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ABSTRACT: The performance of thermoplastic elastomers composed of block
copolymers is dependent upon the molecular bridges linking together the discrete
minority domains. Here we devise a strategy for calculating the bridging statistics for
complex block copolymer architectures, using self-consistent field theory. The method is
demonstrated on (AB)M stars with M identical diblock arms. The fraction of molecules
forming bridges, νb, is found to increase rapidly with M to values well beyond that of
conventional ABA triblock copolymers. Once M is of order 10, virtually all molecules
form bridges, and furthermore their arms tend to be distributed equally among
neighboring minority domains. These high bridging fractions combined with the
tendency of single molecules to bridge multiple domains make diblock-arm stars an
excellent candidate for improved thermoplastic elastomers.

■ INTRODUCTION

ABA triblock copolymers have been used for thermoplastic
elastomers since the 1960s and currently represent the largest
sector of the block copolymer industry.1 These materials are
processed in the melt where they self-assemble into an ordered
morphology, usually the spherical phase, with the A blocks
forming discrete minority domains embedded in a matrix of the
B blocks. Cooling the material below the glass or crystallization
temperature of the A component locks the A blocks together to
form a rubbery network of B blocks.
Naturally, the performance of the elastomer relies on the B

blocks bridging between the different discrete A domains.
Looped configurations of the B block, where both ends reside
on the same A/B interface, do not generally contribute to the
elasticity of the material unless the B block happens to be
sufficiently entangled with other B blocks. In any case, a high
bridging fraction, νb, is desirable. However, bridging is not
something that experiments are able to measure, apart from the
special case of a lamellar phase,2,3 and so our knowledge of νb is
dependent upon theory or simulation. According to self-
consistent field theory (SCFT), νb in the lamellar, cylindrical,
and spherical phases of an ABA triblock copolymer melt is 40−
45%, 60−65%, and 75−80%, respectively.4,5
In order to improve the performance of thermoplastic

elastomers, researchers have been exploring alternative block
copolymer architectures. Much of this has focused on linear
ABABA... multiblocks, where the number of repeating blocks is
simply increased.6−9 The multiblocks are generally found to
possess better mechanical properties, which is attributed to the
difference in their bridging statistics.10−12 Attention is now
turning to more complex architectures. A number of studies
have investigated various multibranched architectures,13−16

some of which have resulted in improved performance. A
miktoarm star block copolymer has also received considerable

attention for its superior performance over the linear
architectures.17−19 Our interest, however, is with experi-
ments20−22 on (AB)M star block copolymers composed of M
≥ 3 identical diblock arms, which have likewise demonstrated
significant improvement over their linear counterparts (i.e., M =
2). Naturally, there will be various contributing factors to these
improvements. For instance, the improved performance of the
miktoarm star is attributed to larger minority domains of the
hard component. In any case, bridging statistics will certainly
play an important role, more so for some architectures than
others.
As of yet, there is relatively little understanding regarding the

bridging statistics of complex architectures. Hart et al.23 have
used dissipative particle dynamics (DPD) simulations to study
comb and star architectures. They found that (AB)M stars have
an elevated bridging fraction, consistent with the improved
performance observed in experiment.20,22 Unfortunately, due to
the computational demands of DPD, this finding was limited to
small molecules in the simple lamellar phase. Xu et al.24

extended the SCFT calculation for the bridging statistics of
linear ABA triblocks to that of (AB)M stars. They found a
dramatic increase in the bridging fraction implying that the stars
should exhibit superior elasticity, but unfortunately their
calculation is based on a flawed assumption. In this paper, we
resolve the problem by developing a new SCFT approach for
complex block copolymers architectures. It is then used to
evaluate bridging statistic for (AB)M stars with M = 2, 3, 5, and
9 arms in the classical lamellar (LAM), cylindrical (CYL), and
bcc spherical (SPH) phases.
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■ THEORY
The specific system of our study is a neat melt of n star
polymers, each with M identical AB diblock arms joined
together by their B ends. The individual arms are modeled as
Gaussian chains with N coarse-grained segments, of which a
fraction fA make up the A block and the rest the B block.
Segments are defined based on a common volume, ρ0

−1, such
that the total volume of the melt is V = nMN/ρ0, and both A
and B segments are assumed to have the same statistical length,
a. The incompatibility of unlike segments is controlled by the
usual Flory−Huggins parameter, χ. This model is then solved
using SCFT,25 which represents the interactions on a γ-type
segment at position r by the field wγ(r), where γ = A and B.
Note that the molecules and their arms will be treated as if they
are distinguishable; the actual indistinguishability will not affect
any of the quantities we are calculating.
Before evaluating bridging statistics, we need to first

determine the equilibrium morphology (i.e., LAM, CYL, or
SPH) along with its self-consistent fields, wγ(r).

