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ABSTRACT

Accurate representation of the stability of the surface layer in numerical weather prediction models is

important because of the impact it has on forecasts of surface energy, moisture, and momentum fluxes. It also

impacts boundary layer processes such as the generation of turbulence, the creation of near-surface flows, and

fog formation. This paper uses observations from a 30-m automatic weather station on the Ross Ice Shelf,

Antarctica, to evaluate the near-surface layer in the Antarctic Mesoscale Prediction System (AMPS), a nu-

merical weather prediction system used for forecasting in Antarctica. Themethod of self-organizingmaps (SOM)

is used to identify characteristic potential temperature anomaly profiles observed at the 30-m tower. The SOM-

identified profiles are then used to evaluate the performance of AMPS as a function of atmospheric stability.

The results indicate AMPS underpredicts the frequency of near-neutral profiles and instead overpredicts

the frequency of weakly unstable and weak to moderately stable profiles. AMPS does not forecast the

strongest statically stable patterns observed by Tall Tower, but in the median, the AMPS forecasts are more

statically stable across all wind speeds, indicating a possible mechanical mixing error or a negative radiation

bias. The SOM analysis identifies a negative radiation bias under near-neutral to weakly stable conditions,

causing an overrepresentation of the static stability in AMPS. AMPS has a positive wind speed bias in

moderate to strongly stable conditions, which generates too much mechanical mixing and an un-

derrepresentation of the static stability. Model errors increase with increasing atmospheric stability.

1. Introduction

Accurate representation of the stability of the surface

layer in numerical weather prediction (NWP) models is

important since this impacts forecasts of surface energy,

moisture, and momentum fluxes. It also impacts boundary

layer processes such as the generation of turbulence, the

creation of near-surface flows (i.e., katabatic winds and

barrier winds), and fog formation.
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The surface layer over Antarctica differs from the

surface layer in most regions of the world. The perma-

nent snow and ice surfaces in Antarctica result in radi-

ational cooling and downward-directed turbulent heat

fluxes over much of the year that create persistent stat-

ically stable surface layers and frequent surface in-

versions (King and Turner 1997). Previous studies have

used observations to evaluate the frequency of statically

stable surface layers and the strength of the vertical

temperature gradient for various places around the

Antarctic. Observations from Antarctica show statically

stable surface layers occurring approximately 83% of

the time over the Ross Ice Shelf (RIS) (Cassano et al.

2016), 74% of the time in the summer and 92% of the

time in the winter at South Pole Station (Hudson and

Brandt 2005), 85% of the time at Dome Concordia

(Genthon et al. 2013), 70% of the time at Dome A (Hu

et al. 2014), and throughout the year at Plateau Station

(Riordan 1977). The maximum vertical potential tem-

perature gradient observed at a 30-m tower located on

the RIS was 0.98Cm21 (Cassano et al. 2016) while the

maximum vertical temperature gradient observed by the

45-m tower at Dome C over the interior of the continent

was 2.58Cm21 (Genthon et al. 2013).

Previous studies have highlighted some of the diffi-

culties in accurately simulating stable boundary layers in

NWP models (e.g., Derbyshire 1999; Poulos and Burns

2003; Tjernstrom et al. 2004; Brunke et al. 2006; Holtslag

2006; Steeneveld et al. 2006; Banta et al. 2007; Teixeira

et al. 2008; Baklanov et al. 2011; Atlaskin and Vihma

2012; Rinke et al. 2012; Holtslag et al. 2013; Kleczek

et al. 2014; Sterk et al. 2015) and specifically over the

RIS (Steinhoff et al. 2009; Wille et al. 2016). One chal-

lenge associated with simulating stable boundary layers

is adequate vertical resolution in the often shallow sta-

ble boundary layer (King and Turner 1997; Tjernstrom

et al. 2004; Banta et al. 2007). In recent years, the near-

surface vertical resolution has increased in NWP

models, but additional knowledge of smaller-scale pro-

cesses is required to adapt the current planetary bound-

ary layer (PBL) and surface-layer parameterizations to

the higher vertical resolutionmodels (Teixeira et al. 2008;

Baklanov et al. 2011).

A wide range of model errors exists with respect to

simulating stable boundary layers. A common model

error is the underrepresentation of the near-surface ver-

tical temperature gradient, or an underrepresentation of

the static stability (Atlaskin and Vihma 2012; Sterk et al.

2015). This is often a reflection of the PBL parameteri-

zation generating too much mechanical mixing to avoid

decouplingof the atmosphere from the surface (Derbyshire

1999; Poulos and Burns 2003; Holtslag 2006; Rinke et al.

2012; Holtslag et al. 2013). This also occurs when there

is a positive wind speed bias and the mechanical mixing

generated by the strong winds in the model decreases the

near-surface stability (Tjernstrom et al. 2004; Wille et al.

2016). On the other end of the spectrum, some NWP

models underpredict the low-level wind speeds, gener-

ating too little mechanical mixing, resulting in an over-

prediction of the static stability and a cold bias in the

surface temperature (Steinhoff et al. 2009). Also impacting

the model forecasts of atmospheric stability is the model

representation of the energy budget, which is impacted

by processes such as cloud cover, moisture content, surface

radiative and turbulent fluxes, and temperature advection

(Tjernstrom et al. 2004; Brunke et al. 2006; Steeneveld

et al. 2006). The complexities involved with simulating

stable boundary layers emphasize the need for PBL

observations and an evaluation of current PBL and

surface-layer parameterizations (Baklanov et al. 2011).

This study uses observations from a 30-m instrumented

tower on the RIS to assess the ability of the Antarctic

Mesoscale Prediction System (AMPS) to simulate the

near-surface stability and associated wind and tempera-

ture profiles. AMPS is a real-time NWP system used

by the U.S. Antarctic Program (USAP) to provide fore-

casts for Antarctic flight operations and logistical activity

around the continent. Therefore, accurate forecasts are

critical to the safety of those working in Antarctica

(Powers et al. 2012). The AMPS forecast archive is also

used for research purposes, where accurate forecasts are

important for diagnosing the behavior of the atmosphere

(Schlosser et al. 2008; Steinhoff et al. 2009; Speirs et al.

2010; Bromwich et al. 2011; Nicolas and Bromwich 2011;

Seefeldt and Cassano 2012; Nigro and Cassano 2014a).

Observations from the Alexander Tall Tower! auto-

matic weather station (AWS, henceforth the Tall Tower

AWS or simply the Tall Tower; Lazzara et al. 2012;

Cassano et al. 2016; Wille et al. 2016) will be used to

evaluate the stability of the surface layer in AMPS. We

note that our use of the term surface layer refers to the

bottom 30m of the atmosphere, even though during

strong stable conditions the surface layer is likely to be

shallower than this (Cassano et al. 2016). The Tall

Tower AWS is a 30-m instrumented tower located on

the RIS (79.0448S, 170.6518E; see Fig. 1). It has six levels
of instrumentation and observations are recorded at 10-s

intervals. The Tall Tower AWS provides the first con-

tinuous set of vertical observations over the RIS, de-

livering the information necessary to analyze the surface

layer in this region (Cassano et al. 2016).

