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In a recent work, Lefranc and Bouchaud (LB) showed that the Mode I crack opening
displacement in a thin sheet of Agar gel deviates significantly from the square root profile
predicted by linear elastic fracture mechanics. In this letter we re-examine this problem
and show that the experimentally measured crack opening displacement is consistent with
the prediction based on finite elastostatics and a hyperelastic strain hardening model.

© 2016 Published by Elsevier Ltd.

1. Introduction

Recent interest in the mechanical properties of soft
materials, especially hydrogels, has motivated several
studies in the fracture behavior of these gels [1-7].
Concurrently, there is a renewed interest in the analysis
of the stress and deformation fields near the tip of cracks
in nonlinear elastic solids subjected to large deformation
[8-10]. A summary of these efforts can be found in a recent
review [11]. However, most of the previous works on
gel fracture focused on measuring and/or understanding
the physical mechanism of fracture toughness [2-6].
There are much fewer studies linking measurements to
the prediction of continuum theory. In a recent work,
Lefranc and Bouchaud [1] showed that the crack opening
displacement (COD) of a Mode-I crack in a thin sheet
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of Agar gel deviates significantly from the square root
profile predicted by linear elastic fracture mechanics
(LEFM). Specifically, for slower cracks where the applied
displacements are small, the crack opening displacement
(COD) is found to agree well with the prediction of linear
elastic fracture mechanics. However, for faster cracks
which correspond to higher applied displacement, the
measured COD, much larger than that for slower cracks,
deviates considerably from LEFM. For the fast cracks, they
observed crack tip opening profile with a wedge-like
shape and speculated that this deviation is associated with
nonlinear elastic behavior due to large deformation at the
crack tip [1].

To bring the problem into perspective, we briefly re-
view the experiment and results of LB [1]. Their experi-
mental set up is shown in Fig. 1. The gel sample is enclosed
in a rectangular chamber consisting of two flat glass plates
with a 350 pm gap. The lateral dimensions of the gel sam-
ple are: width w = 14 mm and length [ = 25 mm. Since
the thickness of the gel is the same as the gap between the
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Fig. 1. Schematics of experimental set up. The gel sample is illustrated by
the red rectangle. The rest of the glass chamber space on both sides of the
gel sample is filled with oil which is illustrated in blue. (For interpretation
of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Source: Adapted from Lefranc & Bouchaud [1].

two glass plates, the surfaces of the glasses in contact with
the gel are coated with an acrylamide brush to minimize
adhesion and friction. The rest of chamber is filled with oil.
A pre-crack of length 5 mm, labelled by B in Fig. 1, is intro-
duced by micro-fabricating a blade pasted to the glass cell.
The sample is loaded by moving the boundary between the
oil/gel interface (oil is immiscible with gel) by pumping the
oil out of the two ends of the chamber (A in Fig. 1) in at a
constant rate Q (see Fig. 1). This procedure imposes an in-
creasing displacement on the oil/gel interfaces (boundary
between blue and red regions).

Experimentally, LB observed a regime where the
crack propagates at a constant rate V which can be
controlled by the pumping rate Q. Specifically, V increases
from 1 pm/s to 1 cm/s as Q increases from 0.1 to
1000 pL/min. In the low velocity regime, the measured
crack opening displacement (COD) behind the crack tip
has the classical parabolic profile dictated by linear elastic
fracture mechanics (LEFM). For an incompressible solid
with Poisson’s ratio being 0.5, this is

2K, /8d
Ucod = = ) (1)
3uV m

where ugq is the crack opening displacement spanning
between the lower and upper crack faces, d is the distance
to the deformed crack tip, and K; is the Mode I stress
intensity factor and p the small strain shear modulus. Note
that uc,q is twice the crack opening displacement u defined
in Eq. (1) of LB [1] which is only measured from the middle
plane of opened crack to the upper crack surface. In this
regime, Lefranc [12] determine K; by fitting the Williams’
expansion in LEFM, including Eq. (1) as the first order
term and two additional higher order terms, to the local
crack opening profile measured in experiments. However,
at high pumping rate (or larger applied displacements), LB
discovered that the crack profile very close to the crack tip
cannot be fitted satisfactorily by Eq. (1).

