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Abstract 
Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a 

number of engineering applications ranging from cushion modulators, soft robots to stretchable 

electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we 

overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only 

features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain>414%), 

4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The 

microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive 

manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated 

metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli 

follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast 

to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain 

compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. 

To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials 

open a number of application avenues in lightweight and flexible structure connectors, ultraefficient 

dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic 

conductivity.  
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Introduction 
Soft materials with a unique combination of tailored 3D architectures, lightweight and high deformability 

are desirable for a diverse range of scientific and technological applications including impact absorbents
1,2

, 

switchable acoustic modulators
3,4

, soft robotics
5-8

, rehabilitation devices
9
, stretchable electronics

10
, tissue 

scaffolds
11

 and drug delivery vehicles
12

.  Towards manufacturing these soft materials, various strategies 

have been proposed, such as voiding elastomers with porogens
12,13

, directly writing elastomer/hydrogel 

inks 
2,14-16

, casting hydrogels around perfusable structures
17,18

, and lithography-assisted etching of silicone 

elastomers
10

. Although these exiting paradigms have made tremendous progress, the created architected 

soft materials still suffer from limitations in either small stretchability or 3D architecture choices (such as 

stochastic foams
1,13

 and orthogonally layered beams
14,19

). Elastomer lattices with nanoarchitectures 

fabricated by an inverse processes of photolithography can be stretched to ~225%
10

; however, the lattices 

are limited to selective architectures that are determined by the waveguide etching pathways. A general 

approach to manufacture architected soft materials with integrated features of arbitrary 3D micro to 

miliarchitectures and reversible stretchability larger than 225% is still lacking
10,20

. Due to the 

manufacturing inability, from the fundamental perspective, a general and systematic understanding how 

the 3D architectures affect the mechanical efficiencies of stretchable soft materials remains primarily 

elusive
1,21

; and from the application perspective, a number of appealing applications that require both 3D 

complex architectures and high stretchability are still challenging, such as soft robots with low density 

(high porosity), tailored stiffness gradient and ultrahigh deformability
22

, or stretchable electronics with 

low density and prescribed 3D anisotropic conductivity
10,23

.  

From another aspect, aided with modern additive manufacturing techniques (e.g., 

stereolithography and two-photon lithography), engineers have recently demonstrated potent capability of 

creating exotic rigid metamaterials in highly-complex 3D micro/nano architectures to enable ultralow 

material density and ultrahigh mechanical efficiency
24-31

. These additive manufacturing techniques, if 

successfully implemented to create highly-stretchable architected soft materials, would not only enable 

nearly arbitrary 3D architecture choices, but also significantly enhance architecture-assisted mechanical 
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efficiencies or bring new functions of the existing soft materials.  Despite the potential, limited progress 

has been made due to outstanding roadblocks on the way of  additive manufacturing of highly-stretchable 

3D-architected soft materials, including high viscosity, long curing time and self-weight supporting of 

elastomer/hydrogel monomers
20

.  

Here, we propose a simple manufacturing strategy and create a class of mechanical metamaterials 

in nearly arbitrary 3D architectures of highly-stretchable elastomer lattices. The manufacturing strategy 

relies on dissolvable hollow scaffolds fabricated by projection microstereolithography and judiciously 

circumvents the existing roadblocks of additive manufacturing of elastomer microstructures
20

. The 

manufactured metamaterials are not only highly architected to enable density as low as 60 kg/m
3
 (6% of 

bulk elastomer), but also ultra-stretchable with reversible strain as large as 414%, 4 times larger than that 

of the existing counterparts with the similar complexity of 3D architectures
32

. With the unprecedented 

capability of sorting out bending or stretching dominant 3D architecture types, we are able to reveal their 

exotic mechanical properties: Under large-strain tension, metamaterial moduli are linear to their densities 

regardless of structural connectivity, different from the architecture-dependent modulus power-law of the 

existing engineering materials. Under large-strain compression, the metamaterials exhibit programmable 

negative stiffness which leads to ultrahigh energy absorption efficiencies. By integrating ultrahigh 

stretchability and designable architectures, the new metamaterials open promising avenues for not only 

reaching a new property spaces
1,33

, but also enable a variety of unprecedented applications on the human-

machine and human-environment interfaces
20

. To demonstrate the potential, we show that the 

metamaterials can be tailored into customized geometries for lightweight connectors to flexibly bridge 

various 3D printed components, highly-efficient dampers that are better than the existing elastomer foams, 

rehabilitation structures that can conformally support organs with prescribed rigidity distribution and 

lightweight stretchable electronics with designed 3D conductivity pathways.  
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Results 
Fabrications. The elastomer metamaterials are fabricated via a postprocessing of the projection 

microstereolithography
26

, in analogous to the fabrication of hollow metallic microlattices with 

microstereolithography
26,34

, waveguide polymerization
25,27

 or two-photon lithography
24,28-31

. To fabricate 

hollow metallic microlattices, polymer microlattices with solid beams are first fabricated, followed by a 

post-deposition of metals around the contour surfaces of the microlattices and a subsequent thermal 

decomposition of the polymer cores
26-28,30

. Here, we invert the process to first additively manufacture a 

highly-architected hollow polymer microlattice scaffold, then cure elastomers within the hollow channels, 

and finally chemically dissolve the hollow scaffold
19,35

, thus leaving a freestanding elastomer lattice (Figs. 

1A, Supplementary Figs. 1-2, see Materials and Methods). This facile manufacturing strategy is 

advantageous in circumventing the outstanding difficulties including high viscosity, long curing time and 

self-weight supporting of stretchable-elastomer monomers, which widely exist among the extrusion-based 

and photopolymerization-based additive manufacturing of elastomers
2,14,16,20

 . The method enables us to 

fabricate a variety of elastomer lattices with nearly arbitrary 3D architectures, such as Octet-truss (Fig. 