This paper uses a combination of the Tall TowerAWS

observations and the method of self-organizing maps

(SOM) to evaluate the surface layer in AMPS over a

range of stability patterns. The SOM method is advan-

tageous for this analysis because the model errors likely
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vary as a function of atmospheric stability. This type of

analysis allows forecasters to tailor their forecasts based

on the forecast stability and the stability-varying error

identifiedwith this analysis and is similar to the synoptic-

pattern-based error identification presented in Nigro

et al. (2011). Details about AMPS and the Tall Tower

AWS observations are presented in section 2. Section 3

describes the methods used to interpolate the AMPS

data to the heights of the Tall Tower observations, as

well as the details involved with the SOM method.

Section 4 presents the results of the study and conclud-

ing remarks and discussion are presented in section 5.

2. Data

a. Antarctic Mesoscale Prediction System

AMPS is run by the National Center for Atmospheric

Research (NCAR) to provide real-time weather fore-

casts for the USAP as well as other Antarctic national

programs (Powers et al. 2012; http://www.mmm.ucar.

edu/rt/wrf/amps). It is based on a polar-modified version

of the Weather Research and Forecasting (Polar WRF)

Model, which has been adapted to account for processes

that are specific to the polar regions. These modifica-

tions include a scheme for fractional sea ice, an im-

proved representation of heat transfer through snow and

ice surfaces, a revised surface energy budget, and model

physics options optimized for polar regions (Hines and

Bromwich 2008; Bromwich et al. 2009; Hines et al. 2011;

Bromwich et al. 2013; Hines et al. 2015). AMPS is run

twice daily using first-guess initialization and lateral

boundary conditions from the National Centers for

Environmental Prediction 0.58 Global Forecast System

model output. Three-dimensional variational data as-

similation is used to assimilate observations into AMPS.

The AMPS output is archived and available through the

Computational and Informational Systems Laboratory, a

division of NCAR.

This study uses AMPS output from February 2011

through January 2013. The configuration of AMPS

during this time period is described in Table 1. Of par-

ticular relevance for this work, the Mellor–Yamada–

Janjić (Eta) TKE-based PBL parameterization and the

Monin–Obukhov (Janjić Eta) surface-layer scheme are

used to represent the surface and boundary layer pro-

cesses in the model. Output from AMPS domain 3

FIG. 1. Map of Antarctica. Contour lines show elevation with a contour interval of 400m. The

triangle indicates the location of the Tall Tower AWS. The black box indicates AMPS domain 3.
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(Fig. 1), which covers the northwestern RIS with hori-

zontal grid spacing of 5 km, is used here. AMPS uses

terrain-following eta levels as the vertical coordinate

system. The average heights of the lowest two eta levels

are 12 and 31m above the surface, placing the first eta

level within the depth of the Tall Tower AWS and the

second just above the tower. Domain 3 is run for 36 h

with the output archived every hour. To allow themodel

sufficient time to spin up from the initial conditions, and

following previous studies that have used AMPS (e.g.,

Bromwich et al. 2005; Seefeldt and Cassano 2008; Nigro

and Cassano 2014a,b; Wille et al. 2016), the majority of

the analysis in this study uses the 12–23-h forecasts. The

exception to this is the statistical analysis of the model

performance, which analyzes a range of forecast hours

(0–11, 12–23, and 24–35 h) to evaluate how the model

performance varies as a function of forecast duration.

b. Tall Tower automatic weather station observations

The AMPS output is evaluated using the February

2011–January 2013 Tall TowerAWSobservations (Lazzara

et al. 2012; Cassano et al. 2016;Wille et al. 2016). The Tall

Tower AWS is a 30-m instrumented tower installed on

theRIS inFebruary 2011. It is located in the northwestern

portion of the RIS (Fig. 1) and is often in the path of the

RIS airstream (Parish et al. 2006; Seefeldt and Cassano

2012; Nigro and Cassano 2014a,b) and the path of kata-

batic drainage from Byrd Glacier (Seefeldt et al. 2007;

Seefeldt and Cassano 2008). The region is located at an

elevation of approximately 58m and receives approxi-

mately 0.5m of snow accumulation per year. The AWS is

outfitted with six levels of instrumentation. Details on the

instruments, the average instrument height over the 2-yr

period (Cassano et al. 2016), and themanufacturer-stated

instrument accuracy are provided in Table 2. Additional

information about the Tall Tower AWS is available on-

line (http://amrc.ssec.wisc.edu).

The Tall Tower AWS data were manually quality

controlled to remove erroneous measurements due to

solar radiation errors, frozen wind instruments, and other

instrument/measurement errors. The quality control

process follows the method described in Cassano et al.

(2016) and was applied to the raw instantaneous 10-min

observations. To account for solar radiation errors

(Genthon et al. 2011), temperature observations were

manually analyzed if the temperature increased by more

than 18C between two 10-min observations, the wind

speed was less than 3ms21, and the sun was above the

horizon. In each of these instances, the temperature

observations were removed from the dataset if the

temperature increase was larger than the temperature

variability of the day. Additionally, all temperature

TABLE 1. AMPS configuration.

Category AMPS configuration

Forecasting model WRF 3.0.1.1 upgraded to WRF 3.2.1 on 27 Apr 2011

Longwave radiation RRTM upgraded to RRTM with GCM applications (RRTMG) on 27 Apr 2011 (Mlawer et al. 1997)

Shortwave radiation Goddard shortwave radiation scheme (Chou and Suarez 1994)

Boundary layer Mellor–Yamada–Janjić (Eta) TKE scheme (Janjić 1990, 1996, 2002)

Surface-layer scheme Monin–Obukhov (Janjić Eta) scheme (Janjić 1996; 2002; Monin and Obukhov 1954)

Land surface option Unified Noah LSM (Chen and Dudhia 2001)

Microphysics WSM 5-class scheme (Hong et al. 2004; Hong and Lim 2006)

Cumulus parameterization Kain–Frisch (new Eta) parameterization; no cumulus parameterization (Kain 2004)

Sea ice Implementation of fractional sea ice

Model top Model top is at 10mb; vertical velocity damping is applied

TABLE 2. Tall Tower instruments, heights, and manufacturer-stated accuracy.

Instrument Height (m) Manufacturer-stated accuracy

R.M. Young platinum resistance temperature 0.85, 1.83, 3.75, 7.25, 14.75, and 29.75 60.38C
Vaisala HMP45C-L humidity 7.25 and 29.75 62% (0%–90%)

63% (90%–100%)

R.M. Young Wind Sentry cup anemometer 1.34 60.5m s21

R.M. Young aerovanes 3.75, 7.25, 14.75, and 29.75 60.3m s21

Paroscientific Model 215 A pressure sensor 2.3 60.05mb (60.2mb yr21 long-term drift)

Campbell Scientific acoustic depth gauge 3.2 61 cm (0.4 in.) or 0.4% of distance

to target (whichever is greatest)

Kipp and Zonen CNR2-L net longwave

and shortwave radiation

29.75 ,10% (in daily totals)
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values greater than 08C were manually investigated for

possible radiation error, since a temperature greater

than 08C is unlikely to occur within 30m of an ice-

covered surface. Out of the 103 982 total temperature

observations, 721 observations were removed during the

quality control process. To account for frozen wind

instruments, a common issue with wind observations in

Antarctica (Lazzara et al. 2012), the wind observations

were removed if either the wind speed remained at zero

for longer than a day or if the wind direction was con-

stant for longer than a day. Using these criteria, it was

determined that the cup anemometer located at 1.34m

was frozen for all of June 2011 and from April through

September 2012.

In addition to the manual quality control process, the

temperature data were investigated for instrumental

biases. This is of concern because the vertical potential

temperature gradient is analyzed to determine the sta-

bility of the surface layer and this vertical gradient is

sensitive to biases that differ across the observational

levels on the tower. As presented in Cassano et al.

