
Understanding the Sparse Vector Technique for
Differential Privacy

Min Lyu #
∗

, Dong Su ⋆, Ninghui Li ⋆

University of Science and Technology of China ⋆ Purdue University
lvmin05@ustc.edu.cn {su17, ninghui}@cs.purdue.edu

ABSTRACT

The Sparse Vector Technique (SVT) is a fundamental technique for

satisfying differential privacy and has the unique quality that one

can output some query answers without apparently paying any pri-

vacy cost. SVT has been used in both the interactive setting, where

one tries to answer a sequence of queries that are not known ahead

of the time, and in the non-interactive setting, where all queries are

known. Because of the potential savings on privacy budget, many

variants for SVT have been proposed and employed in privacy-

preserving data mining and publishing. However, most variants of

SVT are actually not private. In this paper, we analyze these errors

and identify the misunderstandings that likely contribute to them.

We also propose a new version of SVT that provides better utility,

and introduce an effective technique to improve the performance of

SVT. These enhancements can be applied to improve utility in the

interactive setting. Through both analytical and experimental com-

parisons, we show that, in the non-interactive setting (but not the

interactive setting), the SVT technique is unnecessary, as it can be

replaced by the Exponential Mechanism (EM) with better accuracy.

1. INTRODUCTION
Differential privacy (DP) is increasingly being considered the

privacy notion of choice for privacy-preserving data analysis and

publishing in the research literature. In this paper we study the

Sparse Vector Technique (SVT), a basic technique for satisfying

DP, which was first proposed by Dwork et al. [7] and later refined

in [18] and [12], and used in [11, 14, 20, 1, 19]. Compared with

other techniques for satisfying DP, SVT has the unique quality that

one can output some query answers without apparently paying any

privacy cost. More specifically, in SVT one is given a sequence

of queries and a certain threshold T , and outputs a vector indicat-

ing whether each query answer is above or below T ; that is, the

output is a vector {⊥,⊤}ℓ, where ℓ is the number of queries an-

swered, ⊤ indicates that the corresponding query answer is above

the threshold, and ⊥ indicates below. SVT works by first perturb-

ing the threshold T and then comparing each perturbed individual

∗The work was partially done while the author was visiting Purdue
University, West Lafayette, IN USA.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 6
Copyright 2017 VLDB Endowment 2150­8097/17/02.

query answer against the noisy threshold. When one expects that

the predominant majority of queries are on one side, e.g., below the

threshold, one can use SVT so that while each output of ⊤ (which

we call a positive outcome) consumes some privacy budget, each

output of ⊥ (negative outcome) consumes none. That is, with a

fixed privacy budget and a given level of noise added to each query

answer, one can keep answering queries as long as the number of

⊤’s does not exceed a pre-defined cutoff point.

This ability to avoid using any privacy budget for queries with

negative outcomes is very powerful for the interactive setting,

where one answers a sequence of queries without knowing ahead

of time what these queries are. Some well-known lower-bound re-

sults [3, 5, 6, 10] suggest that “one cannot answer a linear, in the

database size, number of queries with small noise while preserving

privacy” [7]. This limitation can be bypassed using SVT, as in the

iterative construction approach in [11, 12, 18]. In this approach,

one maintains a history of past queries and answers. For each new

query, one first uses this history to derive an answer for the query,

and then uses SVT to check whether the error of this derived an-

swer is below a threshold. If it is, then one can use this derived

answer for this new query without consuming any privacy budget.

Only when the error of this derived answer is above the threshold

would one need to spend the privacy budget accessing the database

to answer the query.

With the power of SVT comes the subtlety of why it is private

and the difficulty of applying it correctly. The version of SVT used

in [11, 12], which was abstracted into a generic technique and de-

scribed in Roth’s 2011 lecture notes [17], turned out to be not dif-

ferentially private as claimed. This error in [11, 12] is arguably not

critical because it is possible to use a fixed version of SVT without

affecting the main asymptotic results. Since 2014, several vari-

ants of SVT were developed; they were used for frequent itemset

mining [14], for feature selection in private classification [20], and

for publishing high-dimensional data [1]. These usages are in the

non-interactive setting, where all the queries are known ahead of

the time, and the goal is to find c queries that have large answers,

e.g., finding the c most frequent itemsets. Unfortunately, these vari-

ants do not satisfy DP, as pointed out in [2]. When using a correct

version of SVT in these papers, one would get significantly worse

accuracy. Since these papers seek to improve the tradeoff between

privacy and utility, the results in them are thus invalid.

The fact that many usages of SVT are not private, even when

proofs of their privacy were given, is already known [2, 22]; how-

ever, we feel that what led to the erroneous proofs were not clearly

explained, and such an explanation can help researchers to avoid

similar errors in the future. One piece of evidence of the continu-

ing confusion over SVT appears in [2], the first paper that identifies

errors in some SVT variants. In [2], the SVT variants in [14, 20, 1]

1

were modeled as a generalized private threshold testing algorithm

(GPTT), and a proof showing that GPTT does not satisfy ǫ-DP for

any finite ǫ (which we use ∞-DP to denote in this paper) was given.

However, as we show in this paper, the proof in [2] was incorrect.

This error was not reported in the literature. One goal of this pa-

per is to clearly explain why correct usages of SVT are private,

and what are the most likely confusions that caused the myriad of

incorrect usages of SVT.

A second goal of this paper is to improve the accuracy of SVT.

A version of SVT with a correct privacy proof appeared in Dwork

and Roth’s 2014 book [8], and was used in some recent work, e.g.,

[19]. In this paper, we present a version of SVT that adds less noise

for the same level of privacy. In addition, we develop a novel tech-

nique that optimizes the privacy budget allocation between that for

perturbing the threshold and that for perturbing the query answers,

and experimentally demonstrates its effectiveness.

A third goal of this paper is to point out that usage of SVT can

be replaced by the Exponential Mechanism (EM) [16] when used

in the non-interactive setting. Most recent usages of SVT in [1, 14,

19, 20] are in the non-interactive setting, where the goal is to select

up to c queries with the highest answers. In this setting, one could

also use EM [16] c times to achieve the same objective, each time

selecting the query with the highest answer. Using analysis as well

as experiments, we demonstrate that EM outperforms SVT.

In summary, this paper has the following novel contributions.

First, we propose a new version of SVT that provides better util-

ity. We also introduce an effective technique to improve the per-

formance of SVT. These enhancements achieve better utility than

previous SVT algorithms and can be applied to improve utility in

the interactive setting. Second, while previous papers have pointed

out most of the errors in usages of SVT, we identify the misun-

derstandings that likely caused the different non-private versions.

We also point out a previously unknown error in the proof in [2]

of the non-privacy of some SVT variants. Finally, through analysis

and experiments on real datasets, we have evaluated the effects of

various SVT optimizations and compared them to EM. Our results

show that for non-interactive settings, one should use EM instead

of SVT.

The rest of the paper is organized as follows. Section 2 gives

background information on DP. We analyze six variants of SVT in

Section 3. In Section 4, we present our optimizations of SVT. We

compare SVT with the Exponential Mechanism in Section 5. The

experimental results are shown in Section 6. Related works are

summarized in Section 7. Section 8 concludes our work.

2. BACKGROUND

DEFINITION 1 (ǫ-DP [4, 5]). A randomized mechanism A
satisfies ǫ-differential privacy (ǫ-DP) if for any pair of neighbor-

ing datasets D and D′, and any S ∈ Range(A),

Pr[A(D) = S] ≤ eǫ · Pr
[

A(D′) = S
]

.

Typically, two datasets D and D′ are considered to be neighbors

when they differ by only one tuple. We use D ≃ D′ to denote this.

There are several primitives for satisfying ǫ-DP. The Laplacian

mechanism [5] adds a random noise sampled from the Laplace dis-

tribution with the scale parameter proportional to ∆f , the global

sensitivity of the function f . That is, to compute f on a dataset D,

one outputs

Af (D) = f(D) + Lap
(

∆f

ǫ

)

,

where ∆f = max
D≃D′

|f(D) − f(D′)|,

and Pr[Lap (β) = x] = 1
2β

e−|x|/β.

In the above, Lap (β) denotes a random variable sampled from the

Laplace distribution with scale parameter β.

The Exponential Mechanism [16] samples the output of the data

analysis mechanism according to an exponential distribution. The

mechanism relies on a quality function q : D×R → R that assigns

a real valued score to one output r ∈ R when the input dataset is

D, where higher scores indicate more desirable outputs. Given the

quality function q, its global sensitivity ∆q is defined as:

∆q = max
r

max
D≃D′

|q(D, r)− q(D′, r)|.

