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ABSTRACT

Accurate representation of the stability of the surface layer in numerical weather prediction models is
important because of the impact it has on forecasts of surface energy, moisture, and momentum fluxes. It also
impacts boundary layer processes such as the generation of turbulence, the creation of near-surface flows, and
fog formation. This paper uses observations from a 30-m automatic weather station on the Ross Ice Shelf,
Antarctica, to evaluate the near-surface layer in the Antarctic Mesoscale Prediction System (AMPS), a nu-
merical weather prediction system used for forecasting in Antarctica. The method of self-organizing maps (SOM)
is used to identify characteristic potential temperature anomaly profiles observed at the 30-m tower. The SOM-
identified profiles are then used to evaluate the performance of AMPS as a function of atmospheric stability.

The results indicate AMPS underpredicts the frequency of near-neutral profiles and instead overpredicts
the frequency of weakly unstable and weak to moderately stable profiles. AMPS does not forecast the
strongest statically stable patterns observed by Tall Tower, but in the median, the AMPS forecasts are more
statically stable across all wind speeds, indicating a possible mechanical mixing error or a negative radiation
bias. The SOM analysis identifies a negative radiation bias under near-neutral to weakly stable conditions,
causing an overrepresentation of the static stability in AMPS. AMPS has a positive wind speed bias in
moderate to strongly stable conditions, which generates too much mechanical mixing and an un-
derrepresentation of the static stability. Model errors increase with increasing atmospheric stability.
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1. Introduction

Accurate representation of the stability of the surface
layer in numerical weather prediction (NWP) models is
important since this impacts forecasts of surface energy,
moisture, and momentum fluxes. It also impacts boundary
layer processes such as the generation of turbulence, the
creation of near-surface flows (i.e., katabatic winds and
barrier winds), and fog formation.
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The surface layer over Antarctica differs from the
surface layer in most regions of the world. The perma-
nent snow and ice surfaces in Antarctica result in radi-
ational cooling and downward-directed turbulent heat
fluxes over much of the year that create persistent stat-
ically stable surface layers and frequent surface in-
versions (King and Turner 1997). Previous studies have
used observations to evaluate the frequency of statically
stable surface layers and the strength of the vertical
temperature gradient for various places around the
Antarctic. Observations from Antarctica show statically
stable surface layers occurring approximately 83% of
the time over the Ross Ice Shelf (RIS) (Cassano et al.
2016), 74% of the time in the summer and 92% of the
time in the winter at South Pole Station (Hudson and
Brandt 2005), 85% of the time at Dome Concordia
(Genthon et al. 2013), 70% of the time at Dome A (Hu
et al. 2014), and throughout the year at Plateau Station
(Riordan 1977). The maximum vertical potential tem-
perature gradient observed at a 30-m tower located on
the RIS was 0.9°Cm ™' (Cassano et al. 2016) while the
maximum vertical temperature gradient observed by the
45-m tower at Dome C over the interior of the continent
was 2.5°Cm ™! (Genthon et al. 2013).

Previous studies have highlighted some of the diffi-
culties in accurately simulating stable boundary layers in
NWP models (e.g., Derbyshire 1999; Poulos and Burns
2003; Tjernstrom et al. 2004; Brunke et al. 2006; Holtslag
2006; Steeneveld et al. 2006; Banta et al. 2007; Teixeira
et al. 2008; Baklanov et al. 2011; Atlaskin and Vihma
2012; Rinke et al. 2012; Holtslag et al. 2013; Kleczek
et al. 2014; Sterk et al. 2015) and specifically over the
RIS (Steinhoff et al. 2009; Wille et al. 2016). One chal-
lenge associated with simulating stable boundary layers
is adequate vertical resolution in the often shallow sta-
ble boundary layer (King and Turner 1997; Tjernstrom
et al. 2004; Banta et al. 2007). In recent years, the near-
surface vertical resolution has increased in NWP
models, but additional knowledge of smaller-scale pro-
cesses is required to adapt the current planetary bound-
ary layer (PBL) and surface-layer parameterizations to
the higher vertical resolution models (Teixeira et al. 2008;
Baklanov et al. 2011).

A wide range of model errors exists with respect to
simulating stable boundary layers. A common model
error is the underrepresentation of the near-surface ver-
tical temperature gradient, or an underrepresentation of
the static stability (Atlaskin and Vihma 2012; Sterk et al.
2015). This is often a reflection of the PBL parameteri-
zation generating too much mechanical mixing to avoid
decoupling of the atmosphere from the surface (Derbyshire
1999; Poulos and Burns 2003; Holtslag 2006; Rinke et al.
2012; Holtslag et al. 2013). This also occurs when there
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is a positive wind speed bias and the mechanical mixing
generated by the strong winds in the model decreases the
near-surface stability (Tjernstrom et al. 2004; Wille et al.
2016). On the other end of the spectrum, some NWP
models underpredict the low-level wind speeds, gener-
ating too little mechanical mixing, resulting in an over-
prediction of the static stability and a cold bias in the
surface temperature (Steinhoff et al. 2009). Also impacting
the model forecasts of atmospheric stability is the model
representation of the energy budget, which is impacted
by processes such as cloud cover, moisture content, surface
radiative and turbulent fluxes, and temperature advection
(Tjernstrom et al. 2004; Brunke et al. 2006; Steeneveld
et al. 2006). The complexities involved with simulating
stable boundary layers emphasize the need for PBL
observations and an evaluation of current PBL and
surface-layer parameterizations (Baklanov et al. 2011).

This study uses observations from a 30-m instrumented
tower on the RIS to assess the ability of the Antarctic
Mesoscale Prediction System (AMPS) to simulate the
near-surface stability and associated wind and tempera-
ture profiles. AMPS is a real-time NWP system used
by the U.S. Antarctic Program (USAP) to provide fore-
casts for Antarctic flight operations and logistical activity
around the continent. Therefore, accurate forecasts are
critical to the safety of those working in Antarctica
(Powers et al. 2012). The AMPS forecast archive is also
used for research purposes, where accurate forecasts are
important for diagnosing the behavior of the atmosphere
(Schlosser et al. 2008; Steinhoff et al. 2009; Speirs et al.
2010; Bromwich et al. 2011; Nicolas and Bromwich 2011;
Seefeldt and Cassano 2012; Nigro and Cassano 2014a).