(2016), it was determined that the Tall TowerAWS 1.83-

and 3.75-m temperature observations exhibited a small

bias with respect to the other temperature observations

on the tower. Therefore, a 20.098C correction was ap-

plied to the 1.83-m temperature observation and a

0.088C correction was applied to the 3.75-m temperature

observation to account for these biases.

3. Methods

a. Interpolation

To better compare the AMPS forecasts to the Tall

Tower observations, the AMPS data were vertically in-

terpolated to theTall Tower observation heights (Table 2).

The AMPS temperatures were linearly interpolated to the

observation heights using AMPS surface temperature and

the temperature at the lowest two eta levels. The AMPS

wind speed was interpolated to the observation heights

assuming a logarithmic wind profile with a zerowind speed

at the surface, and the wind speeds at the lowest two eta

levels. For this calculation the AMPS roughness length of

0.001m (Bromwich et al. 2013) was used and no stability

correction was applied. The AMPS 2-m temperature and

10-m winds were not used for the interpolation since these

diagnostic variables are not directly tied to the physics of

themodel forecast. In the horizontal, theAMPS grid point

located nearest to the location of the Tall Tower AWS, a

distance of 2km, was used for comparison purposes. No

horizontal interpolation was used given the relatively flat

and uniform surface surrounding this site and is consistent

with previous studies (Nigro et al. 2011, 2012).

This study analyzes profiles of potential temperature

to determine the stability of the surface layer. Potential

temperature anomaly profiles were used here because

the change in potential temperature with height de-

termines the stability of the atmosphere.When potential

temperature increases with height, the atmosphere is

statically stable, and when potential temperature de-

creases with height, the atmosphere is statically un-

stable. Potential temperature is not directly measured

by the Tall Tower AWS and is not a direct output var-

iable from AMPS; therefore, it was calculated for each

dataset. For each of the datasets, the potential temper-

ature was calculated at the Tall Tower temperature

observation heights (Table 2). For this calculation, the

Tall Tower 2.3-m observed pressure was vertically in-

terpolated to the temperature observation heights using

the hypsometric equation. This interpolated pressure

was used to calculate both the Tall Tower potential

temperature and the AMPS potential temperature to

remove a potential bias between the two datasets that is

solely based on a pressure bias between the two datasets.

b. Self-organizing maps

The SOM method (Kohonen 2001) was used to ana-

lyze the range of potential temperature anomaly profiles

observed by the Tall Tower AWS. The SOM is a neural

network algorithm that uses an iterative learning pro-

cess to identify a user-specified number of patterns

within a dataset. This training seeks to minimize the

squared difference between the training data and the

resulting patterns. The SOMmethod pares down a large

number of data records into a usable number of patterns

by grouping similar data records together. This allows

for an analysis of the dataset as a function of the patterns

identified by the SOM (Nigro et al. 2011), providing

additional information that is not available from an

analysis of the data as a whole. For a thorough de-

scription of the SOMalgorithm and training process, see

Kohonen (2001) and Reusch et al. (2005). The SOM

training method used for this study is presented in detail

in Cassano et al. (2016) and is described briefly below.

For this study, the SOMwas trained using the 1000001
10-min potential temperature anomaly profiles observed

by the Tall Tower AWS. The potential temperature

anomalies were used for this analysis because the stability

of the atmosphere is dependent on the relative increase or

decrease of potential temperature with height, not the

magnitude of the potential temperature. The potential

temperature anomaly profiles were calculated by sub-

tracting the average potential temperature over the depth

of the tower from each of the observed potential tem-

peratures for each 10-min profile. The SOM was trained

with the potential temperature anomaly profiles and a
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range of SOM grid sizes from 8 (4 3 2) to 35 (7 3 5)

patterns. The results from each of the grid sizes were

analyzed to choose the optimal SOM grid size, which is

not so large that patterns become so similar that dis-

cernable differences could not be determined and not so

small that the results group nonsimilar patterns together

causing patterns to bemissing from the results. Using this

information and the SOM expertise of the authors, it was

determined that a 5 3 6 SOM grid, or 30 patterns, ade-

quately captured the range of potential temperature

anomaly patterns within the dataset, without producing

patterns that were too similar (Cassano et al. 2016). This

process is consistent with Reusch et al. (2005) and other

SOM studies (Schuenemann and Cassano 2010; Higgins

and Cassano 2010; Cassano et al. 2011; Seefeldt and

Cassano 2012; DuVivier et al. 2016). The SOM derived

from this training, referred to as the master SOM, is

shown in Fig. 2.

Using the SOM, the AMPS forecasts were evaluated

using the Tall Tower AWS observations. For this anal-

ysis, only the Tall Tower AWS observations that cor-

responded with the hourly AMPS output were used to

provide a direct comparison between the two data-

sets. To conduct this analysis, each of the hourly Tall

Tower AWS potential temperature anomaly profiles

was matched to the master SOM pattern it most closely

resembled, and this process is referred to as mapping

the data to the SOM. The mapping process involved

calculating the squared difference between the potential

temperature anomaly profile of interest and the poten-

tial temperature anomaly profile for each of the mas-

ter SOM patterns. The potential temperature anomaly

FIG. 2. Master SOM of the 30 Tall Tower potential temperature anomaly profiles. Numbers to the top left of each pattern indicate the

minimum/maximum potential temperature anomalies over the depth of the profile. The numbers at the top right of each pattern indicate

the column and row number of each pattern on the SOM.
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profile of interest was mapped to the master SOM pat-

tern that resulted in the minimum squared difference.

This process was repeated for each of the Tall Tower

AWS potential temperature anomaly profiles, resulting

in a list of Tall Tower potential temperature anomaly

profiles that map to each of the patterns on the master

SOM. Using this information, the frequency at which

each SOM pattern occurs within the Tall Tower dataset

was calculated. Additionally, using this list of dates and

times for each SOM pattern, pattern averages of other

Tall Tower observations, such as wind speed, were cal-

culated to identify the observed atmospheric behavior

for each of the SOM patterns.

The AMPS data were evaluated with respect to the

master SOM using two different methods. The first

method used the mapping process described above to

map each AMPS potential temperature anomaly profile

to the master SOM pattern (Fig. 2) it most closely re-

sembled. The result of this process was a list of the

AMPS potential temperature anomaly profiles that map

to each of the patterns on the master SOM. It should be

noted that the list dates and times of theAMPS forecasts

that map to a particular SOM pattern will not neces-

sarily be the same as the list of dates and times of the Tall

Tower observations that map to that SOM pattern.

Using this information, the pattern frequencies within

the AMPS dataset were calculated. The AMPS pattern

frequencies were then compared to the Tall Tower

pattern frequencies to determine how the frequencies of

the SOM patterns differ between the AMPS forecasts

and the Tall Tower observations.

The second method uses the list of dates and times that

each of the Tall Tower potential temperature anomaly

profiles map to each SOM pattern to create pattern av-

erages of the correspondingAMPS forecasts. The pattern

averages of Tall Tower observations and the correspon-

dingAMPS forecasts were compared both graphically, by

plotting both the AMPS and Tall Tower pattern averages

together, and statistically to identify model errors as a

function of the different SOM patterns.

