-parametric scan statistics.

2.2 Parametric Scan Statistics. Parametric scan
statistics assume that counts observed at each node are
generated from some parameterized distribution and
formalize anomaly detection as a hypothesis testing
problem [11, 16]. Common choices are distributions
from the exponential family, such as Poisson or Normal.
The goal is to maximize an appropriate scan statistic
function F (S), typically a likelihood ratio. These score
functions can be expressed as

F (S) = g(C(S), B(S)),(2.2)

where C(S) =
∑
v∈S c(v), B(S) =

∑
v∈S b(v), and the

function g is defined depending on the score function
considered. We refer to [11, 16, 17] for discussion on the
strengths and limitations of parametric scan statistics.

2.3 Problem Formulation. Given a graph G =
(V,E), a score function F (·) and the associated counts
for the model, the objective is to find a connected subset
S ⊆ V that maximizes F (S).
Remark. As we show in the supplementary material,
the above problem is NP-hard. In Section 3, we develop
algorithms to maximize F (S), restricted to sets with
|S| ≤ k, where k is a parameter that represents the
solution size. In Section 3.4, we show that we can
compress specific subsets of nodes into “supernodes”,
using a process we refer to as refinement. The size of
a set S computed in terms of these supernodes will be
referred to as the effective solution size, and it becomes
significantly smaller than the original size of S. Our
final algorithms will find solutions with effective solution
size at most k.

3 Algorithms for Non-Parametric Scan
Statistics

In this section, we present an algorithm for non-
parametric functions that are characterized by equation

Table 2: A common formulation for parametric and non-parametric scan statistics that can be optimized using
our methods, along with their applications. Many other functions are described in the supplementary material.
Non-Parametric Scan Statistics F (S) = maxα≤αmax φ(W (S, α), N(S), α)
W (S, α) is the number of significant nodes at level α
Name Original Form General Form Applications
Berk-Jones
[3]

F (S) =

max
α≤αmax

|S|KL(
W (S,α)
|S| , α).

φ(a, b, α) = b · KL(a/b, α),
where KL is the KL-divergence:
KL(x, α) = x log

(
x
α

)
+ (1 −

x) log
(

1−x
1−α

)
Detection of disease outbreaks, civil unrest events, and
human rights events in social media graphs [5] (|V | =
10, 000 to 80, 000), network intrusion detection [13]
(|V | = 1, 000 to 10, 000), detection of illicit activities
in container shipment data [13] (|V | = 10, 000).

Higher Crit-
icism [6]

F (S) =

max
α≤αmax

W (S,α)−|S|α√
|S|α(1−α)

φ(a, b, α) = a−b·α√
b·α(1−α)

In addition to the same applications above, it was also
used in detection of rare and week effects in Genomics
and Genetics [9] (|V | = 20, 000 to 30,000)

Parametric Scan Statistics F (S) = g(C(S), B(S)), C(S) =
∑
v∈S c(v), B(S) =

∑
v∈S b(v)

Elevated
Mean Scan
Statis-
tic [17]

F (S) =
∑
i∈S xi/

√
|S| g(a, b) = a/

√
b Activity detection in social networks, network surveil-

lance, disease outbreak detection, biomedical imag-
ing [17, 19] (N = 129 to 225).

Expectation-
based Pois-
son Statis-
tic [16]

F (S) =
C(S) log(C(S)/B(S)) +
B(S)− C(S)

g(a, b) = a log(a/b) + b− a Disease outbreak detection [15] (|V | = 58 to 88), water
pollution detection [23] (|V | = 12, 000).

(2.1) and then discuss techniques to scale it without los-
ing the quality guarantees. Our algorithm relies on two
main ideas, namely monotonicity and constraining the
solutions.

Table 3: Definitions and notation used in the paper

Term Description

b(v), c(v) population and event counts of node v

α, αmax significance level, maximum significance
level

Significant node
(at level α)

a node with p value below α

Nbr(v) set of neighbors of v

w(v), w(v, α) weight of node v, based on its p-value
and the significance level α

W (S), W (S, α) denotes
∑
v∈S w(v, α)

F (S) any of the functions in Table 2

K The set {1, . . . , k}
col(u) color of node u from set K

T Subset of K (denotes colors)

M(v, T) maxSW (S), where the maximization is
over connected colorful sets S ⊆ V , such
that v ∈ S and {col(u) : u ∈ S} = T

ψi, ψi(α) maxT :|T |=iM(v, T). Maximum weight
over connected colorful sets of size i

S∗i , S∗i (α) Set with weight ψi
OPT (F, k) maxS:|S|≤k F (S), where the maximum

is over connected subsets S of size ≤ k

3.1 First idea: Monotonicity. A key observation
is that the functions φ(W (S, α), N(S), α) are monoton-
ically increasing functions of W (S, α) under some con-
ditions, as described below.

Lemma 3.1. The non-parametric scan statistics func-
tions characterized by equation (2.1) are increasing

functions of W (S, α) if W (S,α)
N(S) ≥ α and N(S) is con-

stant.

For example, in the Berk-Jones (BJ) statistic from
Table 2, the function increases with the number of sig-
nificant nodes—nodes with p-value less than α. Fur-
ther, given two node sets of the same size, the set with
more significant nodes scores higher according to the BJ
statistic. This provides us a way to optimize F (S) by
maximizing the function φ(·) for sets of fixed size, as
will be discussed next.

3.2 Second idea: Constraining the solutions.
We introduce the idea of a coloring of the nodes and only
consider connected subgraphs S, in which all nodes have
distinct colors. Our approach builds on the color-coding
technique of [2], but it involves several new techniques to
scale the algorithm up to graphs with millions of nodes.

Let K = {1, 2, . . . k} be a set of colors —where k
is a parameter— and let col(v) ∈ K denote the color
for node v. We say that a subgraph induced by set
S ⊆ V is colorful if col(u) 6= col(v), for all u, v ∈ S.
For a node v and subset of colors T ⊆ K, we let
M(v, T) = maxSW (S), where the maximization is over
all connected and colorful sets S ⊆ V , such that v ∈ S,
|S| = |T |, and {col(u) : u ∈ S} = T . In other words,
we only consider a set S if each node in the set has a
distinct color from T . These definitions are illustrated
in Figure 2. M(v, T) can be computed by a dynamic
program with a recurrence given in the lemma below.

Lemma 3.2. Let M(v, T) be defined as above. For any
node v and color s, M(v, {s}) = w(v) if col(v) = s, else
M(v, {s}) = −∞. If |T | ≥ 2:
M(v, T) = maxu∈Nbr(v)

T1,T2⊆T
{M(v, T1) + M(u, T2)}, where

the maximum is over all partitions T1 ∪ T2 = T .

