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Photodegradation, driven primarily by ultraviolet (UV) radia-
tion, is the primary cause of failure for organic paints and coatings, as
well as many other products made from polymeric materials exposed
to sunlight. Traditional methods of service life prediction involve the
use of outdoor exposure in harsh UV environments (e.g., Florida and
Arizona). Such tests, however, require too much time (generally many
years) to do an evaluation. To overcome the shortcomings of tradi-
tional methods, scientists at the U.S. National Institute of Standards
and Technology (NIST) conducted a multi-year research program to
collect necessary data via scientifically-based laboratory accelerat-
ed tests. This paper presents the statistical modeling and analysis
of the photodegradation data collected at NIST, and predictions of
degradation for outdoor specimens that are subjected to weather-
ing. The analysis involves identifying a physics/chemistry-motivated
model that will adequately describe photodegradation paths. The
model incorporates the effects of explanatory variables which are U-
V spectrum, UV intensity, temperature, and relative humidity. We
use a nonlinear mixed-effects model to describe the sample paths.
We extend the model to allow for dynamic covariates and compare
predictions with specimens that were exposed in an outdoor environ-
ment where the explanatory variables are uncontrolled but recorded.
We also discuss the findings from the analysis of the NIST data and
some areas for future research.

1. Introduction.

1.1. The Problem and NIST Experiments. Polymeric materials are widely used in
many products such as paints, coatings, and components in systems such as photo-
voltaic power generation equipment (e.g., encapsulant and backsheet). Photodegra-
dation caused by ultraviolet (UV) radiation is the primary cause of failure for paints
and coatings, as well as many other products made from polymeric materials that
are exposed to sunlight. Other environmental variables including temperature and
humidity can also affect degradation rates. When a new product that will be subject-
ed to outdoor weathering is developed, it is necessary to assess the product’s service
life. As an example, for paints and coatings, the traditional method of service life
prediction involves sending perhaps ten coated panels to Florida (where it is sunny
and humid) and another ten panels to Arizona (where it is sunny and dry). Then
every six months one panel is returned from each exposure location for detailed eval-
uation (e.g., to quantify chemical and physical changes over time). If the amount of
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degradation is sufficiently small after, say, five years, the service life is deemed to be
satisfactorily long.

The problem with the traditional method of service life prediction is that it takes
too long to obtain the needed assessment (Martin et al. 1996). For many decades,
accelerated tests (e.g., Nelson 1990) have been used successfully to assess the lifetime
of products and components in environments that do not involve UV exposure. Ac-
celerated tests for photodegradation are, however, more complicated. Non-scientific
approaches to achieve acceleration of the degradation process by simply “speeding up
the clock” in laboratory testing led to incorrect predictions. It is believed that the
efforts failed for a combination of reasons including that UV lamps do not have the
same spectral irradiance distribution as the sun and that varying all experimental
factors simultaneously (the opposite of what would be done in a carefully designed
experiment) does not provide useful information for modeling and prediction.

Scientists at the U.S. National Institute of Standards and Technology (NIST), in
collaboration with scientists and engineers from companies and other organizations,
conducted a multi-year research program to collect necessary data via scientifically-
based laboratory accelerated tests that could be used to build statistical models and
then to predict the service life of polymeric materials subjected to outdoor weathering.
The main objective of this paper is to describe the statistical modeling and analysis
of the laboratory accelerated test data collected at NIST, which incorporate physical
and chemical knowledge of the degradation mechanism. We also generate predictions
for specimens that were subjected to outdoor exposure where dynamic explanatory
variables (i.e., time-varying covariates) although not controlled, were recorded.

While the details of the NIST experiments are described in Section 2, here we pro-
vide a brief introduction. The laboratory accelerated weathering tests were conduct-
ed using the NIST Simulated Photodegradation via High Energy Radiant Exposure
(SPHERE), a device in which spectral UV wavelength, UV spectral intensity, temper-
ature, and relative humidity (RH) can be controlled over time. Also, outdoor-exposure
experiments were conducted on the roof of a NIST building in Maryland over differ-
ent time periods. Both sets of experiments used a model epoxy coating. Chemical
degradation was measured on both the laboratory accelerated test specimens and the
outdoor-exposed specimens every few days using Fourier transform infrared (FTIR)
spectroscopy. Longitudinal information on ambient temperature, RH, and the solar
intensity and spectrum for outdoor-exposed specimens were carefully recorded at 12-
minute intervals over the period of outdoor exposure.

We use the following major steps for the statistical modeling and prediction based
on NIST data from photodegradation of polymeric materials. In these major steps,
we combine physical/chemical knowledge and accelerated test data to build a model
that can predict field performance.

1. Use the accelerated test data and knowledge of the physics and chemistry of the
degradation process to help identify the functional forms for the experimental variables
as they relate to the degradation path model.

2. Use the identified functional forms and the accelerated test data to build a degra-
dation path model linking the sample degradation paths and the experimental variables.

3. Use the identified model to generate predictions of degradation for given covariate
histories.
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4. To verify the effectiveness of the statistical models, compare predictions, based
on the accelerated test degradation data and model, with observed degradation paths
for outdoor-exposed specimens.

5. Use prediction intervals to quantify the statistical uncertainties associated with
the outdoor degradation predictions.

1.2. Related Literature. In this section, we review the general degradation litera-
ture. Lu and Meeker (1993) provided examples of models and analyses of degradation
data. To speed up the degradation process and provide information in a more timely
manner, accelerated degradation tests are commonly used (e.g., Chapter 12 of Nelson
1990). Potential accelerating variables include the use rate or aging rate of a product,
exposure intensity, voltage stress, temperature, humidity, etc. Degradation processes
are often affected by dynamic covariates. The cumulative damage model has been
used to describe the effect that dynamic covariates have on degradation and failure-
time processes (e.g., Bagdonavicius and Nikulin 2001, and Hong and Meeker 2010).
Liao and Elsayed (2006) considered reliability inference for accelerated degradation
testing under varying stress. Hong et al. (2015) and Xu et al. (2016) used dynamic
covariates to build predictive models for degradation.