Observations from the Alexander Tall Tower! auto-
matic weather station (AWS, henceforth the Tall Tower
AWS or simply the Tall Tower; Lazzara et al. 2012;
Cassano et al. 2016; Wille et al. 2016) will be used to
evaluate the stability of the surface layer in AMPS. We
note that our use of the term surface layer refers to the
bottom 30m of the atmosphere, even though during
strong stable conditions the surface layer is likely to be
shallower than this (Cassano et al. 2016). The Tall
Tower AWS is a 30-m instrumented tower located on
the RIS (79.044°S, 170.651°E; see Fig. 1). It has six levels
of instrumentation and observations are recorded at 10-s
intervals. The Tall Tower AWS provides the first con-
tinuous set of vertical observations over the RIS, de-
livering the information necessary to analyze the surface
layer in this region (Cassano et al. 2016).

This paper uses a combination of the Tall Tower AWS
observations and the method of self-organizing maps
(SOM) to evaluate the surface layer in AMPS over a
range of stability patterns. The SOM method is advan-
tageous for this analysis because the model errors likely
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FIG. 1. Map of Antarctica. Contour lines show elevation with a contour interval of 400 m. The
triangle indicates the location of the Tall Tower AWS. The black box indicates AMPS domain 3.

vary as a function of atmospheric stability. This type of
analysis allows forecasters to tailor their forecasts based
on the forecast stability and the stability-varying error
identified with this analysis and is similar to the synoptic-
pattern-based error identification presented in Nigro
et al. (2011). Details about AMPS and the Tall Tower
AWS observations are presented in section 2. Section 3
describes the methods used to interpolate the AMPS
data to the heights of the Tall Tower observations, as
well as the details involved with the SOM method.
Section 4 presents the results of the study and conclud-
ing remarks and discussion are presented in section 5.

2. Data
a. Antarctic Mesoscale Prediction System

AMPS is run by the National Center for Atmospheric
Research (NCAR) to provide real-time weather fore-
casts for the USAP as well as other Antarctic national
programs (Powers et al. 2012; http://www.mmm.ucar.
edu/rt/wrf/amps). It is based on a polar-modified version
of the Weather Research and Forecasting (Polar WRF)
Model, which has been adapted to account for processes

that are specific to the polar regions. These modifica-
tions include a scheme for fractional sea ice, an im-
proved representation of heat transfer through snow and
ice surfaces, a revised surface energy budget, and model
physics options optimized for polar regions (Hines and
Bromwich 2008; Bromwich et al. 2009; Hines et al. 2011;
Bromwich et al. 2013; Hines et al. 2015). AMPS is run
twice daily using first-guess initialization and lateral
boundary conditions from the National Centers for
Environmental Prediction 0.5° Global Forecast System
model output. Three-dimensional variational data as-
similation is used to assimilate observations into AMPS.
The AMPS output is archived and available through the
Computational and Informational Systems Laboratory, a
division of NCAR.

This study uses AMPS output from February 2011
through January 2013. The configuration of AMPS
during this time period is described in Table 1. Of par-
ticular relevance for this work, the Mellor—Yamada—
Janji¢ (Eta) TKE-based PBL parameterization and the
Monin-Obukhov (Janji¢ Eta) surface-layer scheme are
used to represent the surface and boundary layer pro-
cesses in the model. Output from AMPS domain 3
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TABLE 1. AMPS configuration.

Category

AMPS configuration

Forecasting model
Longwave radiation
Shortwave radiation
Boundary layer
Surface-layer scheme
Land surface option

WREF 3.0.1.1 upgraded to WRF 3.2.1 on 27 Apr 2011

RRTM upgraded to RRTM with GCM applications (RRTMG) on 27 Apr 2011 (Mlawer et al. 1997)
Goddard shortwave radiation scheme (Chou and Suarez 1994)

Mellor-Yamada-Janji¢ (Eta) TKE scheme (Janji¢ 1990, 1996, 2002)

Monin-Obukhov (Janji¢ Eta) scheme (Janjic 1996; 2002; Monin and Obukhov 1954)

Unified Noah LSM (Chen and Dudhia 2001)

WSM 5-class scheme (Hong et al. 2004; Hong and Lim 2006)

Kain-Frisch (new Eta) parameterization; no cumulus parameterization (Kain 2004)

Microphysics

Cumulus parameterization

Sea ice Implementation of fractional sea ice

Model top Model top is at 10 mb; vertical velocity damping is applied

(Fig. 1), which covers the northwestern RIS with hori-
zontal grid spacing of Skm, is used here. AMPS uses
terrain-following eta levels as the vertical coordinate
system. The average heights of the lowest two eta levels
are 12 and 31 m above the surface, placing the first eta
level within the depth of the Tall Tower AWS and the
second just above the tower. Domain 3 is run for 36 h
with the output archived every hour. To allow the model
sufficient time to spin up from the initial conditions, and
following previous studies that have used AMPS (e.g.,
Bromwich et al. 2005; Seefeldt and Cassano 2008; Nigro
and Cassano 2014a,b; Wille et al. 2016), the majority of
the analysis in this study uses the 12-23-h forecasts. The
exception to this is the statistical analysis of the model
performance, which analyzes a range of forecast hours
(0-11, 12-23, and 24-35h) to evaluate how the model
performance varies as a function of forecast duration.

b. Tall Tower automatic weather station observations

The AMPS output is evaluated using the February
2011-January 2013 Tall Tower AWS observations (Lazzara
et al. 2012; Cassano et al. 2016; Wille et al. 2016). The Tall
Tower AWS is a 30-m instrumented tower installed on
the RIS in February 2011. Itis located in the northwestern
portion of the RIS (Fig. 1) and is often in the path of the
RIS airstream (Parish et al. 2006; Seefeldt and Cassano

2012; Nigro and Cassano 2014a,b) and the path of kata-
batic drainage from Byrd Glacier (Seefeldt et al. 2007,
Seefeldt and Cassano 2008). The region is located at an
elevation of approximately 58 m and receives approxi-
mately 0.5 m of snow accumulation per year. The AWS is
outfitted with six levels of instrumentation. Details on the
instruments, the average instrument height over the 2-yr
period (Cassano et al. 2016), and the manufacturer-stated
instrument accuracy are provided in Table 2. Additional
information about the Tall Tower AWS is available on-
line (http://amrc.ssec.wisc.edu).