1B), Kelvin (Fig. 1C), Kagome (Fig. 1D), Octahedron (Fig. 1E) and Dodecahedron lattices (Fig. 1F), 

which are orderly assembled from a number of corresponding unit cells (Supplementary Fig. 3)
26,30,36

. 

The resolutions of the fabricated elastomer lattices are determined by the diameters of the hollow 

channels, in a range from 100 to 1500 µm. The manufacturing method is very general, applicable for a 

number of stretchable elastomer materials, such as tin-catalyzed silicones and urethane elastomers, either 

opaque or transparent (semi-transparent) (Figs. 1B-G, Supplementary Fig. 4). Due to the high 

stretchability of the elastomer constituents, the fabricated lattices are highly deformable to reversibly 

sustain large-strain compression, tension and torsion (Figs. 1H, Supplementary Fig.5). In addition, the 

fabricated lattices are very lightweight, with effective densities in a range of 60-500 kg/m
3
 that are around 

6%-50% of the corresponding elastomer bulk. Since the elastomer modulus is in a range of 20-400 kPa 

(Supplementary Fig. 6), once the relative density is lower than 6% (e.g., beam diameter smaller than 

40µm), achieving freestanding elastomer lattices is challenging because the surface tension plays a 
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significant role in deforming the elastomer lattices into crumpled geometries
37

.  Furthermore, the method 

is scalable because the elastomer lattices can be easily scaled up to large areas or volumes (e.g., ~1000 

cm
3
) by increasing the volume of the hollow scaffolds and the number of unit cells with the existing 

stereolithography technique combining x-y axis scanning (Figs.1H )
26

. 

Comparison with existing engineering Lattices. Compared to reported architected materials with 3D 

complex architectures (not including foams with stochastic architectures), our elastomer lattices pose the 

highest reversible stretchability and compressibility (Fig. 2). The fabricated elastomer-lattice 

metamaterials can be reversibly stretched over 414% strain (Fig. 3A) and compressed over 98% strain 

(Supplementary Fig. 5). However, the solid or hollow micro/nano lattices (including rigid plastics, 

metals and ceramics) fabricated by projection microstereolithography
25,26,34

, waveguide polymerization
27

 

and two-photon lithography
24,28-31

 generally can only be reversibly compressed or stretched up to ~15% 

strain before yielding or fracture.  Elastomer lattices fabricated with the commercially-available 

photoresins (usually thermoplastic elastomer) via stereolithography can only be reversibly compressed to 

~50% and stretched to ~80% 
5,38

. Elastomer nanolattices fabricated by an inverse processes of 

photolithography can be reversibly compressed to ~70% and stretched to ~225%
10

; however, they are 

limited to selective architectures that are determined by the waveguide etching pathways. As a result, the 

reversible stretchability of the elastomer metamaterials presented in the current paper (414% strain) is 

more than four times larger than that of lattice structures in similar level of architecture complexity (e.g., 

stereolithography of commercial thermoplastic elastomer). In addition to the outstanding deformability, 

our elastomer metamaterials are also very lightweight: Compared to the elastomer solids with density 

~1000 kg/m
3
 (shown as the dash lines in Fig. 2), the density of our elastomer lattices are only 6%-50% of 

their bulk, in a comparable range of those of the microlattices fabricated by the existing additive 

manufacturing techniques (Fig. 2) 
25-27,34

.  

Large-strain tension. It is well known that the small-strain Young’s moduli of lattice materials scale 

with their relative densities in power laws as
1
 



6 

 

n

E

E












00 


                                                                     (1) 

where E and Eo, ρ and ρo  are Young’s moduli, density of the lattices and the solid constituents, 

respectively. The exponent n is strongly dependent on the architectures
1,21,36

: n~2-3 if the constituents 

carry loads primarily in bending, and n~1 if the loaded constituents mainly under tension or compression. 

The former is called bending-dominant structure, with examples including Octet-truss (Fig. 1B) and 

Octahedron (Fig. 1E); and the latter stretching-dominant structure, with examples including Kelvin (Fig. 

1C) and Dodecahedron (Fig. 1F). Although the modulus law for small strains (within 10%) is well 

characterized
1,21,36

, the modulus law for highly-architected structures under large-strain (e.g., >100%) 

remains unclear.  

To probe large-strain tensile behaviors of elastomer lattices, we apply a quasistatic stretching 

(loading rate 0.0167 mm/s) to the fabricated lattices (Fig. 3A, sample fabrication in Methods and 

Supplementary Fig. 2B). We find that the elastomer lattices can reversibly sustain 414% uniaxial strain 

before the first beam fracture (Fig. 3A, Supplementary Movie 1). Under uniaxial stretch, lattice beams 

are first aligned along the stretching direction, and aligned beams are then stretched to larger strains until 

fracture (Fig. 3A, Supplementary Movie 1). As the structures are under large tensile strain (e.g., 

strain>100% in Fig. 3A), most of the lattice beams are either stretched or compressed, regardless of 

stretching or bending dominant architectures (Fig. 3A, finite element analyses in Supplementary Figs. 6-

7). Therefore, we hypothesize that both stretching and bending-dominant structures would follow a 

stretching-dominant behavior under large-strain tensions. To test this hypothesis, we first calculate the 

large-strain effective shear moduli of elastomer lattices by fitting the experimentally measured stress-

strain curves to a hyperelastic constitutive model, Arruda-Boyce model, which gives uniaxial nominal 

stress as
39

 (Fig. 3B) 
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where  is shear modulus,  1 is uniaxial stretch, 
12

1 2  I  is the strain invariant and  m  is 

a parameter to characterize the maximum stretchability. Then, we systematically vary lattice densities by 

changing lattice beam diameters, which lead to variations of their shear moduli (Fig. 3C). As we plot out 

the shear moduli as functions of lattice relative densities ρ/ρo (Fig. 3D), we find that the shear moduli of 

elastomer lattices in both stretching and bending-dominant architectures follow a linear scaling with their 

relative densities (e.g., Octet and Kelvin in Fig. 3D), i.e.,  

00 






                                                               (3) 

where   and 0  are shear moduli of the lattices and the constituent beams, respectively. For stretching-

dominant Octet lattices, Equation 3 is well consistent with the scaling law for small-strain modulus 

behaviors (Eq. 1). However, the linear modulus law for the bending-dominant Kelvin is in sharp contrast 

to the square or cubic scaling law for small-strain modulus of existing bending-dominant lattices (Eq. 

