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Abstract: Membrane technology has emerged as an attractive approach for water purification,
while mitigation of fouling is key to lower membrane operating costs. This article reviews various
materials with antifouling properties that can be coated or grafted onto the membrane surface
to improve the antifouling properties of the membranes and thus, retain high water permeance.
These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene
glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and
amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling
properties are discussed. The corresponding approaches to coat or graft these materials on the
membrane surface are reviewed, and the materials with promising performance are highlighted.
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1. Introduction

1.1. Membrane Technology

Wastewater reuse and seawater desalination are some of the key solutions in meeting the
increasing demand for clean water. As an energy-efficient and low-cost technology, polymeric
membranes permeate pure water and reject contaminants ranging from bacteria in microns to ions
in angstroms [1-5]. For example, microfiltration (MF) membranes with pore sizes of 1-100 pm can
remove microbes, cells and bacteria [1,3]; ultrafiltration (UF) membranes with pore sizes of 1-100 nm
can remove small contaminants, such as proteins and viruses [3,6]; nanofiltration (NF) membranes
having pore sizes of a few angstroms can remove divalent ions (e.g., Ca**, Mg?*, Fe?") and small
molecules with a molecular weight of 200-1000 Da [3]; and reverse osmosis (RO) membranes with a
dense selective layer that can desalinate brackish water and seawater [4,5,7]. The core of membrane
technology is high performance membranes with high water permeance and high selectivity in a
practical environment [1-5].

1.2. Membrane Fouling

Industrial membranes achieve high water permeance from an asymmetric structure comprising
a thin skin layer exhibiting good separation properties on top of a thick support layer providing
mechanical strength and low resistance to water transport. While the skin layer has been designed
to be as thin as possible to increase water permeance, contaminants in the feed water may deposit
and accumulate on the membrane surface (i.e., external fouling, as shown in Figure 1a), which
would dramatically decrease water flux (as shown in Figure 1b) [1,3]. For MF and UF membranes,
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1.3. Surface Modification to Enhance Antifouling Properties
1.3. Surface Modification to Enhance Antifouling Properties
One effective strategy to mitigate membrane fouling is to enhance antifouling properties b
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to fouling by positively-charged foulants, such as multivalent ions [1].
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2. Membrane Surface Modification Using Hydrophilic Materials

2. Membrane Surface Modification Using Hydrophilic Materials
Hydrophilic materials create a hydration layer on the surface, which acts as a physical and
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2.1. Stat W Pol
%tﬁeerseo re t erreenstaot &of water sorbed by polymers, which can be determined using differential

scannihgreaboei thets @RS offl Flater sorbed by polymers, which can be determined using differential

scanning calorimetry (DSC) [17]:
(1{ Free water does not interact with polymers via hydrogen bonding or van der Waals interactions,

Krepnatsrdeen aohipirrast withPolvmsrswiap Mﬁ%&%&%ﬁ&%@r van der Waals interactions,

d therefqre, it xh1b ts the same melting te ture as bulk wate
(22 eeza%li (h 3 ]?rms due E gw eractlon With 01 mers and/or caaplllariy
Free bound ater orms, dug  to wea mte actlon with 5 T %rgcan Jor capillary
con ensatlon 1n mers, an here ore, 1ts meltin: erature 1s
densation in mers andt erefore, 1t1 em erat elow °C.
nfreezing wa er ron interacts w1t roplrilic s tes o? meric chains via %ro en
on reezm ter S 1nteract OB 1C sites meric chains via rc%en
ondin us, é crysta 1ze e
ondin us, 1 063 No 176 below

Figie3 @%Eif’é‘ﬁ e DSC heating eurves for water-swollen pely(viayl aleohol) (BVA) al diffesent
AREHRLS I WA SIS ISR, 1, WHkthissdrtechass([7A):