Outputting r using the following distribution satisfies ǫ-DP:

Pr[r is selected] ∝ exp

(

ǫ

2∆q
q(D, r)

)

.

In some cases, the changes of all quality values are one-

directional. For example, this is the case when the quality function

counts the number of tuples that satisfy a certain condition, and two

datasets are considered to be neighboring when one is resulted from

adding or deleting a tuple from the other. When adding one tuple,

all quality values either stay unchanged or increase by one; the sit-

uation where one quality increases by 1 and another decreases by

1 cannot occur. In this case, one can make more accurate selection

by choosing each possible output with probability proportional to

exp
(

ǫ
∆q

q(D, r)
)

, instead of exp
(

ǫ
2∆q

q(D, r)
)

.

DP is sequentially composable in the sense that combining mul-

tiple mechanisms A1, · · · ,Am that satisfy DP for ǫ1, · · · , ǫm re-

sults in a mechanism that satisfies ǫ-DP for ǫ =
∑

i ǫi. Because of

this, we refer to ǫ as the privacy budget of a privacy-preserving data

analysis task. When a task involves multiple steps, each step uses a

portion of ǫ so that the sum of these portions is no more than ǫ.

3. VARIANTS OF SVT
In this section, we analyze variants of SVT; six of them are listed

in Figure 1. Alg. 1 is an instantiation of our proposed SVT. Alg. 2

is the version taken from [8]. Alg. 3, 4, 5, and 6 are taken from [17,

14, 20, 1] respectively.

The table in Figure 2 summarizes the differences among these

algorithms. Their privacy properties are given in the last row of the

table. Alg. 1 and 2 satisfy ǫ-DP, and the rest of them do not. Alg. 3,

5, 6 do not satisfy ǫ-DP for any finite ǫ, which we denote as ∞-DP.

An important input parameter to any SVT algorithm is the num-

ber c, i.e., how many positive outcomes one can answer before stop-

ping. This number can be quite large. For example, in privately

finding top-c frequent itemsets [14], c ranges from 50 to 400. To

understand the differences between these variants, one can view

SVT as having the following four steps:

1. Generate the threshold noise ρ (Line 1 in each algorithm),

which will be added to the threshold during the comparison

between each query and the threshold (line 5). In all except

Alg. 2, ρ scales with ∆/ǫ1. In Alg. 2, however, ρ scales with

c∆/ǫ1. This extra factor of c causes Alg. 2 to be much less

accurate than Alg. 1.

2. For each query qi, generate noise νi to be added to the query

(Line 4), which should scale with 2c∆/ǫ2. In Alg. 4 and

6, νi scales with ∆/ǫ2. Removing the factor of c from the

magnitude of the noise will result in better utility; however,

this is done at the cost of being non-private. Alg. 5 adds no

noise to qi at all, and is also non-private.

3. Compare the perturbed query answer with the noisy thresh-

old and output whether it is above or below the threshold

(Lines 5, 6, 9). Here Alg. 3 differs in that it outputs the noisy

2

Input/Output shared by all SVT Algorithms

Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no more than ∆, either a sequence of thresholds

T = T1, T2, · · · or a single threshold T (see footnote ∗), and c, the maximum number of queries to be answered with ⊤.

Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the set of all real numbers.

Algorithm 1 An instantiation of the SVT proposed in this paper.

Input: D,Q,∆,T = T1, T2, · · · , c.

1: ǫ1 = ǫ/2, ρ = Lap (∆/ǫ1)
2: ǫ2 = ǫ − ǫ1, count = 0

3: for each query qi ∈ Q do

4: νi = Lap (2c∆/ǫ2)
5: if qi(D) + νi ≥ Ti + ρ then

6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.

8: else

9: Output ai = ⊥

Algorithm 2 SVT in Dwork and Roth 2014 [8].

Input: D,Q,∆, T, c.

1: ǫ1 = ǫ/2, ρ = Lap (c∆/ǫ1)
2: ǫ2 = ǫ− ǫ1, count = 0

3: for each query qi ∈ Q do

4: νi = Lap (2c∆/ǫ2)
5: if qi(D) + νi ≥ T + ρ then

6: Output ai = ⊤, ρ = Lap (c∆/ǫ1)
7: count = count + 1, Abort if count ≥ c.

8: else

9: Output ai = ⊥

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [17].

Input: D,Q,∆, T, c.

1: ǫ1 = ǫ/2, ρ = Lap (∆/ǫ1),
2: ǫ2 = ǫ − ǫ1, count = 0

3: for each query qi ∈ Q do

4: νi = Lap (c∆/ǫ2)
5: if qi(D) + νi ≥ T + ρ then

6: Output ai = qi(D) + νi
7: count = count + 1, Abort if count ≥ c.

8: else

9: Output ai = ⊥

Algorithm 4 SVT in Lee and Clifton 2014 [14].

Input: D,Q,∆, T, c.

1: ǫ1 = ǫ/4, ρ = Lap (∆/ǫ1)
2: ǫ2 = ǫ− ǫ1, count = 0

3: for each query qi ∈ Q do

4: νi = Lap (∆/ǫ2)
5: if qi(D) + νi ≥ T + ρ then

6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.

8: else

9: Output ai = ⊥

Algorithm 5 SVT in Stoddard et al. 2014 [20].

Input: D,Q,∆, T .

1: ǫ1 = ǫ/2, ρ = Lap (∆/ǫ1)
2: ǫ2 = ǫ− ǫ1
3: for each query qi ∈ Q do

4: νi = 0
5: if qi(D) + νi ≥ T + ρ then

6: Output ai = ⊤
7:

8: else

9: Output ai = ⊥

Algorithm 6 SVT in Chen et al. 2015 [1].

Input: D,Q,∆,T = T1, T2, · · · .

1: ǫ1 = ǫ/2, ρ = Lap (∆/ǫ1)
2: ǫ2 = ǫ− ǫ1
3: for each query qi ∈ Q do

4: νi = Lap (∆/ǫ2)
5: if qi(D) + νi ≥ Ti + ρ then

6: Output ai = ⊤
7:

8: else

9: Output ai = ⊥

Figure 1: A selection of SVT variants

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6

ǫ1 ǫ/2 ǫ/2 ǫ/2 ǫ/4 ǫ/2 ǫ/2
Scale of threshold noise ρ ∆/ǫ1 c∆/ǫ1 ∆/ǫ1 ∆/ǫ1 ∆/ǫ1 ∆/ǫ1

Reset ρ after each output of ⊤ (unnecessary) Yes

Scale of query noise νi 2c∆/ǫ2 2c∆/ǫ2 c∆/ǫ2 ∆/ǫ2 0 ∆/ǫ2
Outputting qi + νi instead of ⊤ (not private) Yes

Outputting unbounded ⊤’s (not private) Yes Yes

Privacy Property ǫ-DP ǫ-DP ∞-DP
(

1+6c
4

ǫ
)

-DP ∞-DP ∞-DP

Figure 2: Differences among Algorithms 1 ∼ 6.

∗ Algorithms 1 and 6 use a sequence of thresholds T = T1, T2, · · · , allowing different thresholds for different queries. The other

algorithms use the same threshold T for all queries. We point out that this difference is mostly syntactical. In fact, having an SVT where

the threshold always equals 0 suffices. Given a sequence of queries q1, q2, · · · , and a sequence of thresholds T = T1, T2, · · · , we can

define a new sequence of queries ri = qi − Ti, and apply the SVT to ri using 0 as the threshold to obtain the same result. In this paper,

we decide to use thresholds to be consistent with the existing papers.

3

query answer qi(D) + νi, instead of an indicator ⊤. This

makes it non-private.

4. Keep track of the number of ⊤’s in the output, and stop when

one has outputted c⊤’s (Line 7). This step is missed in Alg. 5

and 6. Without this limitation, one is answering a potentially

unbounded number of queries with a fixed accuracy level for

each query. This is not private.

3.1 Privacy Proof for Alg. 1
Before proving that Alg. 1 is private, we first give a “fake proof”

of privacy for Alg. 6 to illustrate both the power of SVT and the

misunderstandings behind Alg. 4, 5, and 6. While this “proof” is

incorrect, the correct portion of it is used in the proof for Alg. 1.