In recent years, new degradation analysis techniques have been developed using a
functional data analysis framework. Zhou, Serban, and Gebraeel (2011) used function-
al data analysis approaches for degradation modeling and residual lifetime prediction.
Zhou, Gebraeel, and Serban (2012) presented degradation modeling and monitoring
based on truncated degradation signals using the framework of functional data analy-
sis. Zhou et al. (2014) developed a functional time warping approach for degradation
analysis. Zhou, Serban, and Gebraeel (2014) considered residual life prediction un-
der different environments. Recent development of stochastic models for degradation
analysis includes Wang and Xu (2010), Ye and Chen (2014), and Peng (2016), us-
ing the inverse Gaussian process as the main model. Pan and Crispin (2011) used a
hierarchical modeling approach to analyze accelerated degradation testing data, and
Wang et al. (2013) developed a Bayesian framework for degradation analysis. Zhang
and Liao (2015) considered degradation modeling with a random degradation initia-
tion time. Existing methods, however, can not be directly applied for the degradation
modeling problem in this paper because photodegradation involves multiple acceler-
ating variables under complicated relationships, and the outdoor prediction involves
time-varying covariates.

In the area of photodegradation modeling, Gu et al. (2009) described three poten-
tial approaches to link laboratory accelerated degradation test data with outdoor-
exposure data for a coating system. In a preliminary report of the NIST experimental
program, Vaca-Trigo and Meeker (2009) described a predictive model to link the NIST
laboratory accelerated test data and outdoor-exposure data. They used a nonlinear
model for the accelerated test data and a cumulative damage model to predict the
outdoor-exposure data. In this paper, we use a sophisticated nonlinear mixed-effects
model with a careful physically-motivated modeling of the effects of the accelerat-
ing variables on the sample degradation paths. We also account for different sources
of variability in the degradation path. The improved model in this paper provides
enhanced prediction performance and the ability to quantify prediction uncertainty
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with prediction intervals.

1.3. Qverview. The rest of this paper is organized as follows. Section 2 describes
the laboratory accelerated test and the outdoor-exposure experiments for data collec-
tion and provides notation for the data. Section 3 describes the nonlinear mixed-effects
model and defines total effective dosage. Section 4 uses the laboratory accelerated test
data to compute estimates of a categorical-effects model, providing information about
the functional forms of the experimental variables needed to identify a model relat-
ing photodegradation to the experimental variables. Section 5 uses model parameter
estimates from the laboratory accelerated test data and a cumulative damage model
to predict outdoor-exposure degradation and compares the predictions with actual
outdoor-exposure degradation paths. A comparison is also done for several different
models in terms of model fitting and prediction accuracy. Section 6 contains conclu-
sions and discussion of areas for future research.

2. Photodegradation Data.

2.1. Laboratory Accelerated Test FExperiments and Data. We first briefly discuss
the time scale for degradation processes. For a coating subjected to UV exposure, the
scientifically appropriate time scale is proportional to the number of photons that get
absorbed into the coating, taking into account that shorter wavelength photons are
more energetic (and thus have a higher probability to cause damage). For those who
study photodegradation, such a measure is called UV dosage, as will be described in
detail in subsequent sections of this paper.

The light source for the laboratory accelerated test experiments was high-intensity
UV lamps. The spectral irradiance of the lamps is a function of wavelength A, which
gives the power density at a particular wavelength A. The spectral irradiance of the
UV lamps in the NIST SPHERE is illustrated in Figure 1. Specifically, the irradiance
is defined as the power of the electromagnetic radiation per unit area incident on a
surface.

The effect of UV radiation on degradation depends on both the UV spectrum and
UV intensity. UV radiation with shorter wavelengths tends to have higher energy
per photon, thus causing more damage to the material when compared with UV
radiation with longer wavelengths. Also, for the UV with the same wavelength, higher
UV intensity (means more photons per time unit) tends to cause more damage than
lower intensity. To study the effect of UV spectrum and UV intensity, the spectral
irradiance of the lamps was modified and controlled by bandpass (BP) and neutral
density (ND) filters. BP filters pass only UV with wavelengths over a particular range.
For example, the 306 nanometer (nm) BP filter has a nominal center wavelength of
306 nm and full-width-half maximum values of +3 nm. The four BP filters used in
the experiments have nominal center wavelengths of 306 nm, 326 nm, 353 nm, and
452 nm.

ND filters control the intensity of the UV radiation without affecting the shape
of the UV spectrum. For example, a 10% ND filter (nominally) passes 10% of the
UV photons at any wavelength. The four ND filters used in the experiments are 10%,
40%, 60%, and 100% (actually, a 100% ND would use no ND filter). As an illustration,
Figure 2 shows all combinations of the 16 BP and ND filters.
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F1G 1. Plot of the laboratory accelerated test lamp spectral irradiance distribution.
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FiG 2. Illustration of the combinations of the BP and ND filters. The y-axis shows the percentage of
photons passing through the combinations of filters.
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TABLE 1
Laboratory accelerated test setup, showing the BP filters, ND filters, and levels of temperature and
RH.

306 nm (£3 nm), 326 nm (£+6 nm),

BP filter | o531 ((i21 nm)), 452 nm ((ﬂg mzl)

ND filter 10%, 40%, 60%, 100%

Temperature 25°C, 35°C, 45°C, 55°C
RH 0%, 25%, 50%, 75%

TABLE 2
Summary of the 80 experimental combinations of BP and ND filters and temperature and RH levels.
An empty cell implies that no experiments were done for the corresponding combination of
temperature and RH. 4 X 4 implies that experiments were done for all of the 16 combinations of the
BP and ND filters at the corresponding temperature and RH combination. 4 X 1 implies that
experiments were done for all four BP filters and the 100% ND filters for the corresponding
temperature and RH combination.

. RE g0 | 25% | 50% | 75%
emp
25 4 x4
35 4x4 | 4x1|4x1
45 4x1|4x1|4x4
55 4 x4

The laboratory accelerated test experiments also have other controlled environ-
mental factors: temperature and RH. Table 1 gives a summary of the experimental
factors for the laboratory accelerated degradation experiment. The temperature lev-
els were 25°C, 35°C, 45°C, and 55°C. The RH levels were 0%, 25%, 50%, and 75%.
The laboratory accelerated test data contain a total of 80 combinations of the ex-
perimental factors. Due to time and funding constraints, not all combinations of the
four experimental factors were run in the experiments. Table 2 summarizes the 80
experiment combinations of the BP and ND filters, and temperature and RH levels.
There were four replicates for most of the experimental factor-level combinations. A
total of 319 specimens were exposed in the laboratory accelerated test experiments.