L T m’q;“y
Mipvet

wet

HH= (@



Membranes 2017, 7, 13 4 0f 18
Membranes 2017, 7, 13 4 0f 18

Membranes 2017, 7, 13 40f18

where #iyes amdl migy,aaeet hleennasssod fssvodléenppdlymeeraand] dhyy grdiynrey, respectively. For the swollen
RY:aravith Hhd Aabatwodisinebendothermicypeaksat 479 FoRnde£ 2 fenereyobsarieds wiich
Mmmmmmmwmmﬁm %@W@Wmﬂﬂh
ﬁﬁ@ﬂ%&@m pridsonaskhne -...A hledvadialoaare
mmwmmmmuwm&a@MMammd@gM&%@e bound

water. The nonfreezing water did not crystallize, and thus, it cannot be detected using DSC.
1 1 1 1

H=0.71

Endé&thdothiernic- (—=)—»)

2
240 250 Tzgoperatgre (K) 280 290

Figtre 3 PC heating, Qumes ik the suirhemoi i Witkerent degrecs of waier sOrREQR ().
w&g& m&qﬁating curves for the swollen PVA with different degrees of water sorption (H).

Adapted from [17].
The amount of freezable water ;’(Ufw; including free water and freezable bound water can be

freezable fwate ne udln free w% and freezable bound water can be
calc §%} r\%}@fpﬂ@E ©WBound water can be
calcula ea area from curves smg the lowmg eéquation:
calculated from the peak area from the DS& Curxﬁ uy&gt e following equation:

2)

where AH:w is the peak area (J/g) and Awa 1s the 1‘;‘1&,/ Iting' enthalpy of pure water at 273 K (334 9;
WM%W@&%M@M@%@MW@@W%&@WK@ @@3@13&1 8}

Fmérh@% S TY s M=) e 1 e
salts Fhssiairs efovaitinipooing
@@m&@m@(m %@%@g

mmm&wmgh@g%%ﬁéhyéfmmw@MAEMAHM@}%@W@%&E@@%@%&@I
%%f&l%ﬂﬂﬁcéﬂ £19,20].

7013 (|:H3
HoC—CHi, H,C—CH, H2C‘
H2C—é: H2C—g: HzC‘

O@H2)2N(CH3)2 OE8,(CF,)sCF3 O€82(CF2)s-10CF3
O(CH,),N(CH ' OCH,(CF3)e.10CF
PDMA ( 2)2 (CH3)2 PIQ&UI%&CFZ)GC% PTA?\I 2)6-10CF3

Flgur lletl:hemlcal structure of hydrophiliCPpFo%IM—éimethylaminoethyl rne’chacl?;:h“ﬁe)I (PDMAEMA)

Filsre 4 BYHERREAR st RN lde TR R POTBBRIRE Bl I BRRAFD I haseyIBTENEM A EMTRY
M&WMZM%WWMQMé@WmmeyhaﬁﬁﬁlhtﬁryléatéPF@WMA) and

oly(1,1,2,2-tetrahyfoperfluorooctyl AN%
Elg}lil(re 5a showsy t%Pat the percentage of) g eza [[e water in the total absorbed water increased

withipgieasngoevE IRGAINM e festientein tiieesomoly mvared 18] i gara] Absbiied thatdherervaed
dingcirelatisnshiRebPIENEANal it flisioR copibisiantrandotheperceBingh ok freaalphe v atersin
theetoil Akseshis beaieenlneaREag A sioeenbiftibiceaablehy Percinexsesed fRIakdbilifvsivitin

the total absorbed water. Increasing the amount of freezable water increased NaCl diffusivity,



Membranes 2017, 7, 13 50f 18

Figure 5a shows that the percentage of freezable water in the total absorbed water increased with
increasing the PDMAEMA content in the copolymers [19]. Figure 5b shows that there was a direct
Helatinnship between the NaCl diffusion coefficient and the percentage of freezable water in the{gtal
absorbed water. Increasing the amount of freezable water increased NaCl diffusivity, presumably
preswusabditbeanuselyadbs dinsalnbdba thssbhardbte tva teverdbih o drdhichrfelnfied st difélston.
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higher PEGDA content in coating solutions resulted in lower BSA adhesion [27].

The second approach is to graft PEG chains on the membrane surface, as shown in Figure 2b [1].