26 To do this,
we consider a single diblock arm with its contour parametrized
from s = 0 at the A end to s = 1 at the B end. The (sN)’th
segment is then pinned at r, which divides the arm into two
portions. A partial partition function, q(r,s), for the portion
with the free end is obtained by starting from q(r,0) = 1 and
integrating the modified diffusion equation
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forward in s with γ = A for s < fA and then γ = B for s > fA. The
partial partition function, q†(r,s), for the other portion is
integrated in the negative s direction using the same eq 1, but
with the right-hand side multiplied by −1. The fact that its end
is attached to M − 1 other arms is accounted for by starting
from q†(r, 1) = qM−1(r,1). The product of the two partial
partition functions gives the probability distribution of the
(sN)’th segment
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corresponds to the partition function of an unconstrained star.
It then follows that the dimensionless concentrations of A and
B segments are
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respectively. Now that the concentrations are known, the fields
can be adjusted to satisfy the self-consistent conditions
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where ξ(r) is a pressure field that enforces incompressibility,
ϕA(r) + ϕB(r) = 1. The final step is to minimize the free energy
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with respect to the domain size, D, of the morphology. There
will be a separate solution for each possible morphology; the
equilibrium morphology is the one with the lowest free energy.
The numerics for this part of the calculation are performed
using the spectral algorithm described in ref 27.
Once the equilibrium morphology is obtained, we can then

evaluate the bridging statistics. To facilitate this, the melt is
divided into Voronoi cells, each containing a single A domain.
For the LAM phase, the cells are parallel planes; for the CYL
phase, they are hexagons; for the SPH phase, they are truncated
octahedrons. An arm is said to belong to the cell if its AB
junction (s = fA) lies in the cell. We focus on one particular
Voronoi cell, which we refer to as the first cell. A partial
partition function, q(̅r,s), for an arm restricted to the first cell is
calculated by propagating s forward from
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⎪

⎪⎧⎨
⎩

q f
q f
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0, otherwiseA
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using eq 1. In this case, q(̅r,s) is not periodic, and thus the
diffusion equation needs to be solved in a relatively large
volume, but fortunately this only needs to be done once for any
given set of system parameters. The numerics for this step are
done using the pseudospectral algorithm introduced by Ranjan
et al.28

Given q(̅r,s), the partition function for a single star with its
center at r and a total of m arms in the first cell can be
expressed as

= ̅ − ̅
−⎜ ⎟
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The first factor is the number of ways of choosing the m arms
from a total of M, the second factor is the partition function for
m arms constrained to the first cell, and the last factor is the
partition function for M − m arms excluded from the first cell.
From this, we obtain the joint distribution

= ′P mQ Qr r( ) ( )/m m (11)

for the probability that an arm in the first cell belongs to a star
with its center at r and a total of m arms in the first cell. Thus,
the integrated (or marginal) distribution

∫̅ =P P r r( ) dm m (12)

provides the probability that an arm in the first cell belongs to a
star with m arms in the first cell. The normalization factor

∫′ = ̅
−Q M q qr r r( , 1) ( , 1) dM 1

(13)

in eq 11 corresponds to the partition function of a star with one
or more arms in the first cell. One can show, using the binomial
theorem, that the normalization gives

∑ ̅ =
=

P 1
m

M

m
1 (14)

Since all the Voronoi cells are equivalent, it follows that the
overall fraction of stars that form bridges is
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■ RESULTS
The equilibrium phase behavior of (AB)M star blocks is very
similar to that of the conventional AB diblock.29 Figure 1 shows

a sample phase diagram for star block copolymers with M = 9
arms. For the sake of simplicity, we ignore the complex gyroid
and Fddd morphologies that exist in narrow channels between
the LAM and CYL phases. Like all AB-type architectures,29 the
ordered phases extend down to a mean-field critical point,
which is denoted by a solid dot in Figure 1. The fact that this
does not happen in the SCFT phase diagram of ref 24 implies
that their calculation suffers from a significant degree of
numerical inaccuracy. This is not the case here; the spectral
method provides superb accuracy.
In the previous simulations by Hart et al.,23 stars of different

M were compared holding the total number of segments
constant. As a result, they found large shifts in the order−
disorder transition and the domain size as M was increased. It is
well understood,29 that the appropriate comparison should be
done with a fixed number of segments in each arm, which is
why we define N to be the polymerization of a single arm rather
than the entire molecule.
In our study, we examine the star blocks over compositions fA