Damage to the material, which is used as an indication for degradation, was mea-
sured by Fourier transform infrared (FTIR) spectroscopy. An FTIR spectrometer
provides an infrared spectrum of absorption or emission of a material. In particular,
special structures of compounds absorb the infrared energy at different wavelengths,
which results in peaks in the FTIR spectra. The locations of the FTIR peaks cor-
respond to unique chemical structures and thus can be used to identify the relative
concentration of different compounds. The height of a peak is proportional to the
concentration of a particular compound or structure. The time intervals between the
FTIR measurements in the accelerated test were typically on the order of a few days.

Figure 3 gives an illustration of FTIR peaks for a particular specimen at one point
in time. Our modeling focuses on intensity changes at wavenumber 1250 cm ™!, which
corresponds to C-O stretching of aryl ether. Other peaks that were recorded as po-
tentially useful responses include 1510 cm™! (benzene ring stretching), 1658 cm™!
(C=0 stretching of oxidation products), and 2925 cm~! (CHj stretching) (e.g., see
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Fic 3. Illustration of FTIR spectrum of the model epoxy used in the NIST experiments.

Bellinger and Verdu 1984, Bellinger and Verdu 1985, Rabek 1995, and Kelleher and
Gesner 1969).

As an example of the degradation data collected in the laboratory accelerated test
experiments, Figure 4 shows the degradation paths for FTIR wavenumber 1250 cm ™!
for specimens with 10%, 40%, 60% and 100% ND filters, the BP filter centered at
353 nm, temperature 35°C, and 0% RH. For this wavenumber, the degradation paths
are decreasing (i.e., the amount of C-O stretching of aryl ether was decreasing). As
expected, the degradation rates were higher for the ND filters passing larger percent-
ages of UV photons. For the groups of two to four specimens exposed to the same
conditions (and at the same time and in the same chamber), there is some specimen-
to-specimen variability.

To use a degradation model to make inferences about failure times, it is necessary
to have a definition of failure. When dealing with soft failures (as is commonly done
in degradation analysis applications), such definitions generally have a subjective el-
ement (e.g., at what point in loss of gloss of a coating do we have a failure), but such
decisions are typically made in a purposeful manner and with great care (e.g., using
customer survey information to assess perception of gloss loss). These ideas relating
degradation modeling to the estimation of service life are widely used in applications
of degradation data modeling (e.g., the light output of lasers and LEDs, corrosion
of pipelines, and growth of cracks in structures). During the NIST experimental pro-
gram, physical measurements of gloss loss were also taken and correlated with the
FTIR chemical degradation measurements. One reason that we choose to use the
wavenumber 1250 cm ™! as our response is that it correlated best with gloss loss of
the model epoxy used in the NIST experiments. As indicated by the horizontal lines
in Figures 4 and 5, a damage level of —0.40 was used as the failure definition.

2.2. Outdoor-Exposure Experiments and Data. The UV exposure for the outdoor-
exposure specimens is from the sun. There were 53 specimens in the outdoor-exposure
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FiG 4. Degradation paths for specimens with 10%, 40%, 60% and 100% ND filters, the 358 nm BP
filter, temperature at 35°C, and 0% RH.

experiments and they were exposed over different time intervals during a three-year
period. The UV spectral irradiance, temperature, and RH are, of course, uncontrolled
outside, but were recorded at 12-minute intervals. For the outdoor-exposure speci-
mens, the UV, temperature, and RH are dynamic covariates. The measurements of
degradation were taken every three to four days, similar to the accelerated test speci-
mens. We continue to focus on chemical changes at the wavenumber 1250 cm ™. Note,
however, that we used the laboratory accelerated test data for model fitting. The data
from the outdoor-exposed specimens are used only for validating the accelerated test
methodology.

We also want to point out the interesting difference between the laboratory ac-
celerated test data and outdoor-exposure data. The data shown in Figure 4 were
collected in laboratory accelerated tests in which the UV, temperature, and RH are
controlled to be constant over time. All of the sample paths have the same shape.
Figure 5, on the other hand, shows the sample degradation paths as a function of
the days since the beginning of exposure for a representative subset of 12 specimens
that were exposed outdoors at different times. The sample degradation paths have
different shapes, depending on the time of the year that the specimens were being
exposed. The variability in the shapes of degradation paths for the outdoor-exposure
data is due to and can be explained by the variability in the dynamic covariate time
series (also see Hong et al. 2015).

To further illustrate and understand the outdoor-exposure degradation-path pat-
terns, Figure 6(a) shows the degradation path for a particular outdoor-exposed speci-
men as a function of the calendar time. Figures 6(b), 6(c), and 6(d) show the dynamic
covariates corresponding to the particular degradation path in Figure 6(a). From Fig-
ure 6(d), we can see that the UV intensity is low during the late fall and winter
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F1Gc 5. Plots of the degradation paths as a function of the days since the first measurement for a
representative subset of 12 outdoor-exposed specimens.

months, corresponding to a smaller slope in the degradation path, while the UV is
stronger for the months of March and April, corresponding to a larger slope in the
degradation path.

2.3. Notation. Here we introduce notation for the data. The degradation (damage)
measurement for specimen i is the change (relative to the value at the beginning
of exposure) in the FTIR peak at 1250 cm~! at time t;; and for the laboratory
accelerated test data is denoted by w;(ti;), i« = 1,...,n, j = 1,...,m,. Here, n is
the total number of laboratory accelerated test specimens and m; is the number of
time points where the degradation measurements were taken for specimen ¢. The last
observation time for specimen ¢ is denoted by ¢; = i, .

For the laboratory accelerated test data, the UV radiation is quantified by the
cumulative dosage D;(7;) at time 7; (note that the cumulative dosage values were
reported at times that differ from the times at which the degradation measurements
were taken). The cumulative dosage is proportional to the total number of photons
that were absorbed by specimen ¢ across all wavelengths between time 0 and 7;;. Here,
i=1,...,n,1l=1,...,n;, where n; is the number of time points at which the total
dosage was recorded for specimen 1.