In this approach, PEG-based materials contain functional groups that can be covalently bound to the

membrane surface [1]. For example, poly(ethylene glycol) dimethacrylate was grafted onto the

membrane surface via surface-initiated atom transfer radical polymerization (ATRP) [31]. Amine
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though the coated layer increased the water transport resistance. Longer PEGDA chain length and
higher PEGDA content in coating solutions resulted in lower BSA adhesion [27].

The second approach is to graft PEG chains on the membrane surface, as shown in Figure 2b [1].
In this approach, PEG-based materials contain functional groups that can be covalently bound
to the membrane surface [1]. For example, poly(ethylene glycol) dimethacrylate was grafted
Yries e Menibkine surface via surface-initiated atom transfer radical polymerization (ATRPS p81§.
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2.3.1. PDA Structure

While dopamine is believed to be oxidized by oxygen in the air and then forms PDA, whieh
easily adheres to substrates, the detailled mednamism and e sruciiie of PIDA are silll widrer drlbir.
Freeman and eolleagues propese that dopamine is first oxidized by oxygen te form dopaquinene and
then 5,6-dihydioxyindoliine (DIF), as showm in Figuie 6 [36]. This propesed model is based on the
Raper=Mason model developed to explain the oxidation and pelymerization of tyrosine (which has
similar strueture to dopamine) to form melanins (i.€,, polyphenolic molecules) [36]:

Wn
b

O\QD
v P

3.8A

J e = I O T Q\o Cﬁeo
Ho NH, o NH, HO' H — o —}:n

Dopamine 5,6-Dihydroxyindoline

Figure 6. A possible mechanism for the oxidation and polymerization of dopamine to form insoluble
aggregates [1,36,37]. Reproduced with permission, ACS Publications, 2012.
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the seconé model (as shown in Figure 6) PDA is formed through the non’covalent bonds, such as
charge transfer, m-stacking, and hydrogen bonding between monomers, which are evidenced by solid
state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy,
powder X-ray diffraction and Fourier transfer infrared (FTIR) spectroscopy [36,37]. Hydrogen atoms
linked to the carbocyclic core confirm the non-covalent linkages between monomers, which was also
observed for other materials with similar molecular architectures, such as quinhydrones,



Membranes 2017, 7, 13 7 of 18

model (as shown in Figure 6), PDA is formed through the non-covalent bonds, such as charge transfer,
m-stacking, and hydrogen bonding between monomers, which are evidenced by solid state nuclear
magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy, powder X-ray
diffraction and Fourier transfer infrared (FTIR) spectroscopy [36,37]. Hydrogen atoms linked to the
carbocyclic core confirm the non-covalent linkages between monomers, which was also observed for
other materials with similar molecular architectures, such as quinhydrones, supramolecular polymers,
proteins, etc. [36,37]. Both models predict that a robust and stable PDA aggregates on substrates,
while the non-covalent bond model is more consistent with the chemistry for similar molecular
architectures [1].
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2.3.2. PDA Coating on Membrane Surface for Water Purification
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The effect of PDA coating on the pore size in UF membranes has been examined. For example,
when a PSf UF membrane, with molecular weight cutoff (MWCO) of 20 kDa, was coated by
dopamine for 75 min, the pore size decreased to that of unmodified PS-10 with MWCO of

10 kDa [47]. When a polyethersulfone (PES) membrane (PES-20), with MWCO of 20 kDa, was coated
for 5 min and 30 min, the pore size became equivalent to that of PES-10 and PES-5, respectively. When
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The effect of PDA coating on the pore size in UF membranes has been examined. For example,
when a PSf UF membrane, with molecular weight cutoff (MWCO) of 20 kDa, was coated by dopamine
for 75 min, the pore size decreased to that of unmodified PS-10 with MWCO of 10 kDa [47]. When a
polyethersulfone (PES) membrane (PES-20), with MWCO of 20 kDa, was coated for 5 min and 30 min,
the pore size became equivalent to that of PES-10 and PES-5, respectively. When the membranes with
a similar pore size were tested with wastewater containing oil/water emulsion in a constant permeate
flux crossflow system, the PDA-coated membranes demonstrated lower transmembrane pressure than
the unmodified ones, indicating the enhanced antifouling properties by PDA coating [47,48].