< 0.5 at a fixed segregation of χN = 30 (denoted by the dotted
line in Figure 1). Our attention is restricted to the left side of
the phase diagram because thermoplastic elastomers require the
glassy or semicrystalline domains to be discrete in order for the
material to deform. Although one might expect that varying χN
would have a significant effect on the bridging statistics due to
the change in domain size, we know from strong-segregation
theory that this is not the case.30 Indeed, the previous SCFT
calculations for linear ABA triblocks (i.e., M = 2)4,5 have shown
that the bridging fraction becomes relatively insensitive to the
value of χN once the melt is well segregated.
We begin by considering the simple LAM phase, where the

only spatial dependence is with respect to the z coordinate
normal to the lamellae. The A-segment concentration, ϕA(z),
for M = 5 and 9 arm stars of composition fA = 0.4 is plotted

over one period (i.e., z = 0 to D) in Figures 2a and 2b,
respectively, using a green dashed curve for the first cell (z < D/

2) and a red dashed curve for the neighboring cell (z > D/2).
The black solid curves show the joint probability, Pm(z), that an
arm anchored in the first cell belongs to a star with its center at
z and m of itsM arms in the same cell. In general, the maximum
of Pm(z) occurs when m is a bit larger thanM/2 and z is slightly
shifted toward the first cell (i.e., z ≲ D/2). It goes without
saying that there is a strong correlation between z and m, since
stars with their centers closer to a particular A domain are likely
to have most of their arms in that domain.
The marginal distribution, P̅m, plotted in Figure 2c is

obtained by integrating the area under each Pm(z) curve, and
therefore it corresponds to the probability that an arm in the
first cell belongs to a star with m arms in the first cell. In the
LAM phase, a star with its center in a particular B lamella only
ever has two A domains in which to anchor its arms. Hence, if
we are told that a star has an arm anchored in the A domain of
the first cell, it is likely that the center of the star is closest to
that domain and in turn most of its arms are probably in the
same domain. This is reflected by the fact that the peak in P̅m
occurs at m ≳ M/2.
Next, we examine the CYL phase at a composition of fA =

0.25. The joint distribution, Pm(r), is now a function of the two
spatial dimensions normal to the cylinder axis, which makes it
more difficult to plot. Therefore, we restrict our attention to M
= 9 stars and show two-dimensional density plots of Pm(r) for
several values of m in Figures 3a−d. The circular curves denote
the A/B interfaces (defined by ϕA(r) = 0.5); the interface of the

Figure 1. Phase diagram for stars with 9 diblock arms, where χ is the
Flory−Huggins interaction parameter, N is the degree of polymer-
ization of each arm, and fA is the volume fraction of the end blocks.
The calculation is limited to the disordered (DIS) phase and the
ordered lamellar (LAM), cylindrical (CYL), and bcc spherical (SPH)
morphologies. The dotted line denotes the slice of the phase diagram
studied in this paper. Figure 2. Bridging statistics for the LAM phase at χN = 30 and fA =

0.4. The solid curves (scale on left) show the joint probability, Pm(z),
that an arm anchored in the first cell (|z| < D/2) belongs to a star
centered at z with m of its (a) M = 5 and (b) M = 9 arms in the same
cell. The A-segment profile, ϕA(z), is plotted with dashed curves (scale
on right) using green in the first cell and red in the neighboring cell.
Plot (c) shows the marginal distribution, P̅m, for the probability that an
arm anchored in the first cell belongs to a star with m arms in that cell.
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first cell is shown in green, and others are plotted in red. When
a star only has one arm in the first cell (i.e., m = 1), its center
tends to be located between a pair of neighboring A domains to
which most of the remaining eight arms anchor, as illustrated
by the typical configuration shown in Figure 3a. For larger
values of m, the center of the star tends to locate closer to the A
domain of the first cell. In Figure 3d, where all the arms are
anchored in the first cell (i.e., m = M), the center of the star is
confined to a circular annulus in close proximity to its A/B
interface.
The marginal distribution, P̅m, for the CYL phase is plotted in