3.3 ColCodeNP In Algorithm 1, we present Col-
CodeNP for optimizing non-parametric statistics. Re-

G	

F	

D	

E	

C	

B	A	
G

F

D

E

C

BA

G	

F	

D	

E	

C	

B	A	

G

F	

D

E	

C	

B	A

M(A,)	=	1	G

F

D

E

C

BA

G

F

D

E

C

BA

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

G	

F	

D	

E	

C	

B	A	

…

M(B,)	=	1	
M(C,)	=	1	
M(D,)	=	0	
M(E,)	=	1	
M(F,)	=	1	
M(G,)	=	0	
M(v,	T)	=	--∞
elsewhere

M(A,)	=	max	{	M(A,)	+	M(B,),		
																																				M(A,)	+	M(C,),						
																												M(A,)	+	M(B,),		
																																				M(A,)	+	M(C,)…}	

M(A,)	=	M(A,)	+	M(C,)	=	2	+	1	=	3						

M(D,)	=	M(D,)	+	M(F,)	=	1	+	1	=	2	

…
…

M(A,)	=	M(A,)	+	M(D,)	=	5	

1.	Input	Graph	G	 2.	We	create		several	
different	random	colorings	

3.	Run	for	one	parDcular	
coloring.	First,	compute	the	
base	cases	(color	sets	of	size	1).			

4.	Compute	M(v,	T)	boMom-up	

 i=1 S⇤1={A}

 2=2 S⇤2={A, B}

 3=3 S⇤3={A, B, C}

 4=3 S⇤4={A, B, C, D}

 5=5 S⇤5={A, B, C, D, E}

 6=5 S⇤6={A, B, C, D, E, F}

5.	Return	the	connected	set	with	
maximum	weight	for	each	size	
from	1	to	k	

w(A)	=	1	 w(B)	=	1	

w(C)	=	1	

w(D)	=	0	

w(F)	=	1	w(E)	=	1	

w(G)	=	1	

Figure2:ExampleillustratingtheMaxWeight procedurefork=6colors.

callthenotationinTable3. LetF(S)denoteany
ofthenon-parametricfunctionsinTable2,andlet
OPT(F,k)=maxS:|S|≤kF(S),wherethemaximumis
overallconnectedsubsetsSofsize≤k,foragiven
αmax.AlgorithmColCodeNPtakesthesizeboundk
asinput,andanerrorparameter,whichindicatesthe
probabilityofnotfindingtheoptimumsolution.
Mainsteps. Wedescribethemainstepsof ColCo-
deNPconnectingwiththetwoideasfromabove.

•Theset A inline3ofColCodeNP denotes
thesetofdistinctp-valuesofthenodesless
thanαmax;itsufficestofindthe maximumof
φ(W(S,α),N(S),α)forα∈A. Theforloopin
lines4—6findsthebestsolutionforeachi∈K
andanygivenα(bycallingMaxWeight inline
6),andthemaximumiscomputedinline7.

•MaxWeight findsthebestsolutionS∗iofsizei,
foreachi∈KusingtheideadescribedinSection
3.2. WeshowanexampleinFigure2.

•Eachiterationoftheouterforloopinlines14—
20startswitharandomcoloring(line15).Thisis
Step2inFigure2.

•Theinnerforloopinlines16—17computesthe
basecaseofthedynamicprogramfromLemma3.2;
then,wesolvetheprogrambottom-upinlines18–
19.TheseareSteps3and4inFigure2.

•ψikeepstrackofthe maximumweightsolution
restrictedtosizei,anditisupdatedifM(v,T)
denotesabettersolutionforsize|T|.

Theorem3.1.Foranynon-parametricfunctionF(·)
inTable2,algorithmColCodeNP returnssolution
S∗satisfyingPr[F(S∗)=OPT(F,k)]≥1− ,intime
O(2kek|A|mlog(n2/)),andusingspaceO(2kn),where
Aisthesetdefinedinline3ofAlgorithm1.

Proof.(Sketch) Westartwiththeproofofcorrectness
ofouralgorithm,whichinvolvesthreeparts.Thefirst
observationisthatwithintheouterforloopinthepro-
cedureMaxWeight,foreachrandomcoloringcol(·),

maxvM(v,{1,...,k})iscorrectlycomputed. Thisfol-
lowsbecausethealgorithmisadynamicprogramthat
computesallM(v,T)forT⊆K usingtherecurrence
inLemma3.2.
Next,weobservethatthealgorithmcorrectlyfinds

ψi(α) —themaximumweightamongsetsofsizeifora
givenα—foreachi,α,withprobabilityatleast1−/n2.
TheprocedureMaxWeight iscalledwithparameter
= /n2andeklog(1/)colorings. LetXijbethe

maximumweightfoundoversubsetsofsizeiinthejth

randomcoloring.Inthesupplementary material,we
showthatPr[maxjXij= ψi(α)]≤ = /n2. The
numberofpossiblechoicesforαis|A|,whichsatisfies
|A|≤n.Therefore,byaunionbound,itfollowsthatfor
alli,α∈A,wehavePr[maxjXij=ψi(α)]≤n

2 ≤ ,
andthealgorithmcorrectlycomputesψi(α)foralli,α
withprobability1− .
Finally, for any fixed i,α, by Lemma 3.1,

φ(W(S),N(S),α) is an increasing function of
W(S) whenN(S)is fixed. Thisimpliesthat
maxS:N(S)=iφ(W(S),N(S),α) =ψi(α) =F(S

∗
i(α)).

Therefore, maxi∈K,α∈AF(S
∗
i(α)) =OPT(F,k),and

itfollowsthat AlgorithmColCodeNP correctly
computesOPT(F,k)withprobabilityatleast1− .
Next,weconsiderthespaceandtimecomplexity.

ThealgorithmmaintainsthearrayM,indexedbynodes
andallpossiblecolorsets,whichleadstothespacecom-
plexityofO(2kn),sincethereareatmost2k−1possible
non-emptycolorsets.Therunningtimeistheresultof
solvingtherecurrenceforeachnodev,andforeach
colorsetT;thisrequiresexaminingeachpossibleparti-
tionT1∪T2=T,andeachneighboru∈Nbr(v),which
requirestimeO(|Nbr(v)|2|T|).Therefore,thetotalrun-

ningtimeforeachcoloringisO(v
k
i=0|Nbr(v)|2

i)=
O(v|Nbr(v)|2

k)=O(2km).Thealgorithmconsiders
O(eklog(n2/))colorings,sotherunningtimefollows.

3.4 TechniquesforScaling.ColCodeNPhasrig-
orousguaranteesonthequalityofthesolution;how-
ever,ifapplieddirectly,itwouldonlybefeasibleto
discoversmallanomaliesduetotheexponentialdepen-

Algorithm 1 ColCodeNP((G(V,E), αmax), k, ε).

1: Input: Instance (G(V,E), αmax), parameters k, ε
2: Output: Set S∗ with score OPT (F, k)
3: Let A be the set of p-values of nodes in V below αmax
4: for α ∈ A
5: Let w be a weight vector with w(v) = w(v, α)
6: {S∗i (α) : i ∈ K} = MaxWeight(G(V,E),w, k, ε/n2)
7: S∗ = argmaxi∈K,α∈AF (S∗i (α))
8: return S∗

9:

10: procedure MaxWeight(G(V,E),w, k, ε′)
11: Input: Instance (G(V,E),w) and parameters k, ε′

12: Output: {S∗i : i ∈ K}, such that S∗i has weight ψi
13: Let ψi = −∞ for all i ∈ K
14: for j = 1 to ek log (1/ε′)
15: For each node v, pick random color col(v) ∈ K
16: for v ∈ V, s ∈ K
17: M(v, {s}) = w(v) if col(v) = s; −∞ otherwise
18: for v ∈ V and T ⊆ K, with |T | ≥ 2
19: Use Lemma 3.2 to compute M(v, T)
20: If M(v, T) > ψ|T | update ψ|T | = M(v, T)
21: return {S∗i :

∑
v∈S∗i

w(v) = ψi, for i ∈ K}

dence in k, the solution size. We discuss two techniques
to scale ColCodeNP to networks with over a million
nodes without losing the approximation guarantees sig-
nificantly.
Graph refinement and effective solution size.
Graph refinement involves compressing subsets of nodes
into “supernodes”. The size of a set S after refinement
is determined in terms of the nodes and supernodes in
it. This new size is called effective size, and, in practice,
it is significantly smaller than the original size of S.

We observe that neighboring significant nodes can
be merged without loss in quality. We illustrate with an
example in Figure 3a. In the figure, orange nodes are
significant and have weight 1. The key idea is that any
solution containing node A should also include nodes
B and C, since φ(W (S, α), N(S), α) is increasing in the
number of significant nodes. In the figure, we replace
5 nodes of weight 1 for 2 nodes of weights 3 and 2.
The effective size of the subgraph A through F is 3.
In Section 5.6, we show that this refinement is very
effective in real networks, and we can usually discover
large solutions by setting k ≤ 10.