4. Results

a. Vertical potential temperature gradients

To evaluate the stability of the surface layer, the

vertical potential temperature difference over the depth

of the tower in both the Tall Tower observations and the

AMPS forecasts was calculated as the potential tem-

perature at 29.75m minus the potential temperature

at 0.85m. Positive values represent a statically stable

atmosphere and negative numbers represent a stati-

cally unstable atmosphere. Figure 3 shows histograms of

the Tall Tower (Fig. 3a) and AMPS (Fig. 3b) vertical

FIG. 3. Histograms of vertical potential temperature differences

for (a) Tall Tower and (b) AMPS. (c) The frequency difference

between (b) and (a) (AMPS2Tall Tower) with positive (negative)

differences in red (blue).
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potential temperature differences, as well as the differ-

ence between the Tall Tower and AMPS (AMPS minus

Tall Tower) histograms (Fig. 3c). Figure 3a indicates

Tall Tower observes a high frequency of near-neutral

profiles, with the vast majority of the vertical potential

temperature differences ranging from 20.58 to 1.58C, as
well as a long tail of very stable profiles with vertical

potential temperature differences reaching as high as

178C. Figure 3b indicates AMPS predicts a range of vertical

potential temperature differences ranging from 22.58C
(unstable profiles) to 11.58C (stable profiles) with a less

pronounced near-neutral peak than is seen in the ob-

servations. Figure 3c indicates AMPS underpredicts the

frequency of the near-neutral profiles and overpredicts

the frequency of the weakly unstable profiles with vertical

potential temperature differences ranging from 22.58
to20.58C and the moderately stable profiles with vertical

potential temperature differences from 1.58 to 9.58C.
Figure 3c also shows AMPS fails to forecast the very sta-

ble profiles with vertical potential temperature differences

greater than 11.58C observed by the Tall Tower AWS.

Figure 4 shows the relationship between average wind

speed over the depth of the tower and static stability in

both the Tall Tower and AMPS datasets. This rela-

tionship is important because strong winds or strong

vertical wind shear create mechanical mixing that can

reduce the stability of the atmosphere. This is seen in the

median and 90th percentileTall TowerAWSobservations,

where the vertical potential temperature difference is

largest for weak winds (,4ms21) and decreases with

increasing wind speed. For weak winds, mechanical

mixing is small and radiational cooling results in strong

statically stable conditions. As wind speeds increase,

mechanical mixing increases and the atmospheric sta-

bility is reduced, eventually mixing to neutral conditions

in the median. For model forecasts, the amount of me-

chanical mixing generated by the winds is dependent on

the PBL and surface-layer parameterization used in the

model. Therefore, Fig. 4 highlights the impact of mixing

on the static stability forecast in the model compared to

the observations. In Fig. 4, AMPS is evaluated over

various forecast times: 0–11h (dark red), 12–23h (red),

and 24–35 h (orange). The results indicate the relation-

ship between wind speed and vertical potential tem-

perature difference is fairly consistent across all forecast

hours. This is due to the fact that the relationship be-

tween wind speed and static stability is controlled by the

model physics and thus does not varymuch with forecast

duration. Figure 4 shows the AMPS forecasts are more

statically stable than the Tall Tower observations in the

median (solid lines). At low wind speeds (less than

3ms21) the AMPS vertical potential temperature dif-

ference is approximately 18C greater than the Tall

Tower vertical potential temperature difference. This

error increases to approximately 28C at wind speeds of

approximately 4ms21 and then decreases back to 18C
with increasing wind speeds. This is also reflected at very

strong wind speeds where AMPS fails to mix toward

neutral conditions in the median. These results suggest

AMPS does not generate enough mechanical mixing in

the median across all wind speeds, which is consistent

with the findings of Steinhoff et al. (2009) andWille et al.

(2016). There is also the possibility that AMPS has a

negative radiation bias, which could also lead to the

results shown in Fig. 4. This will be discussed in further

detail later in the paper, based on additional information

provided by the SOM analysis.

It is also noteworthy that for wind speeds , 3m s21,

the 10th percentile AMPS vertical potential tempera-

ture difference (dashed lines) is about 0.58C less than the

near-neutral profiles observed by Tall Tower, and the

90th percentile AMPS vertical potential temperature

difference (dashed lines) is approximately 18–38C less

than the strongly stable profiles observed by Tall Tower.

This is consistent with Fig. 3, where AMPS is shown to

overpredict the frequency of the unstable profiles and

underpredict the frequency of the strong statically stable

profiles,which suggests that in lightwind conditionsAMPS

generates more unstable conditions when the surface is

being radiatively heated and generates overly weak stable

conditions when the surface is being radiatively cooled.

FIG. 4. Relationship between median (solid line) and 10th and

90th percentile (dashed lines) vertical potential temperature dif-

ference and average wind speed for the Tall Tower observations

(black) and theAMPS 0–11-h (dark red), 12–23-h (red), and 24–35-h

(orange) forecasts.
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This suggests a possible change in the model bias from

too little mechanical mixing under conditions of light

winds and surface heating (10th percentile vertical po-

tential temperature difference) to too much mechanical

mixing under conditions of light winds and strong radi-

ative cooling (90th percentile vertical potential tem-

perature difference).

b. Self-organizing maps analysis

The SOM method is used to identify the range of

potential temperature anomaly profiles observed at Tall

Tower. The master SOM (Fig. 2) indicates the potential

temperature profiles observed at Tall Tower range from

weakly unstable in the top-right corner to strong static

stability in the bottom-left corner. The weakly unstable

pattern (5, 0) has a median vertical potential tempera-

ture difference of 20.38C (not shown). The remaining

patterns range from near neutral to varying magnitudes

of statically stable. The stability of these patterns in-

creases whenmoving from the right to the left side of the

SOM. The patterns with the strongest static stability are

located in the bottom-left corner. Pattern (0, 4) repre-

sents the most statically stable pattern observed by Tall

Tower with vertical potential temperature differences of

13.58C in the median and 16.88C at the 90th percentile

(not shown).

The frequency of each SOM pattern within the Tall

Tower (Fig. 5a) and AMPS (Fig. 5b) datasets is shown.

The Tall Tower AWS observes the weakly unstable and

near-neutral patterns in columns 4 and 5 approximately

59% of the time, with the unstable pattern (5, 0) oc-

curring approximately 6% of the time. The near-neutral

patterns (5, 1) and (5, 2) occur with the highest frequency

in the Tall Tower dataset. Conversely, AMPS predicts

the weakly unstable and near-neutral patterns in col-

umns 4 and 5 approximately 32% of the time, with the

unstable pattern (5, 0) occurring approximately 10% of

the time. The Tall Tower AWS observes the stable

patterns in columns 0–3 approximately 41% of the time

(Fig. 5a), while AMPS predicts these stable patterns

occur approximately 58% of the time, with pattern (3, 4)

occurring with the highest frequency and themost stable

pattern (0, 4) occurringwith the lowest frequency (Fig. 5b).