For any output vector a = {⊤,⊥}ℓ, let ai denote the i-th com-
ponent of a, I⊤ = {i : ai = ⊤}, and I⊥ = {i : ai = ⊥}. We
have the probability of outputting a over D as follows:

Pr[A(D) = a] =

∫

∞

−∞

Pr[ρ=z]
∏

i∈I⊤

Pr[qi(D)+νi≥Ti+z]

∏

i∈I⊥

Pr[qi(D)+νi<Ti+z] dz (1)

=

∫

∞

−∞

Pr[ρ=z]
∏

i∈I⊤

Pr[qi(D)+νi≥Ti+z] dz

×

∫

∞

−∞

Pr[ρ=z]
∏

i∈I⊥

Pr[qi(D)+νi<Ti+z] dz (2)

That is, to compute the probability Pr[A(D) = a], we integrate

over all possible values for ρ, the noise added to the threshold. Con-

ditioned on ρ taking a particular value z, the probability that a is

the output is the product of the probabilities that per-query noise νi
takes an appropriate value to cause the corresponding query qi to

result in the output (⊤ or ⊥) indicated by a.
Of course, the step from (1) to (2), which breaks one integration

into two, is incorrect. This is the main mistake made in the thinking
behind Alg. 4, 5, and 6. However, accepting (2), we can then prove
that Alg. 6 is private. For any neighboring D,D′, we have:

Pr[A(D) = a]

Pr[A(D′) = a]
=

∫

∞

−∞
Pr[ρ=z]

∏

i∈I⊤

Pr[qi(D)+νi≥Ti+z] dz

∫

∞

−∞
Pr[ρ=z]

∏

i∈I⊤

Pr[qi(D′)+νi≥Ti+z] dz
(3)

×

∫

∞

−∞
Pr[ρ=z]

∏

i∈I⊥

Pr[qi(D)+νi<Ti+z] dz

∫

∞

−∞
Pr[ρ=z]

∏

i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(4)

We now prove that (4) is bounded by e
ǫ
2 , and the same logic

applies to (3). This then completes the “proof”.
∫∞
−∞ Pr[ρ=z]

∏

i∈I⊥

Pr[qi(D)+νi<Ti+z] dz

∫∞
−∞

Pr[ρ=z]
∏

i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(5)

=

∫∞
−∞ Pr[ρ=z−∆]

∏

i∈I⊥

Pr[qi(D)+νi<Ti+z−∆] dz

∫∞
−∞ Pr[ρ=z]

∏

i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(6)

≤

∫∞
−∞ e

ǫ
2 Pr[ρ=z]

∏

i∈I⊥

Pr[qi(D)+νi<Ti+z−∆] dz

∫∞
−∞

Pr[ρ=z]
∏

i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(7)

≤e
ǫ
2

∫∞
−∞ Pr[ρ=z]

∏

i∈I⊥

Pr[qi(D
′)−∆+νi<Ti+z−∆] dz

∫∞
−∞

Pr[ρ=z]
∏

i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(8)

=e
ǫ
2

The step from (5) to (6) is by a change of integration variable

from z to z − ∆. The next step is because of Pr[ρ=z−∆] ≤

e
ǫ
2Pr[ρ=z], due to ρ = Lap (2∆/ǫ) and the property of the

Laplace distribution. The step from (7) to (8) is by replacing qi(D)
with qi(D

′)−∆, which is ≤ qi(D) because the global sensitiv-

ity of all queries is ∆. Replacing the left hand of the condition

“qi(D)+νi < Ti+ z−∆” with a smaller term cannot decrease

the probability for the condition to hold. After (8), the integration

terms on the numerator and denominator cancel out.

The power of SVT comes from the above derivation. By

adding a noise to the threshold, one can compare what happens

with D′ and threshold noise z with what happens under input D
and threshold noise z−∆, and bound the probability ratio for all ⊥
outputs, no matter how many such outputs there are.

Observe that in the above reasoning we have not used any prop-

erty of νi. In fact, even if νi = 0, as in Alg. 5, the proof will go

through. This underlies Alg. 5’s design of setting νi = 0.

Also, one can similarly bound the term in (3) by using ρ = z+
∆ to change the integration variable. This “proves” the privacy

of Alg. 6, assuming that the step from (1) to (2) is correct.

However, when one cannot use (2) for Pr[A(D) = a], the prob-

abilities for ⊤ outputs and ⊥ outputs are under one integration; one

has to choose whether to use ρ = z−∆ or ρ = z+∆ when chang-

ing the integration variable, and cannot do both. Typically, one

chooses the former to bound all ⊥ outputs, and then rely on adding

sufficient noises to each query to bound the ⊤ outputs.

THEOREM 1. Alg. 1 is ǫ-DP.

PROOF. Consider any a ∈ {⊥,⊤}ℓ. Let a = 〈a1, · · · , aℓ〉,
I⊤ = {i : ai = ⊤}, and I⊥ = {i : ai = ⊥}. Let

fi(D, z) = Pr[qi(D)+νi<Ti+z] (9)

gi(D, z) = Pr[qi(D)+νi≥Ti+z] . (10)

We have

Pr[A(D) = a]

Pr[A(D′) = a]

=

∫∞
−∞ Pr[ρ=z]

∏

i∈I⊥

fi(D, z)
∏

i∈I⊤

gi(D, z) dz

∫∞
−∞

Pr[ρ=z]
∏

i∈I⊥

fi(D′, z)
∏

i∈I⊤

gi(D′, z) dz
(11)

=

∫∞
−∞ Pr[ρ=z−∆]

∏

i∈I⊥

fi(D, z−∆)
∏

i∈I⊤

gi(D, z−∆) dz

∫∞
−∞

Pr[ρ=z]
∏

i∈I⊥

fi(D′, z)
∏

i∈I⊤

gi(D′, z) dz
(12)

≤

∫∞
−∞ eǫ1Pr[ρ=z]

∏

i∈I⊥

fi(D
′, z)

∏

i∈I⊤

gi(D, z−∆) dz

∫∞
−∞

Pr[ρ=z]
∏

i∈I⊥

fi(D′, z)
∏

i∈I⊤

gi(D′, z) dz
(13)

≤

∫∞
−∞

eǫ1Pr[ρ=z]
∏

i∈I⊥

fi(D′, z)
∏

i∈I⊤

e
ǫ2
c gi(D′, z) dz

∫∞
−∞

Pr[ρ=z]
∏

i∈I⊥

fi(D′, z)
∏

i∈I⊤

gi(D′, z) dz
(14)

≤eǫ1
(

e
ǫ2
c

)c
= eǫ1+ǫ2 = eǫ

From (11) to (13) uses the same logic as from (5) to (8). The step

to (14) is because gi(D, z−∆) ≤ e
ǫ2
c gi(D

′, z), proven below.

This step uses the fact that noise νi added to each query answer.

The last step is because |I⊤| ≤ c, i.e., there are at most c positive

outcomes.

gi(D, z−∆) = Pr[qi(D)+νi≥Ti+z−∆]

≤ Pr
[

qi(D
′)+∆+νi ≥ Ti+z−∆

]

(15)

= Pr
[

qi(D
′)+νi ≥ Ti+z−2∆

]

≤ e
ǫ2
c Pr

[

qi(D
′)+νi ≥ Ti + z

]

(16)

4

= e
ǫ2
c gi(D

′, z).

Eq. (15) is because qi(D) ≤ ∆+qi(D′), and Eq. (16) is because

νi is sampled from the distribution Lap
(

2c∆
ǫ2

)

.

3.2 Privacy Properties of Other Variants

Alg. 2 is taken from the differential privacy book published in

2014 [8]. It satisfies ǫ-DP. It has two differences when compared

with Alg. 1. First, ρ follows Lap (c∆/ǫ1) instead of Lap (∆/ǫ1).
This causes Alg. 2 to have significantly worse accuracy than Alg. 1,

as we show in Section 6. Second, Alg. 2 refreshes the threshold

noise ρ after each output of ⊤. We note that making the threshold

noise scale with c is necessary only if one refreshes the this noise

after each output of ⊤; however, such refreshing is unnecessary.

Alg. 3 is taken from [17], which in turn was abstracted from the
algorithms used in [11, 12]. It has two differences from Alg. 1.
First, νi follows Lap (c∆/ǫ2) instead of Lap (2c∆/ǫ1); this is not

enough for ǫ-DP (even though it suffices for 3ǫ
2

-DP). Second, it

actually outputs the noisy query answer instead of ⊤ for a query
above the threshold. This latter fact causes Alg. 3 to be not ǫ′-DP
for any finite ǫ′. A proof for this appeared in Appendix A of [22];
for completeness, see Appendix (Section 11.1) for the proof. The
error in the proof for Alg. 3’s privacy in [17] occurs in the following
steps:

Pr[A(D) = a]

=

∫

∞

−∞

Pr[ρ=z]
∏

i∈I⊥

fi(D, z)
∏

i∈I⊤

Pr[qi(D)+νi≥T+z∧qi(D)+νi=ai] dz

=

∫

∞

−∞

Pr[ρ=z]
∏

i∈I⊥

fi(D, z)
∏

i∈I⊤

Pr[qi(D)+νi = ai] dz (17)

The error occurs when going to (17), which is implicitly done

in [17]. This step removes the condition qi(D)+νi ≥ T+z.