We extend this idea to an approximate refinement.
For a parameter β ∈ [0, 1], we keep merging nodes as
long as the number of significant nodes remains more
than β times the size of the supernode. Figure 3b shows
an example for β = 5/6. By allowing non-significant
node D to be merged, we are able to combine nodes A
through F in a subgraph of effective size 1 and weight 5.
Note that when β < 1, the solution may not be optimal,

G	

F	
2	

3	

00

{A, B, C}

{E, F}

RefineNP

{D}
{G}

D	

E	

C	

B	A	

(a)

G	

F	

5	 0

{A, B, C, D E, F}

RefineNP-β

{G}

D	

E	

C	

B	A	

(b)

Figure 3: (a) Graph refinement. Colored nodes are
significant. Nodes A, B, and C are merged into a supernode
of weight 3, and E and F form a supernode of weight 2. The
effective size of the set {A,B,C,D,E, F} is 3. (b) Graph
refinement with β = 5/6. By allowing non-significant
node D to be merged, the effective size of {A,B,C,D,E, F}
becomes 1 with an approximation guarantee bounded by β.

but Lemma 9.5 in the supplementary material describes
the effect on the approximation bound.
Low radius subgraphs. Let BG(v, r) (referred to the
ball of radius r at v) denote the set of nodes at distance
at most r from v in the graph G. It suffices to run
the algorithm restricted to the balls centered around
significant nodes. The balls are smaller than the full
graph, so they can be processed faster; furthermore,
they can be processed in parallel.
Remark. We use these two techniques to reduce the
size of the input graph before running MaxWeight.
Our algorithm, FastColCodeNP, with these addition
is shown in the supplementary material.

4 Algorithms for Parametric Scan Statistics
and Extensions

In parametric scan statistics, each node v of the input
graph has two weights associated with it: c(v) and b(v),
which makes the problem more challenging than for non-
parametric functions. Furthermore, there exist other
score functions for graph anomaly detection where both
nodes and edges have weights [4, 18]. Optimizing such
functions reduces to the Prize Collecting Steiner Tree
(PCST) problem [10], which is NP-Hard. We can ex-
tend the methods described above to these settings by
keeping additional information in the dynamic program.
We propose algorithm FastColCodeP for parametric
scan statistics and algorithm ColCodeNW for PCST.
Details of these algorithms may be found in the supple-
mentary material, but we show experimental results for
both in the next section.

5 Experiments

Our experiments address the following questions.
1. Optimization power. Do our algorithms find high-
scoring subgraphs in real networks and synthetic bench-
marks? How do they compare with existing methods?

(Section 5.3)
2. Event detection power. Do our algorithms cor-
rectly identify anomalous subgraphs? How do precision
and recall compare with baselines?(Section 5.4)
3. Scalability. How do our algorithms scale to net-
works with more than 105 nodes? (Section 5.5)
4. Performance in real datasets. How does the per-
formance in real datasets compare with the worst case
bounds? (Section 5.6).

For brevity, we focus on one scan statistic from
each class as illustrative examples: (1) Berk-Jones (BJ)
statistic [3] with αmax = 0.15, (2) positively-elevated
mean statistic (EMS) [17], and (3) the Heaviest Sub-
graph (HS) [4] and EventTree+ [18] functions, as ex-
amples of non-parametric, parametric, and generalized
functions with edge weights, respectively.

5.1 Datasets. We use datasets from different do-
mains, including social networks, infrastructure net-
works, and standard synthetic benchmarks. For these
datasets, we have multiple instances, corresponding to
snapshots of the networks at different times, and we
have data of events in each snapshot. Additionally, we
use datasets with planted anomalies for our scalability
experiments. A summary of the datasets is provided
in Table 4. See the supplementary material for more
details.

Table 4: Datasets used in our experiments
Dataset Description Nodes Edges Instances
Datasets with real events
CitHepPh Citation network 11,895 76,284 4
NEast Network of counties 245 683 10,000

in Northeastern USA
Traffic Traffic Network of 1,870 1,993 1,488

Los Angeles Country, CA
Twitter Follower network collected 2,645 17,108 182

through Twitter API
BWSN Battle of the 12,527 14,831 22

Water Sensors
PCST Benchmark for the Prize Collecting 100 to 400 284 to 1,576 34

Steiner Tree Problem
Datasets with planted anomalies for scalability experiments
Email-EuAll Email Network 224,832 340,795 1
Higgs-Retweet Retweet Network 223,833 307,884 1
RoadNet-PA Traffic Network of 1,088,092 1,541,898 1

Pennsylvania
Random Erdos-Renyi graphs of 100 to O(100) to 5

with 100 to 1,000,000 nodes 1, 000, 000 O(1, 000, 000)

5.2 Baseline Methods. We compare our proposed
algorithm with 6 state-of-the-art methods that are or-
ganized in three categories:
(1) NPHGS [5]: A local search heuristic for optimizing
the BJ scan statistic. (2) AdditiveGraphScan [23] and
DepthFirstScan [22]: The state-of-the-art algorithms
for optimizing parametric scan statistics that satisfy the
Linear-Time-Subset-Scanning (LTSS) property. The
EMS statistic also belongs to this category.
(3) GraphLaplacian [21] and EdgeLasso [20]: The rep-
resentative methods for anomalous subgraph detection
that optimize their own specific score functions, but are
often considered as baseline methods in connected sub-

graph detection papers [17].
(4) EventTree+ [18] and MEDEN [4]: For optimizing
anomaly score functions with node and edge weights.
Parameter Tuning. The methods under evaluation,
including ours, depend on user-specified parameters.
We set k to 10 or below for our algorithms. We discuss
how we calibrate other parameters in the supplementary
material.

5.3 Optimization Power

5.3.1 Non-Parametric Scan Statistics. We com-
pare FastColCodeNP to other algorithms on the
BJ statistic. In Table 1, we report the average BJ
score obtained by each method, where the average is
taken over all the instances in each dataset. We ob-
serve that FastColCodeNP achieves higher scores
than all other methods. The difference in score is more
pronounced in the NEast dataset, where FastCol-
CodeNP more than doubles the score of EdgeLasso

(EL) and GraphLaplacian (GL). We also note that
AdditiveGraphScan has performance close to our al-
gorithm, which is reasonable, since this method uses
a sophisticated heuristic for Steiner connectivity prob-
lems.

5.3.2 Parametric Scan Statistics. Next, we com-
pare FastColCodeP to other methods with respect to
the EMS function. Table 5 shows the average score for
different datasets. We find that FastColCodeP has
the best performance in all datasets, except for NEast,
where AdditiveGraphScan (GS) scores sligthly higher.

Table 5: Parametric scan statistics optimization. We
evaluate different methods with respect to the EMS. In
almost all datasets, FastColCodeP has better performace
than existing methods.