The pH value of the dopamine solution is critical to obtain good PDA coating [40]. For example,
RO membranes showed essentially the same water permeance when coated using a dopamine solution
with a pH of 5 and much lower permeance when coated using solutions with a pH of 8 and 11 due to
the thicker PDA layer [40]. This behavior is ascribed to the requirement of an alkaline condition for
dopamine to polymerize [49]. Nevertheless, the modified membranes under all pH values exhibited
enhanced antifouling properties, as the long-term water flux was higher than the uncoated analogs in
an oil/water crossflow filtration test [40].

2.3.3. PDA as a Bio-Glue to Coat the Second Layer on Membranes

While strongly adhering to substrates, PDA behaves as a versatile immobilization platform to
covalently anchor a second layer, which can be a self-assembled monolayer or grafted polymer
chains with superior hydrophilicity [34]. The catechols in PDA can react with thiol or amine
groups through Michael addition and Schiff base reactions [34,50]. For example, thiol-terminated
methoxy-poly(ethylene glycol) (mPEG-SH) can be coated on top of PDA, and the mPEG-SH coating
decreases the cell adhesion, demonstrating the enhanced antifouling properties [34]. The PDA layer
can also be used to anchor zwitterionic materials to enhance surface hydrophilicity, which will be
discussed in Section 2.4.

As shown in Figure 7, the PDA-coated surfaces can be grafted with PEG-NH, to further improve
antifouling properties in membranes [32]. The grafted PEG layer decreased the BSA adhesion and
water permeance due to the additional mass transfer layer. On the other hand, when tested with
an oil/water emulsion using a constant pressure crossflow system, the long-term water flux in the
PDA-g-PEG-modified MF and UF membranes was higher than that in the uncoated ones. For NF and
RO membranes, the flux of PDA-g-PEG-modified membranes remained constant [32]. The membranes
were also applied to short-term batch tests of protein and bacteria adhesion, and the modified
membranes showed less adhesion of proteins and bacteria than the unmodified ones [41]. However,
in the long-term biofouling testing, the modified membranes did not exhibit any improvement
in antifouling properties [41]. This trend had also been shown for NF and RO membranes [51],
presumably because the surface modification cannot fully prevent biofilm formation in the long
run. Thus, periodical membrane cleaning was still needed. The PDA-g-PEG coating may reduce the
frequency of the membrane cleaning and, thus, lower operating costs.

The surface modification using PDA-g-PEG was also scaled up for commercial spiral-wound
modules containing UF and RO membranes, which were installed in a pilot skid to treat produed
water from hydraulic fracturing operation [42]. The PDA-¢g-PEG-modified UF membrane modules
showed improved flux and decreased transmembrane pressure compared with the unmodified ones.
On the other hand, the coated RO modules did not show higher water permeance than the unmodified
ones, presumably due to the cleaner feed stream for the RO membrane system than the UF membrane
system. However, the modified RO modules demonstrated higher salt rejection than the unmodified
ones, presumably due to the caulking of minor defects in the RO membranes [42].

PDA can also be used to graft amine-containing materials such as poly(ethyleneimine) (PEI) on
top of the PDA layer. For example, NF membranes with a positive surface charge were modified using
PDA-g¢-PEI [52]. The modified membranes exhibited a stable water flux and rejection rate of methylene
blue over a long-term test for wastewater treatment [52].
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As another example, the PDA coating can be exploited to anchor nanoparticles on the membrane
surface [53]. For example, TiO, nanoparticles were anchored to PDA through the interactions with free
hydroxyl groups in PDA. Introducing the hydrophilic TiO, nanoparticles on the membrane surface
increased surface hydrophilicity without decreasing pure water flux [53].