Outputting the positive query answers reveals information about

the noisy threshold, since the noisy threshold must be ≤ all the out-

putted query answers. Once information about the noisy threshold

is leaked, the ability to answer each negative query “for free” disap-

pears. Mathematically, the integration is no longer
∫ ∞

−∞
, but

∫m

−∞
,

where m is the smallest outputted query answer; and any change

in the integration variable also changes the integration boundary,

making it impossible to cancel out matching terms.

Alg. 4, taken from [14], differs from Alg. 1 in the following ways.

First, it sets ǫ1 to be ǫ/4 instead of ǫ/2. This has no impact on the

privacy. Second, νi does not scale with c. As a result, Alg. 4 is

only
(

1+6c
4

)

ǫ-DP in general. In [14], Alg. 4 is applied for finding

frequent itemsets, where the queries are counting queries and are

monotonic. Because of this monotonicity, the usage of Alg. 4 here

is
(

1+3c
4

)

ǫ-DP. Theorem 2 can be applied to Alg. 4 to establish this

privacy property; we thus omit the proof of this.

Alg. 5 and Alg. 6 do not satisfy ǫ-DP for any finite ǫ. A proof
for Alg. 6 is given in Appendix B of [22]. For completeness, we
include it in Appendix 11.2. While this proof also applies to Alg. 5,
here we give a simpler proof, using a counterexample with T = 0,
∆ = 1, q = 〈q1, q2〉 such that q(D) = 〈0, 1〉 and q(D′) = 〈1, 0〉,
and a = 〈⊥,⊤〉. From Eq. (1), we have

Pr[A(D) = a] =

∫

∞

−∞

Pr[ρ = z]Pr[0 < z]Pr[1 ≥ z] dz

=

∫

1

0

Pr[ρ = z] dz > 0,

Pr
[

A(D
′
) = a

]

=

∫

∞

−∞

Pr
[

ρ = z
′]

Pr
[

1 < z
′]

Pr
[

0 ≥ z
′]

dz
′
,

which is zero. So the probability ratio
Pr[A(D)=a]
Pr[A(D′)=a]

= ∞.

Other Variants. Some usages of SVT aim at satisfying (ǫ, δ)-
DP [5], instead of ǫ-DP. These often exploit the advanced compo-

sition theorem for DP [9], which states that applying k instances of

ǫ-DP algorithms satisfies (ǫ′, δ′)-DP, where ǫ′ =
√

2k ln(1/δ′)ǫ+
kǫ(eǫ − 1). In this paper, we limit our attention to SVT variants

to those satisfying ǫ-DP, which are what have been used in the data

mining community [1, 14, 19, 20].

The SVT used in [12, 18] has another difference from Alg. 3.

In [12, 18], the goal of using SVT is to determine whether the error

of using an answer derived from past queries/answers is below a

threshold T . This check takes the form of “if |q̃i − qi(D) + νi| ≥
T + ρ then output i,” where q̃i gives the estimated answer of

a query obtained using past queries/answers, and qi(D) gives the

true answer. This is incorrect because the noise νi should be out-

side the absolute value sign. In the usage in [12, 18], the left hand

of the comparison is always ≥ 0; thus whenever the output in-

cludes at least one ⊤, one immediately knows that the threshold

noise ρ≥−T . This leakage of ρ is somewhat similar to Alg. 3’s

leakage caused by outputting noisy query answers that are found to

be above the noisy threshold. This problem can be fixed by using

“if |q̃i − qi(D)|+ νi ≥ T + ρ then output i” instead. By view-

ing ri = |q̃i − qi(D)| as the query to be answered, this becomes a

standard application of SVT.

3.3 Error in Privacy Analysis of GPTT
In [2], the SVT variants in [14, 20, 1] were modeled as a gen-

eralized private threshold testing algorithm (GPTT). In GPTT, the

threshold T is perturbed using ρ = Lap (∆/ǫ1) and each query

answer is perturbed using Lap (∆/ǫ2) and there is no cutoff; thus

GPTT can be viewed as a generalization of Algorithm 6. When

setting ǫ1 = ǫ2 = ǫ
2

, GPTT becomes Alg. 6.

There is a constructive proof in [2] to show that GPTT is not

ǫ′-DP for any finite ǫ′. However, this proof is incorrect. This er-

ror is quite subtle. We discovered the error only after observing

that the technique of the proof can be applied to show that Alg. 1

(which we have proved to be private) to be non-private. The de-

tailed discussion of this error is quite technical, and is included in

Appendix 11.3.

4. OPTIMIZING SVT
Alg. 1 can be viewed as allocating half of the privacy budget

for perturbing the threshold and half for perturbing the query an-

swers. This allocation is somewhat arbitrary, and other allocations

are possible. Indeed, Alg. 4 uses a ratio of 1 : 3 instead of 1 : 1.

In this section, we study how to improve SVT by optimizing this

allocation ratio and by introducing other techniques.

4.1 A Generalized SVT Algorithm
We present a generalized SVT algorithm in Alg. 7, which uses

ǫ1 to perturb the threshold and ǫ2 to perturb the query answers.

Furthermore, to accommodate the situations where one wants the

noisy counts for positive queries, we also use ǫ3 to output query

answers using the Laplace mechanism.

We now prove the privacy for Alg. 7; the proof requires only

minor changes from the proof of Theorem 1.

THEOREM 2. Alg. 7 is (ǫ1 + ǫ2 + ǫ3)-DP.

PROOF. Alg. 7 can be divided into two phases, the first phase

outputs a vector to mark which query is above the threshold and the

second phase uses the Laplace mechanism to output noisy counts

for the queries found to be above the threshold in the first phase.

5

Algorithm 7 Our Proposed Standard SVT

Input: D,Q,∆,T = T1, T2, · · · , c and ǫ1, ǫ2 and ǫ3.

Output: A stream of answers a1, a2, · · ·

1: ρ = Lap
(

∆
ǫ1

)

, count = 0

2: for Each query qi ∈ Q do

3: νi = Lap
(

2c∆
ǫ2

)

4: if qi(D) + νi ≥ Ti + ρ then

5: if ǫ3 > 0 then

6: Output ai = qi(D) + Lap
(

c∆
ǫ3

)

7: else

8: Output ai = ⊤

9: count = count + 1, Abort if count ≥ c.

10: else

11: Output ai = ⊥

Since the second phase is ǫ3-DP, it suffices to show that the first

phase is (ǫ1 + ǫ2)-DP, which can be obtained by Theorem 1.

4.2 Optimizing Privacy Budget Allocation
In Alg. 7, one needs to decide how to divide up a total privacy

budget ǫ into ǫ1, ǫ2, ǫ3. We note that ǫ1 + ǫ2 is used for outputting

the indicator vector, and ǫ3 is used for outputting the noisy counts

for queries found to be above the threshold; thus the ratio of (ǫ1 +
ǫ2) : ǫ3 is determined by the domain needs and should be an input

to the algorithm.
On the other hand, the ratio of ǫ1 : ǫ2 affects the accuracy of

SVT. Most variants use 1 : 1, without a clear justification. To
choose a ratio that can be justified, we observe that this ratio affects
the accuracy of the following comparison:

qi(D) + Lap

(

2c∆

ǫ2

)

≥ T + Lap

(

∆

ǫ1

)

.

To make this comparison as accurate as possible, we want to min-

imize the variance of Lap
(

∆
ǫ1

)

− Lap
(

2c∆
ǫ2

)

, which is

2

(

∆

ǫ1

)2

+ 2

(

2c∆

ǫ2

)2

,

when ǫ1 + ǫ2 is fixed. This is minimized when

ǫ1 : ǫ2 = 1 : (2c)2/3. (18)

We will evaluate the improvement resulted from this optimization

in Section 6.

4.3 SVT for Monotonic Queries
In some usages of SVT, the queries are monotonic. That is, when

changing from D to D′, all queries whose answers are different

change in the same direction, i.e., there do not exist qi, qj such that

(qi(D) > qi(D
′)) ∧ (qj(D) < qj(D

′)). That is, we have either

∀i qi(D) ≥ qi(D
′), or ∀i qi(D

′) ≥ qi(D). This is the case when

using SVT for frequent itemset mining in [14] with neighboring

datasets defined as adding or removing one tuple. For monotonic

queries, adding Lap
(

c∆
ǫ2

)

instead of Lap
(

2c∆
ǫ2

)

suffices for pri-

vacy.