Elevated Mean Scan Statistic
FastColCodeP GS EL GL

CitHepPh 43.611 8.578 14.959 41.830
NEast 41.903 42.164 5.570 7.607
Traffic 11.763 9.920 4.526 8.752
Twitter 23.019 11.337 22.660 19.110
BWSN 109.097 21.64 108.933 107.459

5.3.3 Functions with Node and Edge Weights.
We also test our algorithm on two objective functions for
event detection that consider edge weights in addition
to node weights: the Heaviest Subgraph (HS) [4] and
EventTree+ [18] problems. The methods proposed
in these two works are MEDEN [4] and GreedyT [18],
respectively. Both problem formulations reduce to the
Prize Collecting Steiner Tree (PCST) problem [10]. We
use our framework to design an algorithm for the PCST
objective; we call this algorithm ColCodeNW, and

K
1
0
0

K
1
0

0
.1

K
1
0
0

.1
0

K
1
0

0
.2

K
1
0

0
.4

K
1

0
0
.5

K
1
0

0
.6

K
1
0

0
.7

K
1
0
0

.8
K

1
0

0
.9

K
2
0
0

K
4
0
0

K
4
0

0
.1

K
4
0
0

.1
0

K
4
0

0
.2

K
4

0
0
.3

K
4
0

0
.4

K
4

0
0
.5

K
4
0

0
.6

K
4
0

0
.7

K
4
0
0

.8
K

4
0

0
.9

Benchmark

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 S

co
re

ColCodeNW

TopDown

GreedyT

Figure 4: PCST objective score in a set of hard PCST
benchmarks. ColCodeNW finds solutions of higher quality
than state-of-the-art heuristics.

we compare it in terms of objective score to MEDEN and
GreedyT on the PCST benchmark of [10]. For MEDEN,
we convert the PCST instances to HS instances and run
the TopDown heuristic described in [4]. For GreedyT,
we convert the instances to a complete graph where an
edge between two nodes has weight equal to the shortest
path between the nodes, as described in [18]. Figure 4
shows the scores of the two heuristics relative to the
score of ColCodeNW. Our algorithm finds subgraphs
of higher quality than the heuristics. The score is as
much as 4 times higher compared to GreedyT and 1.5
times higher compared to MEDEN.

5.4 Event Detection Power. Now, we evaluate
FastColCodeNP in terms of event detection power.
We use the ground truth provided with the BWSN
dataset, and we evaluate in terms of accuracy, precision,
recall, and the F1 score. Let R be the set of nodes
in the anomalous subgraphs and let S be the detected
subgraph; then, we define

(1) Accuracy(R,S) = |R∩S|
|R∪S| ,

(2) Precision(R,S) = |R∩S|
|S| ,

(3) Recall(R,S) = |R∩S|
|R| , and

(4) F1 score = 2
(

Precision(R,S)·Recall(R,S)

Precision(R,S)+Recall(R,S)

)
.

In order to assess the performance of our method
under noise, we introduce a random percentage of
uniform noise in each instance. For a given noise level
l, each non-significant node becomes significant with
probability l.

In Table 6, we compare the performance of Fast-
ColCodeNP with other algorithms at different noise
levels. As in the previous section, we observe that our
algorithm achieves higher objective scores compared to
other methods, even when noise is present. As for the
event detection power, FastColCodeNP has higher
accuracy and recall for all the noise levels and higher
F1 score at almost every level. Finally, we note that the
results in this section provide evidence that better objec-
tive scores also lead to better detection power, thus the
importance of algorithms with good theoretical bounds.

5.5 Scalability. With the techniques presented in
Section 3.4, we are able to run FastColCodeNP in
networks with over one million nodes. We note that in
previous work only networks of up to 80, 000 nodes have
been considered.. In Table 7, we compare our algorithm
to existing methods in terms of objective score and
running time. First, we compare FastColCodeNP
to the best-performing heuristic: AdditiveGraphScan

(GS). We note that both methods achieve the same
score in all datasets, but the running time of the latter
is one order of magnitude larger, and it didn’t complete
after 10 hours for the road network. Second, we observe
that GraphLaplacian (GL) does not scale to large
networks due to the fact high time and space complexity
of constrained quadratic programming methods. We
also note that our algorithm is much faster on the road
network than on the other two because nodes in this
planar network have low degree, thus making our low-
radius technique more effective. Finally, EdgeLasso,
DFS, and NPHGS are faster than FastColCodeNP;
however, the scores obtained are significantly lower than
using our algorithm.

In Figure 1, we show the scalability of all the
algorithms we consider as a function of graph size in
the Random dataset. FastColCodeNP is faster than
other methods for graph of size 104 and above, and it
was the only algorithm to run to completion on graphs
with one million nodes within 24 hours.

5.6 Performance guarantees in real datasets.
Graph refinement. Our graph refinement operation
reduces the number of significant nodes in real datasets
to less than a third of the original number. In Table 8,
we report the number of significant nodes before and
after graph refinement for β ∈ {1, 0.95, 0.90}. Each
dataset initially contains hundreds of significant nodes,
with Twitter being close to 1, 000. However, after graph
refinement, this number goes down to less than 100.
With approximate refinement, we are able to further
reduce the effective number of significant nodes, down to
a single digit in most cases. Because there are only a few
significant supernodes, solutions of high score are small.
In fact, if we set k to 10 or less in FastColCodeNP,
we are able to discover solutions of higher scores than
previous methods (Section 5.3).
Convergence in few iterations. Algorithm Fast-
ColCodeNP uses ` = ek log n2/ε random colorings to
guarantee a solution with probability 1 − ε. In prac-
tice, we find the number of colorings needed is much
smaller—this is shown in Figure 5 for the PCST bench-
mark. Each line in the plot represents the solution ob-
tained for one instance of size 100; the y-axis shows
the objective value obtained normalized by the objec-

Table 6: Average precision, recall, F1 score, accuracy, and objective value at different levels of noise.
Precision Recall F1 Score Accuracy F (S)

GS EL GL FastColCodeNP GS EL GL FastColCodeNP GS EL GL FastColCodeNP GS EL GL FastColCodeNP GS EL GL FastColCodeNP
0% 0.980 0.999 0.901 0.977 0.943 0.856 0.856 0.955 0.948 0.895 0.820 0.952 0.966 0.855 0.820 0.973 599.972 530.850 530.457 602.164
2% 0.974 0.991 0.995 0.973 0.967 0.796 0.772 0.975 0.970 0.854 0.842 0.957 0.946 0.789 0.769 0.950 579.197 427.984 437.783 580.977
4% 0.945 0.985 0.984 0.966 0.955 0.687 0.663 0.971 0.952 0.775 0.757 0.963 0.912 0.678 0.652 0.929 565.363 393.930 387.914 571.231
6% 0.959 0.964 0.973 0.954 0.937 0.567 0.542 0.953 0.946 0.683 0.664 0.953 0.901 0.558 0.536 0.912 522.694 318.593 300.118 531.497
8% 0.928 0.960 0.966 0.931 0.888 0.561 0.502 0.919 0.905 0.670 0.626 0.923 0.830 0.544 0.490 0.860 483.127 315.720 291.227 491.657

Table 7: Performace-runtime tradeoff in large datasets for
non-parametric scan statistic evaluation.

Berk-Jones Scan Statistic (Time in seconds)
FastColCodeNP GS EL GL DFS NPHGS

Email-EuAll 420.46 (2,376) 420.46 (20,254) 275.08 (679) - 392.53 (3,671) 275.08 (10)
Higgs-Retweet 839.18 (1,015) 839.18 (32,340) 421.16 (585) - 721.70 (3,213) 421.16 (5)
RoadNet-PA 24.66 (22) - 24.66 (7,919) - 21.22 (1,584) 13.28 (15)

Table 8: Number of significant nodes with graph refinement.

Dataset W (S, α) Graph Refinement
(α = 0.15) β = 1 β = 0.95 β = 0.90

CitHepPh 624 20 3 1

NEast 65 24 24 21

Traffic 157 61 61 60

Twitter 991 80 2 1

BWSN 333 4 2 2

tive obtained in the last iteration of the algorithm. The
theoretical bound requires 3, 285 random colorings to
guarantee 95% probability. However, the best solution
is found in less than 20 iterations for all instances, and
sooner for most of them. We observed similar results in
the other networks in Table 4.

0 5 10 15 20
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Score of the solution found (normalized by that
of the optimum) as a function of the number of iterations.