1)
1,36

. The linear scaling for the Kelvin lattices is because that they, like the stretching-dominant lattices, 

also primarily stretch or compress their beams during the large-strain stretching (strain>100%) (Fig. 3A, 

Supplementary Fig. 7). This deformation mechanism is consistent with those of highly-deformable 

structured proteins
40

 and soft composites
41

. To further understand and numerically verify the scaling 

relationship shown in Eq. 3, we implement finite element computations whose results show that 

µ/µ0≈0.49ρ/ρ0 for Octet elastomer lattice, and µ/µ0≈0.57ρ/ρ0 for Kelvin, both consistent with the 

experiments (Fig. 3D, Supplementary Figs. 7-8). Moreover, experiments and computations on 

Octahedron and Dodecahedron lattices further verify that Eq. 3 is a general scaling law for large-strain 

moduli of both stretching and bending-dominant elastomer lattices (Supplementary Figs. 8-9).   
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Under ultra-large tensile strains, the elastomer lattices fracture their beams, most likely initiated 

from defects on the lattice beams (Supplementary Fig. 10, Supplementary Movie 1). The experiments 

show that the fabricated elastomer lattices can be reversibly stretched up to 320-414% strains until the 

first beam-fractures (Fig. 3E). Before the first beam-fractures, the elastomer lattices can be reversibly 

stretched for more than 100 cycles with negligible hysteresis after the first loading-unloading cycle 

(Supplementary Fig. 11, Supplementary Movie 1). It is noted that the reversible stretchability of the 

current elastomer lattices (strain 320-414%) is much larger than that of elastomer foams fabricated with 

the same elastomer materials (strain~100-170%) (Fig. 3E). It is probably because elastomer foams in a 

stochastic architecture usually embed some irregular ultra-thin beams that can be easily fractured at a 

relatively small force, and the initiated cracks generate stress concentrations that may further promote the 

crack propagation (Supplementary Fig. 12).  

Large-strain compression. Unlike the large-strain tensile behaviors, we find that the compressive 

behaviors of bending and stretching dominant lattices are remarkably different. For a bending-dominant 

Kelvin elastomer lattice, the stress response primarily originates from the large-deflection bending of the 

elastomer beams (Fig. 4A), and thus increases monotonically with the applied strain (Fig. 4BC, 

Supplementary Movie 2)
42

. This observation is similar as the compressive behaviors of the elastomer 

foams with stochastic bending-dominant architectures
1,42

. Differently, the compressive loading on a 

stretching-dominant Octet elastomer lattice is primarily applied along the beam axes (Fig. 4D), and can 

trigger beam buckling after a critical load.  Therefore, the stress response of the Octet lattice is non-

monotonic, but feature domains with negative stiffness after the occurrence of beam buckling (Fig. 4EF, 

Supplementary Movie 3). It is noted that these different compressive behaviors are not limited to Kelvin 

and Octet lattices, but also occur in other bending-dominant (e.g., Dodecahedron) and stretching-

dominant (e.g., Octahedron) lattices (Supplementary Fig. 13). To understand the distinct behaviors, we 

perform finite element analyses for Octet and Kelvin lattices under large-strain compressions. The 

computational results show that the stress response of the compressed Kelvin lattice indeed monotonically 
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increases with the applied strain (Supplementary Fig. 14), while the stress response of the compressed 

Octet lattice goes up and down due to the beam buckling (Supplementary Fig. 15). The computational 

predictions quantitatively agree with the experimentally measured stress-strain curves (Fig. 4BE).  

It is observed that for an Octet lattice with two layers of unit cells, the buckling initiates at one 

cell layer of Octet lattices, and increasing compressions can further trigger the subsequent buckling on the 

second layer of cells (Fig. 4EF)
43

. Based on this observation, we can further tune the domain number and 

strain range of the buckling-induced negative stiffness (Fig. 4EG): lattice with one layer of Octet cells 

feature one domain with negative stiffness within strain 0.26-0.37, while lattices with two and three layers 

of Octet cells feature two and three domains with negative stiffness, respectively. Moreover, the initial 

strain of the negative stiffness can also be tuned by varying the aspect ratios of the lattice beams: the 

critical buckling strains of Octet lattices monotonically decrease with increasing beam aspect ratios, 

consistent with the finite element calculations (Fig. 4H).  

The sequential buckling on the stretching-dominant lattices can maintain the stress-level 

throughout a long plateau region (Fig. 4EG), thus facilitating the lattices to absorb a large amount of 

elastic energy without dramatically increasing the stress
2,44

. To indicate the energy absorption capability, 

a parameter called energy absorption efficiency can be defined as stored elastic energy in the lattice 

normalized by maximum applied stress
1,44,45

 (calculations in Supplementary Materials and 

Supplementary Fig. 16). We find that due to the sequential buckling the energy absorption efficiencies 

of the stretching-dominant lattices (e.g., Octet and Octahedron) under quasistatic loading (rate 0.0167 

mm/s) are higher than those of the bending-dominant lattices (e.g., Kelvin and Dodecahedron), given the 

same lattice densities (ρ/ρ0~26% in Fig. 4I, ρ/ρ0~14% in Supplementary Fig. 17). The behaviors are also 

consistent for various high loading rates (e.g., 0.83 and 3.33 mm/s in Supplementary Fig. 18). In 

addition, because the stochastic architectures of elastomer foams usually follow bending-dominant 

behaviors
12, 36, 37

, elastomer foams’ energy absorption efficiency is much lower than those of stretching-

dominant elastomer lattices (Fig. 4I, Supplementary Fig. 17-19). Furthermore, unlike the existing 
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elastoplastic lattices (e.g., rigid plastic, metal or ceramic) that can only be used for energy absorption once 

due to the yielding or fracture
1,44,45

, our elastomer lattices can reversibly absorb energy for more than 100 

cycles (Supplementary Figs. 11 and 20, Supplementary Movies 2 and 3).  

