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ABSTRACT

Recent research on deep convolutional neural networks (CNNs) has focused pri-
marily on improving accuracy. For a given accuracy level, it is typically possi-
ble to identify multiple CNN architectures that achieve that accuracy level. With
equivalent accuracy, smaller CNN architectures offer at least three advantages: (1)
Smaller CNNSs require less communication across servers during distributed train-
ing. (2) Smaller CNNs require less bandwidth to export a new model from the
cloud to an autonomous car. (3) Smaller CNNs are more feasible to deploy on FP-
GAs and other hardware with limited memory. To provide all of these advantages,
we propose a small CNN architecture called SqueezeNet. SqueezeNet achieves
AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally,
with model compression techniques, we are able to compress SqueezeNet to less
than 0.5MB (510 smaller than AlexNet).

The SqueezeNet architecture is available for download here:
https://github.com/DeepScale/SqueezeNet

1 INTRODUCTION AND MOTIVATION

Much of the recent research on deep convolutional neural networks (CNNs) has focused on increas-
ing accuracy on computer vision datasets. For a given accuracy level, there typically exist multiple
CNN architectures that achieve that accuracy level. Given equivalent accuracy, a CNN architecture
with fewer parameters has several advantages:

o More efficient distributed training. Communication among servers is the limiting factor
to the scalability of distributed CNN training. For distributed data-parallel training, com-
munication overhead is directly proportional to the number of parameters in the model (Ian-
dola et al., 2016). In short, small models train faster due to requiring less communication.

e Less overhead when exporting new models to clients. For autonomous driving, compa-
nies such as Tesla periodically copy new models from their servers to customers’ cars. This
practice is often referred to as an over-the-air update. Consumer Reports has found that
the safety of Tesla’s Autopilot semi-autonomous driving functionality has incrementally
improved with recent over-the-air updates (Consumer Reports, 2016). However, over-the-
air updates of today’s typical CNN/DNN models can require large data transfers. With
AlexNet, this would require 240MB of communication from the server to the car. Smaller
models require less communication, making frequent updates more feasible.

o Feasible FPGA and embedded deployment. FPGAs often have less than 10MB! of on-
chip memory and no off-chip memory or storage. For inference, a sufficiently small model
could be stored directly on the FPGA instead of being bottlenecked by memory band-
width (Qiu et al., 2016), while video frames stream through the FPGA in real time. Further,
when deploying CNNs on Application-Specific Integrated Circuits (ASICs), a sufficiently
small model could be stored directly on-chip, and smaller models may enable the ASIC to
fit on a smaller die.

*http://deepscale.ai
'For example, the Xilinx Vertex-7 FPGA has a maximum of 8.5 MBytes (i.e. 68 Mbits) of on-chip memory
and does not provide off-chip memory.


https://github.com/DeepScale/SqueezeNet
http://deepscale.ai

Under review as a conference paper at ICLR 2017

As you can see, there are several advantages of smaller CNN architectures. With this in mind, we
focus directly on the problem of identifying a CNN architecture with fewer parameters but equivalent
accuracy compared to a well-known model. We have discovered such an architecture, which we call
SqueezeNet. In addition, we present our attempt at a more disciplined approach to searching the
design space for novel CNN architectures.

The rest of the paper is organized as follows. In Section 2 we review the related work. Then, in
Sections 3 and 4 we describe and evaluate the SqueezeNet architecture. After that, we turn our
attention to understanding how CNN architectural design choices impact model size and accuracy.
We gain this understanding by exploring the design space of SqueezeNet-like architectures. In
Section 5, we do design space exploration on the CNN microarchitecture, which we define as the
organization and dimensionality of individual layers and modules. In Section 6, we do design space
exploration on the CNN macroarchitecture, which we define as high-level organization of layers in
a CNN. Finally, we conclude in Section 7. In short, Sections 3 and 4 are useful for CNN researchers
as well as practitioners who simply want to apply SqueezeNet to a new application. The remaining
sections are aimed at advanced researchers who intend to design their own CNN architectures.