The Tall Tower AWS data were manually quality
controlled to remove erroneous measurements due to
solar radiation errors, frozen wind instruments, and other
instrument/measurement errors. The quality control
process follows the method described in Cassano et al.
(2016) and was applied to the raw instantaneous 10-min
observations. To account for solar radiation errors
(Genthon et al. 2011), temperature observations were
manually analyzed if the temperature increased by more
than 1°C between two 10-min observations, the wind
speed was less than 3ms ™', and the sun was above the
horizon. In each of these instances, the temperature
observations were removed from the dataset if the
temperature increase was larger than the temperature
variability of the day. Additionally, all temperature

TABLE 2. Tall Tower instruments, heights, and manufacturer-stated accuracy.

Instrument

Height (m)

Manufacturer-stated accuracy

R.M. Young platinum resistance temperature
Vaisala HMP45C-L humidity 7.25 and 29.75
R.M. Young Wind Sentry cup anemometer 1.34
R.M. Young aerovanes
Paroscientific Model 215 A pressure sensor 2.3
Campbell Scientific acoustic depth gauge 32
Kipp and Zonen CNR2-L net longwave 29.75
and shortwave radiation

0.85,1.83,3.75, 7.25, 14.75, and 29.75

3.75,7.25,14.75, and 29.75

+0.3°C
*2% (0%-90%)
+3% (90%-100%)
+0.5ms™!
*0.3ms™!
+0.05mb (+0.2mbyr ! long-term drift)
+1cm (0.4in.) or 0.4% of distance
to target (whichever is greatest)
<10% (in daily totals)
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values greater than 0°C were manually investigated for
possible radiation error, since a temperature greater
than 0°C is unlikely to occur within 30m of an ice-
covered surface. Out of the 103982 total temperature
observations, 721 observations were removed during the
quality control process. To account for frozen wind
instruments, a common issue with wind observations in
Antarctica (Lazzara et al. 2012), the wind observations
were removed if either the wind speed remained at zero
for longer than a day or if the wind direction was con-
stant for longer than a day. Using these criteria, it was
determined that the cup anemometer located at 1.34m
was frozen for all of June 2011 and from April through
September 2012.

In addition to the manual quality control process, the
temperature data were investigated for instrumental
biases. This is of concern because the vertical potential
temperature gradient is analyzed to determine the sta-
bility of the surface layer and this vertical gradient is
sensitive to biases that differ across the observational
levels on the tower. As presented in Cassano et al.
(2016), it was determined that the Tall Tower AWS 1.83-
and 3.75-m temperature observations exhibited a small
bias with respect to the other temperature observations
on the tower. Therefore, a —0.09°C correction was ap-
plied to the 1.83-m temperature observation and a
0.08°C correction was applied to the 3.75-m temperature
observation to account for these biases.

3. Methods

a. Interpolation

To better compare the AMPS forecasts to the Tall
Tower observations, the AMPS data were vertically in-
terpolated to the Tall Tower observation heights (Table 2).
The AMPS temperatures were linearly interpolated to the
observation heights using AMPS surface temperature and
the temperature at the lowest two eta levels. The AMPS
wind speed was interpolated to the observation heights
assuming a logarithmic wind profile with a zero wind speed
at the surface, and the wind speeds at the lowest two eta
levels. For this calculation the AMPS roughness length of
0.001 m (Bromwich et al. 2013) was used and no stability
correction was applied. The AMPS 2-m temperature and
10-m winds were not used for the interpolation since these
diagnostic variables are not directly tied to the physics of
the model forecast. In the horizontal, the AMPS grid point
located nearest to the location of the Tall Tower AWS, a
distance of 2km, was used for comparison purposes. No
horizontal interpolation was used given the relatively flat
and uniform surface surrounding this site and is consistent
with previous studies (Nigro et al. 2011, 2012).
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This study analyzes profiles of potential temperature
to determine the stability of the surface layer. Potential
temperature anomaly profiles were used here because
the change in potential temperature with height de-
termines the stability of the atmosphere. When potential
temperature increases with height, the atmosphere is
statically stable, and when potential temperature de-
creases with height, the atmosphere is statically un-
stable. Potential temperature is not directly measured
by the Tall Tower AWS and is not a direct output var-
iable from AMPS; therefore, it was calculated for each
dataset. For each of the datasets, the potential temper-
ature was calculated at the Tall Tower temperature
observation heights (Table 2). For this calculation, the
Tall Tower 2.3-m observed pressure was vertically in-
terpolated to the temperature observation heights using
the hypsometric equation. This interpolated pressure
was used to calculate both the Tall Tower potential
temperature and the AMPS potential temperature to
remove a potential bias between the two datasets that is
solely based on a pressure bias between the two datasets.

b. Self-organizing maps

The SOM method (Kohonen 2001) was used to ana-
lyze the range of potential temperature anomaly profiles
observed by the Tall Tower AWS. The SOM is a neural
network algorithm that uses an iterative learning pro-
cess to identify a user-specified number of patterns
within a dataset. This training seeks to minimize the
squared difference between the training data and the
resulting patterns. The SOM method pares down a large
number of data records into a usable number of patterns
by grouping similar data records together. This allows
for an analysis of the dataset as a function of the patterns
identified by the SOM (Nigro et al. 2011), providing
additional information that is not available from an
analysis of the data as a whole. For a thorough de-
scription of the SOM algorithm and training process, see
Kohonen (2001) and Reusch et al. (2005). The SOM
training method used for this study is presented in detail
in Cassano et al. (2016) and is described briefly below.

For this study, the SOM was trained using the 100 000+
10-min potential temperature anomaly profiles observed
by the Tall Tower AWS. The potential temperature
anomalies were used for this analysis because the stability
of the atmosphere is dependent on the relative increase or
decrease of potential temperature with height, not the
magnitude of the potential temperature. The potential
temperature anomaly profiles were calculated by sub-
tracting the average potential temperature over the depth
of the tower from each of the observed potential tem-
peratures for each 10-min profile. The SOM was trained
with the potential temperature anomaly profiles and a
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FIG. 2. Master SOM of the 30 Tall Tower potential temperature anomaly profiles. Numbers to the top left of each pattern indicate the
minimum/maximum potential temperature anomalies over the depth of the profile. The numbers at the top right of each pattern indicate

the column and row number of each pattern on the SOM.

range of SOM grid sizes from 8 (4 X 2) to 35 (7 X 5)
patterns. The results from each of the grid sizes were
analyzed to choose the optimal SOM grid size, which is
not so large that patterns become so similar that dis-
cernable differences could not be determined and not so
small that the results group nonsimilar patterns together
causing patterns to be missing from the results. Using this
information and the SOM expertise of the authors, it was
determined that a 5 X 6 SOM grid, or 30 patterns, ade-
quately captured the range of potential temperature
anomaly patterns within the dataset, without producing
patterns that were too similar (Cassano et al. 2016). This
process is consistent with Reusch et al. (2005) and other
SOM studies (Schuenemann and Cassano 2010; Higgins
and Cassano 2010; Cassano et al. 2011; Seefeldt and
Cassano 2012; DuVivier et al. 2016). The SOM derived

from this training, referred to as the master SOM, is
shown in Fig. 2.