Discussion  

Thanks to the unprecedented combination of high-stretchability, high-complexity in architecture, low 

density and easy-shapeability, the elastomer metamaterials can facilitate a number of applications. First, 

in robotic and 4D printing applications, connectors are required to bridge parts to flexibly bend or rotate; 

however, the existing connectors are either thermoplastics with drawbacks in limited deformability and 

cyclability, or bulk soft materials short in high density
8,32,46-48

.  Here we demonstrate that our elastomer 

lattices can enable high-flexibility of the structural bridging between 3D printed rigid plastic parts to 

reversibly sustain large-strain stretching, compression, bending and twisting, yet keeping the whole 

system at a very low density (Fig. 5A, Supplementary Fig. 21).  

Second, our elastomer lattices with ultrahigh energy absorption efficiencies can be used as 

extraordinary dampers to protect precision components or devices, with higher efficiency than existing 

elastomer foams, a well-known excellent damper
1
 (Figs. 5B and 3I). To prove the concept, we fabricate 

identical plastic thin shells in a semi-spherical shape (thickness ~400 µm, strong enough to sustain 36g 

weight shown in Supplementary Fig. 22), and then use an elastomer lattice (ρ/ρ0~26%, Fig. 5Bii), an 

elastomer solid (Fig. 5Biii), a plastic lattice (ρ/ρ0~26%, Fig. 5Biv) and an elastomer foam (ρ/ρ0~26%, Fig. 

5Bv) as dampers to shield impacts. Repeated experiments show that under impacts of freely-dropping of 

identical weights (36 g) from 100 mm height, the shell protected by the elastomer lattice is still intact, 

while others all broken (Fig. 5B, Supplementary Fig. 22, Supplementary Movie 4). The elastomer 

lattices can also be effective for cylindrical and cubic shells (Supplementary Fig. 23). Compared to the 

reported 2.5D elastomer dampers by Shan et al.
2
, the current elastomer lattices have high damping 

performance for three Cartesian coordinates. In addition, the current lattices can autonomously return to 
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the original shapes once the external load is retrieved, different from the cases in Shan et al.
2
 which 

require external activations.  

Third, our elastomer lattices in defined shapes can be used as disability rehabilitation devices that 

support the large-distance movement of organ joints during the rehabilitation practice
9
 (Fig. 5C). The 

existing rehabilitation devices are limited in high density and inability in designing customized supporting 

gradient
49

. Here we show a low-density (ρ/ρ0~26%) elastomer Octet lattice in a cylindrical shape can 

support a finger to perform bending practices (Fig. 5C, Supplementary Fig. 24, and Supplementary 

Movie 5). A prescribed gradient density is designed along the longitudinal direction, inducing gradient 

moduli to provide customized force-supports for specific parts along the finger, which may greatly 

facilitate the healing process of the finger (Fig. 5C, see homogeneous density case in Supplementary Fig. 

24)
9,49

.  

Finally, the elastomer lattices can also be used for flexible and wearable electronics (Fig. 5D). 

The existing flexible conductors are limited in either low stretchability, high density or inability to 

achieve 3D anisotropic conductivity through designed conductive paths
10,23

. With designed compliant 

conductive channels within the elastomer lattice beams (Fig. 5Di, Supplementary Fig. 25A), the 

elastomer lattices with low density 0.23 g/cm
3
 can remain conductive within cyclic uniaxial strain as large 

as 250% (Fig. 5Dii, Supplementary Fig. 25B, Supplementary Movie S6).  The lattices also exhibit 

prescribed anisotropic conductivity during the large-strain stretching. For example, the conductivity along 

path 1-2 (along the stretching direction) and path 3-4 (normal to stretching direction) are different due to 

the different stretching ratio along the conductive paths (Fig. 5Diii).  

It is noted that the stretchability of elastomer lattices in the current work has not been optimized. 

In the future study, the stretchability of elastomer lattices can be optimized through sorting out various 

elastomer parent materials with higher stretchability, or designing architectures to delay the deformation 

of the lattice beams
10

. It is also noted that platinum-catalyzed silicones (e.g., PDMS
10

) or hydrogels
14
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cannot be used in the current fabrication method, because platinum-catalyzed silicones cannot cure 

around the dissolvable scaffold, and the hydrogel would dissolve the scaffold during the filling step.  

In summary, we present a class of mechanical metamaterials that features 3D highly-complex 

architectures and ultrahigh reversible stretchability (strain 414%). With full freedom of controlling 

architectures, the elastomer-lattice metamaterials with tunable exotic large-strain tensile and compressive 

properties may open new avenues for a number of future research directions and applications.  In the 

research field of material science, these elastomer metamaterials demonstrate a new property space which 

features an unprecedented combination of 3D free-form architecture, low density and ultrahigh 

stretchability (Fig. 2)
1
; within this property space, these elastomer metamaterials can potentially mimic 

the hierarchical structures and mechanical performance of their natural counterparts (e.g., elastomer 

proteins) that have evolved for centuries 
1,16,50-52

. These elastomer metamaterials may also pave ways for 

future designs of novel engineering materials with extreme stretchability and densities, which are 

specifically useful for unconventional electronics
23

, robotics
5-8

, exoskeleton devices
49

 and other 

bioinspired soft machines
53,54

.  In addition, the elastomer metamaterials demonstrate reversible switch of  

3D complex architectures under mechanical loadings, which may potentially facilitate dynamically 

interactions with various energy flows, such as shock impacts, acoustic waves and electromagnetic 

energies 
2,3,55

, or show various abnormal material properties, such as negative indexes and cloaking
3,15,56

. 