2 RELATED WORK

2.1 MODEL COMPRESSION

The overarching goal of our work is to identify a model that has very few parameters while preserv-
ing accuracy. To address this problem, a sensible approach is to take an existing CNN model and
compress it in a lossy fashion. In fact, a research community has emerged around the topic of model
compression, and several approaches have been reported. A fairly straightforward approach by Den-
ton et al. is to apply singular value decomposition (SVD) to a pretrained CNN model (Denton et al.,
2014). Han et al. developed Network Pruning, which begins with a pretrained model, then replaces
parameters that are below a certain threshold with zeros to form a sparse matrix, and finally performs
a few iterations of training on the sparse CNN (Han et al., 2015b). Recently, Han et al. extended their
work by combining Network Pruning with quantization (to 8 bits or less) and huffman encoding to
create an approach called Deep Compression (Han et al., 2015a), and further designed a hardware
accelerator called EIE (Han et al., 2016a) that operates directly on the compressed model, achieving
substantial speedups and energy savings.

2.2 CNN MICROARCHITECTURE

Convolutions have been used in artificial neural networks for at least 25 years; LeCun et al. helped
to popularize CNNs for digit recognition applications in the late 1980s (LeCun et al., 1989). In
neural networks, convolution filters are typically 3D, with height, width, and channels as the key
dimensions. When applied to images, CNN filters typically have 3 channels in their first layer (i.e.
RGB), and in each subsequent layer L; the filters have the same number of channels as L;_; has
filters. The early work by LeCun et al. (LeCun et al., 1989) uses 5x5xChannels? filters, and the
recent VGG (Simonyan & Zisserman, 2014) architectures extensively use 3x3 filters. Models such
as Network-in-Network (Lin et al., 2013) and the GoogLeNet family of architectures (Szegedy et al.,
2014; Ioffe & Szegedy, 2015; Szegedy et al., 2015; 2016) use 1x1 filters in some layers.

With the trend of designing very deep CNNSs, it becomes cumbersome to manually select filter di-
mensions for each layer. To address this, various higher level building blocks, or modules, comprised
of multiple convolution layers with a specific fixed organization have been proposed. For example,
the GoogLeNet papers propose Inception modules, which are comprised of a number of different di-
mensionalities of filters, usually including 1x1 and 3x3, plus sometimes 5x5 (Szegedy et al., 2014)
and sometimes 1x3 and 3x1 (Szegedy et al., 2015). Many such modules are then combined, perhaps
with additional ad-hoc layers, to form a complete network. We use the term CNN microarchitecture
to refer to the particular organization and dimensions of the individual modules.

2.3 CNN MACROARCHITECTURE

While the CNN microarchitecture refers to individual layers and modules, we define the CNN
macroarchitecture as the system-level organization of multiple modules into an end-to-end CNN
architecture.

From now on, we will simply abbreviate HxWxChannels to HxW.
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Perhaps the mostly widely studied CNN macroarchitecture topic in the recent literature is the impact
of depth (i.e. number of layers) in networks. Simoyan and Zisserman proposed the VGG (Simonyan
& Zisserman, 2014) family of CNNs with 12 to 19 layers and reported that deeper networks produce
higher accuracy on the ImageNet-1k dataset (Deng et al., 2009). K. He et al. proposed deeper CNNs
with up to 30 layers that deliver even higher ImageNet accuracy (He et al., 2015a).

The choice of connections across multiple layers or modules is an emerging area of CNN macroar-
chitectural research. Residual Networks (ResNet) (He et al., 2015b) and Highway Networks (Sri-
vastava et al., 2015) each propose the use of connections that skip over multiple layers, for example
additively connecting the activations from layer 3 to the activations from layer 6. We refer to these
connections as bypass connections. The authors of ResNet provide an A/B comparison of a 34-layer
CNN with and without bypass connections; adding bypass connections delivers a 2 percentage-point
improvement on Top-5 ImageNet accuracy.