2.3.4. Dopamine-Like Materials

There exist other catecholamines with structures similar to PDA, such as 3 ,4-dihydroxyphenylalanine
(DOPA), which also demonstrate good stability and durability of coatings [36]. As shown in Figure 8,
DOPA/¢8itt4iA% % "péndant carboxylic acid moiety to enhance adhesion on substrates [54] Stfiface
modifications wing BRI Mg hydragen bondine pnits than FDA san rgsult in.a more
stablelgyersith greaterresisiopeiod odirl dseradation ieRd R ol Sh R TRl iy PEG
and DEEAware psed RGN OCasubstiates, wiirh sighiticansly decreseskie agsorntiouef serum
proteigyﬂ,imgiﬁgtb@gath@@q%l]lent enhancement of antifouling behaviors [55].
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charge [58-61]. Figure 9 shows typical zwitterionic polymers containing betaine groups, which have
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physical and energy barriers preventing proteins from attaching to the polymers. On the other hand,
the positively- and negatively-charged groups are closely connected together, and the polymer chains
show a neutral charge when exposed to proteins in the size of nanometers, avoiding any favorable
interactions with proteins of any specific surface charges.
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been widely investigated as antifouling materials to decrease protein adhesion. These polybetaines
comprise a cation of quaternary ammonium and an anion of phosphate, sulfonate or carboxylate.
The charged groups interact with water through electrostatic forces to form tight hydration layers or
physical and energy barriers preventing proteins from attaching to the polymers. On the other hand,
the positively- and negatively-charged groups are closely connected together, and the polymer chains
show a neutral charge when exposed to proteins in the size of nanometers, avoiding any favorable
interggtions with proteins of any specific surface charges.
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Zwitterions also demonstrate more stable antifouling properties than PEG-based materials in
high salinity environments. PEG is amphiphilic, and the high salinity can lead to the collapse of PEG
chains, decreasing the surface hydrophilicity. However, zwitterionic chains tend to maintain an open
structure and strong hydration layers in the presence of salts [66,67].

2.4.2. Surface Coating Using Dense Zwitterions

Zwitterionic materials can be directly coated onto the membrane surface to enhance hydrophilicity,
as shown in Figure 2a [58]. For example, copolymers of PTFE-co-SBMA were synthesized and coated on
top of UF membranes [68]. The copolymers can self-assemble and form nano-channels with diameters
of about 1 nm. The modified UF membranes exhibited higher water flux than the unmodified ones.
When the membranes were tested with water containing 1 g/L BSA and 1500 mg/L oil, the modified
one showed only 4% decline in water flux, demonstrating good antifouling properties derived from
the zwitterionic coating [68].

Thin films of zwitterionic polymers can also be formed on the membrane surface by in situ
polymerization, such as initiated chemical vapor deposition (iCVD) [69-71]. In this way, an
initiator and monomer in the vapor phase flow into a chamber at high temperatures. The initiator
decomposes and attaches to the membrane surface kept at low temperatures, which initiates
polymerization to form thin films. This technique allows the use of substrates with nonplanar
geometries and also a vast variety of substrates, which cannot be coated in liquid phase [70].
For example, poly[N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)-co-2-(dimethylamino)ethyl
methacrylate-co-ethylene glycol dimethacrylate] (PDDE) thin films were synthesized via iCVD
followed by a reaction with 1,3-propane sultone in vapor phase to obtain zwitterionic coating [70].
When the modified surfaces were tested with BSA, humic acid and sodium alginate, they showed less
foulant adhesion than the bare ones, indicating an improvement in antifouling properties derived from
the zwitterions.

2.4.3. Surface Grafting of Zwitterions

Zwitterions can also be grafted from the membrane surface, i.e., zwitterionic monomers
are polymerized from the surface functionalized with initiators, as shown in Figure 2 [58,72].
Depending on the type of initiators, different polymerization can be utilized, such as photo-initiated,
ozone-initiated, plasma-initiated and physisorption radical graft polymerization [58]. For example,
poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) was grafted from a PES membrane via
photo-initiated polymerization, and the modified surface exhibited much less accumulation of bacteria
than the unmodified one [73]. Moreover, [3-(methacryloylamino)propyl]-dimethyl(3-sulfopropyl)
ammonium hydroxide (MPDSAH) was grafted from the polypropylene membrane through
UV-irradiated polymerization, and the modified membrane showed less BSA adhesion than the
unmodified surface. A high flux recovery ratio of 90% was achieved for the modified membranes
when treating BSA solutions [74].