Furthermore, coupled with stimuli-controlled actuations, the elastomer metamaterials with tailored 

geometries may show great potential in 4D printing to exhibit externally controlled changes of 3D shapes 

and associated functionalities
47,57

.   
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Materials and Methods 

Fabrication of elastomer lattices and other structures. The fabrication of elastomer lattices starts from 

water-soluble hollow scaffolds that are 3D-printed by a projection microstereolithography system 

(Supplementary Fig. 1). The photoresin is a mixture of acrylic-based photopolymers N,N-

Dimethylacrylamide (40% wt), Methacrylic acid (40% wt) and Methacrylic anhydride(7% wt), water 

soluble filler Polyvinylpyrrolidone (11% wt) and photoinitiator Phenylbis (2,4,6-trimethylbenzoyl) 

phosphine oxide (2% wt)
35

. First, a 3D hollow CAD model is sliced into a series of images with a 

prescribed spacing along the vertical direction. These 2D slice images, illuminated with UV/blue light 

from a light emitting diode, are sequentially projected onto a transparent window, on which the 

photoresin is capped in a prescribed height by a printing glass stage. The exposed resin is solidified, 

forming a layer structure bonded onto the printing stage. To eliminate the adhesion between the solidified 

resin and the transparent window, an oxygen permeable membrane (Teflon fluoropolymer, CSHyde, USA) 

is attached on the window, inducing a thin layer (~5-20µm) of oxygen-rich dead zone to quench the 

photopolymerization
34

. As the printing stage is lifted off, fresh resin can be delivered beneath the printing 

stage by a rotational wheel. By lowering down the stage by a prescribed height and illuminating the resin 

with another slice image, a second layer can be printed and bonded onto the first layer. By repeating these 

processes, we can print a hollow scaffold with nearly arbitrary 3D architectures.  Once dried with air for 2 

h, the hollow scaffold is filled with tin-catalyzed silicone elastomers (mold max NV14 and 10T, Smooth-

on, USA) and Urethane elastomers (PMC-724, Smooth-on, USA) with mixtures of the base and the 

crosslinker 10:1 and 1:1 by weight, respectively. The filling process is well controlled by a syringe 

equipped with a syringe pump, thus smoothly squeezing the air away from the outlets. The filled 

elastomers are cured for 12h at 25
o
C. Thereafter, the composites with scaffolds and cured elastomers are 

immerged in 1 mol/L NaOH solution for 6 h. The elastomers lattices are ready for use after washing in DI 

water for 2 min and air-drying for 2 min.  
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Mechanical tests of elastomer lattices. In compression tests, elastomer lattices are compressed by 

various loading rates 0.0167, 0.83 and 3.33mm/s with a mechanical tester (model 5942, Instron, USA). 

The nominal stress is calculated as the loading force over the average crosssection area of the lattice. The 

compressive strain is directly calculated as the loading distance over the initial height of the lattice. In 

tensile tests, the samples are clamped on the designed stretching bars and stretched by loading rate 0.0167 

mm/s. The deformation evolution is recorded by a camera (Canon EOS 70D) and the tensile strain is 

calculated by the real elongating length of the lattice part (Fig. 2A).  

Calculation of relative densities of elastomer lattices. The beam diameter and length of the fabricated 

elastomer lattices are first measured with a vernier caliper (resolution 10µm). Then a SolidWorks model 

is created with the measured dimensions. The relative density ρ/ρ0 is calculated as the volume fraction of 

the lattice structures, directly estimated in the SolidWorks model.  

Fabrication and mechanical tests of elastomer foams. The elastomer foams are fabricated by curing a 

mixture of  mold max NV14 and sugar powder (size 100-500µm, C&H sugar, USA) in a glass vial. The 

cured sample is then immerged in DI water for 6 h to dissolve the sugar, leaving a porous elastomer foam. 

A foam (cut in a disk with height 8 mm and diameter 8 mm) is compressed with loading rate 0.0167, 0.83 

and 3.33mm/s, respectively (Supplementary Figs. 17-19). Foam bars with diameter 8 mm and length 35 

mm are stretched with rate 0.0167mm/s (Supplementary Fig. 12).  

Finite element analyses. All models are first designed in SolidWorks and then imported into a finite-

element code, ABAQUS 6.10.1. The mold max NV14 elastomer beams are taken to obey Arruda-Boyce 

model with parameters calculated from Supplementary Fig. 6, namely µ0=71 kPa and λm=2.91 (see Eq. 

2). The models are discretized by C3D8R elements and the result accuracy is ascertained through mesh 

refinement studies. The loadings in the simulations are displacement-controlled. The loading force is 

calculated by integrating the reaction force on one end surface.  
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Flexible connector. The rigid plastic lattices in Fig. 5A are fabricated by printing a photoresin with a 

mixture of 1,6-Hexanediol diacrylate (HDDA, 98% wt) and photoinitiator Phenylbis (2,4,6-

trimethylbenzoyl)phosphine oxide (2% wt). Then the elastomer lattice is firmly bonded between two 

plastic lattices with a very thin layer of super glue (~200µm, Gorrila, USA). The HDDA-elastomer lattice 

composites are bended and twisted by hands.  

Damping experiments. Identical semi-spherical, cubic and cylindrical shells with thickness ~400µm 

(Supplementary Figs. 22-23) are first fabricated by printing photoresin HDDA with the photoinitiator. 