For the laboratory accelerated test specimens, the experimental factors are held
constant at specified levels over time. We let BP;, ND;, Temp,, and RH; be the BP
filter, ND filter, temperature, and RH levels, respectively, for specimen 4. In summary,
the laboratory accelerated test data are {y;(t;), Di(7i1), BP;, ND;, Temp,, RH;} for
i=1,....n,75=1,....my,and l =1,...,n,.

For the outdoor-exposure data, we use subscript k to index the exposed specimens.
The degradation measurement at time t;; is denoted by yi(tx;), k = 1,...,¢,5 =
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1,...,my for specimen k. Here ¢ is the number of outdoor-exposure specimens.
The recorded ambient temperature and RH for specimen k at time 7 are denot-
ed by Tempy(7g;) and RHg (1), I = 1,...,ng, respectively. For the UV radiation,
dosage was recorded for each 12-minute interval and each 2 nm wavelength inter-
val between 300 nm and 532 nm. We denote the UV dosage for outdoor-exposure
specimen k at time 7 and wavelength interval A\ by Dy(7g;, A). An example of
Dy (751, \) data is shown in Figure 6(d). In summary, the outdoor-exposure data
are {yk(te;), Dk(Thr, ), Tempy (7r1), RHg (70) } for & = 1,...,¢, 1 = 1,...,ny, and
jg=1...,mg.

3. Models for Photodegradation Paths.

3.1. The Concept of UV Dosage. The UV dosage is an important concept that
will be used as the “time scale” for the subsequent photodegradation modeling. For
the laboratory accelerated test data, only the cumulative dosage D;(7;;) was available.
Conceptually, the cumulative dosage is computed as follows. The number of incident
photons from UV light source, defined as dose, for specimen i at time 7;;, from wave-
length X after BP and ND filters, is denoted by F;(7ik, A). Let Lamp(\) be the spectral
irradiance of the UV lamp as a function of wavelength, and let Filter(\, BP;,ND;)
denote the combined effect of the BP and ND filters. The dose E;(7x, A) can be
computed as

Ei(Tika )\) = Ez()\) = Lamp()\) X Filter()\, BPZ, NDZ),

which is constant over time for the laboratory accelerated test specimens due to
the controlled experimental factors. The number of incident photons absorbed by a
specimen at time 7;;, defined as “dosage,” is denoted by D(7, A), where

Di(Tig, \) = Ei(Tir, A{1 — exp[—A(N)]},

and A(A) is the spectral absorbance of the specimen at specified wavelength A (a
property of the material). Thus, the cumulative dosage, which is proportional to the
total number of photons absorbed by a specimen across all wavelengths up to time ¢,
is computed as

Dy(t) = /0 t /A Di(r, \)dAdr,

where the integral is over the entire range of A\. We also define Dy (\) = fot D;(1,\)dr
to be the wavelength-specific cumulative dosage.

3.2. The Physical Model. To model the effect of the experimental factors, we in-
troduce the concept of “effective dosage.” The cumulative effective dosage up to time
t is defined as

(1) /0 t A T D(r \(A)dA

min

Here the function ¢(A) is the quasi-quantum yield function describing the fact that
photons with a shorter wavelength have a higher probability of causing damage. The
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wavelengths that are of interest are between Apin and Apax. For values of A > Apax,
the probability of damage is negligible. For values of A < Apin, potentially damaging
photons are normally filtered out by the protective ozone layer in the stratosphere.

To allow for the environmental effects for specimen i, we use the following model
for experimental-variable adjusted effective dosage.

Amax

t
(2) Silt) = /0 F(Temp,)g(RI1)AND) [ Di(rN)o(ixdr

Here f(Temp;), g(RH;) and d(ND;) are functions of the acceleration factors due to
temperature, RH, and ND, respectively.

Dosage D;(7,\) for each specimen was computed taking into account the nominal
values of the ND filters. The percentage of UV photons passing through the ND filters,
however, is not exactly equal to the nominal values. Thus the factor d(ND;) is used
to provide a data-based adjustment for the deviations.

The quasi-quantum yield function ¢(\) describing the effect of UV spectrum is
material dependent and unknown and needs to be estimated from the data. The
estimation of ¢(\) from experimental data helps us understand material properties
and how the UV exposure affects the degradation process at different wavelengths.

Environmental factors such as temperature and RH will also affect the degradation
process. The Arrhenius relationship is widely used to describe the rate of chemical
reactions and thus the acceleration effect of temperature. The manner in which RH
and UV intensity (controlled by the neutral density filters) affect the degradation
process, however, is unknown. That is, the functional forms of g and d need to be
identified from a combination of scientific knowledge of the degradation process and
the experimental data.

3.3. The Statistical Model for Photodegradation. In the general degradation path
model, the degradation measurement of specimen 7 at time ¢;; is

(3) Yi(tij) = Giltij) + €i(tij),

where G;(t;;) is the actual degradation path and €;(t;;) is the corresponding error
term. Photodegradation is primarily driven by the effective dosage S;(t) as defined in
(2). The general shape of the laboratory accelerated test degradation paths can be
described by the following parametric model

aexp(v:)

(4) Gi(tij) = T+op(—2)

where z = {log[S;(t;;)]—p}/o, and p and o are the parameters describing the location
and steepness of the damage curve, respectively. Ignoring the random effect v;, the
asymptote « reflects the maximum degradation damage when total effective dosage
goes to infinity. The parameter exp(u) is the half-degradation effective dosage (i.e.,
the amount of effective dosage needed for the degradation to reach the level a/2). The
reciprocal of the scale parameter 1/0 is proportional to the slope of the degradation
path for any fixed value of z. So a larger value of 1/0 implies a larger degradation
rate.
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In (4), the term v; is the individual random effect for degradation path ¢, which is
modeled by a normal distribution with mean 0 and variance o2. The random effect is
used to explain the specimen-to-specimen variability that is caused by uncontrolled
and /or unobservable factors (e.g., differences in fabricating the specimens or specimen
position in the environmental chamber). The model in (4) is a nonlinear mixed-effects
model. The statistical literature on this topic is rich. One can refer to, for example,
Davidian and Giltinan (2003) or Pinheiro and Bates (2006) for more information
about such models.