To better control the grafting density, zwitterionic monomers can be polymerized using living
polymerization, such as ATRP and reversible addition-fragmentation chain-transfer polymerization
(RAFT) [58]. For example, PSBMA and poly(carboxybetaine methacrylate) (PCBMA) were grafted from
glass using an initiator of 2-bromo-2-methyl-N-3-[(trimethoxysilyl)propyl]propanamide (BrTMOS) and
the ATRP method, and the modified glass demonstrated less adsorption of protein and mammalian
cells than the unmodified one [75]; 3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate
(DMAPS) was grafted from cellulose membranes using RAFT polymerization, and the modification
decreased the adhesion of Escherichia coli and HeLa cell [76].

Zwitterions can also be grafted to the membrane surface via a glue, such as PDA [77,78]. Figure 11
shows an example of PDA-¢g-PMPC coating on a variety of substrates [78]. PMPC interacted with
PDA through non-covalent linkages, including phenol-phospholipid hydrogen bonding and cation-7
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interactions [78,79]. The coating increased surface hydrophilicity (as indicated by the decreased water

contagtangierandssignificantly decreased the E. coli adhesion [78]. 12 of 18
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3. Membrane Surface Modification Using Hydrophobic or Amphiphilic Materials
3.1. Fluoropolymers

3.1. Flugrggo l&%?ésy surfaces have been demonstrated to be resistant to the adhesion of bacteria,
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and showed low surface energy (~14 mN/m) and low settlement of zoospore [90].
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Perfluoropolyethers (PFPEs) are another class of perfluoropolymers that has been widely studied.
For example, random PFPE-graft terpolymers reduced the settlement while enhancing the removal of
massaalgsoltlvnspores [89]; crosslinked PFPEs were also prepared from dimethacrylate and shpwegd
low surface energy (~14 mN/m) and low settlement of zoospore [90].

Membranes can also be directly fluorinated to enhance antifouling properties [91]. The surface
fluorination of polyamide-based NF membranes reduced the surface energy firom 60.0 to 444 mN/mn.
Whem tesseebvwittiBHS Aoboticnent e e dhiva ted tedmiamtes sles vebhd wad-hndosled dlwe rddiunc tiod (81004)
8% ginel Righeedbweme 98 &0 ( Mihihthanrteelified ediéef bhes [91].

3.2. Amphiphilie Polymers

While befihlyddepbilis  ingsaseseandrERE EDPmdhad iveiieasbaigl ana-abekstiaayinga fivisl
lowsusiace ersegYelssigdyapsiunrinafieb PRIYIBETPLIRIIS) SRS PREQTFHIOR A RPHOM OISk ORSHRISAY
orpphiphidi cangiRIFHs ROMARYAE kot pridrop ibihandroptstidk sir@mpangitkhaveasneep Racd
e éurthel srdpRsantiéowing io partisuliiRd. esporeplorfroslinkad pletwrsidioldyneshrirbest
flypeoprliienet And Ipolphias awdcPEEofi HaRows W RIBPINESNY WeWhar Pl potpnivnereaed
Eeorreht Ereas®dvtom the water soRfachangleraduceshisrmatile e dtcandr s J01fags-frceLnb iy
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verdaicina gleithear orep ymers KR d ik sunfagsrpatgdneishiompliiphidicpely mersshownril
resistaptaliowpslsthe adsheprian ebqseieins Tachaad BSthel udberpiun, the setdmentselchugssBSas
Fasthoneoes, deosdedeghest Brut/on spoves aatedowner (98] coated glass than on an uncoated one [92].