Figure 3e for stars with M = 3, 5, and 9 arms. In this case, the
maximum in P̅m tends to occur at a smaller value of m than it
did for the LAM phase. This is because there are positions in
the B domain where the arms of the star can readily select
between three different A domains. As such, the maximum
tends to occur in the range M/3 ≳ m ≳ M/2.
Last, but not least, we examine the SPH phase at fA = 0.16. In

this case, the joint distribution is particularly difficult to
visualize, given that it now depends on all three spatial
dimensions. To deal with this, Figures 4a and 4b plot the level
surface of Pm(r) at half its maximum for M = 9 stars with m = 1
and 2 arms anchored in the first cell, respectively. As before, the
A/B interface of the first cell is shown in green, while those of

the other cells are shown in red. For stars with only one arm
anchored in the first cell, their centers tend to be located well
outside the cell where their remaining eight arms can readily
anchor in the neighboring A domains. Again, as the number of
arms in the first cell increases (e.g., m = 2), the distribution
Pm(r) becomes more localized around the A/B interface of the
first cell.
The marginal probability, P̅m, for the SPH phase is shown in

Figure 4c for stars with M = 3, 5, and 9 arms. Since there are
now locations in the B-rich matrix where the stars can
simultaneously bridge to numerous different A domains, the
maximum in P̅m occurs at a smaller value of m than it did for the
LAM and CYL phases. The fact that P̅m for the M = 9 arm stars
is largest for m ≈ 2 implies that the stars are typically bridging
between about four different A domains with roughly two arms
in each of them.
To conclude, Figure 5 plots the fraction of stars, νb, that

bridge between two or more domains as a function of
composition, fA. As we should expect, the results for M = 2
(i.e., linear ABA triblocks) match those of the previous SCFT
method.5 In all cases, the bridging increases as the morphology
changes from LAM to CYL to SPH. We can attribute this to the
fact that the number of nearest-neighbor cells increases from
two to six to eight, respectively, thus providing a greater
opportunity for bridging. Not surprisingly, an increase in the
number of arms, M, also enhances the bridging. It is
noteworthy, though, how rapidly νb increases with M. By the
time M = 9, virtually all the stars form bridges in the CYL and
SPH phases, the two morphologies best suited to thermoplastic
elastomers.

Figure 3. Similar plots to those of Figure 2, but for the CYL phase at
χN = 30 and fA = 0.25. The joint distribution, Pm(r), of a 9-arm star is
shown with density plots (a) to (d) for different values of m. The A/B
interfaces are plotted in green for the first cell and red for the other
cells. A sample polymer configuration is illustrated in each plot. The
marginal distribution, P̅m, is given in plot (e).

Figure 4. Similar plots to those of Figure 2, but for the SPH phase at
χN = 30 and fA = 0.16. Level surfaces of the joint distribution, Pm(r), of
a 9-arm star are plotted in blue for (a) m = 1 and (b) m = 2. The A/B
interfaces are plotted in green for the first cell and red for the other
cells. A sample polymer configuration is illustrated in each plot. The
marginal distribution, P̅m, is given in plot (c).
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■ DISCUSSION
The enhanced bridging predicted by SCFT offers a natural
explanation for the observed improvement in mechanical
properties of (AB)M star blocks over those of ABA
triblocks.20,22 One reason the bridging increases is that the
centers of the stars (i.e., s = 1) become more localized near the
middle of the majority B domain. This follows from the fact
that the concentration of the centers, ρ(r, 1) = VqM(r,1)/Q, is
proportional to a larger power of the partial partition function.
In the simple LAM phase, for instance, the width of ρ(r,1) for
9-arm stars is reduced by 25% relative to that of ABA triblocks.
Given that the stars have their centers nearer the middle of the
B domain, their arms are less likely to favor any particular A
domain.
The law of large numbers is another contributing factor to

the higher bridging fraction. The probability of an arm, from a
star with its center at r, anchoring in the first cell is p = q(̅r,1)/
q(r,1). Since the arms of a flexible star are statistically
independent, the number of arms in the first cell will obey
the binomial distribution. As such, the expected number of
arms in the first cell, ⟨m⟩ = Mp, is linear in M, whereas the
standard deviation, σm = [Mp(1 − p)]1/2, only increases as the
square root of M. The general consequence is that the arms will
tend to be split more evenly among the accessible A domains,
when M is larger.
Naturally, the fact that stars have multiple arms allows them

to bridge between more than just two domains. In the CYL
phase, there are positions in the middle of the B domain where
the stars can readily bridge between three A-rich cylinders (see
Figure 3b). In the SPH phase, the number of accessible A-rich
domains increases to about four. This is evident in Figure 4c,
where P̅m for M = 9 stars has a maximum at m = 2. This implies
that the minority blocks in the first cell are most likely to
belong to stars with only one other arm in that same A-rich
sphere; the remaining seven arms are likely to be divided
among several different spheres.
If so desired, one can readily extend the present approach to

evaluate all kinds of joint distributions. For instance, by
calculating partition functions for arms constrained to two
different Voronoi cells, q1̅(r,s) and q2̅(r,s), one could obtain the
joint distribution, P̅m1,m2

, for the probability that m1 arms are in
cell one and m2 arms are in cell two, while the remaining M −
m1 − m2 arms reside in other cells. It is just a matter of deciding
what quantities provide useful information.