2.4 NEURAL NETWORK DESIGN SPACE EXPLORATION

Neural networks (including deep and convolutional NNs) have a large design space, with numerous
options for microarchitectures, macroarchitectures, solvers, and other hyperparameters. It seems
natural that the community would want to gain intuition about how these factors impact a NN’s
accuracy (i.e. the shape of the design space). Much of the work on design space exploration (DSE)
of NNs has focused on developing automated approaches for finding NN architectures that deliver
higher accuracy. These automated DSE approaches include bayesian optimization (Snoek et al.,
2012), simulated annealing (Ludermir et al., 2006), randomized search (Bergstra & Bengio, 2012),
and genetic algorithms (Stanley & Miikkulainen, 2002). To their credit, each of these papers pro-
vides a case in which the proposed DSE approach produces a NN architecture that achieves higher
accuracy compared to a representative baseline. However, these papers make no attempt to provide
intuition about the shape of the NN design space. Later in this paper, we eschew automated ap-
proaches — instead, we refactor CNNs in such a way that we can do principled A/B comparisons to
investigate how CNN architectural decisions influence model size and accuracy.

In the following sections, we first propose and evaluate the SqueezeNet architecture with and with-
out model compression. Then, we explore the impact of design choices in microarchitecture and
macroarchitecture for SqueezeNet-like CNN architectures.

3  SQUEEZENET: PRESERVING ACCURACY WITH FEW PARAMETERS

In this section, we begin by outlining our design strategies for CNN architectures with few param-
eters. Then, we introduce the Fire module, our new building block out of which to build CNN
architectures. Finally, we use our design strategies to construct SqueezeNet, which is comprised
mainly of Fire modules.

3.1 ARCHITECTURAL DESIGN STRATEGIES

Our overarching objective in this paper is to identify CNN architectures that have few parameters
while maintaining competitive accuracy. To achieve this, we employ three main strategies when
designing CNN architectures:

Strategy 1. Replace 3x3 filters with 1x1 filters. Given a budget of a certain number of convolution
filters, we will choose to make the majority of these filters 1x1, since a 1x1 filter has 9X fewer
parameters than a 3x3 filter.

Strategy 2. Decrease the number of input channels to 3x3 filters. Consider a convolution layer
that is comprised entirely of 3x3 filters. The total quantity of parameters in this layer is (number of
input channels) * (number of filters) * (3*3). So, to maintain a small total number of parameters
in a CNN, it is important not only to decrease the number of 3x3 filters (see Strategy 1 above), but
also to decrease the number of input channels to the 3x3 filters. We decrease the number of input
channels to 3x3 filters using squeeze layers, which we describe in the next section.

Strategy 3. Downsample late in the network so that convolution layers have large activation
maps. In a convolutional network, each convolution layer produces an output activation map with
a spatial resolution that is at least 1x1 and often much larger than 1x1. The height and width of
these activation maps are controlled by: (1) the size of the input data (e.g. 256x256 images) and (2)
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Figure 1: Microarchitectural view: Organization of convolution filters in the Fire module. In this
example, s1z1 = 3, e1x1 = 4, and ezz = 4. We illustrate the convolution filters but not the
activations.

the choice of layers in which to downsample in the CNN architecture. Most commonly, downsam-
pling is engineered into CNN architectures by setting the (stride > 1) in some of the convolution or
pooling layers (e.g. (Szegedy et al., 2014; Simonyan & Zisserman, 2014; Krizhevsky et al., 2012)).
If early? layers in the network have large strides, then most layers will have small activation maps.
Conversely, if most layers in the network have a stride of 1, and the strides greater than 1 are con-
centrated toward the end* of the network, then many layers in the network will have large activation
maps. Our intuition is that large activation maps (due to delayed downsampling) can lead to higher
classification accuracy, with all else held equal. Indeed, K. He and H. Sun applied delayed down-
sampling to four different CNN architectures, and in each case delayed downsampling led to higher
classification accuracy (He & Sun, 2015).

Strategies 1 and 2 are about judiciously decreasing the quantity of parameters in a CNN while
attempting to preserve accuracy. Strategy 3 is about maximizing accuracy on a limited budget of
parameters. Next, we describe the Fire module, which is our building block for CNN architectures
that enables us to successfully employ Strategies 1, 2, and 3.