An Octet elastomer lattice (ρ/ρ0~26%), an elastomer solid cubic, an HDDA lattice (ρ/ρ0~26%) and an 

elastomer foam (ρ/ρ0~26%) with the same sample size (8mm×8mm×8mm) are placed on the identical 

HDDA shells with a very thin layer of super glue. The metal weight (~36 g) cannot break the skull (~0.16 

g) by its own weight (Supplementary Fig. 22B). Same weights are freely dropped from 110 mm height 

onto various samples. To prevent the weight jumping, a glass tube is used during the damping experiment.  

Experiments on the elastomer-lattice conductor. An Octahedron elastomer lattice with hollow beams is 

first fabricated using the model in Supplementary Fig. 25A.  The hollow channels (diameter 0.4 mm) 

within the elastomer lattice are first filled in a compliant conductor, carbon grease (MG chemicals, USA) 

with a syringe. The carbon grease can flow conformally during the large-stretching of the elastomer 

lattice. Some openings designed on the elastomer lattice (Fig. 5Di) are connected to an electric circuit 

with a DC voltage (24V), electric switch and a LED (Supplementary Fig. 25B). The cyclic stretching of 

the elastomer lattice is controlled by Instran mechanical tester with rate 0.01 mm/s. The electric 

resistances of the elastomer-lattice conductor through different conductive paths are measured with a 

resistance meter (Klein tools, USA).   
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Figures and captions 

 

Figure 1. Fabrications of elastomer lattices. (A) Fabrication process of an elastomer lattice: A designed 

CAD model (i) is 3D-printed into a hollow scaffold (ii). The liquid prepolymer is then filled into and 

cured within the hollow channels of the scaffold (iii), which is subsequently dissolved in NaOH solution 

(iv). (B-F) CAD designs and fabricated elastomer lattices in various architectures: (B) Octet-truss, (C) 

Kelvin, (D) Kagome, (E) Octahedron and (F) Dodecahedron. (G) A transparent Octet elastomer lattice 

made of the transparent Mold max T10 elastomer. The arrow indicates the transparence of the beam. (H) 

An Octet elastomer lattice is reversibly twisted.  All scale bars denote 2 mm.  
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Figure 2. Property comparison with existing architected materials. Comparison of the maximum 

reversible (A) tensile strain and (B) compressive strain between the current elastomer lattices and other 

existing lattice materials with 3D complex architectures as functions of their densities. The dash lines 

represent the density of the elastomer solid. 
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Figure 3. Mechanical behaviors of elastomer lattices under large-strain tensions. (A) Sequential 

images to show a Kelvin elastomer lattice under increasing uniaxial tensile strains. The arrow indicates 

the reversibility of the stretching. Scar bar denotes 4 mm. (B) Nominal stresses of Kelvin and Octet 

elastomer lattices in functions of tensile strains. The experimentally measured curves (“Exp”) are fitted to 

the Arruda-Boyce model with µ=6 kPa and λm=2.8 for Kelvin, and µ=10.1 kPa and λm=2.3 for Octet. (C) 

Nominal stresses of Kelvin elastomer lattices with varied beam diameters in functions of tensile strains. 
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The fitted shear moduli are 4.2 kPa (0.5mm), 6 kPa (0.7mm) and 10 kPa (0.9mm), respectively. (D) 

Relative shear moduli of Kelvin and Octet elastomer lattices in functions of relative densities. The finite-

element-analysis (“FEA”) simulated relationships are µ/µ0≈0.57ρ/ρ0 (Kelvin) and µ/µ0≈0.49ρ/ρ0 (Octet). 

The dash line in (D) indicates the slope for scaling relationship µ/µ0 ρ/ρ0. (E) The maximum reversible 

tensile strains of Octet, Kagome, Octahedron, Kelvin and Dodecahedron elastomer lattices, and elastomer 

foams. The error bars denote the standard deviation among at least 3 data points.  
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Figure 4. Mechanical behaviors of elastomer lattices under large-strain compressions. (A) The 

mechanical response to compressive loading on a Kelvin unit cell. (B) Nominal stresses of a Kelvin 

elastomer lattice in a function of compressive strains with loading rate 0.0167mm/s. (C) Sequential 

images (i-vi) of the Kelvin lattice under large-strain compression denoted in (B). (D) The mechanical 

response to compressive loading on an Octet unit cell. (E) Nominal stresses of an Octet elastomer lattice 

(2×2×2) in a function of compressive strains with loading rate 0.0167mm/s. (F) Sequential images (i-vi) 

of the Octet lattice under large-strain compression denoted in (E). The red arrows in (F) denote the 

buckling layers in the Octet lattice. (G) Nominal stresses of 2×2×1 and 2×2×3 Octet elastomer lattices in 

functions of compressive strains with loading rate 0.0167mm/s. Shadow regions in (E) and (G) indicate 
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the negative stiff regions. (H) The critical strains of the first buckling of the Octet lattices in a function of 

the beam aspect ratios (beam length/diameter). (I) Energy absorption efficiencies of Octet, Octahedron, 

Kelvin and Dodecahedron elastomer lattices, and an elastomer foam, whose relative densities are all 

~26%. The error bars denote the standard deviation among at least 3 data points. Scale bars in (C) and (F) 

denote 2 mm. 
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Figure 5. Applications of elastomer-lattice structures. (A) An Octet elastomer lattice bonded between 

two Octet HDDA lattices (i) can sustain bending by 180
o
 (ii) and twisting by 360

o
. (B) A metal weight 

(36 g) freely dropped from 100 mm height onto a damper-protected HDDA thin shell (i). The HDDA 

shell is still intact if the damper is an Octet elastomer lattice (ii, ρ/ρ0=26%), but all broken if the damper is 

an elastomer solid (iii), an Octet HDDA lattice (iv, ρ/ρ0~26%) or an elastomer foam (v, ρ/ρ0=26%). (C) A 

finger rehabilitation device: (i) A cylindrical lattice with gradient density along the longitudinal direction 