THEOREM 3. Alg. 7 with νi = Lap
(

c∆
ǫ2

)

in line 3 satisfies

(ǫ1 + ǫ2 + ǫ3)-DP when all queries are monotonic.

PROOF. Because the second phase of Alg. 7 is still ǫ3-DP, we

just need to show that for any output vector a ∈ {⊤,⊥}ℓ,

Pr[A(D) = a] =

∫ ∞

−∞
Pr[ρ=z]

∏

i∈I⊥

fi(D, z)
∏

i∈I⊤

gi(D, z) dz

≤ eǫ1+ǫ2Pr
[

A(D′) = a

]

.

First consider the case that ∀i qi(D) ≥ qi(D
′). In this case, we

always have
fi(D,z)
fi(D

′,z)
≤ 1 and do not need to change the integration

variable to bound the ratio of the fi terms. Because of this, having

νi = Lap
(

c∆
ǫ2

)

suffices to bound the ratio of the gi terms. That is,

fi(D, z) = Pr[qi(D) + νi < Ti + z] =

≤ Pr
[

qi(D
′) + νi < Ti + z

]

= fi(D
′, z),

gi(D, z) = Pr[qi(D) + νi ≥ Ti + z] ≤ Pr
[

qi(D
′) + νi +∆ ≥ Ti + z

]

≤ e
ǫ2
c Pr

[

qi(D
′) + νi ≥ Ti + z

]

= e
ǫ2
c gi(D

′, z).

Thus, noting that |I⊤| ≤ c,

Pr[A(D) = a] ≤

∫ ∞

−∞
Pr[ρ=z]

∏

i∈I⊥

fi(D
′, z)

∏

i∈I⊤

e
ǫ2
c gi(D

′, z) dz

≤
(

e
ǫ2
c

)c
Pr

[

A(D′) = a

]

< eǫ1+ǫ2Pr
[

A(D′) = a

]

.

Then consider the case in which ∀i qi(D) ≤ qi(D
′). Noting that

qi(D) ≥ qi(D
′)−∆, we can have

fi(D, z −∆) = Pr[qi(D) + νi < Ti + z −∆]

≤ Pr
[

qi(D
′)−∆+ νi < Ti + z −∆

]

= fi(D
′, z),

and Pr[ρ=z −∆] ≤ eǫ1Pr[ρ=z] .

With the constraint qi(D) ≤ qi(D
′), we have

gi(D, z −∆) = Pr[qi(D) + νi ≥ Ti + z −∆]

≤ Pr
[

qi(D
′) + νi ≥ Ti + z −∆

]

≤ e
ǫ2
c Pr

[

qi(D
′) + νi ≥ Ti + z

]

= e
ǫ2
c gi(D

′, z).

Thus, with a change of integration variable from z to z −∆,

Pr[A(D) = a]

=

∫ ∞

−∞
Pr[ρ=z −∆]

∏

i∈I⊥

fi(D, z −∆)
∏

i∈I⊤

gi(D, z −∆) dz

≤

∫ ∞

−∞
eǫ1Pr[ρ=z]

∏

i∈I⊥

fi(D
′, z)

∏

i∈I⊤

e
ǫ2
c gi(D

′, z) dz

≤ eǫ1+ǫ2Pr
[

A(D′) = a

]

.

For monotonic queries, the optimization of privacy budget allo-

cation (18) becomes ǫ1 : ǫ2 = 1 : c2/3.

5. SVT VERSUS EM
We now discuss the application of SVT in the non-interactive

setting, where all the queries are known ahead of time. We note that

most recent usages of SVT, e.g., [1, 14, 19, 20, 21], are in the non-

interactive setting. Furthermore, these applications of SVT aim at

selecting up to c queries with the highest answers. In [14], SVT

is applied to find the c most frequent itemsets, where the queries

are the supports for the itemsets. In [1], the goal of using SVT is

to determine the structure of a Bayesian network that preserves as

much information of the dataset as possible. To this end, they select

attribute groups that are highly correlated and create edges for such

groups in the network. While the algorithm in [1] takes the form

of selecting attribute groups with a score above a certain threshold,

the real goal is to select the groups with the highest scores. In [19],

SVT is used to select parameters to be shared when trying to learn

neural-network models in a private fashion. Once selected, noises

6

are added to these parameters before they are shared. The selection

step aims at selecting the parameters with the highest scores.

EM or SVT. In a non-interactive setting, one can also use the

Exponential Mechanism (EM) [16] to achieve the same objective of

selecting the top c queries. More specifically, one runs EM c times,

each round with privacy budget ǫ
c

. The quality for each query is its

answer; thus each query is selected with probability proportion to

exp
(

ǫ
2c∆

)

in the general case and to exp
(

ǫ
c∆

)

in the monotonic

case. After one query is selected, it is removed from the pool of

candidate queries for the remaining rounds.

An intriguing question is which of SVT and EM offers higher

accuracy. Theorem 3.24 in [8] regarding the utility of SVT with

c = ∆ = 1 states: For any sequence of k queries f1, . . . , fk such

that |{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close

to being above threshold is possibly the last one), SVT is (α, β)
accurate (meaning that with probability at least 1 − β, all queries

with answers below T −α result in ⊥ and all queries with answers

above T − α result in ⊤) for: αSVT = 8(log k + log(2/β))/ǫ.
In the case where the last query is at least T + α, being (α, β)-

correct ensures that with probability at least 1−β, the correct selec-

tion is made. For the same setting, we say that EM is (α, β)-correct

if given k − 1 queries with answer ≤ T − α and one query with

answer ≥ T + α, the correct selection is made with probability

at least 1 − β. The probability of selecting the query with answer

≥ T + α is at least eǫ(T+α)/2

(k−1)eǫ(T−α)/2+eǫ(T+α)/2 by the definition of

EM. To ensure this probability is at least 1− β,

αEM = (log(k − 1) + log((1− β)/β))/ǫ,

which is less than 1/8 of the αSVT, which suggests that EM is more

accurate than SVT.

The above analysis relies on assuming that the first k−1 queries

are no more than T − α. When that is not assumed, it is difficult

to analyze the utility of either SVT or EM. Therefore, we will use

experimental methods to compare SVT with EM.

SVT with Retraversal. We want to find the most optimized ver-

sion of SVT to compare with EM, and note that another interest-

ing parameter that one can tune when applying SVT is that of the

threshold T . When T is high, the algorithm may select fewer than

c queries after traversing all queries. Since roughly each selected

query consumes 1
c

’th of the privacy budget, outputting fewer than

c queries “wastes” the remaining privacy budget. When T is low,

however, the algorithm may have selected c queries before encoun-

tering later queries. No matter how large some of these later query

answers are, they cannot be selected.

We observe that in the non-interactive setting, there is a way to

deal with this challenge. One can use a higher threshold T , and

when the algorithm runs out of queries before finding c above-

threshold queries, one can retraverse the list of queries that have

not been selected so far, until c queries are selected. However, it

is unclear how to select the optimal threshold. In our experiments,

we consider SVT-ReTr, which increases the threshold T by differ-

ent multiples of the scale factor of the Laplace noise injected to

each query, and applies the retraversal technique.

6. EVALUATION
In this section, we experimentally compare the different versions

of the SVT algorithm, including our proposed SVT algorithm with

different privacy budget allocation methods. We also compare the

SVT variants applicable in the non-interactive setting with EM.

We use three metrics to compare the different algorithms, and

now explain the rationale for using these metrics. For an algorithm

A and input dataset D, let UA(D) denote an output from running

A on D. UA(D) is an unranked set of queries. When A is EM,

UA(D) has exactly c queries. When A is an SVT algorithm, UA(D)

may include < c queries. The ground truth is given by the set of all

queries and their true answers. Algorithm A provides better utility

if UA(D) better matches the ground truth.

F-measure . Let UT denote the c queries with the highest answers.

When using UT as the ground truth, we want to compute the util-

ity of a computed unordered set UA(D) against a ground truth un-

ordered set UT . We use the widely used F-measure [15] which is

the harmonic mean of precision and recall, i.e.,

F =
2PR

P +R
,

where P =
|UA(D) ∩ UT |

|UA(D)|
, R =

|UA(D) ∩ UT |

|UT |
.