3.2 THE FIRE MODULE

We define the Fire module as follows. A Fire module is comprised of: a squeeze convolution layer
(which has only 1x1 filters), feeding into an expand layer that has a mix of 1x1 and 3x3 convolution
filters; we illustrate this in Figure 1. The liberal use of 1x1 filters in Fire modules is an application
of Strategy 1 from Section 3.1. We expose three tunable dimensions (hyperparameters) in a Fire
module: $1z1, €121, and ezg3. In a Fire module, s141 is the number of filters in the squeeze layer
(all 1x1), e1z1 is the number of 1x1 filters in the expand layer, and e3.3 is the number of 3x3 filters
in the expand layer. When we use Fire modules we set s151 to be less than (e1z1 + esz3), so the
squeeze layer helps to limit the number of input channels to the 3x3 filters, as per Strategy 2 from
Section 3.1.

3.3 THE SQUEEZENET ARCHITECTURE

We now describe the SqueezeNet CNN architecture. We illustrate in Figure 2 that SqueezeNet
begins with a standalone convolution layer (convl), followed by 8 Fire modules (fire2-9), ending
with a final conv layer (conv10). We gradually increase the number of filters per fire module from
the beginning to the end of the network. SqueezeNet performs max-pooling with a stride of 2 after
layers convl, fire4, fire8, and conv10; these relatively late placements of pooling are per Strategy 3
from Section 3.1. We present the full SqueezeNet architecture in Table 1.

3In our terminology, an “early” layer is close to the input data.
“In our terminology, the “end” of the network is the classifier.
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Figure 2: Macroarchitectural view of our SqueezeNet architecture. Left: SqueezeNet (Section 3.3);
Middle: SqueezeNet with simple bypass (Section 6); Right: SqueezeNet with complex bypass (Sec-
tion 6).

3.3.1 OTHER SQUEEZENET DETAILS

For brevity, we have omitted number of details and design choices about SqueezeNet from Table 1
and Figure 2. We provide these design choices in the following. The intuition behind these choices
may be found in the papers cited below.

e So that the output activations from 1x1 and 3x3 filters have the same height and width, we
add a 1-pixel border of zero-padding in the input data to 3x3 filters of expand modules.

e ReLU (Nair & Hinton, 2010) is applied to activations from squeeze and expand layers.
e Dropout (Srivastava et al., 2014) with a ratio of 50% is applied after the fire9 module.

e Note the lack of fully-connected layers in SqueezeNet; this design choice was inspired by
the NiN (Lin et al., 2013) architecture.

e When training SqueezeNet, we begin with a learning rate of 0.04, and we lin-
early decrease the learning rate throughout training, as described in (Mishkin et al.,
2016). For details on the training protocol (e.g. batch size, learning rate, parame-
ter initialization), please refer to our Caffe-compatible configuration files located here:
https://github.com/DeepScale/SqueezeNet.

e The Caffe framework does not natively support a convolution layer that contains multiple
filter resolutions (e.g. 1x1 and 3x3) (Jia et al., 2014). To get around this, we implement
our expand layer with two separate convolution layers: a layer with 1x1 filters, and a layer
with 3x3 filters. Then, we concatenate the outputs of these layers together in the channel
dimension. This is numerically equivalent to implementing one layer that contains both
1x1 and 3x3 filters.

We released the SqueezeNet configuration files in the format defined by the Caffe CNN frame-
work. However, in addition to Caffe, several other CNN frameworks have emerged, including
MXNet (Chen et al., 2015a), Chainer (Tokui et al., 2015), Keras (Chollet, 2016), and Torch (Col-
lobert et al., 2011). Each of these has its own native format for representing a CNN architec-
ture. That said, most of these libraries use the same underlying computational back-ends such
as cuDNN (Chetlur et al., 2014) and MKL-DNN (Das et al., 2016). The research community has
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ported the SqueezeNet CNN architecture for compatibility with a number of other CNN software
frameworks:

e MXNet (Chen et al., 2015a) port of SqueezeNet: (Haria, 2016)
e Chainer (Tokui et al., 2015) port of SqueezeNet: (Bell, 2016)

e Keras (Chollet, 2016) port of SqueezeNet: (DT42, 2016)
e Torch (Collobert et al., 2011) port of SqueezeNet’s Fire Modules: (Waghmare, 2016)