Here we explore the possibility that this deviation
can be explained by the nonlinear straining hardening
material behavior near the crack tip. Indeed, Pavan

et al. [13] have observed that Agar gel exihibits strong
nonlinear stress/strain behavior. For example, Lefranc [12]
performed uni-axial compression test on Agar gel. The
nominal compressive stress, normalized by the small strain
Young’s modulus E = 3 p (assuming incompressibility),
versus nominal compressive strain is plotted in Fig. 2,
which shows that deviation from linear elasticity occurs
for nominal strains greater than 3%. The compressive
stress-strain curve in Fig. 2 can be well fitted by an
exponentially hardening incompressible material model in
which the strain energy density function W has the form

_Mjm 11_3 _
W_z[exp( T ) l], (2)

where p is the small strain shear modulus, I; is the trace
of the Cauchy-Green tensor and J,, is the dimensionless
strain hardening parameter. The role of ], is to control the
extensibility of the gel. A large J,, indicates small amount
of strain hardening, that is, the gel is highly extensible.
For example, when (I; — 3)/J, < 1, the exponential
strain energy density function reduces to that of the
neo-Hookean or ideal rubber model which describes the
entropic elasticity due to Gaussian chain statistics,

=)
2 Jm

~ %(11 —3) (=3I < 1. (3)

By fitting the exponentially hardening model to the
compression test data in Fig. 2, it is found that © = 21 kPa
and J,, = 0.1 for the Agar gel used in the experiments of
LB. To highlight the strain stiffening behavior of Agar gel,
we also included in Fig. 2 the results given by the neo-
Hookean model and linear elastic model with the same
modulus u© = 21 kPa. Clearly, the experimental data and
the exponentially hardening model give higher stress than
the neo-Hookean model when the compressive strain is
larger than ~5%, thus justifying the use of exponentially
hardening model for Agar gel.

2. Finite element model

To simulate the deformation of the facture sample
in LB’s experiment, we develop a finite element model
(FEM) using the commercial software ABAQUS. The gel
sample is assumed to be loaded in plane stress with lateral
dimensions given according to experimental geometry
(25 mm x 14 mm). To simulate crack deformation, we
introduce a crack of 12.5 mm in length on the left side of
the sample and apply uniform normal displacements A on
both top and bottom boundaries (see Fig. 3). The nonlinear
elasticity of the Agar gel is described by the exponentially
hardening model in Eq. (2) through a UHYPER subroutine
in ABAQUS. The materials parameters are 4 = 21 kPa
and J,;, = 0.1 according to the compression test data in
Fig. 2. To capture the local crack opening profile at a high
spatial resolution, we take advantage of the sub-modeling
approach in ABAQUS to achieve a high mesh density near
the crack tip, following a similar approach described in
Krishnan et al. [8]. The sub-model occupies a circular
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Fig. 2. Uni-axial compression data for Agar gel: the normalized compressive nominal stress is plotted as the nominal compressive strain A — 1 where A
is the stretch ratio in the direction of compression and E = 3  is the small strain Young’s modulus. The experimental data (black stars) is fitted by an
exponentially hardening solid given by Eq. (2) with © = 21 kPa and J,, = 0.1. For comparison, the results given by the neo-Hookean model and linear

elastic model with ¢« = 21 kPa are also shown.
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Fig.3. Schematic of the finite element model. (A) Undeformed geometry of the model. A uniform displacement A is applied at the top and bottom boundary.
The lateral displacement at the top and bottom boundary is constrained to be zero. (B) Deformed geometry of the crack. The crack opening displacement

Ugoq 1S a function of the distance d to the crack tip.

region centered at the crack tip with a radius of 250 pm.
The size of this crack tip region is selected according to the
local crack opening profile reported in LB [1].

There are three main differences between our FEM and
the experiment reported in LB [1], which are justified
below. First, unlike the experiment where the crack
propagates in a steady state, in FEM we assume a static
crack without propagation and focus on its deformation.
The effect of crack velocity is reflected by the amount
of applied displacement A, with the anticipation that
slow cracks open less than fast cracks. As pointed out in
LB [1], rheological tests revealed that the loss modulus
of Agar gels is 40 times smaller than its storage modulus
across a wide frequency range (0.1-100 Hz), i.e. the gel
is essentially elastic. The effect of crack velocity is likely
due to rate dependent fracture processes occurring at the
crack tip, which can be decoupled from the deformation
analysis in our FEM. Second, as noted in LB’s work [1],
because the displacement is imposed by moving the
oil/sample interface, the stiffness of the loading system is
low. As a result, the normal displacement imposed on the
sample boundary is not exactly uniform. In principle the
deformation field in the vicinity of the crack tip, e.g. at a
length scale of 100 wm, should be insensitive to variations
of the applied displacement on the boundaries which