Figure 5c shows the difference between the AMPS

and Tall Tower frequencies with dark red and dark blue

shading indicating statistically significant differences

between the two datasets. All of the frequency differ-

ences, with the exception of one pattern, are statistically

significant. The frequency differences illustrated in

Fig. 5c are given as the difference (top number in each

box) and the percent difference with respect to the Tall

Tower frequency (shown in parentheses). The red

shading in pattern (5, 0) indicatesAMPS overpredicts the

FIG. 5. Frequency of occurrence for each of the 30 SOM patterns

for (a) Tall Tower and (b) AMPS. (c) The frequency difference

between (b) and (a) (AMPS2 Tall Tower) with positive (negative)

differences in red (blue). Dark red and dark blue shadings indicate

a statistically significant difference. The percent frequency difference

with respect to the Tall Tower frequencies is shown in parentheses.
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frequency of this weakly unstable profile, which is con-

sistent with AMPS forecasting stronger statically un-

stable conditions than the Tall Tower observations

(Figs. 3 and 4). The blue shading in the remainder of

columns 4 and 5 in Fig. 5c indicates AMPS underpredicts

the frequency of the near-neutral to weakly stable pat-

terns observed by Tall Tower and is also consistent with

the results shown inFigs. 3 and 4.As noted in the previous

paragraph AMPS overpredicts the frequency of the

stable patterns in columns 0–3 by 17%, but this over-

prediction is not uniformly distributed across these

columns (Fig. 5c). AMPS overpredicts the moderately

stable patterns from the bottom-center to the left-center

portion of the SOM and underpredicts the remaining

stable patterns. These SOM-based results are consistent

with the conclusions drawn from Fig. 3, which showed

AMPS overpredicts moderately stable conditions and

underpredicts strongly stable conditions. Pattern (0, 4)

represents the most statically stable profile observed by

Tall Tower. AMPS forecasts this pattern 0.38% of the

time, while Tall Tower observes this pattern 3.66% of

the time. This equates to an approximately 90% un-

derrepresentation of this pattern in the AMPS dataset.

The AMPS evaluation described above was based on

separate mapping of the AMPS and Tall Tower data to

the SOM and thus allowed us to compare the frequency

with which AMPS simulates each of the SOM potential

temperature profiles to the frequency with which each of

these patterns was observed. The remainder of our

analysis will focus on a comparison of AMPS and Tall

Tower data at matching times and will use the list of

dates and times generated by mapping the Tall Tower

data to the master SOM, as described in section 3. This

analysis allows us to better understand how AMPS dif-

fers from the Tall Tower observations when a given

potential temperature pattern is observed by the AWS.

In Fig. 6, the average Tall Tower potential tempera-

ture anomaly profiles are shown by the black lines and

the corresponding AMPS forecasts of potential tem-

perature anomalies are shown by the red lines, indicating

the difference between the observed atmospheric stabil-

ity (black lines) and the modeled atmospheric stability

(red lines) for each SOM pattern. For the near-neutral

patterns in columns 4 and 5, with the exception of the top-

right pattern (5, 0), AMPS consistently predicts a more

stable profile than the Tall Tower observations (Fig. 6),

which contradicts most of the literature on modeling

static stability (Derbyshire 1999; Poulos and Burns 2003;

Tjernstrom et al. 2004; Holtslag 2006; Rinke et al. 2012;

Holtslag et al. 2013; Wille et al. 2016). For the stable

patterns in columns 0–3, AMPS predicts more stable

profiles than the Tall Tower observations for the weakly

stable patterns in column 3 and transitions to predicting

less stable profiles than Tall Tower for the strongly stable

patterns in column 0. The magnitude at which AMPS

over- or underpredicts the stability of each pattern is

shown in Fig. 7, where the difference between the AMPS

vertical potential temperature difference and the Tall

Tower vertical potential temperature difference is shown

for each pattern. For the weakly unstable pattern (5, 0)

AMPS underpredicts the stability of the pattern by 0.18C
in the median and 0.68C at the 10th percentile (Fig. 7),

indicating, in general, AMPS predicts more unstable

conditions than the Tall Tower observations for this

pattern. Conversely, in the 90th percentile, AMPS over-

predicts the stability of this pattern by 2.58C (Fig. 7), in-

dicating there are timeswhenAMPSpredictsmore stable

conditions than the Tall Tower observations for this

pattern. For the near-neutral patterns in columns 4 and 5,

with the exception of pattern (5, 0), the magnitude of the

AMPS overprediction of the stability ranges from 0.18 to
1.38C in the median and reaches up to 5.38C at the 90th

percentile (Fig. 7). For the weakly stable patterns in

column 3, AMPS overpredicts the stability from 0.98 to
1.58C in themedian and up to 5.08C in the 90th percentile.

AMPS underpredicts the stability in the more stable

patterns in columns 0–2, with the underprediction

reaching 5.58C in the median and 7.18C in the 10th per-

centile for the strongly stable pattern (0, 4). In general

AMPS overpredicts the stability for near-neutral to

weakly stable conditions (right side of the SOM) and

underpredicts the stability formore stable conditions (left

side of the SOM).

Figure 8 shows the difference between the AMPS and

Tall Tower wind speeds at the lowest-level wind speed

observation height (3.75m). This near-surface wind

speedwill, in part, control the strength of themechanical

mixing present in both the observations and model

forecasts. For the unstable and near-neutral patterns in

columns 4 and 5, with the exception of patterns (4, 0) and

(4, 2), AMPS has a negative wind speed bias. For the

weakly unstable pattern (5, 0), the negative wind speed

bias results in too little mechanical mixing, which under

surface heating conditions creates unstable conditions

and is consistent with the negative stability bias seen in

Fig. 7. For the near-neutral patterns in the remainder of

columns 4 and 5, the negative wind speed bias results in

too little mechanical mixing, which under surface cool-

ing conditions creates stable conditions and is consistent

with the positive stability bias seen in Fig. 7. For the

stable patterns in columns 0–3, AMPS has a consistent

positive wind speed bias. The wind speed bias is largest

for the strongly stable patterns in the bottom-left corner,

with a maximummedian wind speed bias of 3.2m s21 for

pattern (0, 4). The positive wind speed bias for these

patterns results in too much mechanical mixing, which
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under surface cooling conditions creates less stable

conditions. This is consistent with the negative stability

biases for the strongly stable patterns on the left side of

the SOM (Fig. 7), but is inconsistent with the positive

stability biases for the weakly stable patterns in column 3.

This implies something other than mechanical mixing is

causing the stability errors in AMPS for the patterns in

column 3, and these other processes may also be acting to

modulate the stability biases seen across the entire SOM.

Comparison of the Tall Tower (black line) and AMPS

(red line) wind speed profiles (Fig. 9) and potential

temperature profiles (Fig. 10) provides additional in-

sights into the source of the AMPS stability errors. Note

that Fig. 10 shows the potential temperature profiles, in

contrast to the potential temperature anomaly pro-

files shown in Fig. 6. Unlike the potential temperature

anomaly profiles, the potential temperature profiles

indicate potential temperature biases between the ob-

servations and forecasts, allowing us to assess the pres-

ence of cold or warm biases in the AMPS forecasts and

thus providing additional information about possible

errors associated with the modeled energy budget.

For the near-neutral patterns in the bottom-right

corner, AMPS generally has a negative wind speed

bias over the depth of the tower with the magnitude of

the bias increasing with height (Fig. 9). The AMPS po-

tential temperature profiles for these patterns closely

resemble the Tall Tower observations at the top of the

tower, with a cold bias near the surface (Fig. 10). In

order for AMPS to accurately forecast the potential

temperatures at the top of the tower and have a surface

cold bias, it is likely AMPS is accurately capturing the

large-scale forcing related to the temperature of these

patterns, but has a negative radiation bias at the surface.

FIG. 6. The 30 SOM patterns average potential temperature anomaly profiles of Tall Tower observations (black line) and AMPS

forecasts (red line).
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The negative radiation bias paired with the weaker

mechanical mixing due to the negative wind speed bias

and weaker wind shear over the depth of the tower is

likely driving the positive stability biases for these pat-

terns (Fig. 7).