4 EVALUATION OF SQUEEZENET

‘We now turn our attention to evaluating SqueezeNet. In each of the CNN model compression papers
reviewed in Section 2.1, the goal was to compress an AlexNet (Krizhevsky et al., 2012) model
that was trained to classify images using the ImageNet (Deng et al., 2009) (ILSVRC 2012) dataset.
Therefore, we use AlexNet® and the associated model compression results as a basis for comparison
when evaluating SqueezeNet.

Table 1: SqueezeNet architectural dimensions. (The formatting of this table was inspired by the
Inception2 paper (Ioffe & Szegedy, 2015).)

(ilreia) #parameter | #parameter
layer . stride Six1 €1x1 €3x3 Six1 €11 €33 .
Jtype output size (if not a fire depth (#1x1 (#1x1 (#3x3 x' x' - # bits before after
name/typ! . o " | sparsity | sparsity | sparsity pruning pruning
layer)
inputimage | 224x224x3
convl 111x111x96 | 7x7/2 (x96) 1 100% (7x7) 6bit 14,208 14,208
maxpooll 55x55x96 3x3/2 0
fire2 55x55x128 2 16 64 64 100% 100% 33% 6bit 11,920 5,746
fire3 55x55x128 2 16 64 64 100% 100% 33% 6bit 12,432 6,258
fired 55x55x256 2 32 128 128 100% 100% 33% 6bit 45,344 20,646
maxpool4 27x27x256 3x3/2 0
fire5 27x27x256 2 32 128 128 100% 100% 33% 6bit 49,440 24,742
fire6 27x27x384 2 48 192 192 100% 50% 33% 6bit 104,880 44,700
fire7 27x27x384 2 48 192 192 50% 100% 33% 6bit 111,024 46,236
fire8 27x27x512 2 64 256 256 100% 50% 33% 6bit 188,992 77,581
maxpool8 13x12x512 3x3/2 0
fire9 13x13x512 2 64 256 256 50% 100% 30% 6bit 197,184 77,581
convl0 13x13x1000 | 1x1/1 (x1000) 1 20% (3x3) 6bit 513,000 103,400
avgpool10 | 1x1x1000 13x13/1 0 | |
1 v T : J L . 1| 1,248,424 421,098
activations parameters compression info (total) (total)

In Table 2, we review SqueezeNet in the context of recent model compression results. The SVD-
based approach is able to compress a pretrained AlexNet model by a factor of 5x, while diminishing
top-1 accuracy to 56.0% (Denton et al., 2014). Network Pruning achieves a 9x reduction in model
size while maintaining the baseline of 57.2% top-1 and 80.3% top-5 accuracy on ImageNet (Han
et al., 2015b). Deep Compression achieves a 35x reduction in model size while still maintaining the
baseline accuracy level (Han et al., 2015a). Now, with SqueezeNet, we achieve a 50X reduction in
model size compared to AlexNet, while meeting or exceeding the top-1 and top-5 accuracy of
AlexNet. We summarize all of the aforementioned results in Table 2.

It appears that we have surpassed the state-of-the-art results from the model compression commu-
nity: even when using uncompressed 32-bit values to represent the model, SqueezeNet has a 1.4x
smaller model size than the best efforts from the model compression community while maintain-
ing or exceeding the baseline accuracy. Until now, an open question has been: are small models
amenable to compression, or do small models “need” all of the representational power afforded
by dense floating-point values? To find out, we applied Deep Compression (Han et al., 2015a)

3Qur baseline is bvlc_alexnet from the Caffe codebase (Jia et al., 2014).