We note that when |UA(D)| = |UT |, the precision equals the recall,

and the F-measure equals the precision, and can also be interpreted

as 1 minus the false negative rate.

Normalized Cumulative Gain (NCG) . The F-measure uses only

the unordered set UT as the ground truth. As a result, missing the

query with the highest answer is penalized the same as missing

the c’th one. To address this limitation, we can assign a relevance

score rel(q) to each query q, and use the Normalized Cumulative

Gain (NCG) metric [13]:

NCG(UA(D)) =

∑

q∈UA(D) rel(q)

c
.

We point out that since the SVT and EM algorithms output an un-

order set of queries, we cannot use discounted cumulative gain or

normalized discounted cumulative gain [13], which discount the

gain of a query based on which position it is outputted. Below,

we use two instantiations of NCG, by choosing different relevance

score functions.

Normalized Cumulative Rank (NCR) . We first define rel(q) to

be q’s rank score as follows: the highest query has a score of c, the

next one has score c−1, and so on. Thus, the c’th query has a score

of 1. All other queries have a score of 0. To normalize this into a

value between 0 and 1, we divide the sum of relevance scores by

the maximum possible score,
c(c+1)

2
. This gives rise to what we

call the Normalized Cumulative Rank (NCR); this metric uses the

true rank information of the top c queries.

Normalized Cumulative Support (NCS) . Using NCR still misses

some information. Selecting a query with a very low answer will be

penalized the same as selecting the (c+1)’th query, whose answer

may be quite close to the c’th query. We thus define rel(q) to be the

true answer of q, which we call the support of q. To normalize this

into a value between 0 and 1, we divide the cumulative support by

the maximum possible support, that is,

NCS(UA(D)) =

∑

q∈UA(D)
q(D)

∑

q∈UT
q(D)

.

This measures the ratio of cumulative supports by selecting UA(D)

to the total supports of queries in UT . This metric uses the actual

query answer values.

All the above three metrics, F-measure, NCR and NCS are in the

range [0.0, 1.0], where higher values indicate better accuracy. We

present results under these metrics and observe that the correlation

among them is quite stable.

7

Table 1: Dataset characteristics

Dataset Number of Records Number of Queries

BMS-POS 515,597 1,657

Kosarak 990,002 41,270

AOL 647,377 2,290,685

Zipf 10,000,000 10,000

Table 2: Summary of algorithms

Settings Methods Description

Interactive
SVT-DPBook DPBook SVT (Alg. 2).

SVT-S Standard SVT (Alg. 7).

Non-interactive
SVT-ReTr Standard SVT with Re-

traversal.

EM Exponential Mecha-

nism.

Datasets. We use the item frequencies in three real datasets: BMS-

POS, Kosarak and AOL as representative distributions of query

scores. That is, each item is viewed as a query, and the answer

to the query is the support of the item. In addition, we also use the

distribution inspired by the Zipf’s law, which states that given some

corpus of natural language utterances, the frequency of any word is

inversely proportional to its rank in the frequency table. Similar

phenomenon occurs in many other rankings unrelated to language,

such as the population ranks of cities in various countries, corpo-

ration sizes, income rankings, ranks of number of people watching

the same TV channel, and so on. In this distribution, the i’th query

has a score proportional to 1
i
. The characteristics of these datasets

are summarized in Table 1.

Evaluation Setup. We consider the following algorithms. SVT-

DPBook is from the book [8] (Alg. 2). SVT-S is our proposed

standard SVT, i.e., Alg. 7 without numerical outputs (ǫ3 = 0); and

since the count query is monotonic, we use the version for mono-

tonic queries in Section 4.3. We consider four privacy budget allo-

cations, 1:1, 1:3, 1:c and 1:c2/3, where the last is what our analysis

suggests for the monotonic case. These algorithms can be applied

in the interactive as well as the non-interactive setting.

For the non-interactive setting, we consider EM and SVT-ReTr,

which increases the threshold and retraverses through the queries

until c of them are selected. We use the 1:c2/3 privacy budget allo-

cation and consider 3 variants: 1D, 3D, and 5D, where 1D means

adding one standard deviation of the added noises to the threshold.

We vary c from 50 to 300, and uses the average score for the

c’th query and the c+1’th query as the threshold. We show results

for privacy budget varied from ǫ = 0.1 to ǫ = 2.0. We run each

experiment 100 times, each time randomizing the order of queries

to be examined. We report the average and standard deviation of

the three metrics, F-measure, NCR and NCS. All algorithms are

implemented in Python 2.7 and all the experiments are conducted

on an Intel Core i7-3770 3.40GHz PC with 16GB memory.

Results in the Interactive Setting. Figure 3 reports the results

for the algorithms that can be applied in the interactive setting for

ǫ = 0.25. Each row is for one dataset, and each column is for

one metric. While it is clear that in some settings (such as when

c = 50) all methods are quite accurate, and in some other set-

tings (such as when c ≥ 250) all methods are very inaccurate,

in the settings between the two extremes, the differences among

these methods are quite large. SVT-DPBook performs the worst,

followed by SVT-S-1:1, then by SVT-S-1:3, and finally by SVT-

S-1:c and SVT-S-1:c23. The differences among these algorithms

can be quite pronounced. For example, from Figure 3(f), when

c = 100, SVT-DPBook’s NCS is 0.238, which means that the av-

erage support of selected queries is only around 24% of that for the

true top-100 queries, which we interpret to mean that the output

is meaningless. In contrast, all four SVT-S algorithms have NCS

greater than 0.85, suggesting high accuracy in the selection. SVT-

DPBook’s poor performance is due to the fact that the threshold is

perturbed by a noise with scale as large as c∆/ǫ.
Among the four budget allocation approaches, it appears that the

performance of 1 : c and 1 : c
2
3 are clearly better than the others;

and their advantages over the standard 1 : 1 allocation is quite

pronounced. Using 1 : c
2
3 is clearly the best, although its advantage

over using 1 : c is small.

Results in the Non-interactive Setting. Figure 4 reports the re-

sults for the algorithms that can be applied in the non-interactive

setting. We observe that EM clearly performs better than SVT-

ReTr-1:c23-1D, which performs noticeably better than SVT-S-

1:c23, which is the best algorithm for the interactive setting.

It is interesting to see that increasing the threshold can signifi-

cantly improve the accuracy of SVT with retraversal. However, the

best threshold increment value depends on the number of queries

to be selected. For example, 5D works well when c is large, but

works not as well when c is small. Since it is unclear how to select

the best threshold increment value, and even with the best threshold

increment, SVT-ReTr performs no better than EM, our experiments

suggest that usage of SVT should be replaced by EM in the non-

interactive setting.

Varying the privacy budget. Figures 5, 6, and 7, compare eight

methods while varying both the privacy budget ǫ from 0.1 ro 2.0
and c from 50 to 300. We use heatmap and plot 1.0 minus the

metric values, so that blue and green denote metric values close to

1.0. In each figure, the first row are interactive algorithms and the

second row are non-interactive algorithms. The observations we

made above continue to hold. Also note that for any dataset and

any ǫ, the accuracy levels that SVT-DPBook achieves for finding

top-50 queries are about the same as what SVT-S-1:c23 achieves

for finding top-150 queries, and what EM achieves for finding top-

250 or 300 queries.

Recommendations. In summary, our recommendations regarding

SVT, based on analysis and experiments, are:

1. In interactive settings, use our proposed standard SVT

(Alg. 1) and choose ǫ1
ǫ2

= 1

(2c)2/3
for the general case, and

ǫ1
ǫ2

= 1

(c)2/3
for the monotonic case.

2. In non-interactive settings, do not use SVT and use EM

instead. If one gets better performance using SVT than

using EM, then it is likely that one’s usage of SVT is non-

private.

7. RELATED WORK
SVT was introduced by Dwork et al. [7], and improved by Roth

and Roughgarden [18] and by Hardt and Rothblum [12]. These

usages are in an interactive setting. An early description of SVT as

a stand-alone technique appeared in Roth’s 2011 lecture notes [17],

which is Alg. 3 in this paper, and is in fact ∞-DP. The algorithms

in [18, 12] also have another difference, as discussed in Section 3.2.

Another version of SVT appeared in the 2014 book [8], which is

Alg. 2. This version is used in some papers, e.g., [19]. We show

that it is possible to add less noise and obtain higher accuracy for

the same privacy parameter.