For the stable patterns in columns 0–3, a range of

model errors exists across these patterns. In the bottom-

left corner, there is a positive wind speed bias over the

depth of the tower (Fig. 9), indicating the large-scale

pressure gradient force for these patterns is likely too

large in AMPS. Additionally, for these patterns, the

AMPS mean potential temperature averaged over the

depth of the tower is similar to the mean potential

temperature observed by Tall Tower, but has a warm

bias at the surface and a cold bias at the top of the tower.

Therefore, for these patterns, the positive wind speed

bias is likely generating too much mechanical mixing,

causing warmer potential temperature near the surface

and colder potential temperatures aloft, and an under-

representation of the static stability in AMPS (Fig. 7).

For the moderately stable patterns in the top-left

corner, there is a positive wind speed bias near the sur-

face that decreases to near zero at the top of the tower

(Fig. 9) and a surface warm bias that decreases to near

zero at the top of the tower (Fig. 10). The positive wind

speed bias near the surface likely generates too much

mechanical mixing, causing the warm bias and the neg-

ative stability bias (Fig. 7) in these patterns. In contrast

to the strongly stable patterns in the bottom-left corner,

where the warm bias is confined to near the surface, the

warm bias extends over the depth of the tower in these

patterns. It is possible a cold bias exists above the top of

the tower in these patterns, which would be consistent

with too much mechanical mixing in AMPS, but it is not

possible to verify this without additional observations.

In column 3, the AMPS potential temperature fore-

casts resemble the Tall Tower observations at the top of

the tower and have a cold bias near the surface (Fig. 10).

Similar to the near-neutral patterns in the bottom-right

corner, it is likely AMPS accurately captures the large-

scale forcing for these patterns and has a negative ra-

diation bias at the surface. The large-scale forcing for

these patterns can be inferred from Fig. 12 in Cassano

et al. (2016), which depicts the AMPS forecast sea level

pressure for each of the SOM patterns. The patterns in

column 3 have a synoptic cyclone located off the coast of

West Antarctica and a pressure gradient that would

drive southerly winds at the location of Tall Tower.

FIG. 7. Median difference between AMPS and Tall Tower vertical potential temperature dif-

ference for each of the 30 SOM patterns. Red colors indicate a positive AMPS bias in the median,

and blue colors indicate a negative AMPS bias. Darker shading indicates larger median values. The

10th and 90th percentiles are shown below and above the median values, respectively.
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Unlike the patterns in the bottom-right corner, the

patterns in column 3 have a positive wind speed bias

near the surface (Fig. 9). This indicates that for these

patterns the negative radiation bias must dominate the

additional mixing driven by the faster wind speeds to

result in the positive stability bias for these patterns

(Fig. 7). For the patterns in column 2, which represent a

transition between the patterns on the left side of the

SOM and the patterns in column 3, it is likely these

patterns have a combination of model errors related to

the positive wind speed bias shown in the patterns on the

left side of the SOM and the negative radiation bias in

the column 3 patterns.

From this analysis, it is difficult to identify the source

of the negative radiation error in the near-neutral pat-

terns in the bottom-right corner and the stable patterns

in column 3. It is possible that the negative radiation bias

is related to an underrepresentation of the cloud cover

in AMPS, as identified by Bromwich et al. (2013) and

Valkonen et al. (2014), or to a dry bias in AMPS, as

identified by Wille et al. (2016) using the Tall Tower

observations andAMPS output. An underrepresentation

of the cloud cover or a dry bias would result in less

longwave radiation down and a negative radiation bias in

AMPS, especially in winter when no shortwave radiation

is available to offset the negative longwave bias. Addi-

tionally, the relationship between the vertical potential

temperature difference and the wind speeds in Fig. 4

supports the possibility of a negative radiation bias

across a range of wind speeds. Therefore, it is likely that

the negative radiation bias is present, at least to some

degree, in the other patterns across the SOMbut is offset,

and thus is not as evident in the SOM analysis, by other

model errors such as additional mixing due to stronger

modeled winds.

c. Model statistics by forecast hour

The model statistics are further investigated by exam-

ining the modeled behavior as a function of stability (as

shown by the four corner SOM patterns) and forecast

hour (0–11h, dark red; 12–23h, red; 24–35h, orange). The

pattern averages of the bias, root-mean-square error

(RMSE), and the correlation are shown for the wind

speed profiles (Fig. 11) and the potential temperature

profiles (Fig. 12). Since the corner patterns in the SOM

represent the extreme range of conditions present in the

training data, the analysis below uses these patterns to

illustrate model errors for weakly unstable (5, 0), near-

neutral (5, 4), moderately stable (0, 0), and strongly stable

(0, 4) conditions.

The increase in bias and RMSE and decrease in cor-

relation for both potential temperature and wind speed

moving from the top to the bottom of Figures 11 and 12

indicate model errors tend to increase with increasing

FIG. 8. As in Fig. 7, but for the lowest-level wind speed.
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static stability. The wind speed RMSE (Fig. 11) shows

errors on the order of 2m s21 for the weakly unstable

pattern (5, 0). These errors increase to 2–3m s21 for the

near-neutral (5, 4) and the stable (0, 0) patterns and

reach 3–4ms21 for the strong stable pattern (0, 4). The

potential temperature RMSE is on the order of ap-

proximately 38C for the weakly unstable pattern and

increases to 48–68C for the strongly stable pattern

(Fig. 12). The correlations show a similar trend with the

wind speed correlation being approximately 0.7 for the

weakly unstable pattern (5, 0) and decreasing to roughly

zero for the strongly stable pattern (0, 4). Likewise, the

potential temperature correlation is close to one for the

weakly unstable pattern (5, 0) and decreases with in-

creasing stability to approximately 0.8 for the strong

static stability pattern (0, 4). Given the difficulty in

simulating stable boundary layers, these results are not

surprising.

For the near-neutral pattern (5, 4), the forecast skill

for wind speed improves with forecast hour (Fig. 12).

The bias ranges from approximately 20.5 to 21.5m s21

over the depth of the tower for the 0–11-h forecasts

(dark red) and decreases to 0 to 20.5m s21 over the

depth of the tower for both the 12–23-h (red) and 24–

35-h (orange) forecasts. The RMSE (correlation) is largest

(smallest) for the 0–11-h forecasts (dark red) and smallest

(largest) for the 12–23-h forecasts (orange). This suggests a

potential problem with the wind speed initialization for

this near-neutral pattern. Interestingly, the spread in the

wind speed bias and RMSE over forecast hour is not re-

flected in the potential temperature bias and RMSE. If the

surface cold bias in this patternwere driven by the negative

FIG. 9. The 30 SOM patterns average wind speed profiles of Tall Tower observations (black line) and AMPS forecasts (red line).
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wind speed bias near the surface, it would be expected

that the change in wind speed bias with forecast hour

would also be reflected in a change in potential temper-

ature bias with forecast hour. This supports a negative

radiation bias in this pattern.

In contrast to the decreasing model wind speed er-

ror with forecast time seen in the near-neutral pattern

(5, 4), the weakly unstable pattern (5, 0) shows very

little change in model wind speed error statistics as a

function of forecast time and the moderately stable

pattern (0, 0) and the strongly stable pattern (0, 4)

generally show an increase in model wind speed errors

with increasing forecast duration (Fig. 11). For the

moderately (0, 0) and strongly stable (0, 4) patterns

the potential temperature errors also increase with

forecast duration (Fig. 12), which is consistent with

the positive wind speed bias resulting in strong me-

chanical mixing and the surface warm bias for these

patterns.