Under review as a conference paper at ICLR 2017

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data Original — Reduction in Top-1 Top-5
Type Compressed Model Model Size ImageNet ImageNet
Size vs. AlexNet Accuracy Accuracy
AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al., 32 bit 240MB — 48MB 5x 56.0% 79.4%
2014)
AlexNet Network Pruning (Han 32 bit 240MB — 27MB 9x 57.2% 80.3%
et al., 2015b)
AlexNet Deep 5-8 bit 240MB — 6.9MB 35x 57.2% 80.3%
Compression (Han
etal., 2015a)
SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB — 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB — 0.47MB 510x 57.5% 80.3%

to SqueezeNet, using 33% sparsity® and 8-bit quantization. This yields a 0.66 MB model (363 x
smaller than 32-bit AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compres-
sion with 6-bit quantization and 33% sparsity on SqueezeNet, we produce a 0.47MB model (510x
smaller than 32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to
compression.

In addition, these results demonstrate that Deep Compression (Han et al., 2015a) not only works
well on CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to
compress the already compact, fully convolutional SqueezeNet architecture. Deep Compression
compressed SqueezeNet by 10x while preserving the baseline accuracy. In summary: by combin-
ing CNN architectural innovation (SqueezeNet) with state-of-the-art compression techniques (Deep
Compression), we achieved a 510 x reduction in model size with no decrease in accuracy compared
to the baseline.

Finally, note that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for
quantizing CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors,
it is not trivial to achieve a speedup of % = 4z with 8-bit quantization or % = 5.3z with 6-bit
quantization using the scheme developed in Deep Compression. However, Han et al. developed
custom hardware — Efficient Inference Engine (EIE) — that can compute codebook-quantized CNNs
more efficiently (Han et al., 2016a). In addition, in the months since we released SqueezeNet,
P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
2016). Specifically, Ristretto does computation in 8 bits, and it stores parameters and activations in
8-bit data types. Using the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel
observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data

types.

5 CNN MICROARCHITECTURE DESIGN SPACE EXPLORATION

So far, we have proposed architectural design strategies for small models, followed these principles
to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than AlexNet with equivalent
accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
space. We divide this architectural exploration into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.

SNote that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat
less than a 3x decrease in model size.
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Figure 3: Microarchitectural design space exploration.

5.1 CNN MICROARCHITECTURE METAPARAMETERS

In SqueezeNet, each Fire module has three dimensional hyperparameters that we defined in Sec-
tion 3.2: S1.1, €121, and esz3. SqueezeNet has 8 Fire modules with a total of 24 dimensional
hyperparameters. To do broad sweeps of the design space of SqueezeNet-like architectures, we
define the following set of higher level metaparameters which control the dimensions of all Fire
modules in a CNN. We define base, as the number of expand filters in the first Fire module in a
CNN. After every freq Fire modules, we increase the number of expand filters by incr.. In other

words, for Fire module i, the number of expand filters is e; = base, + (incr. * {ﬁJ ). In the

expand layer of a Fire module, some filters are 1x1 and some are 3x3; we define e; = €; 121 + €;,323
with pcts.3 (in the range [0, 1], shared over all Fire modules) as the percentage of expand filters that
are 3x3. In other words, €; 3,3 = €; * pctsys, and e; 1,1 = €; * (1 — pctsys). Finally, we define
the number of filters in the squeeze layer of a Fire module using a metaparameter called the squeeze
ratio (SR) (again, in the range [0, 1], shared by all Fire modules): s; 1,1 = SR * e; (or equivalently
Siaz1 = SR * (€;151 + €i323)). SqueezeNet (Table 1) is an example architecture that we gen-
erated with the aforementioned set of metaparameters. Specifically, SqueezeNet has the following
metaparameters: base, = 128, incr. = 128, pcts,s = 0.5, freq = 2, and SR = 0.125.

5.2 SQUEEZE RATIO

In Section 3.1, we proposed decreasing the number of parameters by using squeeze layers to decrease
the number of input channels seen by 3x3 filters. We defined the squeeze ratio (SR) as the ratio
between the number of filters in squeeze layers and the number of filters in expand layers. We now
design an experiment to investigate the effect of the squeeze ratio on model size and accuracy.