8

SVT-DPBook SVT-S-1:1 SVT-S-1:3 SVT-S-1:c23 SVT-S-1:c

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F
-m

e
a
s
u
re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(a) Zipf, F-measure (b) Zipf, NCR (c) Zipf, NCS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F
-m

e
a
s
u
re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(d) Kosarak, F-measure (e) Kosarak, NCR (f) Kosarak, NCS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F
-m

e
a
s
u
re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(g) AOL, F-measure (h) AOL, NCR (i) AOL, NCS

Figure 3: Comparison of interactive approaches. Privacy budget ǫ = 0.25. x-axis: c

SVT-S-1:c23 SVT-ReTr-1:c23-1D SVT-ReTr-1:c23-3D SVT-ReTr-1:c23-5D EM

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F
-m

e
a
s
u
re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(a) Zipf, F-measure (b) Zipf, NCR (c) Zipf, NCS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F
-m

e
a
s
u
re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(d) Kosarak, F-measure (e) Kosarak, NCR (f) Kosarak, NCS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F
-m

e
a
s
u
re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(g) AOL, F-measure (h) AOL, NCR (i) AOL, NCS

Figure 4: Comparison of non-interactive approaches. Privacy budget ǫ = 0.1. x-axis: c.

9

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

(a) SVT-DPBook (b) SVT-S-1:1 (c) SVT-S-1:3 (d) SVT-S-1:c23

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

(e) SVT-ReTr-1:c23-1D (f) SVT-ReTr-1:c23-3D (g) SVT-ReTr-1:c23-5D (f) EM

Figure 5: The heatmap by varying ǫ and c on BMS-POS dataset, measured by 1.0− F-measure.

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

(a) SVT-DPBook (b) SVT-S-1:1 (c) SVT-S-1:3 (d) SVT-S-1:c23

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

(e) SVT-ReTr-1:c23-1D (f) SVT-ReTr-1:c23-3D (g) SVT-ReTr-1:c23-5D (f) EM

Figure 6: The heatmap by varying ǫ and c on AOL dataset, measured by 1.0− NCR.

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

(a) SVT-DPBook (b) SVT-S-1:1 (c) SVT-S-1:3 (d) SVT-S-1:c23

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0

ε

c

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

(e) SVT-ReTr-1:c23-1D (f) SVT-ReTr-1:c23-3D (g) SVT-ReTr-1:c23-5D (f) EM

Figure 7: The heatmap by varying ǫ and c on Kosarak dataset, measured by 1.0− NCS.

10

Lee and Clifton [14] used a variant of SVT (see Algorithm 4)

to find itemsets whose support is above the threshold. Stoddard

et al. [20] proposed another variant (see Algorithm 5) for private

feature selection for classification to pick out the set of features

with scores greater than the perturbed threshold. Chen et al. [1]

employed yet another variant of SVT (see Algorithm 6) to return

attribute pairs with mutual information greater than the correspond-

ing noisy threshold. These usages are not private. Some of these

errors were pointed in [2], in which a generalized private threshold

testing algorithm (GPTT) that attempts to model the SVT variants

in [14, 20, 1] was introduced. The authors showed that GPTT did

not satisfy ǫ′-DP for any finite ǫ′. But there is an error in the proof,

as shown in Section 3.3. Independent from our work, Zhang et al.

[22] presented two proofs that the variant of SVT violates DP with-

out discussing the cause of the errors. Also presented in [22] is a

special case of our proposed Alg. 1 for counting queries. To our

knowledge, the general version of our improved SVT (Alg. 1 and

Alg. 7), the techniques of optimizing budget allocation, the tech-

nique of using re-traversal to improve SVT, and the comparison of

SVT and EM are new in our work.

8. CONCLUSION
We have introduced a new version of SVT that provides better

utility. We also introduce an effective technique to improve the

performance of SVT by optimizing the distribution of privacy bud-

get. These enhancements achieve better utility than the state of

the art SVT and can be applied to improve utility in the interactive

setting. We have also explained the misunderstandings and errors

in a number of papers that use or analyze SVT; and believe that

these will help clarify the misunderstandings regarding SVT and

help avoid similar errors in the future. We have also shown that in

the non-interactive setting, EM should be preferred over SVT.

9. ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments. This paper

is based upon work supported by Key Laboratory on High Perfor-

mance Computing, Anhui Province, NSFC (61672486, 61672480,

11671376), Key Program of NSFC (71631006), OATF,USTC and

the United States National Science Foundation under Grant No.

1116991 and 1640374.

10. REFERENCES

[1] R. Chen, Q. Xiao, Y. Zhang, and J. Xu. Differentially private

high-dimensional data publication via sampling-based

inference. In KDD, pages 129–138, 2015.

[2] Y. Chen and A. Machanavajjhala. On the privacy properties

of variants on the sparse vector technique. CoRR,

abs/1508.07306, 2015.

[3] I. Dinur and K. Nissim. Revealing information while

preserving privacy. In PODS, pages 202–210, 2003.

[4] C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith.

Calibrating noise to sensitivity in private data analysis. In

TCC, pages 265–284, 2006.

[6] C. Dwork, F. McSherry, and K. Talwar. The price of privacy

and the limits of LP decoding. In STOC, pages 85–94, 2007.

[7] C. Dwork, M. Naor, O. Reingold, G. Rothblum, and

S. Vadhan. On the complexity of differentially private data

release: efficient algorithms and hardness results. STOC,

pages 381–390, 2009.

[8] C. Dwork and A. Roth. The algorithmic foundations of

differential privacy. Theoretical Computer Science,

9(3-4):211–407, 2013.

[9] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and

differential privacy. FOCS ’10, pages 51–60, 2010.

[10] C. Dwork and S. Yekhanin. New efficient attacks on

statistical disclosure control mechanisms. CRYPTO’08,

pages 469–480, 2008.

[11] A. Gupta, A. Roth, and J. Ullman. Iterative constructions and

private data release. In TCC, pages 339–356, 2012.

[12] M. Hardt and G. N. Rothblum. A multiplicative weights

mechanism for privacy-preserving data analysis. In FOCS,

pages 61–70, 2010.

[13] K. Järvelin and J. Kekäläinen. Cumulated gain-based

evaluation of ir techniques. ACM Trans. Inf. Syst.,

20(4):422–446, Oct. 2002.

[14] J. Lee and C. W. Clifton. Top-k frequent itemsets via

differentially private fp-trees. In KDD ’14, pages 931–940,

2014.

[15] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to

Information Retrieval. Cambridge University Press, New

York, NY, USA, 2008.

[16] F. McSherry and K. Talwar. Mechanism design via

differential privacy. In FOCS, pages 94–103, 2007.

[17] A. Roth. The sparse vector technique, 2011. Lecture notes

for “ The Algorithmic Foundations of Data Privacy”.

[18] A. Roth and T. Roughgarden. Interactive privacy via the

median mechanism. In STOC, pages 765–774, 2010.

[19] R. Shokri and V. Shmatikov. Privacy-preserving deep

learning. In CCS, pages 1310–1321, 2015.

[20] B. Stoddard, Y. Chen, and A. Machanavajjhala.

Differentially private algorithms for empirical machine

learning. CoRR, abs/1411.5428, 2014.

[21] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and

X. Xiao. Privbayes: Private data release via bayesian

networks. In SIGMOD ’14, pages 1423–1434, 2014.

[22] J. Zhang, X. Xiao, and X. Xie. Privtree: A differentially

private algorithm for hierarchical decompositions. SIGMOD

’16, pages 155–170, 2016.

11. APPENDIX

11.1 Proof that Alg. 3 is non­private

THEOREM 4. Alg. 3 is not ǫ′-DP for any finite ǫ′.

PROOF. Set c = 1 for simplicity. Given any finite ǫ′ > 0, we

construct an example to show that Alg. 3 is not ǫ′-DP. Consider

an example with T = 0, and m + 1 queries q with sensitivity ∆
such that q(D) = 0m∆ and q(D′) = ∆m0, and the output vector

a = ⊥m0, that is, only the last query answer is a numeric value 0.

Let A be Alg. 3. We show that Pr[A(D)=a]

Pr[A(D′)=a]
≥ eǫ

′
for any ǫ′ > 0

when m is large enough.