4. Modeling the Laboratory Accelerated Test Data.

4.1. Initial Analysis of Laboratory Accelerated Test Data. In this section, we per-
form some initial exploratory analyses of the laboratory accelerated test data. We
start by fitting a categorical-effects model so that we can study the effects of the ex-
perimental variables without making any apriori assumptions about the form of the
relationships. Because the experimental factors were held constant over time in the
laboratory accelerated test, using the definition of S;(t;;) in (2), the term z in (4) can
be computed as,

L log[Siltiy)] — p
_ log(tij) +log[b(BP:)] + log[f(Temp;)] + log[g(RH,)] + log[d(ND)] — p

)

()

g

Amax
6)  b(BP:) = / Lamp(\)Filter(\, BP;, ND){1 — exp|— A\ }o(A)dA
Amin

is the effect of UV spectrum because it integrates over ¢(\) for the wavelength range
defined by the BP;.

For the model in (5), we use the constraint that f(35) = ¢(25) = d(10) = 1 to ensure
that the parameters are estimable (i.e., we treat temperature 35°C, RH 25%, and ND
10% as the baseline experimental setting in the categorical-effects model). For the UV
spectrum effect, only the values of log[b(BP;)] — u are estimable, which is sufficient
because we are only interested in the relative relationship among the effects of the BP
filters. The maximum likelihood (ML) estimates of parameters in (5) were obtained
by using nlme in R. Degradation paths in a small wavelength interval [e.g., 306 nm
(£3 nm)] have similar steepness. We assume o is mainly determined by wavelength.
Thus we denote the categorical effect by o) for each of the four BP filters.

Table 3 lists the ML estimates of the fixed-effects parameters in (5). Although the
categorical-effects model only provides estimates of the UV, temperature, and RH
effects at a limited number of points, the information from the model is useful for
guiding the choice of the functional forms of ¢(\), d(ND), f(Temp), g(RH), and o
in the next modeling stage.

4.2. Effects of the Explanatory Variables. In this section, we discuss the selection
of the functional forms for the effects of explanatory variables used in the laboratory
accelerated test.
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TABLE 3
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Parameter estimates for the categorical-effects model.

Standard
Parameter Estimate Error p-value
«@ —0.6810 0.0130 < 0.0001
log[q§(306)] — i —6.5620 0.0755 < 0.0001
log[¢(326)] — . —7.0844 0.0361 < 0.0001
10g[¢3(353)] —u —9.0275 0.0323 < 0.0001
log[q§(452)] —pn  —10.1087 0.0350 < 0.0001
log[d(40)] —0.7939 0.0201 < 0.0001
log[d(60)] —1.0553 0.0199 < 0.0001
log[d(100)] —1.3082 0.0200 < 0.0001
log[f(25)] —0.1963 0.0092 < 0.0001
log[f(45)] 0.1973 0.0247 < 0.0001
log[f(55)] —0.8193 0.0357 < 0.0001
log[g(0)] 0.8749 0.0231 < 0.0001
log[g(50)] —0.3707 0.0255 < 0.0001
log[g(75)] 0.2287 0.0240 < 0.0001
0306 1.5591 0.0149 < 0.0001
0326 1.2336 0.0074 < 0.0001
0353 1.0443 0.0057 < 0.0001
0452 0.8416 0.0054 < 0.0001
BP Filter Effect ND Filter Effect
1, 00 o
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Fic 7. Plots of the categorical effects for UV spectrum, ND filter, temperature, and RH.
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Modeling the BP Filter Effect. To suggest a functional form for ¢(\), we initially
assume that ¢()\) is constant over the specific range of each BP filter, denoted by ¢()\).
For example, for the 306 nm BP filter, $(306) will be used to represent the effect.
From (6), we obtain b(BP;) = [D;(t;)/ti]¢()\). Because we record D;(t;) and have
an estimate of b(BP;) from the categorical-effects model, we can obtain a heuristic

estimate for ¢()\) from this relationship. For example,

) - b(306)
(7) P00 = O om0 D) D S oo 1

for 303 nm < A < 309 nm. Similarly, one can obtain the estimates of ¢(\) for the other
BP filters, 320 nm < A < 332 nm, 332 nm < A < 374 nm, and 373 nm < A < 531 nm.
The corresponding results are shown in Table 3. Figure 7(a) provides a visualization
of a simple estimate of ¢(\). The results suggest that for shorter wavelengths, there
is more damage than at longer wavelengths, agreeing with known physical theory.

The quasi-quantum yield ¢(\) describes the fact that photons at shorter wave-
lengths have higher energy and thus a higher probability of causing damage. Martin,
Lechner, and Varner (1994) state that for polymeric materials, the shape of ¢(\) is
typically exponential decay. The empirical results in our categorical-effects model also
suggest this and thus we use a log-linear function ¢(\) = exp(By + 5aA), to describe
quasi-quantum yield where By and (3 are parameters to be estimated from the data.

The parameter o in (5) is related to the slope of the degradation path. Because UV
is the main cause of degradation and shorter wavelength paths tend to have larger
slopes, we model o as a function of A\. The curve of categorical-effects estimates of oy
versus A\ suggests an exponential relationship with a lower bound. Thus we use the
functional form oy = o + exp(o1 + 02A) to describe the effect that UV wavelength
has on o.

From (5), one needs to have a wavelength specific dosage D;;(\) to estimate the pa-
rameters in ¢(\) (i.e., By and ). For the laboratory accelerated test data, however,
only the aggregated dosage D;(t) data was available. We use an approximate method
to obtain Dj; () from D;(t). We consider the four intervals 303 nm < A < 309 nm,
320 nm < A < 332 nm, 332 nm < A < 374 nm, and 373 nm < A < 531 nm, cor-
responding to the four BP filters. Note that the spectral irradiance after filtering is
Lamp(A)Filter(A, BP;,ND;), and the approximate trapezoid area under each A inter-
val is denoted as Areay. The integration of Areay over each of the four wavelength
intervals is denoted by Areas, where A is 306 nm, 326 nm, 353 nm or 452nm, the BP
filter nominal center points. We define the proportion of area under A relative to its
corresponding wavelength range as P(\) = Areay/Areay. Note that