Using the SOM, the AMPS forecasts were evaluated
using the Tall Tower AWS observations. For this anal-
ysis, only the Tall Tower AWS observations that cor-
responded with the hourly AMPS output were used to
provide a direct comparison between the two data-
sets. To conduct this analysis, each of the hourly Tall
Tower AWS potential temperature anomaly profiles
was matched to the master SOM pattern it most closely
resembled, and this process is referred to as mapping
the data to the SOM. The mapping process involved
calculating the squared difference between the potential
temperature anomaly profile of interest and the poten-
tial temperature anomaly profile for each of the mas-
ter SOM patterns. The potential temperature anomaly
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profile of interest was mapped to the master SOM pat-
tern that resulted in the minimum squared difference.
This process was repeated for each of the Tall Tower
AWS potential temperature anomaly profiles, resulting
in a list of Tall Tower potential temperature anomaly
profiles that map to each of the patterns on the master
SOM. Using this information, the frequency at which
each SOM pattern occurs within the Tall Tower dataset
was calculated. Additionally, using this list of dates and
times for each SOM pattern, pattern averages of other
Tall Tower observations, such as wind speed, were cal-
culated to identify the observed atmospheric behavior
for each of the SOM patterns.

The AMPS data were evaluated with respect to the
master SOM using two different methods. The first
method used the mapping process described above to
map each AMPS potential temperature anomaly profile
to the master SOM pattern (Fig. 2) it most closely re-
sembled. The result of this process was a list of the
AMPS potential temperature anomaly profiles that map
to each of the patterns on the master SOM. It should be
noted that the list dates and times of the AMPS forecasts
that map to a particular SOM pattern will not neces-
sarily be the same as the list of dates and times of the Tall
Tower observations that map to that SOM pattern.
Using this information, the pattern frequencies within
the AMPS dataset were calculated. The AMPS pattern
frequencies were then compared to the Tall Tower
pattern frequencies to determine how the frequencies of
the SOM patterns differ between the AMPS forecasts
and the Tall Tower observations.

The second method uses the list of dates and times that
each of the Tall Tower potential temperature anomaly
profiles map to each SOM pattern to create pattern av-
erages of the corresponding AMPS forecasts. The pattern
averages of Tall Tower observations and the correspon-
ding AMPS forecasts were compared both graphically, by
plotting both the AMPS and Tall Tower pattern averages
together, and statistically to identify model errors as a
function of the different SOM patterns.

4. Results
a. Vertical potential temperature gradients

To evaluate the stability of the surface layer, the
vertical potential temperature difference over the depth
of the tower in both the Tall Tower observations and the
AMPS forecasts was calculated as the potential tem-
perature at 29.75m minus the potential temperature
at 0.85m. Positive values represent a statically stable
atmosphere and negative numbers represent a stati-
cally unstable atmosphere. Figure 3 shows histograms of
the Tall Tower (Fig. 3a) and AMPS (Fig. 3b) vertical
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FIG. 4. Relationship between median (solid line) and 10th and
90th percentile (dashed lines) vertical potential temperature dif-
ference and average wind speed for the Tall Tower observations
(black) and the AMPS 0-11-h (dark red), 12-23-h (red), and 24-35-h
(orange) forecasts.

potential temperature differences, as well as the differ-
ence between the Tall Tower and AMPS (AMPS minus
Tall Tower) histograms (Fig. 3c). Figure 3a indicates
Tall Tower observes a high frequency of near-neutral
profiles, with the vast majority of the vertical potential
temperature differences ranging from —0.5° to 1.5°C, as
well as a long tail of very stable profiles with vertical
potential temperature differences reaching as high as
17°C. Figure 3b indicates AMPS predicts a range of vertical
potential temperature differences ranging from —2.5°C
(unstable profiles) to 11.5°C (stable profiles) with a less
pronounced near-neutral peak than is seen in the ob-
servations. Figure 3c indicates AMPS underpredicts the
frequency of the near-neutral profiles and overpredicts
the frequency of the weakly unstable profiles with vertical
potential temperature differences ranging from —2.5°
to —0.5°C and the moderately stable profiles with vertical
potential temperature differences from 1.5° to 9.5°C.
Figure 3c also shows AMPS fails to forecast the very sta-
ble profiles with vertical potential temperature differences
greater than 11.5°C observed by the Tall Tower AWS.
Figure 4 shows the relationship between average wind
speed over the depth of the tower and static stability in
both the Tall Tower and AMPS datasets. This rela-
tionship is important because strong winds or strong
vertical wind shear create mechanical mixing that can
reduce the stability of the atmosphere. This is seen in the
median and 90th percentile Tall Tower AWS observations,
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where the vertical potential temperature difference is
largest for weak winds (<4ms ') and decreases with
increasing wind speed. For weak winds, mechanical
mixing is small and radiational cooling results in strong
statically stable conditions. As wind speeds increase,
mechanical mixing increases and the atmospheric sta-
bility is reduced, eventually mixing to neutral conditions
in the median. For model forecasts, the amount of me-
chanical mixing generated by the winds is dependent on
the PBL and surface-layer parameterization used in the
model. Therefore, Fig. 4 highlights the impact of mixing
on the static stability forecast in the model compared to
the observations. In Fig. 4, AMPS is evaluated over
various forecast times: 0-11h (dark red), 12-23 h (red),
and 24-35h (orange). The results indicate the relation-
ship between wind speed and vertical potential tem-
perature difference is fairly consistent across all forecast
hours. This is due to the fact that the relationship be-
tween wind speed and static stability is controlled by the
model physics and thus does not vary much with forecast
duration. Figure 4 shows the AMPS forecasts are more
statically stable than the Tall Tower observations in the
median (solid lines). At low wind speeds (less than
3ms ') the AMPS vertical potential temperature dif-
ference is approximately 1°C greater than the Tall
Tower vertical potential temperature difference. This
error increases to approximately 2°C at wind speeds of
approximately 4ms™~ ' and then decreases back to 1°C
with increasing wind speeds. This is also reflected at very
strong wind speeds where AMPS fails to mix toward
neutral conditions in the median. These results suggest
AMPS does not generate enough mechanical mixing in
the median across all wind speeds, which is consistent
with the findings of Steinhoff et al. (2009) and Wille et al.
(2016). There is also the possibility that AMPS has a
negative radiation bias, which could also lead to the
results shown in Fig. 4. This will be discussed in further
detail later in the paper, based on additional information
provided by the SOM analysis.