(marked by the red arrow). The inset shows the calculated relative density along the longitudinal path. (ii) 
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A fabricated elastomer lattice sample with gradient shear modulus along the longitudinal path (shown in 

the inset). The shear modulus is calculated by µ/µ0=0.49ρ/ρ0 (Octet). (iii) The finger covered with the 

elastomer lattice can reversibly undergo large-strain bending. (D) A stretchable elastomer-lattice 

conductor: (i) A schematic to show the stretchable conductor structure. 1-4 denotes the wire connectors 

that can be connected to the electric circuit shown in Supplementary Fig. 25. (ii) The stretchable 

conductor under tensile strain ~2.5 is still conductive enough to power a LED light. (iii) The resistances 

along different conductive paths (e.g., path 1-2 and path 3-4) in functions of increasing tensile strains. All 

scale bars denote 4 mm.  
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Supplementary Methods  

Energy absorption of elastomer lattices. As shown in Supplementary Fig. 16, with increasing 

compressive strains, elastomer lattices undergo three stages: first a linear elastic region up to ~10% strain, 

and then a plateau region with stagnant or slowly increasing stress levels, followed by a densification 

region with a rapid increase of stress. The energy absorption efficiency of an elastomer lattice is defined 

as (shown in Supplementary Fig. 16AC) 
1-3

  

 
trs

sd
D







 0                                                                    (S1) 

where,  is the compressive strain, s is the nominal stress in a function of compression strain  , D is 

the densification strain that denotes a initial strain for the densification stage, and   Dtr ss  0max

is the maximum transmitted stress.  

In the practical calculations, the densification strain D  is unknown; therefore, we first sort out 

the energy absorption efficiency through omcreasing applied strain  . i.e.,  

trs

sd





 0

1                                                                  (S2) 

where    0max sstr  is the maximum transmitted stress. It is noted that trs  is not necessarily 

equal to s (see a case in the inset of Supplementary Fig. 16C). Then, the energy absorption efficiencies 

mailto:qimingw@usc.edu
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 shown in Fig. 4I are the maximum 1 values across all applied strains (the maximum points in 

Supplementary Fig. 16BD). The densification strain is the strain corresponding to the maximum 1  

value (Supplementary Fig. 16BD). Calculation examples are shown in Supplementary Figs. 13 and 16.  
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Supplementary figures and captions 

 

Supplementary Figure 1. 3D printing process via projection microstereolithography. A CAD model 

is first sliced into a sequence of images. These 2D slice images, illuminated with UV/blue light from a 

light emitting diode, are sequentially projected onto a transparent window. On the window, the liquid 

photoresin, capped into a prescribed height by a printing stage, is cured by the light and attached onto the 

printing stage. As the printing stage is lifted off, the fresh resin is delivered beneath the printing stage by a 

rotational wheel. By lowering down the stage by a prescribed height and illuminating the resin with a 

subsequent slice image, a new layer can be printed and bonded onto the former layer.  
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Supplementary Figure 2. Hollow scaffolds for fabricating elastomer lattices for (A) compressive tests 

and (B) tensile tests.  
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Supplementary Figure 3. CAD models and fabricated samples of unit cells of (A) Octet, (B) Kelvin, (C) 

Kagome, (D) Octahedron and (E) Dodecahedron lattices. All scale bars denote 1 mm.  
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Supplementary Figure 4. Fabricated Octet lattice with Urethane elastomer. Scale bar denotes 2 mm.  
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Supplementary Figure 5. A Kelvin elastomer lattice can be reversibly compressed by 98% strain. The 

scale bars denote 2 mm.  
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Supplementary Figure 6. Nominal stresses of the elastomer solid (Mold max NV14 A:B=10:1) under 

tensile and compressive strains. The compressive strains and stresses are denoted as negative. The 

experimental curve is fitted to Arruda-Boyce model shown in Eq. 2 with the shear modulus of the 

elastomer solid as µ0=71 kPa and λm=2.91.  
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Supplementary Figure 7. Finite element simulated configurations of (A) Kelvin and (B) Octet elastomer 

lattices under increasing tensile strains, respectively.  
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Supplementary Figure 8. (A) CAD models of Kelvin lattices with various relative densities. (B) 

Simulated and fitted nominal stresses of Kelvin elastomer lattices with various relative densities in 

functions of tensile strains. The Simulated stress-strain curves are fitted to the Arruda-Boyce model 
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shown in Eq. 2 to obtain the effective shear modulus. (C) The fitted shear moduli of the Kelvin lattices 

plotted in a linear relationship with relative densities. With the similar method shown in (A-C), the shear 

moduli of (D) Octet, (E) Octahedron and (f) Dodecahedron lattices can also be calculated as linear 

relationships with their relative densities.  
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Supplementary Figure 9. Experimentally measured and finite-element simulated relative shear modulus 

of Octahedron and Dodecahedron elastomer lattices in functions of their relative densities.  
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Supplementary Figure 10. Fractured samples of (A) Octet, (B) Kelvin, (C) Octahedron, (D) Kagome 

and (E) Dodecahedron lattices after extreme tensions (see example in Supplementary Movie 1). All 

scale bars denote 2 mm.  
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Supplementary Figure 11. Nominal stresses of a Kelvin elastomer lattice under cyclic tensile strains.  
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Supplementary Figure 12. (A) Nominal stresses of an elastomer foam in a function of the tensile strains 

under loading rate is 0.0167mm/s. (B) Sequential images (i-vi) of the elastomer foam under large-strain 

tension denoted in (A). Cracks can be easily initiated from weak beams (biii-iv). The scale bar denotes 4 