6 Application

We use our methods for event detection in Twitter fol-
lower graphs of Mexico and Venezuela. We model in-
teractions —i.e. retweets and replies—between users
as Poisson counts. The weight of an edge is given by

− log(p(nte|n[1,t−1]
e)/µ, where p(nte|n[1,t−1]

e) is the pos-
terior probability of seeing nte interactions given the
counts in the previous days, and µ = 0.05 is a signifi-
cance threshold. This weighing function [14] is positive-
increasing if the posterior probability is less than µ and
negative-decreasing otherwise. After assigning weights
to edges, we solve the Heaviest Dynamic Subgraph prob-
lem [4] using algorithm ColCodeNW (See Section
5.3.3). For Venezuela, the temporal anomalous sub-
graph spans the time period between January 4, 2014
and March 31, 2014, which was a time of nationwide
protests against the central government of that coun-
try. We also extracted the tweets corresponding to the

(a)
(b)

Figure 6: Examples of events found by solving the HDS
formulation in Twitter networks using our methods.

heavy subgraphs, and we find that these tweets contain
chatter about important national events.Figure 6 shows
one such event. The predominant terms of the tweets
relate to a protest organized in the city of Tachira de-
manding the liberation of local students, who had been
put in jail in the previous days for protesting. In the
supplementary material, we show results for the Twitter
follower network of Mexico.

7 Related Work

There is a very large body of work related to our paper
because of the wide range of applications. For brevity,
we only discuss some of the specific papers that deal
with scan statistics in Table 9, and give more detailed
comparison in the online supplementary material. We
also refer to the comprehensive survey by Akoglu et
al. [1] for general discussion on anomaly detection. As
shown in Table 9, our method is the first to give rigorous
guarantees for a large class of scan statistics.

8 Conclusions

We present a unified framework for optimizing a broad
class of graph scan statistics with connectivity con-
straints, with the following novel characteristics: (1) it
gives rigorous guarantees for a large class of paramet-
ric and non-parametric score functions, (2) it can be
scaled to large graphs with over a million nodes, and
Our methods will lead to direct improvements in per-
formance quality for other uses of graph scan statistics
in different applications.
Acknowledgements. The work of Jose Cadena and
Anil Vullikanti has been partially supported by the
following grants: DTRA CNIMS Contract HDTRA1-
11-D-0016-0010, NSF BIG DATA Grant IIS-1633028
and NSF DIBBS Grant ACI-1443054.

References

Table 9: Summary of the related work and how it compares to this paper.

Algorithms based on optimization of parametric scan statistics in networks

Exact algorithms Exhaustive search over connected subgraphs [24], branch-and-bound

method methods for Kulldorff’s and DepthFirstScan for upper level set
scan statistic [22]

Do not scale to graphs with more

than 1000 nodes

Simulated annealing Based on a concept of “non-compactness” for penalizing clusters [7] Exponential time, No guarantee
AdditiveGraphScan Connects clusters based on shortest path distances [23], used for nonlin-

ear score functions

O(mn+n2 logn) time, no quality

guarantees
EdgeLasso Sparse learning method based on edge-lasso regularization [20], handles

quadratic score functions

O(l · n3) time, no guarantees

GraphLaplacian Spectral scan method based on graph Laplacian regularization [21],
handles quadratic score functions

O(l · n3) time, no guarantees

Algorithms based on optimization of nonparametric scan statistics

NPHGS Heuristic method for optimizing nonparametric scan statistics on general
graphs [5], considers nonlinear functions

O(n logn) time, no quality guar-
antees

Reduction to variants of Network Design and using methods for Prize-Collecting Steiner Tree (PCST)

EventTree+ Use PCST method [18], linear function O(n2 logn), 2-approximation for
PCST from [18]

Meden Greedy algorithm for the Heaviest Dynamic Subgraph (HDS) problem,

equivalent to the NetWorth objective, which is a linear function [4]

O(n2 logn) time, no quality guar-

antees

Our algorithm: gives optimal solution for a large number of parametric and non-parametric scan statistics with effective

solution size parameter τ , with probability at least (1− ε), and runs in time O((2e)τ ·m log n
ε

)

[1] L. Akoglu, H. Tong, and D. Koutra. Graph based
anomaly detection and description: a survey. Data
Mining and Knowledge Discovery, 2014.

[2] N. Alon, R. Yuster, and U. Zwick. Color-coding.
Journal of the ACM (JACM), 1995.

[3] R. H. Berk and D. H. Jones. Goodness-of-fit test
statistics that dominate the kolmogorov statistics. Z.
Wahrsch. Verw. Gebiete, 1979.

[4] P. Bogdanov, M. Mongiov̀ı, and A. Singh. Mining
heavy subgraphs in time-evolving networks. In ICDM,
2011.

[5] F. Chen and D. Neill. Non-parametric scan statistics
for event detection and forecasting in heterogeneous
social media graphs. In KDD, 2014.

[6] D. Donoho and J. Jin. Higher criticism for large-scale
inference, especially for rare and weak effects. Statist.
Sci., 30(1), 2015.

[7] L. Duczmal, M. Kulldorff, and L. Huang. Evaluation
of spatial scan statistics for irregularly shaped clusters.
Journal of Computational and Graphical Statistics,
2006.

[8] T. Hansen and F. Vandin. Finding mutated sub-
networks associated with survival in cancer. arXiv
preprint arXiv:1604.02467, 2016.

[9] S. Iyengar et al. The genetic basis of complex traits:
rare variants or ”common gene, common disease”?
Methods Mol Biol., 2007.

[10] D. Johnson, M. Minkoff, and S. Phillips. The prize
collecting steiner tree problem: Theory and practice.
In ACM SODA, 2000.

[11] M. Kulldorff. A spatial scan statistic. Communications
in Statistics: Theory and Methods, 1997.

[12] M. Leiserson et al. Pan-cancer network analysis iden-
tifies combinations of rare somatic mutations across
pathways and protein complexes. Nature genetics,

47(2):106–114, 2015.
[13] E. McFowland, S. Speakman, and D. B. Neill. Fast

generalized subset scan for anomalous pattern detec-
tion. JMLR, 14(1), 2013.

[14] M. Mongiov̀ı, P. Bogdanov, R. Ranca, A. Singh, E. Pa-
palexakis, and C. Faloutsos. Netspot: Spotting signifi-
cant anomalous regions on dynamic networks. In SDM,
2013.

[15] D. B. Neill. An empirical comparison of spatial scan
statistics for outbreak detection. International Journal
of Health Geographics, 2009.

[16] D. B. Neill. Fast subset scan for spatial pattern
detection. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 2012.

[17] J. Qian, V. Saligrama, and Y. Chen. Connected sub-
graph detection. In AISTATS, 2014.

[18] P. Rozenshtein, A. Anagnostopoulos, A. Gionis, and
N. Tatti. Event detection in activity networks. In
KDD, 2014.

[19] J. Sharpnack, A. Krishnamurthy, and A. Singh. Near-
optimal anomaly detection in graphs using lovasz ex-
tended scan statistic. In NIPS, 2013.

[20] J. Sharpnack, A. Singh, and A. Rinaldo. Sparsistency
of the edge lasso over graphs. In AISTATS, 2012.

[21] J. Sharpnack, A. Singh, and A. Rinaldo. Changepoint
detection over graphs with the spectral scan statistic.
In AISTATS, 2013.

[22] S. Speakman et al. Scalable detection of anoma-
lous patterns with connectivity constraints. Jl Comp
Graphical Stat, 2015.

[23] S. Speakman, Y. Zhang, and D. B. Neill. Dynamic
pattern detection with temporal consistency and con-
nectivity constraints. In ICDM, 2013.

[24] K. Takahashi, M. Kulldorff, T. Tango, and K. Yih. A
flexibly shaped space-time scan statistic for disease out-

break detection and monitoring. International Journal
of Health Geographics, 2008.