It is also noteworthy that for wind speeds < 3ms™,
the 10th percentile AMPS vertical potential tempera-
ture difference (dashed lines) is about 0.5°C less than the
near-neutral profiles observed by Tall Tower, and the
90th percentile AMPS vertical potential temperature
difference (dashed lines) is approximately 1°-3°C less
than the strongly stable profiles observed by Tall Tower.
This is consistent with Fig. 3, where AMPS is shown to
overpredict the frequency of the unstable profiles and
underpredict the frequency of the strong statically stable
profiles, which suggests that in light wind conditions AMPS
generates more unstable conditions when the surface is
being radiatively heated and generates overly weak stable
conditions when the surface is being radiatively cooled.
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This suggests a possible change in the model bias from
too little mechanical mixing under conditions of light
winds and surface heating (10th percentile vertical po-
tential temperature difference) to too much mechanical
mixing under conditions of light winds and strong radi-
ative cooling (90th percentile vertical potential tem-
perature difference).

b. Self-organizing maps analysis

The SOM method is used to identify the range of
potential temperature anomaly profiles observed at Tall
Tower. The master SOM (Fig. 2) indicates the potential
temperature profiles observed at Tall Tower range from
weakly unstable in the top-right corner to strong static
stability in the bottom-left corner. The weakly unstable
pattern (5, 0) has a median vertical potential tempera-
ture difference of —0.3°C (not shown). The remaining
patterns range from near neutral to varying magnitudes
of statically stable. The stability of these patterns in-
creases when moving from the right to the left side of the
SOM. The patterns with the strongest static stability are
located in the bottom-left corner. Pattern (0, 4) repre-
sents the most statically stable pattern observed by Tall
Tower with vertical potential temperature differences of
13.5°C in the median and 16.8°C at the 90th percentile
(not shown).

The frequency of each SOM pattern within the Tall
Tower (Fig. 5a) and AMPS (Fig. 5b) datasets is shown.
The Tall Tower AWS observes the weakly unstable and
near-neutral patterns in columns 4 and 5 approximately
59% of the time, with the unstable pattern (5, 0) oc-
curring approximately 6% of the time. The near-neutral
patterns (5, 1) and (5, 2) occur with the highest frequency
in the Tall Tower dataset. Conversely, AMPS predicts
the weakly unstable and near-neutral patterns in col-
umns 4 and 5 approximately 32% of the time, with the
unstable pattern (5, 0) occurring approximately 10% of
the time. The Tall Tower AWS observes the stable
patterns in columns 0-3 approximately 41% of the time
(Fig. 5a), while AMPS predicts these stable patterns
occur approximately 58 % of the time, with pattern (3, 4)
occurring with the highest frequency and the most stable
pattern (0, 4) occurring with the lowest frequency (Fig. 5b).

Figure 5c shows the difference between the AMPS
and Tall Tower frequencies with dark red and dark blue
shading indicating statistically significant differences
between the two datasets. All of the frequency differ-
ences, with the exception of one pattern, are statistically
significant. The frequency differences illustrated in
Fig. Sc are given as the difference (top number in each
box) and the percent difference with respect to the Tall
Tower frequency (shown in parentheses). The red
shading in pattern (5, 0) indicates AMPS overpredicts the
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frequency of this weakly unstable profile, which is con-
sistent with AMPS forecasting stronger statically un-
stable conditions than the Tall Tower observations
(Figs. 3 and 4). The blue shading in the remainder of
columns 4 and 5 in Fig. 5c indicates AMPS underpredicts
the frequency of the near-neutral to weakly stable pat-
terns observed by Tall Tower and is also consistent with
the results shown in Figs. 3 and 4. As noted in the previous
paragraph AMPS overpredicts the frequency of the
stable patterns in columns 0-3 by 17%, but this over-
prediction is not uniformly distributed across these
columns (Fig. 5c). AMPS overpredicts the moderately
stable patterns from the bottom-center to the left-center
portion of the SOM and underpredicts the remaining
stable patterns. These SOM-based results are consistent
with the conclusions drawn from Fig. 3, which showed
AMPS overpredicts moderately stable conditions and
underpredicts strongly stable conditions. Pattern (0, 4)
represents the most statically stable profile observed by
Tall Tower. AMPS forecasts this pattern 0.38% of the
time, while Tall Tower observes this pattern 3.66% of
the time. This equates to an approximately 90% un-
derrepresentation of this pattern in the AMPS dataset.

The AMPS evaluation described above was based on
separate mapping of the AMPS and Tall Tower data to
the SOM and thus allowed us to compare the frequency
with which AMPS simulates each of the SOM potential
temperature profiles to the frequency with which each of
these patterns was observed. The remainder of our
analysis will focus on a comparison of AMPS and Tall
Tower data at matching times and will use the list of
dates and times generated by mapping the Tall Tower
data to the master SOM, as described in section 3. This
analysis allows us to better understand how AMPS dif-
fers from the Tall Tower observations when a given
potential temperature pattern is observed by the AWS.