(8) D;(t) :/0 /}\Lamp()\)Filter(A,BP,-,ND,-){l — exp[—A(N)]}dAdr,

and the specific form of A()\) is unknown. For the narrow intervals, 303 nm < A <
309 nm and 320 nm < A < 332 nm, we can assume {1 — exp[—A(A)]} is constant
because the fluctuation over the narrow range of wavelengths is relatively small. Thus,
for 303 nm < A < 309 nm and 320 nm < A < 332 nm, we obtain approximate values
from D;;(\) = D;(t)P(X). Although the interval 373 nm < A < 531 nm is wide, the
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variation in Dj;(\) will be small because both {1—exp[—A()\)]} and ¢(A) are small over
the interval. Thus we can assume that D (\) is constant for 373 nm < A < 531 nm.
For the 332 nm < A < 374 nm, the lamp spectra curve is complicated and {1 —
exp[—A(A)]} is typically not small enough to do a trapezoidal approximation. Thus,
in the subsequent modeling, we (as in the categorical-effects model) use $(353) to
represent the effect of the 353 nm BP filter and treat it as an unknown parameter to be
estimated from the data. There is, however, enough information from the other three

BP filters for us to estimate the unknown parameters of the log-linear relationship

for ¢(N).

ND Filter Effect. A power law relationship is typically used to describe the ND
effect (e.g., James 1997). The power law relationship is based on Schwarzschild’s law,
which says that the photo-response of radiation over a given time period has a form
NDP, where ND is the UV intensity level. To achieve the same photo-response, NDP x ¢
should be the same, where p is the Schwarzschild coefficient and ¢ is the exposure time.
When p = 1, this relationship is called the reciprocity law. Experimental deviations
from the reciprocity law are called reciprocity law failure. More discussion about
Schwarzschild’s law and reciprocity can be found in Martin, Chin, and Nguyen (2003).

Figure 7(b) shows the effects of the ND filter. A power law relationship d(ND;) =
ND,? gives a perfect fit to the four points. Note that the Filter(\, BP;,ND;) already
includes the effect of the ND filter as ND; with a power of one. Thus, the overall effect
of ND filter is ND;(1*?)_ If the reciprocity law (i.e., the effect of ND is ND;!) holds, p
should be equal to zero in this parameterization. Thus, combining the physical knowl-
edge and the empirical evidence, we used the power law relationship to describe the
UV intensity effects. Another way of thinking about this is that with the reparame-
terization, the effect p describes the deviation between the nominal properties of the
ND filters and the actual amount of photon attenuation provided by the ND filters.

Temperature Effect. Figure 7(c) shows the effect that temperature has on the
degradation rate. The Arrhenius relationship is widely used to describe the accelera-
tion effect of temperature on the rate of a chemical reaction (e.g., Meeker, Escobar,
and Lu 1998). According to the Arrhenius relationship, the logarithm of the reac-
tion rate should be proportional to reciprocal temperature in the Kelvin scale. In
particular, the Arrhenius relationship is

(9) f(Temp;) = 70 exp ( —Ea/ R ) ,

TempK;

where TempK; is the Kelvin temperature computed as Celsius temperature plus
273.15, E, is the effective activation energy, and R = 8.314J K 'mol™! is a gas
constant. We define E,/R to be the temperature effect to be estimated from the da-
ta. The categorical-effects estimates agree well with this relationship except for the
specimens at 55°C and 75 % RH.

A possible explanation for the change in the estimated temperature effect at 55°C
is that there is an interaction between the high temperature and the high RH level.
Such an interaction could arise because water release is known to affect the rate of
degradation. We can not, however, estimate the interaction effect because there is data



PHOTODEGRADATION MODELING AND PREDICTION 17

at 55°C for only one RH level. Another possible explanation is that there had been a
failure of an integrated circuit chip in a controller that caused certain chambers to be
overheated for a period of time. This could have lead to a different failure mechanism
for the affected specimens. Based on these considerations, we still use the Arrhenius
relationship to model the temperature effect after removing the data at 55°C and
75% RH.

RH Effect. The effect of relative humidity on coating degradation is complicated.
There are few theoretical results to suggest the functional form for humidity effect in
this type of application. It is known that low humidity will accelerate the side-chain
scission process. As more end groups are created, the degradation rate will tend to
increase. On the other hand, higher water content in the coating (caused by higher
levels of RH) will tend to increase the diffusion rate of oxygen in the oxidation zone,
which can also increase the degradation rate (e.g., Chen and Fuller 2009, and Kiil
2009). Thus, there is a middle range of RH values where the degradation rate would
be expected to be smaller than the rates at the extremes. These mechanisms suggest a
hump shape function for the effect that RH has on degradation. Figure 7(d) shows the
categorical-effects model estimates for the RH effect. The effect is increasing first and
then decreasing, suggesting a concave relationship. Based on the empirical evidence
and the suspected chemical reaction mechanisms, we used a quadratic model

(10) log[g(RH)] = —Bru(RH — rhy)?

to describe the RH effect. Here, Srg and rhg are unknown parameters to be estimated
from the data.

4.3. The Combined Model. Combining all of the identified functional forms for
the effects of the experimental variables gives following model for the underlying
degradation path,

aexp(v;)

(11) Gi(tij) = T+ oxp(—2)

where

o + 10g[D;(ti;)] + A + p(10g[NDi]) — (7224%- ) — Bt (RH; — rho)”
°= oo + exp(o1 + o2) ’

AII\&X
A =log [/ P()) exp(ﬁ)\/\)d)\] ,
A

min

and v; is the random effect with mean 0 and variance 2. Note that the total effective
dosage for wavelength A is S;(t,\) = Dj(\) exp(Bo + BaA), which is proportional to
Dit(X) exp(BaA). We use D;(t) x P(X\) x exp(5i\) to approximate Dj;(\) exp(BaA). We
define the constant 79 = 5y + log(yy9) — u because the p and the individual intercept
terms are not independently estimable in the model.

Table 4 lists the ML estimates of the parameters in (11). The maximum degradation
damage when total effective dosage goes to infinity is —0.6191, not considering random
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TABLE 4
Parameter estimates for the combined model in (11).