9 Supplementary Material

We present proof details, pseudocode, and extensions of
the methods presented in Section 3. For brevity, some
proofs have been omitted, but they can be found in an
online extended version of this paper [?], along with the
code and datasets used in the experiments.

9.1 Additional Details for Section 2

9.1.1 Scan Statistics Functions. Table 10 lists ex-
amples of parametric and non-parametric scan statis-
tics that can be optimized using our framework. We
list more functions that fall under our framework in the
online version.

9.1.2 Hardness Because of connectivity constraints,
optimizing scan statistics on graphs is challenging in
general. Note that this contrasts with the case without
any connectivity requirement, where the optimal value
of the scan statistic can be computed in polynomial time
because of a linear ordering property [16].

Lemma 9.1. Given an instance (G = (V,E), αmax) of
non-parametric scan statistics, finding a connected set
S ⊆ V that maximizes the score F (S) is NP-complete.

Lemma 9.2. Given an instance (G = (V,E), b(·), c(·))
of parametric scan statistics, finding a connected set
S ⊆ V that maximizes the score F (S) is NP-complete.

9.2 Additional details for Section 3

Proof. (of Lemma 3.2) Suppose M(v, T) is achieved for
a connected set S, such that |S| = |T | and {col(u) :
u ∈ S} = T , with M(v, T) =

∑
i∈S w(i, α). We

claim that there exists u ∈ Nbr(v), and partitions
T = T1∪T2, and S = S1∪S2, such that: (1) M(v, T) =
M(v, T1) + M(u, T2), (2) {col(i) : i ∈ S1} = T1 and
{col(i) : i ∈ S2} = T2, and (3) the subsets of nodes S1

and S2 are connected. Since S is connected, there exists
a tree H that spans S and contains node v. Further,
there must exist a node u ∈ Nbr(v) such that (u, v) ∈ T ,
since |T | = |H| ≥ 2. Let H1 and H2 be the trees
rooted at nodes v and u, respectively, that result when
edge (u, v) is deleted in H. Let S1 and S2 denote the
sets of nodes in H1 and H2, respectively. Let T1 and
T2 be the colors used by S1 and S2, respectively. By
construction, we have M(v, T) = M(v, T1) + M(u, T2),
so that the partitions S = S1 ∪ S2 and T = T1 ∪ T2

satisfy the requirements mentioned earlier. Therefore,
the recurrence follows.

9.2.1 Scaling We take advantage of a locality prop-
erty of non-parametric scan statistics. Namely, if we
are given a set S with score F (S), we can increase the
score of the set by adding any significant node that is a
neighbor of a node already in S.

Lemma 9.3. Let G(V,E) be a network, and let F (·) be
a non-parametric scan statistic function. Given a set
S ⊆ V , suppose there exists a significant node u 6∈ S
and an edge (u, v) ∈ E, for some v ∈ S. Then,
F (S ∪ {u}) ≥ F (S).

Proof. Non-parametric scan statistics are increasing on
W (S)
N(S) . Since u is significant, we have that

W (S ∪ {u})
N(S ∪ {u}) =

W (S) + 1

N(S) + 1
≥ W (S)

N(S)
,

and the proof follows.

Exact refinement. An implication of Lemma 9.3 is
that we can collapse components of significant nodes
into a single node prior to running ColCodeNP. We
propose a graph refinement to reduce the total num-
ber of significant nodes in a graph. Given a network
G(V,E), p-values for the nodes in V , and a significance
level α, we define V1, . . . , Vr as the connected compo-
nents (or supernodes) of G induced by the set of signif-
icant nodes. We create a new graph H(V ′, E′), whose
node set consists of V1, . . . , Vr and the non-significant
nodes in G, V \⋃ri=1 Vi. Edges between non-significant
nodes are preserved in H, and we put an edge from a
non-significant node u to Vi if the edge (u, v) exists, for
some v ∈ Vi. Finally, we create a vector of weights,
w′. The weight of a node in H is |Vi| for each supern-
ode Vi, and 0 otherwise. This procedure is equivalent
to removing all the significant nodes and replacing them
with the respective supernode Vi. Figure 3a in the main
text illustrates the procedure. After this preprocessing
step, we run procedure MaxWeight for the instance
(H(V ′, E′),w′).

Lemma 9.4. Let ((G(V,E), α), k, ε) be an input to
ColCodeNP, and let S∗G be the solution returned by
the algorithm. Similarly, let ((H(V ′, E′), α), k, ε) with
weights w′ be the corresponding instance generated by
graph refinement, and let S∗H be the solution returned by
ColCodeNP in this instance. Then, F (S∗H) = F (S∗G).
Furthermore, suppose |S∗G| = k; then, |S∗H | = k′, for
some k′ ≤ k, so it is possible to execute ColCodeNP
with parameter k′ and still obtain F (S∗H) = F (S∗G).

Proof. The lemma follows from Lemma 9.3.

Approximate refinement. It is possible to further
compress the graph by including non-significant nodes
into the components described above. As before, we
first obtain connected components of significant nodes,
V1, . . . , Vr, but now, we keep adding nodes to a com-
ponent Vi as long as the number of significant nodes is
at least β|Vi|, where β is a parameter between 0 and 1.

Table 10: Scan Statistics Functions that can be optimized with our framework.

Non-Parametric Scan Statistics (The following definitions are by default, unless otherwise indicated)
F (S) = maxα≤αmax φ(W (S, α), N(S), α), p(v) refers to the p-value of node v,
N(S) = |S|,W (S, α) =

∑
v∈S I(p(v) ≤ α), where I(True) = 1 and I(False) = 1.

Name Original Form General Form

Berk-Jones [3] F (S) = max
α≤αmax

N(S)KL(
W (S,α)
N(S)

, α) φ(a, b, α) = b · KL(a/b, α), where KL(x, α) = x log
(
x
α

)
+

(1− x) log
(

1−x
1−α

)
Higher Criticism [?] F (S) = max

α≤αmax

W (S,α)−N(S)α√
N(S)α(1−α)

φ(a, b, α) = (a− b · α)/
√
b · α(1− α)

Kolmogorov-Smirnov
[?]

F (S) = max
α≤αmax

√
N(S) ·

(
W (S,α)
N(S)

− α
)

φ(a, b, α) =
√
b
(
a
b − α

)
Anderson-Darling [?] F (S) = max

α≤αmax

√
N(S) ·(

W (S,α)
N(S)

− α
)
/

√
W (S,α)
N(S)

·
(

1− W (S,α)
N(S)

) φ(a, b, α) =
√
b
(
a
b − α

)
/
√
a
b ·
(
1− a

b

)

Stochastic Ordering of
p-Values [?]