In Fig. 6, the average Tall Tower potential tempera-
ture anomaly profiles are shown by the black lines and
the corresponding AMPS forecasts of potential tem-
perature anomalies are shown by the red lines, indicating
the difference between the observed atmospheric stabil-
ity (black lines) and the modeled atmospheric stability
(red lines) for each SOM pattern. For the near-neutral
patterns in columns 4 and 5, with the exception of the top-
right pattern (5, 0), AMPS consistently predicts a more
stable profile than the Tall Tower observations (Fig. 6),
which contradicts most of the literature on modeling
static stability (Derbyshire 1999; Poulos and Burns 2003;
Tjernstrom et al. 2004; Holtslag 2006; Rinke et al. 2012;
Holtslag et al. 2013; Wille et al. 2016). For the stable
patterns in columns 0-3, AMPS predicts more stable
profiles than the Tall Tower observations for the weakly
stable patterns in column 3 and transitions to predicting
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less stable profiles than Tall Tower for the strongly stable
patterns in column 0. The magnitude at which AMPS
over- or underpredicts the stability of each pattern is
shown in Fig. 7, where the difference between the AMPS
vertical potential temperature difference and the Tall
Tower vertical potential temperature difference is shown
for each pattern. For the weakly unstable pattern (5, 0)
AMPS underpredicts the stability of the pattern by 0.1°C
in the median and 0.6°C at the 10th percentile (Fig. 7),
indicating, in general, AMPS predicts more unstable
conditions than the Tall Tower observations for this
pattern. Conversely, in the 90th percentile, AMPS over-
predicts the stability of this pattern by 2.5°C (Fig. 7), in-
dicating there are times when AMPS predicts more stable
conditions than the Tall Tower observations for this
pattern. For the near-neutral patterns in columns 4 and 5,
with the exception of pattern (5, 0), the magnitude of the
AMPS overprediction of the stability ranges from 0.1° to
1.3°C in the median and reaches up to 5.3°C at the 90th
percentile (Fig. 7). For the weakly stable patterns in
column 3, AMPS overpredicts the stability from 0.9° to
1.5°Cin the median and up to 5.0°C in the 90th percentile.
AMPS underpredicts the stability in the more stable
patterns in columns 0-2, with the underprediction
reaching 5.5°C in the median and 7.1°C in the 10th per-
centile for the strongly stable pattern (0, 4). In general
AMPS overpredicts the stability for near-neutral to
weakly stable conditions (right side of the SOM) and
underpredicts the stability for more stable conditions (left
side of the SOM).

Figure 8 shows the difference between the AMPS and
Tall Tower wind speeds at the lowest-level wind speed
observation height (3.75m). This near-surface wind
speed will, in part, control the strength of the mechanical
mixing present in both the observations and model
forecasts. For the unstable and near-neutral patterns in
columns 4 and 5, with the exception of patterns (4,0) and
(4, 2), AMPS has a negative wind speed bias. For the
weakly unstable pattern (5, 0), the negative wind speed
bias results in too little mechanical mixing, which under
surface heating conditions creates unstable conditions
and is consistent with the negative stability bias seen in
Fig. 7. For the near-neutral patterns in the remainder of
columns 4 and 5, the negative wind speed bias results in
too little mechanical mixing, which under surface cool-
ing conditions creates stable conditions and is consistent
with the positive stability bias seen in Fig. 7. For the
stable patterns in columns 0-3, AMPS has a consistent
positive wind speed bias. The wind speed bias is largest
for the strongly stable patterns in the bottom-left corner,
with a maximum median wind speed bias of 3.2ms " for
pattern (0, 4). The positive wind speed bias for these
patterns results in too much mechanical mixing, which
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FI1G. 6. The 30 SOM patterns average potential temperature anomaly profiles of Tall Tower observations (black line) and AMPS
forecasts (red line).

under surface cooling conditions creates less stable
conditions. This is consistent with the negative stability
biases for the strongly stable patterns on the left side of
the SOM (Fig. 7), but is inconsistent with the positive
stability biases for the weakly stable patterns in column 3.
This implies something other than mechanical mixing is
causing the stability errors in AMPS for the patterns in
column 3, and these other processes may also be acting to
modulate the stability biases seen across the entire SOM.

Comparison of the Tall Tower (black line) and AMPS
(red line) wind speed profiles (Fig. 9) and potential
temperature profiles (Fig. 10) provides additional in-
sights into the source of the AMPS stability errors. Note
that Fig. 10 shows the potential temperature profiles, in
contrast to the potential temperature anomaly pro-
files shown in Fig. 6. Unlike the potential temperature
anomaly profiles, the potential temperature profiles

indicate potential temperature biases between the ob-
servations and forecasts, allowing us to assess the pres-
ence of cold or warm biases in the AMPS forecasts and
thus providing additional information about possible
errors associated with the modeled energy budget.

For the near-neutral patterns in the bottom-right
corner, AMPS generally has a negative wind speed
bias over the depth of the tower with the magnitude of
the bias increasing with height (Fig. 9). The AMPS po-
tential temperature profiles for these patterns closely
resemble the Tall Tower observations at the top of the
tower, with a cold bias near the surface (Fig. 10). In
order for AMPS to accurately forecast the potential
temperatures at the top of the tower and have a surface
cold bias, it is likely AMPS is accurately capturing the
large-scale forcing related to the temperature of these
patterns, but has a negative radiation bias at the surface.
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FIG. 7. Median difference between AMPS and Tall Tower vertical potential temperature dif-
ference for each of the 30 SOM patterns. Red colors indicate a positive AMPS bias in the median,
and blue colors indicate a negative AMPS bias. Darker shading indicates larger median values. The

10th and 90th percentiles are shown below and above the median values, respectively.

The negative radiation bias paired with the weaker
mechanical mixing due to the negative wind speed bias
and weaker wind shear over the depth of the tower is
likely driving the positive stability biases for these pat-
terns (Fig. 7).

For the stable patterns in columns 0-3, a range of
model errors exists across these patterns. In the bottom-
left corner, there is a positive wind speed bias over the
depth of the tower (Fig. 9), indicating the large-scale
pressure gradient force for these patterns is likely too
large in AMPS. Additionally, for these patterns, the
AMPS mean potential temperature averaged over the
depth of the tower is similar to the mean potential
temperature observed by Tall Tower, but has a warm
bias at the surface and a cold bias at the top of the tower.
Therefore, for these patterns, the positive wind speed
bias is likely generating too much mechanical mixing,
causing warmer potential temperature near the surface
and colder potential temperatures aloft, and an under-
representation of the static stability in AMPS (Fig. 7).