Thin films of amphiphilic materials ean be coated on membrane surfaces via chemieal vaper
depesitien (CVD) [93]. Fer example, when copelymers of hydrophilic hydroxyethyl methacrylate
(HEMA) and hydrophobie perfluerodeeyl aerylate (PFA) were depesited on a RO membrane, the
adhesion of E. eoli bacteria on the RO membrane surface was reduced [93]. Mere impertantly, the
surface midifid by theecapsdyynees shawieddaes B84 adbeion thamtheian aditietldoy s thieh EFEYVEMoY
BFftFsuggestingiag wnsrgisdseitedfedtidEMENAGREP Enam phiphiba lapedbpaisiin E141194].

Figure 12 shows the chemical structure of block copolymers of polystyrene and polyacrylate
with amphiphilie side chains consisting of both PEG and perfluoroalkyl gioups [95]. This comb-like
block copolymer was spin-coated on a silicon wafer and tested against alga Ules and cells of a diatom
Nawiewla [ 58], Theesvufdseanndification sl eivensgsber tderrentandrinctaesedste tiemearmbeb Ubflang
Neginvwicompoedaid thehnbeated oardlbeeghhibeshttiement ofdiatohdinthe asnphiphilisisipakie
wagxempasaklniparebisirnehylsidnnane/ (FlNine theBNasymiremiiyediatefiownthe.eanfrbiphilie
s fsisppscahoys eighidapeuhighit-thare FRMRwhichiPag ihdd ¢h thedesdeshraatien eddhesuetasa
st bee g acchpeginlicastyyHESpHated s urfRe yrhea isnpigcsed iarnatend?@dd in water [95].

HZC—QO C—C%—QC 2 N

Figtire 13 Chemical shucture cbpolvicthgxyiated fusraalkyl acrylate)-b-pslystyrene comb-like Blgck
copolymer with amphiphitic sids chains 195):

Crosshnked terpolymer networks consisting off ﬁuoropolymer PBI\B;IIS and FEG were also
s nthe%?%gd ]§% W%)e% EVa 55?3/\1%%1; I’SIO(I:’I%nselgi cgprotelﬁ(}re%kxga%%]e?rfhe surF'aCaenmocIE F’ ed" ‘%%ﬂ %}I?}O
it nthlesrlr%gr 2 apouEBEY ﬁ‘eué‘ts%scgrﬁbol“sr%eCI RGeS A D R SRR PR svith the
terpolymer was about 60% less susceptlble to protem adhesion than that coated with PDMS.

4. Conclusions

This review provides a comprehensive view of chemical modification of the membrane surface
to mitigate fouling for wastewater treatment. Specifically, we have reviewed key strategies in
designing materials with antifouling properties to be coated or grafted on the membrane surface to
mitigate fouling and retain high water permeance. Most of the materials are hydrophilic, such as
PEG. vpolvdopamine and zwitterions. which form ticht hvdration lavers on the surface actine as a
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4. Conclusions

This review provides a comprehensive view of chemical modification of the membrane surface
to mitigate fouling for wastewater treatment. Specifically, we have reviewed key strategies in
designing materials with antifouling properties to be coated or grafted on the membrane surface
to mitigate fouling and retain high water permeance. Most of the materials are hydrophilic, such as
PEG, polydopamine and zwitterions, which form tight hydration layers on the surface acting as a
physical and energy barrier preventing foulants from attaching to the membrane surface. The grafted
polymer chains on the membrane surface may also have repulsive elastic force against the adhesion of
foulants. Hydrophobic materials such as perfluoropolymers have also been used as fouling-resistant
layers due to their non-stick characteristic. Amphiphilic materials containing hydrophilic PEG and
hydrophobic fluoropolymers or PDMS have also demonstrated the synergistic effect in achieving
superior antifouling properties.

While the surface modification of membranes using materials with antifouling properties has
been shown to retain high water permeance, there is a lack of the fundamental understanding of the
structure/property relationship for the coating materials and membrane performance. We describe the
state of the water in polymers aiming to shed some light on the mechanism of the antifouling properties.
We have also identified active areas that could be fruitful to further improve the effectiveness of
membrane fouling mitigation, such as the design and synthesis of new dopamine-like materials and
new zwitterionic materials. These material platforms may have an enormous possibility in chemical
structures, rendering great promise for membrane surface modification to retain long-term stability.
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