In these experiments, we use SqueezeNet (Figure 2) as a starting point. As in SqueezeNet, these
experiments use the following metaparameters: base. = 128, incr. = 128, pcts,z = 0.5, and
freq = 2. We train multiple models, where each model has a different squeeze ratio (SR) in the
range [0.125, 1.0]. In Figure 3(a), we show the results of this experiment, where each point on the
graph is an independent model that was trained from scratch. SqueezeNet is the SR=0.125 point
in this figure.® From this figure, we learn that increasing SR beyond 0.125 can further increase
ImageNet top-5 accuracy from 80.3% (i.e. AlexNet-level) with a 4.8MB model to 86.0% with a
19MB model. Accuracy plateaus at 86.0% with SR=0.75 (a 19MB model), and setting SR=1.0
further increases model size without improving accuracy.

5.3 TRADING OFF 1X1 AND 3X3 FILTERS
In Section 3.1, we proposed decreasing the number of parameters in a CNN by replacing some 3x3
filters with 1x1 filters. An open question is, how important is spatial resolution in CNN filters?

"Note that, for a given model, all Fire layers share the same squeeze ratio.
8Note that we named it SqueezeNet because it has a low squeeze ratio (SR). That is, the squeeze layers in
SqueezeNet have 0.125x the number of filters as the expand layers.
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The VGG (Simonyan & Zisserman, 2014) architectures have 3x3 spatial resolution in most layers’
filters; GoogLeNet (Szegedy et al., 2014) and Network-in-Network (NiN) (Lin et al., 2013) have
1x1 filters in some layers. In GoogLeNet and NiN, the authors simply propose a specific quantity of
1x1 and 3x3 filters without further analysis.® Here, we attempt to shed light on how the proportion
of 1x1 and 3x3 filters affects model size and accuracy.

We use the following metaparameters in this experiment: base, = incr. = 128, freq = 2, SR =
0.500, and we vary pcts;3 from 1% to 99%. In other words, each Fire module’s expand layer has a
predefined number of filters partitioned between 1x1 and 3x3, and here we turn the knob on these
filters from “mostly 1x1” to “mostly 3x3”. As in the previous experiment, these models have 8
Fire modules, following the same organization of layers as in Figure 2. We show the results of this
experiment in Figure 3(b). Note that the 13MB models in Figure 3(a) and Figure 3(b) are the same
architecture: SR = 0.500 and pcts,3 = 50%. We see in Figure 3(b) that the top-5 accuracy plateaus
at 85.6% using 50% 3x3 filters, and further increasing the percentage of 3x3 filters leads to a larger
model size but provides no improvement in accuracy on ImageNet.

6 CNN MACROARCHITECTURE DESIGN SPACE EXPLORATION

So far we have explored the design space at the microarchitecture level, i.e. the contents of individual
modules of the CNN. Now, we explore design decisions at the macroarchitecture level concerning
the high-level connections among Fire modules. Inspired by ResNet (He et al., 2015b), we explored
three different architectures:

e Vanilla SqueezeNet (as per the prior sections).

e SqueezeNet with simple bypass connections between some Fire modules. (Inspired by (Sri-
vastava et al., 2015; He et al., 2015b).)

e SqueezeNet with complex bypass connections between the remaining Fire modules.

We illustrate these three variants of SqueezeNet in Figure 2.

Our simple bypass architecture adds bypass connections around Fire modules 3, 5, 7, and 9, requiring
these modules to learn a residual function between input and output. As in ResNet, to implement
a bypass connection around Fire3, we set the input to Fire4 equal to (output of Fire2 + output of
Fire3), where the + operator is elementwise addition. This changes the regularization applied to the
parameters of these Fire modules, and, as per ResNet, can improve the final accuracy and/or ability
to train the full model.

One limitation is that, in the straightforward case, the number of input channels and number of
output channels has to be the same; as a result, only half of the Fire modules can have simple
bypass connections, as shown in the middle diagram of Fig 2. When the “same number of channels”
requirement can’t be met, we use a complex bypass connection, as illustrated on the right of Figure 2.
While a simple bypass is “just a wire,” we define a complex bypass as a bypass that includes a 1x1
convolution layer with the number of filters set equal to the number of output channels that are
needed. Note that complex bypass connections add extra parameters to the model, while simple
bypass connections do not.