The 0-, 12-, and 24-h forecasts were analyzed using the

same method as in Figs. 11 and 12 to analyze the per-

formance of the initial conditions. The results are in-

cluded as Figs. S1 and S2 in the online supplemental

material. These figures indicate that the AMPS ini-

tial conditions have larger errors (larger RMSE and

lower correlation) than the 12- and 24-h forecasts for

SOM pattern (0, 0) for wind speed and temperature and

SOMpattern (5, 4) for wind speed, similar errors for SOM

pattern (5, 0) for wind speed and temperature and node

(5, 4) for temperature, and smaller errors for node (0, 4)

for both temperature and wind speed. As noted above,

the SOM analysis presented here is useful in identifying

FIG. 10. As in Fig. 9, but for potential temperature.
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stability-dependent errors, in this case in the model initial

conditions.

5. Discussion and conclusions

This paper uses observations from the Tall Tower

AWS to evaluate forecasts of the surface layer inAMPS.

Comparison of the AMPS forecasts to the Tall Tower

observations indicates AMPS underpredicts the fre-

quency of the near-neutral profiles observed by Tall

Tower and instead overpredicts the frequency of the

unstable profiles and weak to moderately stable profiles

observed by Tall Tower. It is also shown that AMPS

does not forecast the strongest stability profiles ob-

served by Tall Tower (Figs. 3 and 5). The relationship

between the wind speed and the vertical potential tem-

perature difference is evaluated to understand the im-

pact of mixing on the static stability for each dataset.

The AMPS forecasts are more statically stable in the

median across all wind speeds (Fig. 4), indicating

FIG. 11. SOMpatterns (first column) average wind speed, (second column) bias, (third column)RSME, and (fourth column) correlation

for the (top row) weakly unstable, (second row) near-neutral, (third row) moderately stable, and (bottom row) strongly stable four corner

patterns of the SOM. The lines show the Tall Tower observations (black line) and the 0–11-h (dark red line), 12–23-h (red line), and 24–35-h

(orange line) AMPS forecasts.
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AMPS’s behavior differs from what has been noted

previously in the literature (Derbyshire 1999; Poulos

and Burns 2003; Tjernstrom et al. 2004; Holtslag 2006;

Rinke et al. 2012; Holtslag et al. 2013; Wille et al. 2016).

This indicates that in the median AMPS either does not

have enough mechanical mixing for a given wind speed,

has a negative radiation bias, or has some combination

of these two mechanisms. Additionally, in the 10th and

90th percentiles there seems to be a possible change in

themodel bias from too little mixing under conditions of

light winds and surface heating, resulting in more un-

stable conditions than are observed, to too much

mechanical mixing under conditions of light winds and

surface cooling, resulting in less stable conditions than

are observed.

The SOM method is used to identify the potential

temperature anomaly patterns observed at Tall Tower

(Fig. 2) and to evaluate the performance of AMPS

across patterns with varying degrees of static stability.

The results indicate the model errors do vary as a

function of static stability. For the weakly unstable SOM

pattern (5, 0), AMPS has a negative wind speed bias near

the surface (Figs. 8 and 9), resulting in weaker me-

chanical mixing, which under surface heating conditions

FIG. 12. As in Fig. 11, but for potential temperature.
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leads to a surface warm bias (Fig. 10) and a negative

stability bias (Fig. 7). For the near-neutral SOMpatterns

on the right side of the SOM (with the exception of the

top-right pattern), AMPS has a negative wind speed bias

(Figs. 8 and 9) resulting in weaker mechanical mixing,

which under surface cooling conditions creates a surface

cold bias (Fig. 10) and a positive stability bias (Fig. 7).

This is consistent with the findings of Steinhoff et al.

(2009), who also analyzed the ability of AMPS to fore-

cast static stability. The SOM analysis of model error

statistics as a function of forecast hour provided addi-

tional insight into the potential causes of the positive

stability bias in AMPS. The model error statistics for the

near-neutral pattern (5, 4) show a decrease in the near-

surface wind speed bias and RMSE as a function of

forecast hour (Fig. 11), but this does not correspond to a

change in the surface potential temperature bias and

RMSE over forecast hour (Fig. 12). This suggests some

of the surface cold bias may be driven by a negative

radiation bias in AMPS rather than simply by a mixing

bias induced by the wind speed bias.

For the stable SOM patterns (columns 0–3), AMPS

has a consistent positive near-surface wind speed bias

(Figs. 8 and 9). The patterns range from a surface warm

bias in the most stable patterns (columns 0 and 1) to a

surface cold bias in the moderately stable patterns

(column 3) (Fig. 10). The most stable patterns have a

negative stability bias and the moderately stable pat-

terns have a positive stability bias (Fig. 7) with column 2

showing a mix of positive and negative stability biases.

For themost stable patterns the positive wind speed bias

results in more mechanical mixing, which is consistent

with the modeled surface warm bias (Fig. 9) and nega-

tive stability bias (Fig. 7). This is consistent with the

literature, which states that a positive wind speed bias

results in a negative stability bias (Tjernstrom et al. 2004;

Wille et al. 2016). The patterns with a surface cold bias

(Fig. 10) must have a negative radiation bias to com-

pensate for the additional mixing from the positive near-

surface wind speed bias (Figs. 8 and 9). The range of

model errors identified within the group of statically

stable patterns illustrates the ability of the SOMmethod

to provide details about the model performance as a

function of static stability.

Analysis ofmodel errors (bias, RMSE, and correlation)

as a function of stability (Figs. 11 and 12) indicate that

model errors increase with increasing stability (moving

from the top to the bottom of these figures), consistent

with the fact that models have difficulty in simulating

stable boundary layer conditions (Derbyshire 1999; Poulos

and Burns 2003; Tjernstrom et al. 2004; Brunke et al. 2006;

Holtslag 2006; Steeneveld et al. 2006; Banta et al. 2007;

Teixeira et al. 2008; Baklanov et al. 2011; Atlaskin and

Vihma 2012; Rinke et al. 2012; Holtslag et al. 2013;

Kleczek et al. 2014; Sterk et al. 2015). Figures 11 and 12

also indicate model errors do not uniformly increase with

increased forecast duration, as might be expected. Instead,

wind speed errors were found to decrease with increasing

forecast time for the near-neutral patterns (5, 4) and were

nearly constant as a function of forecast time for the

weakly unstable patterns (5, 0) (Fig. 11), indicating the

model errors vary as a function of stability and demon-

strating the utility of SOMs for this analysis.

Future work by the authors will include an evaluation

of the full depth of the boundary layer in AMPS using

observations from the Small Unmanned Meteorological

Observer (SUMO; Cassano 2014). The SUMOwas used

to make observations of the diurnal cycle of the sum-

mertime boundary layer, with a time resolution of the

order of hours, at the location of Tall Tower during

January 2014. This dataset will allow us to assess the

ability of AMPS to replicate the diurnal evolution of the

boundary layer over the RIS.

Acknowledgments. We thank Linda Keller, David

Mikolajczyk, Jonathan Thom, George Weidner, and Lee

Welhouse from the University of Wisconsin–Madison for

help with the Tall Tower AWS. This work was funded by

NSFGrants ANT-0943952, ANT-0944018, ANT-1245663,

and ANT-1245737, as well as UCAR AMPS Grant GRT

0032749.We thank the three reviewers for their comments,

which were used to improve this manuscript.