We denote the cumulative distribution function of Lap
(

2∆
ǫ

)

by

F (x). By Eq. (1), We have

Pr[A(D) = a]

=

∫ ∞

−∞
Pr[ρ=z]

∏

i∈I⊥

fi(D, z)Pr[∆+νm+1≥z ∧∆+νm+1=0] dz

=

∫ ∞

−∞
Pr[ρ=z]

∏

i∈I⊥

fi(D, z)Pr[0 ≥ z]Pr[νm+1 = −∆] dz

11

=
ǫ

4∆
e−

ǫ
2

∫ ∞

−∞
Pr[ρ=z]

∏

i∈I⊥

fi(D, z)Pr[0 ≥ z] dz

=
ǫ

4∆
e−

ǫ
2

∫ 0

−∞
Pr[ρ=z]

∏

i∈I⊥

fi(D, z) dz

=
ǫ

4∆
e−

ǫ
2

∫ 0

−∞
Pr[ρ = z]

m
∏

i=1

Pr[νi < z] dz

=
ǫ

4∆
e−

ǫ
2

∫ 0

−∞
Pr[ρ = z] (F (z))m dz, (19)

and similarly

Pr
[

A(D′) = a

]

=
ǫ

4∆

∫ 0

−∞
Pr

[

ρ = z′
]

(F (z′ −∆))m dz′. (20)

The fact that 0 is given as an output reveals the information that

the noisy threshold is at most 0, forcing the range of integration to

be from −∞ to 0, instead of from −∞ to ∞. This prevents the use

of changing z in (19) to z′ −∆ to bound the ratio of (19) to (20).

Noting that
F (z)

F (z−∆)
= e

ǫ
2 for any z ≤ 0, we thus have

Pr[A(D) = a]

Pr[A(D′) = a]
= e−

ǫ
2

∫ 0
−∞

Pr[ρ = z] (F (z))m dz
∫ 0
−∞ Pr[ρ = z′] (F (z′ −∆))m dz′

= e−
ǫ
2

∫ 0
−∞

Pr[ρ = z] (e
ǫ
2 F (z −∆))m dz

∫ 0
−∞

Pr[ρ = z′] (F (z′ −∆))m dz′

= e(m−1) ǫ
2 ,

and thus when m > ⌈ 2ǫ′

ǫ
⌉ + 1, we have Pr[A(D)=a]

Pr[A(D′)=a]
> eǫ

′
.

11.2 Proof that Alg. 6 is non­private

THEOREM 5. Alg. 6 is not ǫ′-DP for any finite ǫ′.
PROOF. We construct a counterexample with ∆ = 1, T = 0,

and 2m queries such that q(D) = 02m, and q(D′) = 1m(−1)m.
Consider the output vector a = ⊥m⊤m. Denote the cumulative
distribution function of νi by F (x). From Eq. (1), we have

Pr[A(D) = a]

=

∫ ∞

−∞
Pr[ρ = z]

m
∏

i=1

Pr[0+νi < z]
2m
∏

i=m+1

Pr[0+νi ≥ z] dz

=

∫ ∞

−∞
Pr[ρ = z] (F (z)(1 − F (z)))m dz,

and

Pr
[

A(D′) = a

]

=

∫ ∞

−∞
Pr[ρ = z]

m
∏

i=1

Pr[1+νi < z]
2m
∏

i=m+1

Pr[−1+νi ≥ z] dz

=

∫ ∞

−∞
Pr[ρ = z] (F (z − 1)(1 − F (z+1)))m dz.

We now show that Pr[A(D)=a]

Pr[A(D′)=a]
is unbounded as m increases, prov-

ing this theorem. Compare F (z)(1 − F (z)) with F (z − 1)(1 −
F (z+1)). Note that F (z) is monotonically increasing. When

z ≤ 0,
F (z)(1− F (z))

F (z − 1)(1 − F (z+1))
≥

F (z)

F (z − 1)
=

1
2
e

ǫ
2
z

1
2
e

ǫ
2
(z−1)

= e
ǫ
2 .

When z > 0, we also have

F (z)(1− F (z))

F (z − 1)(1 − F (z+1))
≥

1− F (z)

1− F (z + 1)
=

1
2
e−

ǫ
2
z

1
2
e−

ǫ
2
(z+1)

= e
ǫ
2 .

So, Pr[A(D)=a]

Pr[A(D′)=a]
≥ e

mǫ
2 , which is greater than eǫ

′

when m > ⌈ 2ǫ′

ǫ
⌉

for any finite ǫ′.

11.3 Error of non­privacy proof in [2]
The proof in [2] that GPTT is non-private considers the counter-

example with ∆ = 1, T = 0, a sequence q of 2t queries such that

q(D) = 0t1t and q(D′) = 1t0t, and the output vector a = ⊥t⊤t.
Then

Pr[GPTT(D) = a]

Pr[GPTT(D′) = a]
=

∫

∞

−∞
Pr[ρ = z]

(

Fǫ2 (z)−Fǫ2 (z)Fǫ2 (z−1)
)t dz

∫

∞

−∞
Pr[ρ = z]

(

Fǫ2 (z−1)−Fǫ2(z)Fǫ2 (z−1)
)t dz

where Fǫ(x) is the cumulative distribution function of Lap (1/ǫ) .

The goal of the proof is to show that the above is unbounded as t
increases. A key observation is that the ratio of the integrands of

the two integrals is always larger than 1, i.e.,

κ(z) =
Fǫ2(z)− Fǫ2(z)Fǫ2(z − 1)

Fǫ2(z − 1) − Fǫ2(z)Fǫ2(z − 1)
> 1

For example, since Fǫ(x) is the cumulative distribution function

of Lap (1/ǫ), we have Fǫ2(0) = 1/2 and Fǫ2(−1) < 1/2; and

thus κ(0) =
1−Fǫ2 (−1)

Fǫ2 (−1)
> 1. However, when |z| goes to ∞, κ(z)

goes to 1. Thus the proof tries to limit the integrals to be a finite

interval so that there is a lower-bound for κ(z) that is greater than

1. It denotes α = Pr[GPTT(D′) = a]. Then choose parameter

δ = |F−1
ǫ1 (α

4
)| to use [−δ, δ] as the finite interval, and thus

α ≤ 2

∫ δ

−δ

Pr[ρ = z] (Fǫ2(z − 1) − Fǫ2(z)Fǫ2(z − 1))t dz.

Denote the minimum of κ(z) in the closed interval [−δ, δ] by κ.

Then we have
Pr[GPTT(D)=a]
Pr[GPTT(D′)=a]

> κt

2
. The proof claims that for any

ǫ′ > 1 there exists a t to make the above ratio larger than eǫ
′

.

The proof is incorrect because of dependency in the parameters.

First, α is a function of t; and when t increases, α decreases be-

cause the integrand above is positive and decreasing. Second, δ
depends on α, and when α decreases, δ increases. Thus when t
increases, δ increases. We write δ as δ(t) to make the dependency

on t explicit. Third, κ, the minimum value of κ(z) over the interval

[−δ(t), δ(t)], decreases when t increases. That is, κ is also depen-

dent on t, denoted by κ(t), and decreases while t increases. It is

not sure that there exists such a t that
κ(t)t

2
> eǫ

′

for any ǫ′ > 1.

To demonstrate the error in the proof cannot be easily fixed, we
point out that following the logic of that proof, one can prove that
Alg. 1 is not ǫ′-DP for any finite ǫ′. We now show such a “proof”
that contradicts Theorem 1. Let A be Alg. 1 with c = 1. Consider
an example with ∆ = 1, T = 0, a sequence q of t queries such

that q(D) = 0t and q(D′) = 1t, and output vector a = ⊥t. Let

β = Pr
[

A(D) = ⊥ℓ
]

=

∫ ∞

−∞
Pr[ρ = z]

(

F ǫ
4
(z)

)t
dz

α = Pr
[

A(D′) = ⊥ℓ
]

=

∫ ∞

−∞
Pr[ρ = z]

(

F ǫ
4
(z − 1)

)t
dz,

where F ǫ
4
(x) is the cumulative distribution function of Lap (4/ǫ) .

Find a parameter δ such that
∫ δ

−δ
Pr[ρ = z] dz ≥ 1 − α

2
. Then

∫ δ

−δ
Pr[ρ = z]

(

F ǫ
4
(z − 1)

)t

dz ≥ α
2

. Let κ be the minimum

value of
F ǫ

4
(z)

F ǫ
4
(z−1)

in [−δ, δ]; it must be that κ > 1. Then

β >

∫

δ

−δ

Pr[ρ = z]
(

F ǫ
4
(z)

)t
dz ≥

∫

δ

−δ

Pr[ρ = z]
(

κF ǫ
4
(z − 1)

)t
dz

= κt
∫ δ

−δ

Pr[ρ = z]
(

F ǫ
4
(z − 1)

)t
dz ≥

κt

2
α.

Since κ > 1, one can choose a large enough t to make β
α
= κt

2
to

be as large as needed. We note that this contradicts Theorem 1. The

contradiction shows that the proof logic used in [2] is incorrect.

12