F (S) = N(S)
∫ αmax
0

(W (S,α)/N(S)−α)2

α(1−α)
dα φ(a, b, α) = b

∫ αmax
0

(a/b−α)2

α(1−α)
dα

Fisher’s Test [?] F (S) = −∑v∈S log p(v)/N(S) W (S, α) =
∑
v∈S log p(v), φ(a, b, α) = −a/b

Truncated Fisher’s
Test

F (S) = max
α≤αmax

−
∑
v∈S I(p(v)≤α) log p(v)

N(S)
W (S, α) =

∑
v∈S I(p(v) ≤ α) log p(v), φ(a, b, α) = −a/b

Stouffer’s Test [?] F (S) = −
∑
v∈S Φ−1(1−p(v))√

N(S)
W (S, α) =

∑
v∈S Φ−1(1 − p(v)), φ(a, b, α) = −a/b, where

Φ−1(·) refers to the inverse cumulative density function of
standard Gaussian distribution

Parametric Scan Statistics (The following defintions are by default, unless otherwise indicated)
F (S) = g(C(S), B(S)), C(S) =

∑
v∈S c(v), B(S) =

∑
v∈S b(v)

Positive Elevated
Mean Scan Statis-
tic [17]

F (S) =
∑
i∈S xi/

√
N(S) g(a, b) = a/

√
b

Elevated Mean Scan
Statistic [17]

F (S) = (
∑
i∈S xi)

2/N(S) g(a, b) = a2/b

Expectation-based
Poisson Scan Statis-
tic [16]

F (S) = C(S) log(C(S)/B(S)) + B(S)− C(S) g(a, b) = a log(a/b) + b− a

Kulldorff Scan Statis-
tic [11]

F (S) = C(S) log
(
C(S)
B(S)

)
+ (C −

C(S)) log
(
C−C(S)
B−B(S)

)
− C log

(
C
B

)
, where

C =
∑
v∈V c(v) and B =

∑
v∈V b(v).

g(a, b) = a log(ab) + (C − a) log(C−aB−b)− C log
(
C
B

)

Expectation-based
Gaussian Scan Statis-
tic [16]

F (S) = (C(S) − B(S))2/(2B(S)), where σ(v)
refers to the standard deviation of c(v) that is
calibrated based on its historical observations,
C(S) =

∑
v∈S(c(v)b(v))/σ(v)2, and B(S) =∑

v∈S b(v)/σ(v)2

g(a, b) = (a− b)2/(2b)

We show an example in Figure 3b. By doing this, we
are able to reduce the number of anomalous supernodes.
We may not find the optimal solution now; however, we
can control the error with the parameter β.

Lemma 9.5. Denote the number of nodes signicant at
level α in a set S as Nα(S). Let S∗ be the set that

maximizes F and let r(S∗) = Nα(S∗)
N(S∗) . There is a

solution on the instance H with ratio r(S) ≥ βr(S∗).

Proof. We split the set S∗ into significant nodes,
Nα(S∗), and non-significant nodes, N−α (S∗), such that
N(S) = Nα(S∗) + N−α (S∗). We now show that, in the
instance H, there exists a set S with ratio

r(S) =
Nα(S)

N(S)
≥ Nα(S∗)

Nα(S∗) +N−α (S∗) + 1−β
β Nα(S∗)

.

We define S′ as the set formed by the supernodes Vi
corresponding to the significant nodes in S∗, and we

note that Nα(S′) ≥ Nα(S∗); for simplicity, we assume
equality. By construction, the cardinality of S′ is
N(S′) = Nα(S′) + 1−β

β Nα(S′) = Nα(S∗) + 1−β
β Nα(S∗).

Note that the nodes in S′ may be disconnected; however,
we can connect them using a set of anomalous nodes
S′′ of size at most N−α (S∗). Finally, we form a set
S = S′ ∪ S′′ that has the desired ratio.

To conclude the proof, we compute r(S)/r(S∗):

r(S)

r(S∗)
=

Nα(S)
N(S)

Nα(S∗)
N(S∗)

≥
Nα(S∗)

N(S∗)+ 1−β
β Nα(S∗)

Nα(S∗)
N(S∗)

=
1

1 + 1−β
β ×

Nα(S∗)
N(S∗)

.

Noticing that Nα(S∗)
N(S∗) ≤ 1, we obtain r(S) ≥ βr(S∗).

9.3 Extensions to Parametric Scan Statistics.
In Algorithm 3, we describe ColCodeP for parametric
scan statistics maximization. For these functions, each
node v of the input graph has two weights associated
with it: C(v) and B(v). Therefore, we need a more

Algorithm 2 FastColCo-
deNP(G(V,E), αmax, k, ε, β).

Input: Instance (G(V,E), αmax), parameters k, ε and β
Output: Set S∗ with score OPT (F, k)
Let A be the set of p-values of nodes in V below αmax
forα ∈ A

Perform approximate refinement with parameter β.
Let H = (V ′, E′) be the refined graph with weights w′

{S∗i (α) : i ∈ K} = MaxWeight(H(V ′, E′),w′, k, ε/n2)

S∗ = argmaxi∈[1,k],α∈AF (S∗i (α))
return S∗

general algorithm than ColCodeNP. Analogous to
Lemma 3.1, we make use of the following property:

Lemma 9.6. The parametric scan statistics functions
characterized by equation (2.2) are increasing functions
of C(S) if C(S) > B(S) and B(S) is constant.

Given a graph G(V,E) and vectors C and B,
let M(v, T, j) be the maximum value C(S) over all
connected subsets S, such that (1) v ∈ S, (2) S is
colorful with respect to T , and (3) B(S) = j. Here
j ranges from 1 to B(V). M(v, T, j) can be computed
by a dynamic program with the following recurrence.

Lemma 9.7. Let M(v, T, j) be defined as above. For
any node v and color s, M(v, {s}, j) = c(v) if col(v) = s
and b(v) = j, else M(v, {s}, j) = −∞. If |T | ≥ 2:

M(v, T, j) = max
u∈Nbr(v)
T1,T2⊆T
j1+j2=j

{M(v, T1, j1) +M(u, T2, j2)}.

where the maximum is over all partitions T1 ∪ T2 of
the set T , all integers j1, j2 with j1 + j2 = j. and all
neighbors u of v.

Proof. Analogous to Lemma 3.2.

9.3.1 ColCodeP Our algorithm for maximizing
parametric scan statistics, ColCodeP, is presented
in Algorithm 3. The procedure MaxWeightP uses
Lemma 9.7 to compute ψi = maxT :|T |=iM(v, T, j) for
all i ≤ k.

Theorem 9.1. Let F (·) be any of the parametric
scan statistics in Table 10, and let OPT (F, k) =
maxS:|S|≤k F (S), where the maximum is over all con-
nected subsets S of size ≤ k. ColCodeP returns so-
lution S∗ satisfying Pr[F (S∗) = OPT (F, k)] ≥ 1 −
ε, in time O(2kekmBmax log (n/ε)), and using space
O(2knBmax), where Bmax = B(V).

Proof. Analogous to Theorem 3.1.

Algorithm 3 ColCodeP((G(V,E),C,B), k, ε).

1: Input: Instance (G(V,E),C,B), parameters k and ε
2: Output: Set S∗ with score OPT (F, k)
3: {S∗i : i ∈ K} = MaxWeightP(G(V,E),C,B, k, ε/n)
4: S∗ = argmaxi∈[1,k]F (S∗i)
5: return S∗

6:

7: procedure MaxWeightP(G(V,E),C,B, k, ε′)
8: Input: Instance (G(V,E),C,B) and parameter k
9: Output: Set S∗i with maximal weight ψi for all i ∈ [1, k]

10: Let ψi = −∞ for all i ∈ [1, k]
11: for t = 1 to ek log (1/ε′)
12: For each node v, pick random color col(v) ∈ K
13: for v ∈ V, s ∈ K, j ≤ B(V)
14: M(v, {s}, j) = c(v) if col(v) = s and j = b(v); −∞

otherwise
15: for v ∈ V , T ⊆ K, with |T | ≥ 2, j ≤ B(V)
16: Use Lemma 9.7 to compute M(v, T, j)
17: If M(v, T, j) > ψ|T | update ψ|T | = M(v, T, j)
18: return {S∗i :

∑
v∈S∗i

c(v) = ψi, for i ∈ K}

We note that by approximating B(S) within a
factor of (1 + δ), the running time in Theorem 9.1

can be improved to O(2kekmn2

δ log (n/ε)), while losing
a constant factor in terms of the approximation. We
define µ = δBmax/n, for some δ > 0. Then, we define a
vector B′, where b′(v) = bb(v)/µc, for each node v. By
invoking ColCodeP on the instance (G(V,E),C′,B′),
we obtain a (1 + δ) approximation on the weight of S∗.