For the moderately stable patterns in the top-left
corner, there is a positive wind speed bias near the sur-
face that decreases to near zero at the top of the tower
(Fig. 9) and a surface warm bias that decreases to near

zero at the top of the tower (Fig. 10). The positive wind
speed bias near the surface likely generates too much
mechanical mixing, causing the warm bias and the neg-
ative stability bias (Fig. 7) in these patterns. In contrast
to the strongly stable patterns in the bottom-left corner,
where the warm bias is confined to near the surface, the
warm bias extends over the depth of the tower in these
patterns. It is possible a cold bias exists above the top of
the tower in these patterns, which would be consistent
with too much mechanical mixing in AMPS, but it is not
possible to verify this without additional observations.
In column 3, the AMPS potential temperature fore-
casts resemble the Tall Tower observations at the top of
the tower and have a cold bias near the surface (Fig. 10).
Similar to the near-neutral patterns in the bottom-right
corner, it is likely AMPS accurately captures the large-
scale forcing for these patterns and has a negative ra-
diation bias at the surface. The large-scale forcing for
these patterns can be inferred from Fig. 12 in Cassano
et al. (2016), which depicts the AMPS forecast sea level
pressure for each of the SOM patterns. The patterns in
column 3 have a synoptic cyclone located off the coast of
West Antarctica and a pressure gradient that would
drive southerly winds at the location of Tall Tower.
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FIG. 8. As in Fig. 7, but for the lowest-level wind speed.

Unlike the patterns in the bottom-right corner, the
patterns in column 3 have a positive wind speed bias
near the surface (Fig. 9). This indicates that for these
patterns the negative radiation bias must dominate the
additional mixing driven by the faster wind speeds to
result in the positive stability bias for these patterns
(Fig. 7). For the patterns in column 2, which represent a
transition between the patterns on the left side of the
SOM and the patterns in column 3, it is likely these
patterns have a combination of model errors related to
the positive wind speed bias shown in the patterns on the
left side of the SOM and the negative radiation bias in
the column 3 patterns.

From this analysis, it is difficult to identify the source
of the negative radiation error in the near-neutral pat-
terns in the bottom-right corner and the stable patterns
in column 3. It is possible that the negative radiation bias
is related to an underrepresentation of the cloud cover
in AMPS, as identified by Bromwich et al. (2013) and
Valkonen et al. (2014), or to a dry bias in AMPS, as
identified by Wille et al. (2016) using the Tall Tower
observations and AMPS output. An underrepresentation
of the cloud cover or a dry bias would result in less
longwave radiation down and a negative radiation bias in
AMPS, especially in winter when no shortwave radiation
is available to offset the negative longwave bias. Addi-
tionally, the relationship between the vertical potential

temperature difference and the wind speeds in Fig. 4
supports the possibility of a negative radiation bias
across a range of wind speeds. Therefore, it is likely that
the negative radiation bias is present, at least to some
degree, in the other patterns across the SOM but is offset,
and thus is not as evident in the SOM analysis, by other
model errors such as additional mixing due to stronger
modeled winds.

¢. Model statistics by forecast hour

The model statistics are further investigated by exam-
ining the modeled behavior as a function of stability (as
shown by the four corner SOM patterns) and forecast
hour (0-11 h, dark red; 12-23 h, red; 24-35 h, orange). The
pattern averages of the bias, root-mean-square error
(RMSE), and the correlation are shown for the wind
speed profiles (Fig. 11) and the potential temperature
profiles (Fig. 12). Since the corner patterns in the SOM
represent the extreme range of conditions present in the
training data, the analysis below uses these patterns to
illustrate model errors for weakly unstable (5, 0), near-
neutral (5,4), moderately stable (0, 0), and strongly stable
(0, 4) conditions.

The increase in bias and RMSE and decrease in cor-
relation for both potential temperature and wind speed
moving from the top to the bottom of Figures 11 and 12
indicate model errors tend to increase with increasing
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FIG. 9. The 30 SOM patterns average wind speed profiles of Tall Tower observations (black line) and AMPS forecasts (red line).

static stability. The wind speed RMSE (Fig. 11) shows
errors on the order of 2ms™' for the weakly unstable
pattern (5, 0). These errors increase to 2-3ms ™' for the
near-neutral (5, 4) and the stable (0, 0) patterns and
reach 3-4ms™"' for the strong stable pattern (0, 4). The
potential temperature RMSE is on the order of ap-
proximately 3°C for the weakly unstable pattern and
increases to 4°-6°C for the strongly stable pattern
(Fig. 12). The correlations show a similar trend with the
wind speed correlation being approximately 0.7 for the
weakly unstable pattern (5, 0) and decreasing to roughly
zero for the strongly stable pattern (0, 4). Likewise, the
potential temperature correlation is close to one for the
weakly unstable pattern (5, 0) and decreases with in-
creasing stability to approximately 0.8 for the strong
static stability pattern (0, 4). Given the difficulty in

simulating stable boundary layers, these results are not
surprising.

For the near-neutral pattern (5, 4), the forecast skill
for wind speed improves with forecast hour (Fig. 12).
The bias ranges from approximately —0.5 to —1.5ms "’
over the depth of the tower for the 0-11-h forecasts
(dark red) and decreases to 0 to —0.5ms ™! over the
depth of the tower for both the 12-23-h (red) and 24—
35-h (orange) forecasts. The RMSE (correlation) is largest
(smallest) for the 0-11-h forecasts (dark red) and smallest
(largest) for the 12-23-h forecasts (orange). This suggests a
potential problem with the wind speed initialization for
this near-neutral pattern. Interestingly, the spread in the
wind speed bias and RMSE over forecast hour is not re-
flected in the potential temperature bias and RMSE. If the
surface cold bias in this pattern were driven by the negative
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F1G. 10. As in Fig. 9, but for potential temperature.

wind speed bias near the surface, it would be expected
that the change in wind speed bias with forecast hour
would also be reflected in a change in potential temper-
ature bias with forecast hour. This supports a negative
radiation bias in this pattern.

In contrast to the decreasing model wind speed er-
ror with forecast time seen in the near-neutral pattern
(5, 4), the weakly unstable pattern (5, 0) shows very
little change in model wind speed error statistics as a
function of forecast time and the moderately stable
pattern (0, 0) and the strongly stable pattern (0, 4)
generally show an increase in model wind speed errors
with increasing forecast duration (Fig. 11). For the
moderately (0, 0) and strongly stable (0, 4) patterns
the potential temperature errors also increase with
forecast duration (Fig. 12), which is consistent with

the positive wind speed bias resulting in strong me-
chanical mixing and the surface warm bias for these
patterns.