The previous SCFT method5,30 for calculating bridging
statistics is limited to architectures where both ends of a B
block are constrained to the A/B interfaces. This restriction is
nevertheless satisfied by many architectures, not just linear
architectures but also the combs simulated in ref 23 and even
the miktoarm star studied in refs 17, 18, and 19. The limitation
of the method only arises when one end of the B block is free
to move throughout the B domain, as is the case for the (AB)M
star or the more complex architectures recently studied in refs
15, 16, and 31. Our new method is able to handle these
architectures as well as the ones of the previous method. In fact,
when the architecture is symmetric about the center of the B
block, as is the case for symmetric ABA triblocks, our approach
is computationally faster because it only needs to integrate
q1̅(r,s) over half the B block.
The attempt by Xu et al.24 to extend the previous SCFT

method applied the binomial distribution to the single-arm
probability, p = q(̅r,1)/q(r,1), weighted by the distribution of
the center of the star, ρ(r,1). Although the binomial
distribution applies to a star with a fixed center, it does not
apply to the whole distribution of positions because m and r are
correlated. The evaluation of joint or conditional probabilities
can sometimes be counterintuitive, and so the evaluation of
bridging statistics requires considerable care.
Simulations offer a more straightforward way of evaluating

bridging statistics than SCFT, but they are far more
computationally costly. While simulations have progressed
enormously over recent years to the point where they can
handle simple architectures like the AB diblock and ABA
triblock copolymers with relative ease, complex architectures
involving a large number of blocks still pose a daunting
computational challenge. Indeed, the bead−spring model of the
M = 6 arm star block simulated by Hart et al.23 was limited to
merely four beads per B block. Even then, their evaluation of νb
was limited to the simple LAM phase. In contrast, our SCFT
calculation takes mere seconds to determine the equilibrium
phase and evaluate the bridging statistics regardless of the
morphology.
Only time will tell, but (AB)M star blocks may eventually

become an architecture of choice for thermoplastic elastomers.
They have been studied for decades,32−38 and there are now
straightforward synthetic techniques for tuning the number of
arms.36 Undoubtedly, there will be various ways of improving
their performance as thermoplastic elastomers. For instance,
the compositional shift in the morphologies that has been
attributed to the superior performance of miktoarm star
blocks17−19 could be realized in this system by, for example,
introducing polydispersity into the A blocks. However, the
resulting advantage of larger minority domains will have to be
balanced against the increased probability of short A blocks
pulling out their domains. With the added capability of
evaluating the bridging statistics, SCFT will be a great asset in
exploring such modifications to the system.

■ SUMMARY
A new versatile and computationally efficient SCFT method
has been devised for calculating the bridging statistics of
complex block copolymer architectures. The method was
applied to melts of (AB)M stars, each consisting of M identical
diblock arms. As is the case for linear ABA triblock copolymers
(i.e., M = 2), the fraction of molecules, νb, that bridge between
discrete A domains increases as the morphology changes from
lamellar (LAM) to cylindrical (CYL) to bcc spherical (SPH).

Figure 5. Bridging fractions, νb, as a function of the relative length of
the end block, fA, plotted for stars with M = 2, 3, 5, and 9 arms. Dotted
lines denote discontinuous changes in νb at the order−order
transitions between the LAM, CYL, and SPH phases.
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However, the propensity to bridge between minority domains
is greater for stars than triblocks, especially as the number of
arms is increased. In fact, virtually all star molecules form
bridges once M ≳ 10. Some of the improvement can be
attributed to the greater tendency of stars to locate in the center
of the B domain, where the arms have a balanced access to
multiple A-rich domains. More importantly, stars with many
arms benefit from the law of large numbers, which favors an
equal partitioning of arms among the available domains.
The superior bridging statistics of (AB)M stars relative to the

simpler ABA triblocks provides an explanation for the improved
mechanical properties observed in experiment.20,22 Given the
well-developed synthetic techniques,36 diblock-arm stars should
offer a viable way of improving the performance of thermo-
plastic elastomers. There will undoubtedly be scope for
modifications to the architecture, such as polydispersity in the
end blocks, that could further improve the properties. The
existing SCFT algorithms for efficiently predicting the phase
behavior of complex block copolymer architectures coupled
with our new method of evaluating bridging statistics will
undoubtedly provide valuable guidance for optimizing this
system as well as ones based on other complex architectures
like those recently studied by refs 15, 16, and 31.
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