is ~10 mm away from the crack tip, as long as these
variations give the same average displacement. Therefore
in the finite element model we assume a uniform applied
normal displacement on the specimen boundary, and use
it as an adjustable parameter to obtain the best fit to
the measured crack opening profile. Further discussions
on the boundary condition are provided in the Appendix.
Third, in experiments the crack length varies as the crack
propagates while in FEM we used a fixed crack length of
12.5 mm (see Fig. 3). To justify the crack length selected,
we have also explored two additional crack lengths in our
FEM, i.e. 6.25 and 18.75 mm, and found that the local crack
opening displacement is insensitive to the crack length
used.

3. Results
3.1. Crack opening profile

We first present the FEM results for the two cases
reported in LB [1] with different crack propagation
velocities: 1 cm/s and 3 pm/s. These two cases will be
referred as the fast crack and slow crack hereafter.

In Fig. 4(A), we plot the local crack opening profile for
the fast crack (1 cm/s), i.e. the crack opening displacement
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Fig. 4. Crack opening displacement for fast crack: FEM results and experiment data (a) linear scale (b) log-log scale. The symbols represent experimental
data, the solid line is given by the FEM result, and the dashed line is given by Eq. (1) with K; = 273 Pam'/2,

U versus the distance d to the deformed crack tip.
The FEM result (solid line), obtained using a normal
displacement A = 0.61054 mm, fits the experimental
data (symbols) well. Also plotted is the first order K;-field
solution in Eq. (1) given by LEFM. The stress intensity
factor K; is set to be 273 Pa m'/? according to Lefranc [12]
where K; was determined based on the detailed crack tip
deformation field measured by digital image correlation.
It is clear that the FEM result gives a much better fit to
the experimental data than the K; field. Specifically, the
experimental data exhibit a significantly sharper crack
opening profile than the parabolic profile predicted by the
K; field. Such a sharp profile is well captured by the FEM
result. This is also evident in the log-log plot of the same
datashownin Fig. 4(B). The K; field solution, which predicts
Ucod ~ d1/?, asymptotically deviates from the experimental
data as d approaches 0. Fig. 4(B) shows oscillations in the
experimental data when d < 5 pm. We believe this is due
to experimental uncertainty at such a small length scale.

Similarly, Fig. 5(A) and (B) plot crack opening profile
for the slow crack (3 wm/s) in linear and log-log scales,
respectively. To fit the experimental data, we used a
normal displacement A = 0.1397 mm, much smaller
than that for the fast crack. The stress intensity factor for
the K; field was also determined in Lefranc [12] which is
K; = 84 Pam'/2.In Fig. 5(A), the FEM result shows a better
fit to the experimental data than the K; field. However, it
should be noted that LB demonstrated that LEFM solutions
can also fit the experimental data well by including higher
order terms in the Williams’ expansion (up to the third
order term) [1]. The log-log plot in Fig. 5(B) reveals that
both the FEM result and K;-field are asymptotically close
to the experimental data as d approaches 0. This suggests
that unlike the fast crack, the nonlinear effects for the slow
crack is confined in a region surrounding the crack tip
with a size much smaller than the experimental detection
limit (i.e. ~1 wm). This is possible since the applied
displacement A for slow crack is only about 20% of that for
the fast crack.

Long et al. [9] obtained the first-order asymptotic
expansion of the crack opening displacement of a Mode I
plane stress crack in an exponentially hardening solid. The
one-sided crack opening displacement is:

yi = Hr (=JmIn(r/ro))~ "4,

4
Yo=1+y/—JnIn(r/rg), 17— 0 ®

where H (< 0) and ro are parameters that cannot be
determined by asymptotic analysis, y; and y, are the
deformed coordinates of the crack surface (see Fig. 3B),
and r is the distance from the crack tip in the undeformed
configuration (along the direction # = s as shown in
Fig. 3A). It must be noted that the asymptotic expansion
in Eq. (4) has a limited region of dominance and is valid
only for very small r. Thus when fitting Eq. (4) to the FEM
result, the data points closer to crack tip (with smaller r and
smaller y; and y,) should be assigned more weight during
fitting. Ideally this can be achieved by taking a subset of
the FEM data with r less than a threshold. However, this
threshold, which reflects the region of validity of Eq. (4),
is not known a-priori. In addition, the fact that the fitting
parameter ry is inside the argument of the logarithmic
function implies that y, is very insensitive to the change
in ro. As a result, the value of ry can be extremely sensitive
to the subset of FEM data used for fitting. To provide more
weight to data points closer to crack tip while avoiding
artificially picking a subset of the FEM data as the input
data for fitting, we performed least square fitting in log-log
scale, i.e.in terms of In(y1), In(y2) and In(r). This method is
applied to the crack opening profile for the fast crack case,
i.e. A = 0.61054 mm, resulting in r; = 20.8 mm and
H = —0.86. As shown in Fig. 6(A) and (B), the asymptotic
behavior given by (4) is in good agreement with our FEM
result forr <~ 50 pm.

It is often convenient to express the crack opening
profiles in terms of the deformed configuration, i.e. u¢yq
versus d (see Fig. 3(B)), since r, the distance to crack
tip in undeformed configuration, may not be directly
measureable in experiments (e.g. in the experiment of LB).
To obtain an asymptotic solution for ug4 versus d, we first
define the following normalization for y; and y:

1/4
_ m Y1 — Y2
V1= , and y, = —— (5a)
"7 rolH] > rovIm

where y; and y, are dimensionless. As shown in Long and
Hui [11], the asymptotic solution in Eq. (4) leads to the
following equation for the crack opening profile:

¥2 & =y [—In(=y)]"*
x /=T (=31 [~ In (=5)]"").

(5b)
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Fig.5. Crack opening displacement for slow crack: FEM results and experiment data (a) linear scale (b) log-log scale. The symbols represent experimental
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Fig. 6. Comparison between FEM result and asymptotic solution. The FEM result (solid line) is based on an applied displacement of A = 0.61054 mm. The
asymptotic solution is given by Eqs. (4) and (6) with ry = 20.8 mm and H = —0.86. (A) y, versus r, (B) —y; versus r, (C) ucoq versus d. The linear profile is

given by ug = 2d to guide the view of the initial wedge-like crack opening profile.

Since ucq = 2y, and d = —y4, Eq. (5b) gives the following
asymptotic solution for the crack opening displacement:

Ueod = 270y Jmd [~ In (d)]"*
1/4d

X/qqﬂqumm)&=$w, (6)

where d (see Eq. (6)) is the normalized distance to crack tip
in deformed configuration.

A comparison of Eq. (6) and the FEM result is shown in
Fig. 6(C). Also plotted in Fig. 6(C) is the linear crack opening
profile with uq4 ~ d, which approximately represents the

wedge-like shape at the crack tip. It can be seen that our
asymptotic solution in Eq. (6) agrees better with the FEM
result than the linear profile.

3.2. Crack tip stress field

Although the crack tip stress field was not directly
measurable in LB [1], the first-order asymptotic solution
for the crack tip stress field (Mode-I plane stress) with
the exponentially hardening model was solved in Long
et al. [9]. They showed that different Cauchy stress
components exhibit different singularities. In particular,
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that rp = 20.8 mm according to Fig. 6.

the normal component o, has the dominate singularity,
and thus our discussion here is focused on oy;. Fig. 7(A)
illustrates the undeformed crack geometry to aid the
discussion below, and Fig. 7(B) shows the contour plot
of 09, in the deformed crack tip region. Interestingly, the
asymptotic solution in Long et al. [9] suggests that the
singularity of 05, depends on which direction the crack tip
is approached (i.e. the angle @ illustrated in Fig. 7(A)):

T T
op~—, for—<@<mor —m<0<——, (7a)
r 2 2
1
o~ —— for — L <0<Z, (7b)
rIn (r/ro) 2 2

where 1o is the parameter introduced in Eq. (4). The
first scenario above (i.e. in Eq. (7a)) is in agreement
with the weakly nonlinear analysis by Bouchbinder
et al. [14]. Indeed, it was argued in Long et al. [9] that
for any hyperelastic model and Mode-I plane stress cracks,
the Cauchy stress component oy, should exhibit a 1/r
singularity in at least an angular sector of the crack tip
region so that the J-integral is path-independent. For
—1 /2 < 6 < /2, the singularity of 0y, is slightly weaker
than 1/r.