9.3.2 Scaling There is a notion of graph refinement
for parametric scan statistics analogous to the one pre-
sented above. We note that the parametric functions in
Table 10 are increasing on the ratio r(S) = C(S)/B(S).
Therefore, if we are given a set S with score F (S), we
can increase the score of the set by adding any node
that is a neighbor of a node already in S as long as
r(S) does not decrease. This idea is formalized in the
following lemma.

Lemma 9.8. Let G(V,E) be a network, and let F (·) be
a parametric scan statistic function. Given a set S ⊆ V ,
suppose there exists an node u 6∈ S and an edge (u, v) ∈
E, for some v ∈ S, such that C(S ∪{u})/B(S ∪{u}) ≥
C(S)/B(S); then, F (S ∪ {u}) ≥ F (S).

Exact refinement. For parametric scan statistics,
the exact refinement consists of merging nodes into
components as long as the ratio r(S) of the component
does not decrease. Given a network G(V,E) and event
(c(v)) and population (b(v)) counts for every v ∈ V ,
we maintain a list of components or supernodes V =
V1, . . . , Vr and the graph H(V ′, E′) induced by those.

There is an edge between Vi and Vj if there exists nodes
vi ∈ Vi and vj ∈ Vj , such that vi and vj are neighbors
in G. Initially, every node is its own component. The
exact refinement iterates through the list of current
components trying to merge them until no more merges
are possible. In each iteration, we first sort the current
components in descending order of ratio r(S). Then, in
that order, we merge a component with its neighbors if
the ratio does not decrease. After this exact refinement,
we run Algorithm 3 for the instance (H(V ′, E′),C′,B′),
where C′ and B′ are the event and population counts
of the supernodes, respectively.
Approximate refinement. We can obtain larger com-
ponents by allowing merges that decrease the ratio of
the component. Our approximate refinement procedure
takes two parameters: β ∈ [0, 1] and δ > 1. We allow
a component Vi to grow as long as two constraints are
not violated:

1. Population size constraint. The population size
of Vi is at most δ times the smallest population size
in the component: B(Vi) ≤ δminv∈Vi b(v).

2. Event size constraint. The event size of Vi
is at least βδ times the largest event size in the

component: C(Vi)
δ ≥ βmaxv∈Vi c(v).

Lemma 9.9. Let S∗ be the set that maximizes a para-

metric scan statistic G and let r(S∗) = C(S∗)
B(S∗) . There

is a solution S on the instance H constructed as above
with ratio r(S) ≥ βr(S∗).

Proof. Analogous to Lemma 9.5.

9.3.3 Functions with Node and Edge Weights.
Both the Heaviest Subgraph [4] and EventTree+
problems [18] reduce to Prize Collecting Steiner Tree
(PCST) with NetWorth objective [10]. In PCST,
we are given a graph G(V,E) with non-negative node
prizes, π, and non-negative edge costs, w, and the
goal is to find a tree S(V (S), E(S)) that maximizes the
NetWorth objective:

W (S) =
∑

v∈V (S)

π(v)−
∑

e∈E(S)

w(e).

Using our framework, we can design an algorithm to
find a tree with maximal NetWorth and size up to k,
where k is a parameter. This implies an algorithm for
HS and EventTree+.

Let M(v, T) = maxSW (S), where the maximiza-
tion is over all connected and colorful sets S ⊆ V , such
that v ∈ S, |S| = |T |, and {col(u) : u ∈ S} = T .
M(v, T) can be computed by a dynamic program:

Lemma 9.10. Let M(v, T) be defined as above. For any
node v and color s, M(v, {s}) = π(v) if col(v) = s, else
M(v, {s}) = −∞. If |T | ≥ 2:
M(v, T) = maxu∈Nbr(v)

T1,T2⊆T
{M(v, T1) + M(u, T2)}, where

the maximum is over all partitions T1 ∪ T2 of the set T
and all neighbors u of v.

Proof. Analogous to Lemma 3.2.

9.4 Additional details for Section 5

9.4.1 Datasets. For the optimization event detec-
tion power experiments, we use the following datasets,
for which we have temporal event data:
CitHepPh2. This is a network of scientific collabora-
tions between authors of papers submitted to the High
Energy Physics - Phenomenology category of arXiv.
The p-value of each node v for a specific snapshot was
calculated as the ratio of nodes in the current graph
snapshot whose citations are greater than or equal to
the citations of this node.
NEast [?]. The Northeastern USA Benchmark is a
well-known dataset in the spatial scan statistics com-
munity. The benchmark contains census information of
245 counties as well as synthetically generated cases of
a disease.
Traffic3. The highway network of Los Angeles County,
California and its activity on May, 2014. Nodes in
the graph are sensors that record traffic statistics, such
as average speed and the number of vehicles passing
through. We assume a normal distribution for the
average speed recorded by each sensor. In each snapshot
t, the p-value of a node v is the cumulative distribution

function of a normal distribution with mean x
[1,t−1]
v

and standard deviation σ
[1,t−1]
v , where x

[1,t−1]
v and

σ
[1,t−1]
v are, respectively, the sample mean and standard

deviation for node v from snapshots 1 to t− 1.
Twitter. A sample of the follower graph of Venezuela
collected between July 1, 2013 and December 31, 2013.
We assign p-values based on the tweeting behavior of
the users. Formally, let xtu be the number of tweets
generated by node u at time t; we model xtu as a draw
from a Poisson distribution with parameter λu. We
take a Bayesian approach and consider λu to be drawn
from a Gamma distribution with parameters αu and
βu. These parameters are updated as we see new data
every snapshot. The p-value of a node at time t is

its posterior probability p(nte|n[1,t−1]
e), which follows a

negative binomial distribution by our choice of prior.
Battle of the Water Sensor Networks (BWSN)
[?]. This dataset is a benchmark originally used to

2https://snap.stanford.edu/data/cit-HepPh.html
3http://pems.dot.ca.gov/

(a)

(b)

Figure 7: Examples of events found in the heavy subgraphs
for Venezuela (top) and Mexico (bottom)

evaluate different sensor network designs in terms of
early detection of contaminants in a water system. The
dataset includes “ground truth” subgraphs representing
parts of the network that are contaminated, which we
use for evaluation in Section 5.4.
PCST [10]. A standard benchmark to evaluate algo-
rithms for the Prize Collecting Steiner Tree Problem.
We use the “K” instances of the benchmark to evaluate
methods that reduce to PCST (Section 5.3.3).

For the scalability experiments (Section 5.5), we
consider three large networks (i.e., over 105 nodes) from
the SNAP repository [?]. Since we do not have data
of events in these networks, we plant events according
to the statistical assumptions of the BJ scan statistic.
First, we assign p-values uniformly at random to all the
nodes in the graph. Then, we select 5 seed nodes and
their neighbors in the graph, and we assign a p-values
less than 0.15 to these nodes. We also generated a set of
Erdos-Renyi graphs (Random in Table 4) with number
of nodes n ∈ {102, 103, 104, 105, 106} and number of
edges m = O(n). We first assign random p-values to
all the nodes. Then, we plant an anomaly by selecting
a node and its ego network at random and setting their
p-values below 0.15.

9.4.2 Parameter tuning for baseline methods.
When possible, we use the values prescribed by the
authors of the method; this is the case with NPHGS,
EventTree+, and MEDEN. In the case of GraphLaplacian
and EdgeLasso, we tune the parameters separately for
each dataset. In particular, we take a sample of 20
instances for each dataset and choose a parameter from
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1} that maximizes the
average score. Notice that the parameter for each
dataset may be different.

9.4.3 Additional Details for Section 6. For Mex-
ico, the two most common words in the extracted tweets
form the phrase “energy reform” referring to a bill re-
cently proposed by Mexican president Enrique Pena Ni-
eto that would have a significant impact in the economy
of the country (Figure 7).