Standard
Parameter Estimate Error p-value
«@ —0.6191 0.01013 < 0.0001
B —0.0297 0.00026 < 0.0001
P —0.5606 0.00781 < 0.0001
% 1945.6482  75.83458 < 0.0001
BrH —0.0005 0.00001 < 0.0001
rho 45.4748 0.28749 < 0.0001
1o 9.8986 0.25662 < 0.0001
b(353) —11.5661 0.09428 < 0.0001
0o 0.8019 0.00664 < 0.0001
o1 7.6776 0.18760 < 0.0001
o2 —0.0260 0.00062 < 0.0001

effects. For the ND filter effect, the power p is estimated to be —0.5606, which is
significantly different from 0. Thus there is evidence that the reciprocity law does
not hold in this application. The combined ND effect in Filter(A, BP;,ND;) is 1 —
0.5606 = 0.4394. That is, ND?43%* describes the overall effect of the ND filters. For
example, the effect of a nominal 80% ND filter is 100(0.80%4394)% = 90.6% filtering.
As expected, the quasi-quantum yield coefficient 8y = —0.0297 < 0 indicating that
shorter wavelengths cause more damage. The estimate of E,/R is 1945.6482. Thus
the point estimate of the effective activation energy FE, is 234.0207. The estimate
for the variance of random effects is 2 = 0.058. Figure 8 displays examples of our
model (11) fitted to the laboratory accelerated test data, showing good agreement.

5. The Prediction Model for Outdoor-Exposure Data. In this section,
we adapt the laboratory accelerated test model (11) and its parameter estimates to
predict outdoor-exposure degradation.

5.1. The Cumulative Damage Model for Outdoor-FExposure Degradation Prediction.
For computational convenience, we used 60 minutes instead of 12 minutes as the time
interval for the dynamic covariates. For outdoor-exposure specimen k, we define the
incremental effective dosage at wavelength interval A £+ 1 over the 60-minute interval
starting at 7 to be

7460 min  A+1nm
(12) ASE(T, ) = / / Dy (1, ) exp(BaA)dAdrT.
T A

—1nm

Wy

Here we use an “x” to indicate that the difference from the effective dosage defined
previously. The previous definition used ¢(A) but here we use exp(8yA), which is
proportional to ¢()). The effective dosage across all wavelengths at time 7 is S} (1) =
[y, AS} (7, A)dX. The cumulative total effective dosage across all wavelengths from time
0 to time t is S} (t) = fg . (7)dr. Temperature and RH are averaged over all 60-
minute intervals. Because no ND filters were used during the outdoor exposures, we
set ND to be 100% for all outdoor-exposure predictions.

According to the cumulative damage model, the slope of the degradation curve
at time 7 and wavelength A is a function of total effective dosage S} (7) and other
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F1c 8. Fitted degradation paths for four randomly selected specimens based on the model in (11). The
points are the measured values and the lines show the fitted values. The plot titles show the levels of
the experimental factors.

environmental effects. That is,

dG(T) _ 1 " aexp(z)
d[Sp(r)]  Si(m)oa — [1+exp(2)]*

(13) g;c (7—7 )‘) =
where
(14) z=

log[Si:(7)] + 10 + pllog(ND)] — [%{f;m — Brut [RHg(7) — the)?
0o + exp (o1 + 02) '

Note that here we compute the slope g;.(7, ) as a function of 7 and A because oy
depends on A and the incremental damage amounts need to be accumulated across
the time 7 and wavelength A intervals. The incremental damage, AGy(7, ), is the
damage at time 7 that was caused by the UV radiation in the 2nm wavelength interval
(A = 1,A+1). In particular, AGy(7,\) = g;.(7, \)AS} (7, ). The additivity law is
assumed, implying that the damage can be summed up from each wavelength interval
in every 60-minute time interval. Then AGy(7) denotes incremental damage at time
7 from all wavelengths, AGy(7) = > AGi(7, A). The cumulative damage Gy, (t) from
time 0 to ¢ from all wavelengths is

(15) Gr(t) =) AGy(r).
7=0

Hence, the degradation level G (t) can be predicted based on the model estimated from
the laboratory test data. Because there is a random effect vy in the mean structure
Gk (t), for the point prediction, we set vy to be zero when computing point predictions.
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5.2. Outdoor-Ezposure Prediction Uncertainty Quantification. Here we use 6 to
denote all the parameters in (11), and @ is the ML estimator. The corresponding
variance-covariance matrix is denoted by 5. The outdoor exposure prediction in-

volves two sources of variability: the random effect v and the variability in 6. We use
prediction intervals to quantify the prediction uncertainty. Prediction intervals are
calculated and calibrated following a procedure that is similar to those described in
Hong, Meeker, and McCalley (2009), using the Lawless and Fredette (2005) predictive
distribution. For notational simplicity, let G = Gi(t), because we compute pointwise
prediction intervals. The cumulative distribution function of G at a particular point
in time ¢ is denoted by F(G; @) which is primarily determined by the distribution of
the random effect. The algorithm to compute the predictive distribution is as follows.

1. Simulate B sample estimates 6, ~ N(8,35) and v; ~ N(0, 52),b=1,...,B. We
use B = 50,000.

2. Compute the degradation G;,b = 1,..., B using the method summarized by (15)
under parameter 5: and the random effect v;.

3. Compute W) = F(g;]@;),b =1,...,B.

4. Compute w! and w*, the lower and upper /2 sample quantiles, respectively, of
Wy R R

5. Solve F(G'10) = w', F(G*|@) = w" for (G',G%), providing the 100(1 — @)%
calibrated prediction interval.

This algorithm needs to be repeated over the range of ¢ values of interest.

5.3. Outdoor-Ezxposure Prediction Results and Model Comparisons.

Outdoor-Exposure Predictions. Figure 9 compares the measured and predicted
degradation paths based on our cumulative damage model for the same representa-
tive set of outdoor-exposed sample paths shown in Figure 5. The predicted values for
some specimens agree well with the measured values, while for others the predicted
values are either above or below that of the actual outdoor-exposed sample paths.
These variations correspond to the distribution of the random effects. Most of the
measured data points are within the calibrated prediction intervals, except for some
small levels of degradation at early times which may have been caused by measure-
ment error. Because the random effects are modeled as normally distributed with
mean 0, the average predicted values should be close to the averaged measured values
for all 53 outdoor-exposed specimens. Figure 10 shows the average of predicted and
measured damage for all of the outdoor-exposed specimens. The average predicted
values correspond well to average measured values.