In addition to changing the regularization, it is intuitive to us that adding bypass connections would
help to alleviate the representational bottleneck introduced by squeeze layers. In SqueezeNet, the
squeeze ratio (SR) is 0.125, meaning that every squeeze layer has 8x fewer output channels than the
accompanying expand layer. Due to this severe dimensionality reduction, a limited amount of in-
formation can pass through squeeze layers. However, by adding bypass connections to SqueezeNet,
we open up avenues for information to flow around the squeeze layers.

We trained SqueezeNet with the three macroarchitectures in Figure 2 and compared the accuracy
and model size in Table 3. We fixed the microarchitecture to match SqueezeNet as described in
Table 1 throughout the macroarchitecture exploration. Complex and simple bypass connections
both yielded an accuracy improvement over the vanilla SqueezeNet architecture. Interestingly, the
simple bypass enabled a higher accuracy accuracy improvement than complex bypass. Adding the

°To be clear, each filter is 1x1xChannels or 3x3xChannels, which we abbreviate to 1x1 and 3x3.
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Table 3: SqueezeNet accuracy and model size using different macroarchitecture configurations

Architecture Top-1 Accuracy | Top-5 Accuracy | Model Size
Vanilla SqueezeNet 57.5% 80.3% 4.8MB
SqueezeNet + Simple Bypass 60.4% 82.5% 4.8MB
SqueezeNet + Complex Bypass 58.8% 82.0% 7.7MB

simple bypass connections yielded an increase of 2.9 percentage-points in top-1 accuracy and 2.2
percentage-points in top-5 accuracy without increasing model size.

7 CONCLUSIONS

In this paper, we have proposed steps toward a more disciplined approach to the design-space explo-
ration of convolutional neural networks. Toward this goal we have presented SqueezeNet, a CNN
architecture that has 50 x fewer parameters than AlexNet and maintains AlexNet-level accuracy on
ImageNet. We also compressed SqueezeNet to less than 0.5MB, or 510x smaller than AlexNet
without compression. Since we released this paper as a technical report in 2016, Song Han and
his collaborators have experimented further with SqueezeNet and model compression. Using a new
approach called Dense-Sparse-Dense (DSD) (Han et al., 2016b), Han et al. use model compres-
sion during training as a regularizer to further improve accuracy, producing a compressed set of
SqueezeNet parameters that is 1.2 percentage-points more accurate on ImageNet-1k, and also pro-
ducing an uncompressed set of SqueezeNet parameters that is 4.3 percentage-points more accurate,
compared to our results in Table 2.

We mentioned near the beginning of this paper that small models are more amenable to on-chip
implementations on FPGAs. Since we released the SqueezeNet model, Gschwend has developed
a variant of SqueezeNet and implemented it on an FPGA (Gschwend, 2016). As we anticipated,
Gschwend was able to able to store the parameters of a SqueezeNet-like model entirely within the
FPGA and eliminate the need for off-chip memory accesses to load model parameters.

In the context of this paper, we focused on ImageNet as a target dataset. However, it has become
common practice to apply ImageNet-trained CNN representations to a variety of applications such
as fine-grained object recognition (Zhang et al., 2013; Donahue et al., 2013), logo identification in
images (landola et al., 2015), and generating sentences about images (Fang et al., 2015). ImageNet-
trained CNNs have also been applied to a number of applications pertaining to autonomous driv-
ing, including pedestrian and vehicle detection in images (Iandola et al., 2014; Girshick et al.,
2015; Ashraf et al., 2016) and videos (Chen et al., 2015b), as well as segmenting the shape of the
road (Badrinarayanan et al., 2015). We think SqueezeNet will be a good candidate CNN architecture
for a variety of applications, especially those in which small model size is of importance.

SqueezeNet is one of several new CNNs that we have discovered while broadly exploring the de-
sign space of CNN architectures. We hope that SqueezeNet will inspire the reader to consider and
explore the broad range of possibilities in the design space of CNN architectures and to perform that
exploration in a more systematic manner.
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