REFERENCES

Atlaskin, E., and T. Vihma, 2012: Evaluation of NWP results for

wintertime nocturnal boundary-layer temperatures over Eu-

rope and Finland.Quart. J. Roy. Meteor. Soc., 138, 1440–1451,

doi:10.1002/qj.1885.

Baklanov, B. G., R. Bornstein, L. Mahrt, S. S. Zilitnkevich,

P. Taylor, S. E. Larsen, M. W. Rotach, and H. J. S. Fernando,

2011: The nature, theory, and modeling of atmospheric plan-

etary boundary layers. Bull. Amer. Meteor. Soc., 92, 123–128,

doi:10.1175/2010BAMS2797.1.

Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L.

Pichugina, and E. J. Williams, 2007: The very stable boundary

layer on nights with weak low-level jets. J. Atmos. Sci., 64,

3068–3090, doi:10.1175/JAS4002.1.

Bromwich, D. H., A. J. Monaghan, K. W. Manning, and J. G.

Powers, 2005: Real-time forecasting for the Antarctic: An eval-

uation of the Antarctic Mesoscale Prediction System (AMPS).

Mon. Wea. Rev., 133, 579–603, doi:10.1175/MWR-2881.1.

——, K.M. Hines, and L.-S. Bai, 2009: Development and testing of

Polar WRF: 2. Arctic Ocean. J. Geophys. Res., 114, D08122,

doi:10.1029/2008JD010300.

——, D. F. Steinhoff, I. Simmonds, K. Keay, and R. L. Fogt, 2011:

Climatological aspects of cyclogenesis near Adélie Land Antarc-

tica. Tellus, 63A, 921–938, doi:10.1111/j.1600-0870.2011.00537.x.

——, F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo,

2013: Comprehensive evaluation of Polar Weather Research

240 WEATHER AND FORECAST ING VOLUME 32

http://dx.doi.org/10.1002/qj.1885
http://dx.doi.org/10.1175/2010BAMS2797.1
http://dx.doi.org/10.1175/JAS4002.1
http://dx.doi.org/10.1175/MWR-2881.1
http://dx.doi.org/10.1029/2008JD010300
http://dx.doi.org/10.1111/j.1600-0870.2011.00537.x


and Forecasting performance in the Antarctic. J. Geophys.

Res. Atmos., 118, 274–292, doi:10.1029/2012JD018139.

Brunke, M. A., M. Zhou, X. Zeng, and E. L Andreas, 2006: An

intercomparison of bulk aerodynamic algorithms used over

sea ice with data from the Surface Heat Budget for the Arctic

Ocean (SHEBA) experiment. J. Geophys. Res., 111, C09001,

doi:10.1029/2005JC002907.

Cassano, E. N., J. J. Cassano, andM.Nolan, 2011: Synoptic weather

pattern controls on temperature in Alaska. J. Geophys. Res.,

116, D11108, doi:10.1029/2010JD015341.

Cassano, J. J., 2014: Observations of atmospheric boundary

layer boundary layer temperature profiles with a small un-

manned aerial vehicle. Antarct. Sci., 26, 205–213, doi:10.1017/

S0954102013000539.

——,M.A.Nigro, andM.A. Lazzara, 2016: Characteristics of the near-

surface atmosphereover theRoss IceShelf,Antarctica. J.Geophys.

Res. Atmos., 121, 3339–3362, doi:10.1002/2015JD024383.

Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–

hydrology model with the Penn State–NCARMM5 modeling

system. Part I: Model description and implementation. Mon.

Wea. Rev., 129, 569–585, doi:10.1175/1520-0493(2001)129,0569:

CAALSH.2.0.CO;2.

Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared

radiation parameterization for use in general circulation

models. NASATech. Memo. 104606, Vol. 3, 85 pp. [Available

online at https://ntrs.nasa.gov/search.jsp?R519950009331.]

Derbyshire, S., 1999: Stable boundary-layer modeling: Establishing

approaches and beyond. Bound.-Layer Meteor., 90, 423–446,

doi:10.1023/A:1001749007836.

DuVivier, A. K., J. J. Cassano, A. P. Craig, J. Hamman,

W. Maslowski, B. Nijssen, R. Osinski, and A. Roberts, 2016:

Atmospheric forcing and oceanic response during strong wind

events around southeastern Greenland as modeled over 20

winters in the Regional Arctic System Model (RASM).

J. Climate, 29, 975–994, doi:10.1175/JCLI-D-15-0592.1.

Genthon, C., D. Six, V. Favier, M. Lazzara, and L. Keller, 2011:

Atmospheric temperature measurement biases on the Ant-

arctic Plateau. J. Atmos. Oceanic Technol., 28, 1598–1605,

doi:10.1175/JTECH-D-11-00095.1.

——, ——, H. Gallee, P. Grigioni, and A. Pellegrini, 2013: Two

years of atmospheric boundary layer observations on a 45-m

tower at Dome C on the Antarctic plateau. J. Geophys. Res.

Atmos., 118, 3218–3232, doi:10.1002/jgrd.50128.

Higgins, M. E., and J. J. Cassano, 2010: Response of Arctic

1000 hPa circulation to changes in horizontal resolution and

sea ice forcing in the Community Atmospheric Model.

J. Geophys. Res., 115, D17114, doi:10.1029/2009JD013440.

Hines, K. M., and D. H. Bromwich, 2008: Development and testing

of PolarWRF. Part I: Greenland Ice Sheet meteorology.Mon.

Wea. Rev., 136, 1971–1989, doi:10.1175/2007MWR2112.1.

——, ——, L.-S. Bai, M. Barlage, and A. G. Slater, 2011: Devel-

opment and testing of Polar WRF. Part III: Arctic land.

J. Climate, 24, 26–48, doi:10.1175/2010JCLI3460.1.

——, ——, ——, C. M. Bitz, J. G. Powers, and K. W. Manning,

2015: Sea ice enhancements to Polar WRF. Mon. Wea. Rev.,

143, 2363–2385, doi:10.1175/MWR-D-14-00344.1.

Holtslag, A. A. M., 2006: GEWEX Atmospheric Boundary-Layer

Study (GABLS) on stable boundary layers. Bound.-Layer

Meteor., 118, 243–246, doi:10.1007/s10546-005-9008-6.

——, and Coauthors, 2013: Stable atmospheric boundary layers

and diurnal cycles: Challenges for weather and climate

models. Bull. Amer. Meteor. Soc., 94, 1691–1706, doi:10.1175/

BAMS-D-11-00187.1.

Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment

6-class microphysics scheme (WSM6). J. Korean Meteor. Soc.,

42, 129–151.

——, J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice

microphysical processes for the bulk parameterization of

clouds and precipitation. Mon. Wea. Rev., 132, 103–120,

doi:10.1175/1520-0493(2004)132,0103:ARATIM.2.0.CO;2.

Hu, Y., and Coauthors, 2014: Meteorological data for the astro-

nomical site at Dome A, Antarctica. Publ. Astron. Soc. Pac.,

126, 868–881, doi:10.1086/678327.

Hudson, S. R., and R. E. Brandt, 2005: A look at the surface-based

temperature inversion on theAntarctic Plateau. J. Climate, 18,

1673–1696, doi:10.1175/JCLI3360.1.
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