The 0-, 12-, and 24-h forecasts were analyzed using the
same method as in Figs. 11 and 12 to analyze the per-
formance of the initial conditions. The results are in-
cluded as Figs. S1 and S2 in the online supplemental
material. These figures indicate that the AMPS ini-
tial conditions have larger errors (larger RMSE and
lower correlation) than the 12- and 24-h forecasts for
SOM pattern (0, 0) for wind speed and temperature and
SOM pattern (5, 4) for wind speed, similar errors for SOM
pattern (5, 0) for wind speed and temperature and node
(5, 4) for temperature, and smaller errors for node (0, 4)
for both temperature and wind speed. As noted above,
the SOM analysis presented here is useful in identifying
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FI1G. 11. SOM patterns (first column) average wind speed, (second column) bias, (third column) RSME, and (fourth column) correlation
for the (top row) weakly unstable, (second row) near-neutral, (third row) moderately stable, and (bottom row) strongly stable four corner
patterns of the SOM. The lines show the Tall Tower observations (black line) and the 0-11-h (dark red line), 12-23-h (red line), and 24-35-h

(orange line) AMPS forecasts.

stability-dependent errors, in this case in the model initial
conditions.

5. Discussion and conclusions

This paper uses observations from the Tall Tower
AWS to evaluate forecasts of the surface layer in AMPS.
Comparison of the AMPS forecasts to the Tall Tower
observations indicates AMPS underpredicts the fre-
quency of the near-neutral profiles observed by Tall

Tower and instead overpredicts the frequency of the
unstable profiles and weak to moderately stable profiles
observed by Tall Tower. It is also shown that AMPS
does not forecast the strongest stability profiles ob-
served by Tall Tower (Figs. 3 and 5). The relationship
between the wind speed and the vertical potential tem-
perature difference is evaluated to understand the im-
pact of mixing on the static stability for each dataset.
The AMPS forecasts are more statically stable in the
median across all wind speeds (Fig. 4), indicating
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AMPS’s behavior differs from what has been noted
previously in the literature (Derbyshire 1999; Poulos
and Burns 2003; Tjernstrom et al. 2004; Holtslag 2006;
Rinke et al. 2012; Holtslag et al. 2013; Wille et al. 2016).
This indicates that in the median AMPS either does not
have enough mechanical mixing for a given wind speed,
has a negative radiation bias, or has some combination
of these two mechanisms. Additionally, in the 10th and
90th percentiles there seems to be a possible change in
the model bias from too little mixing under conditions of
light winds and surface heating, resulting in more un-
stable conditions than are observed, to too much

mechanical mixing under conditions of light winds and
surface cooling, resulting in less stable conditions than
are observed.

The SOM method is used to identify the potential
temperature anomaly patterns observed at Tall Tower
(Fig. 2) and to evaluate the performance of AMPS
across patterns with varying degrees of static stability.
The results indicate the model errors do vary as a
function of static stability. For the weakly unstable SOM
pattern (5, 0), AMPS has a negative wind speed bias near
the surface (Figs. 8 and 9), resulting in weaker me-
chanical mixing, which under surface heating conditions
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leads to a surface warm bias (Fig. 10) and a negative
stability bias (Fig. 7). For the near-neutral SOM patterns
on the right side of the SOM (with the exception of the
top-right pattern), AMPS has a negative wind speed bias
(Figs. 8 and 9) resulting in weaker mechanical mixing,
which under surface cooling conditions creates a surface
cold bias (Fig. 10) and a positive stability bias (Fig. 7).
This is consistent with the findings of Steinhoff et al.
(2009), who also analyzed the ability of AMPS to fore-
cast static stability. The SOM analysis of model error
statistics as a function of forecast hour provided addi-
tional insight into the potential causes of the positive
stability bias in AMPS. The model error statistics for the
near-neutral pattern (5, 4) show a decrease in the near-
surface wind speed bias and RMSE as a function of
forecast hour (Fig. 11), but this does not correspond to a
change in the surface potential temperature bias and
RMSE over forecast hour (Fig. 12). This suggests some
of the surface cold bias may be driven by a negative
radiation bias in AMPS rather than simply by a mixing
bias induced by the wind speed bias.

For the stable SOM patterns (columns 0-3), AMPS
has a consistent positive near-surface wind speed bias
(Figs. 8 and 9). The patterns range from a surface warm
bias in the most stable patterns (columns 0 and 1) to a
surface cold bias in the moderately stable patterns
(column 3) (Fig. 10). The most stable patterns have a
negative stability bias and the moderately stable pat-
terns have a positive stability bias (Fig. 7) with column 2
showing a mix of positive and negative stability biases.
For the most stable patterns the positive wind speed bias
results in more mechanical mixing, which is consistent
with the modeled surface warm bias (Fig. 9) and nega-
tive stability bias (Fig. 7). This is consistent with the
literature, which states that a positive wind speed bias
results in a negative stability bias (Tjernstrom et al. 2004;
Wille et al. 2016). The patterns with a surface cold bias
(Fig. 10) must have a negative radiation bias to com-
pensate for the additional mixing from the positive near-
surface wind speed bias (Figs. 8 and 9). The range of
model errors identified within the group of statically
stable patterns illustrates the ability of the SOM method
to provide details about the model performance as a
function of static stability.

Analysis of model errors (bias, RMSE, and correlation)
as a function of stability (Figs. 11 and 12) indicate that
model errors increase with increasing stability (moving
from the top to the bottom of these figures), consistent
with the fact that models have difficulty in simulating
stable boundary layer conditions (Derbyshire 1999; Poulos
and Burns 2003; Tjernstrom et al. 2004; Brunke et al. 2006;
Holtslag 2006; Steeneveld et al. 2006; Banta et al. 2007;
Teixeira et al. 2008; Baklanov et al. 2011; Atlaskin and
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Vihma 2012; Rinke et al. 2012; Holtslag et al. 2013;
Kleczek et al. 2014; Sterk et al. 2015). Figures 11 and 12
also indicate model errors do not uniformly increase with
increased forecast duration, as might be expected. Instead,
wind speed errors were found to decrease with increasing
forecast time for the near-neutral patterns (5, 4) and were
nearly constant as a function of forecast time for the
weakly unstable patterns (5, 0) (Fig. 11), indicating the
model errors vary as a function of stability and demon-
strating the utility of SOMs for this analysis.

Future work by the authors will include an evaluation
of the full depth of the boundary layer in AMPS using
observations from the Small Unmanned Meteorological
Observer (SUMO; Cassano 2014). The SUMO was used
to make observations of the diurnal cycle of the sum-
mertime boundary layer, with a time resolution of the
order of hours, at the location of Tall Tower during
January 2014. This dataset will allow us to assess the
ability of AMPS to replicate the diurnal evolution of the
boundary layer over the RIS.
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