Long et al. [9] showed that the stress singularities in
Eqgs. (7a) and (7b) are consistent with FEM results using an
exponentially hardening model with J;, = 3.5. We include
similar data in Fig. 7(C) and (D), i.e. the plot of o, versus r
for different angles 6 using the FEM result for the fast crack.
Note in this work J,, = 0.1 according to experimental data

of Agar gel. Fig. 7(C) shows two distinct singular behaviors
forr < 10 pum: the cases with & = 0, 7 /6, 7 /4, 7 /3
(i.e. < /2) follow the same singularity, and the cases 8 =
2m /3, 3w /4, 57 /6 (i.e. >m /2) follow another singularity.
We take the two cases with § = 5 /6 and 0 as examples
for further examination in Fig. 7(D). Clearly, the case with
@ = 5m/6 shows ~1/r singularity, consistent with Eq.
(7a). The case with & = 0 shows a decreasing slope in the
log-log plot as r increases. Qualitatively this is consistent
with Eq. (7b) which implies that

dlln(o)] . 1
dlln(n)] In (r/ro)

Since In(r/rg) < 0, Eq. (8) shows that the absolute value
of the slope of In(oy;) versus In(r) becomes smaller as r
increases. Quantitatively Eq. (7b) captures the asymptotic
behavior with & = 0 only for very small r (<5 pwm).
Higher order terms of the asymptotic solution are needed
to obtain a better agreement with the FEM data.

(8)

4. Conclusions

Our numerical results and asymptotic analysis show
that the crack opening displacement (COD) in the fracture
experiments of LB can be captured using an exponentially
hardening hyperelastic material model. For small applied
displacements (i.e., slow crack propagation), the COD is
asymptotically consistent with the K; field predicted in
LEFM. The effect of nonlinear elasticity is confined to
a region very close to crack tip and not detected by
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the measurements of LB [1]. However, for large applied
displacements (i.e., fast crack propagation), LEFM breaks
down and the exponentially hardening solid model gives
much better agreement with experimental results.

Our study in this paper is based on the exponentially
hardening hyperelastic model which is used to capture
the severe strain stiffening effect in Agar gels (see Fig. 2).
We note that a large number of biological gels, including
collagen and fibrin gels exhibit strong strain stiffening
behavior, as demonstrated by Storm et al. [15]. Therefore,
our numerical and asymptotic solutions for crack opening
profile and crack tip stresses may be used to study the
fracture mechanics of a wide class of biological gels.

A question is whether it is legitimate to model the
material as nonlinear elastic despite the observed rate
dependence of fracture, that is, the COD increases with
the crack propagation velocity. As discussed in Section 3,
the Agar gel is essentially elastic based on the rheological
tests reported in LB [1], suggesting that the observed rate
dependence in crack propagation is due to rate dependent
fracture process that can be decoupled from the stress
analysis. In other words, although the Agar gel is elastic, the
fracture toughness can be rate dependent. The toughness
increases with crack propagation velocity, which results
in a larger COD for faster cracks. Therefore, we assume
no significant coupling between microscopic fracture
mechanisms and continuum solutions, in the sense that
the size of the fracture process zone is significantly smaller
than the characteristic length scale of the continuum
solution.

Finally we point out that deformation of gels can be
coupled to fluid transport [16]. In particular, the high
stress gradient near the crack tip can lead to significant
fluid transport which in turn can affect crack opening
and crack tip stress field. This effect has been studied
for linear poroelastic solids [17,18] and gels [19-22]. We
have neglected the effect of fluid transport by assuming a
hyperelastic model for the Agar gel. Although our model
is based on the rheological data in LB [1], the torsional
deformation imposed in these rheological tests may not
be sufficient to reveal the poroelastic behavior of the
Agar gels. Here we provide further justifications. In the
experiments of LB [1], the crack is propagating at steady
state with a constant speed V. According to Ruina [17], the
effect of fluid transport is confined in a zone surrounding
the crack tip with a length scale of D/V, where D is the
effective diffusivity of the solvent in the gel. To estimate
the length scale D/V, we first note that D = ku/n, where
k is the permeability of the gel, u is the shear modulus
and 7 is the viscosity of solvent. For the Agar gel studied
in LB (1.5 wt%) [1], we estimate its permeability based
on the data for Agarose gels with similar concentration,
which is on the order of 100 nm? as reported in Johnson
& Deen [23]. Using © = 21 kPa,and n = 8.9 x 107% Pa’s
for water at room temperature, the diffusivity D is found to
be approximately 1071° m?/s.