We saw that the random effects tend to be similar within the same outdoor-exposed
group. For example, four specimens from outdoor-exposed group G1 all have predic-
tions larger than the measured values. The four specimens from group G160UT all
have predictions smaller than the measured values, and the four specimens from group
G4 all have predictions close to the measured values. These suggest that the random
effects could be related to group conditions such as additional weather-related effects
not accounted for in our model. Other factors that may contribute to the random ef-
fects include the non-uniform spatial irradiance of specimens, possible non-uniformity
of the material of the specimens, etc.
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F1G 9. Prediction results for 12 representative outdoor-exposed specimens. The points show the mea-
sured values, the solid lines show the predicted values, and the dashed lines show the 95% pointwise
prediction intervals.

Predictions with Early Degradation Information. When information about the
early part of degradation path is available for a particular specimen k, that infor-
mation can be used to estimate the random effect v, providing a more precise pre-
diction of the future amount of degradation. Such predictions are often needed in
practice (say for a fleet of units in the field or for individual units) to estimate the
distribution of the remaining life. In particular, we used the fifth to tenth data points
and use the least squares approach to find v,. That is v, is the value that minimizes
Z;idyk]’ — exp(vk)Tk;]?, where i, is obtained by substituting the ML estimates
into the prediction model. Then the predicted path for specimen k is obtained as
exp(Vx)yrj. The first four data points were not used because their damage values
were too small (i.e., the damage amount is less than 0.01) to be useful in estimating
vg. Figure 11 shows the results for several example specimens where we estimated
random effect exp(vy) using the early part of the degradation. The dashed lines indi-
cate the predicted values after adjusting. For most specimens, the adjusted predicted
values match the measured values considerably better than the unadjusted values.

Comparisons. This section describes comparisons among several models. We used
the Akaike information criterion (AIC) for model-fitting comparisons and the mean
squared error (MSE) for prediction comparisons. We considered the following models
for comparisons.

e Model A: A model similar to that was used in Vaca-Trigo and Meeker (2009),
using no random effect and where UV intensity was not modeled directly.
e Model B: The model in (4) with individual random effects for each specimen and
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TABLE 5
Comparisons of model fits and predictions.

Log likelihood | Number of Prediction
Model values parameters AIC Model MSE
A 15740.22 9 —31462.44 A 0.004238
B1 0.002879
B 30201.98 13 —60377.95 5o 0.009522
C1 0.002524
C 30414.43 14 —60800.85 65 0.002396

carefully modeled effects for all of the experimental variables. For predictions
from this model, there are two variants.

— Model B1: Prediction with all random effects set equal to the expected
value of zero.

— Model B2: Prediction using some of the early data points to estimate the
random effects for the individual specimens.

e Model C: The model in (4) can be easily extended to more complicated random-
effects structures. For Model C, we consider the model in (4) but with both
specimen-to-specimen and group-to-group random effects. Note that there were
typically four replicates within experimental group (i.e., exposed at the same
time and in the same chamber). For predictions from this model, we also have
two variants.

— Model C1: Prediction with all random effects set equal to the expected
value of zero.

— Model C2: Prediction using some of the early data points to estimate the
random effects for the groups and the individual specimens.

Table 5 shows the model comparison results. The results show that the proposed
Models B and C provide a much better fit to the laboratory accelerated test data than
the model in Vaca-Trigo and Meeker (2009). There is not much difference between
the prediction performance of Models B and C. Both models provide much better
predictions than Model A.

6. Conclusions and Areas for Future Research. This paper describes the
statistical modeling and analysis of accelerated test data for photodegradation and the
prediction of photodegradation for specimens subjected to outdoor exposure. We used
a physically motivated nonlinear regression model with random effects to describe the
laboratory accelerated test degradation data, carefully studied the functional forms
of the experimental variables to develop the model, and estimated model parameters
from the accelerated test data. We found that the log-linear relationship and the power
law relationship can provide adequate descriptions of the effects of UV spectrum and
intensity, respectively. The Arrhenius relationship can describe the temperature effects
well, and the quadratic relationship can describe the RH effect well.

We used a cumulative damage model, incorporating the parameter estimates from
the laboratory accelerated test and individual specimen dynamic covariate informa-
tion, to predict the individual outdoor-exposed degradation paths. We also developed
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an algorithm to calculate prediction intervals. The outdoor predictions agree well
with the observed degradation, indicating that both indoor and outdoor degradation
share the same degradation mechanism. The comparison results show that the models
in this paper provide a much better fit to the laboratory accelerated test data, and
more accurate outdoor prediction than the results in Vaca-Trigo and Meeker (2009),
which indicates that the model improvements in this paper are important for better
photodegradation modeling and prediction.

Although NIST has been a leader in the development of UV accelerated test meth-
ods, UV testing is quite common in industry, and UV testing equipment is readi-
ly available from companies like Atlas (http://atlas-mts.com/). Also, because pho-
todegradation is common for polymeric materials, such as components used in pho-
tovoltaic panels, the results in this paper will be useful to statisticians and engineers
working in this area. Although the analysis in this paper is based on the data col-
lected from a model epoxy, the modeling and prediction methods can also be used to
predict the degradation of other materials such as ethylene-vinyl acetate (EVA) and
polyethylene terephthalate (PET) and materials containing UV protection.

The degradation modeling and prediction methods presented in this paper serve
as an important step in the development of the science of outdoor weathering ser-
vice life prediction. There are, however, several areas for further research. Given a
probability model for degradation paths and corresponding random effects, a specific
set of dynamic-covariate time series, and a definition of the corresponding soft-failure
threshold, methods need to be developed to compute the failure-time distribution for
exposed units. In general, outdoor environments are complicated, and a more exten-
sive experiment could be conducted to study the effect of factors like contaminants in
the air, dust, acid rain, and extreme weather events. In recent years, new degradation
analysis methods have been developed such as functional data analysis approach (e.g.,
Zhou et al. 2014, and Zhou, Serban, and Gebraeel 2014) and stochastic models (e.g.,
Peng 2016). The extension of existing methods for photodegradation analysis will be
an interesting area for future research.
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