mm.  
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Supplementary Figure 13. (A, C) Nominal stresses and (B, D) calculated energy absorption efficiencies 

of (A, B) Dodecahedron and (C, D) Octahedron elastomeric lattices plotted with increasing compressive 

strains with loading rate 0.0167mm/s. The energy absorption efficiencies shown in Fig. 4I are the values 

marked with circles in (B) and (D). The densification strains are shown by the dash lines in (B) and (D).  
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Supplementary Figure 14. Comparison of (A) experimentally observed and (B) finite-element simulated 

configurations of the Kelvin elastomer lattice under increasing compressive strains.  The scale bar in (A) 

denotes 2 mm.  
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Supplementary Figure 15. Comparison of (A) experimentally observed and (B) numerically simulated 

configurations of the Octet elastomer lattice under increasing compressive strains. For simplicity, we only 

consider the top layer frame of the Octet lattice in the finite-element simulations (B). The scale bar in (A) 

denotes 2 mm. 
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Supplementary Figure 16. (A, C) Nominal stresses and (B, D) calculated energy absorption efficiencies 

of (A, B) Kelvin and (C, D) Octet elastomer lattices in functions of compressive strains with loading rate 

0.0167mm/s. The energy absorption efficiencies in (B) and (D) are calculated via trssd /
0

1 




 



  

(see Eq. S2), where  is the increasing strain,  s is the nominal stress, and    0max sstr  is the 

maximum transmitted stress. It is noted that trs  is not necessarily equal to s (see a case in the inset of C). 

The energy absorption efficiencies shown in Fig. 4I are the values marked with circles in (B) and (D). 

The densification strains are shown by the dash lines in (B) and (D).  
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Supplementary Figure 17. Energy absorption efficiencies of Octet elastomer lattices, Kelvin elastomer 

lattices and elastomer foams with relative density ρ/ρ0~14%. The loading rate is 0.0167mm/s.   
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Supplementary Figure 18. Nominal stresses of (A, B) Kelvin and (C, D) Octet elastomer lattices with 

increasing compressive strains under loading rates (A, C) 0.83 mm/s and (B, D) 3.33 mm/s, respectively. 

(E) Energy absorption efficiencies of Octet elastomer lattices, Kelvin elastomer lattices and elastomer 

foams under loading rates 0.83 mm/s and 3.33 mm/s, respectively.  
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Supplementary Figure 19. (A) Nominal stresses of an elastomer foam (ρ/ρ0~26%) in a function of the 

compressive strains under loading rate is 0.0167 mm/s. The inset shows the fabricated elastomer foam. (B) 

Sequential images (i-iv) of the elastomer foam under large-strain compressions denoted in (A). The scale 

bar denotes 2 mm.  
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Supplementary Figure 20. Nominal stresses of (A) Kelvin and (B) Octet elastomer lattices under cyclic 

compressive strains.  

 

  



51 

 

 

Supplementary Figure 21. Schematic to show an elastomer lattice bonded between two HDDA lattices 

via thin layers of super glue.   
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Supplementary Figure 22. (A) The fabricated plastic semi-spherical shell (0.16 g) can sustain the 36 g 

weight without fracture. (B-E) damping experiments using (B) elastomer lattice, (C) elastomer solid, (D) 

plastic lattice and (E) elastomer foam as dampers, respectively. All scale bars denote 2 mm. 
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Supplementary Figure 23. Damping experiments on (A) cubic and (B) cylindrical shells using elastomer 

lattices, elastomer solids, plastic lattices and elastomer foams as dampers, respectively. All scale bars 

denote 2 mm.  
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Supplementary Figure 24. (A, D) CAD models and (B, E) fabricated elastomer lattice structures with (C) 

gradient rigidity and (F) homogeneous rigidity, respectively. Scale bars in (B) and (E) denote 4 mm. The 

modulus distribution along the path marked in (B) and (E) for (C) gradient and (F) homogeneous cases, 

respectively. The shear modulus is calculated by µ/µ0=0.49ρ/ρ0.  
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Supplementary Figure 25. (A) A hollow CAD model for fabricating a hollow Octahedron elastomer 

lattice. The internal yellow beams are designed to create the hollow channels within the elastomer lattices. 

(B) An electric circuit to demonstrate the conductivity of the elastomer lattice. (C) Resistances of path 1-2 

and path 3-4 in the elastomer lattice (shown in Fig. 5Di) in functions of nominal stresses applied on the 

lattice. Using the curve in (C), the stretchable conductor can act as a stress/force sensor.  

 

 

 

  



56 

 

Supplementary movie captions 

Supplementary Movie 1: A Kelvin elastomer lattice is under cyclic tensions. The strain history is from 0 

increasing to 4.14, then back to 0, and increasing to 4.5. The loading and unloading rate is 0.0167 mm/s. 

The movie speed is 115 times of the real speed.   

Supplementary Movie 2: A Kelvin elastomer lattice is under cyclic compression within strain 0-0.9. The 

loading and unloading rate is 0.0167 mm/s. The movie speed is 20 times of the real speed.  

Supplementary Movie 3: An Octet elastomer lattice is under cyclic compression within strain 0-0.9. The 

loading and unloading rate is 0.0167 mm/s. The movie speed is 20 times of the real speed. 

Supplementary Movie 4: A metal weight (36 g) is freely dropped from 100 mm height onto thin half-

spherical HDDA shells protected by an elastomer lattice, an elastomer solid cubic, an HDDA lattice and 

an elastomer foam, respectively.     

Supplementary Movie 5: A cylindrical elastomer-lattice structure is worn by a bending finger.   

Supplementary Movie 6: An elastomer lattice with conductive channels is cyclically stretched within 

strain 0-2.5. The conductive path is connected to the electric circuit as shown in Supplementary Fig. 24B 

to light up an LED.    
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