For the fast crack case (see Fig. 4), V. = 1 cm/s which
means D/V ~ 10 nm. This length scale is much smaller
than the region we study in this paper (~100 pwm). There-
fore, the effect of fluid transport can be neglected in our
analysis of crack opening. However, for the slow crack case

(seeFig.5),V = 3 wm/s which means D/V ~ 33 pum. This
estimate suggests that fluid transport may be important
within ~30 pm around the crack tip. In Fig. 5(B), we notice
that the experimental data (symbols) starts to deviate from
the FEM result (red solid line) when d is less than about
20-30 pm. Further investigations are needed to determine
whether such deviation is due to the poroelastic effect.
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Appendix. Boundary conditions imposed in the FEM
model

As discussed in Section 2, we assume uniform displace-
ment on the upper and bottom boundaries of the specimen
(see Fig. 2) in the FEM model, even though in the exper-
iments of LB [1] the applied displacement at the oil-gel
interface is not uniform. It is shown in Section 3 that the
experimental crack opening profiles for the fast (1 cm/s)
and slow cracks (3 pwum/s) agree well with the FEM results
using displacement A = 0.61054 mm and 0.1397 mm, re-
spectively. It would be interesting to compare these dis-
placement values to experimental observations. However,
LB [1] were not able to the image the oil-gel interface dur-
ing crack propagation as the camera was focused at the
crack tip with a field of view ~300 pwm that is much smaller
than the sample height (14 mm).

We can obtain a rough estimate of the average displace-
ment A using Qt/wh, where Q is the oil pumping rate
on one side of the sample, t is the time from the begin-
ning of experiment to the moment when the crack was im-
aged, w = 25 mm is the sample width and h = 350 um
is the sample thickness [1]. For the slow crack (3 wm/s),
Q = 0.1 pL/min [12] and we assume t = 10-30 min.
This translates A = 0.1-0.3 mm, and the value used in
our simulation (A = 0.14 mm) falls into this range. For
the fast crack (1 cm/s), it was difficult to trace the crack tip
because of its high propagation speed. Instead, LB fixed the
imaging field at the middle of the sample and waited for
the crack to go through [12]. Based on this approach, we as-
sume the crack tip was imaged when it has propagated for
10-15 mm (i.e. t = 1-1.5 s using crack speed = 1 cm/s).
Since Q = 10° pL/min for the fast crack [12], the range
of average A is roughly estimated to be 1.9-2.8 mm. The
value used in our simulation (A = 0.61 mm)is on the same
order but smaller than this estimated range. A possible ex-
planation is that the applied displacement at the oil-gel in-
terface can be highly non-uniform when the crack opening
is large, because of the low stiffness of the loading system
(i.e. by pumping oil to drive the oil-gel interface). In this
case, the part of the sample with opened crack will have
much larger boundary displacement than that ahead the
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Fig. 8. Comparison of the crack opening profiles using uniform displacement or uniform negative pressure boundary conditions. (A) Global deformation
with uniform displacement A = 0.61054 mm or uniform negative pressure of 1.02 kPa. (B-C) Linear and log-log plots of the crack opening profiles in
the vicinity of crack tip. The results obtained using uniform displacement A = 0.61054 mm or 0.1397 mm are identical to those using uniform negative
pressure 1.02 kPa or 197 Pa, respectively. The solid lines are results with the uniform displacement boundary condition, and the dash-dotted lines represent

results with the uniform negative pressure boundary conditions.

crack tip (see Fig. 8(A)), which may lead to a higher aver-
age A than that needed to achieve the same crack tip field
under a uniform boundary displacement.

Given the low stiffness of the loading system in LB [1],
a load controlled boundary might be closer to the experi-
mental condition. To further justify the displacement con-
trolled boundary assumed in our simulation, we replaced
the uniform displacement boundary condition (see Fig. 3)
by a uniform negative pressure at the upper and lower
boundaries. It was found that although the global crack
deformation can be sensitive to the boundary condition,
the local crack opening profiles with uniform displacement
A = 0.61 mm and 0.14 mm are identical to those with uni-
form negative pressure of 1.02 kPa and 197 Pa, as shown in
Fig. 8. Note that the values of the negative pressure fall in
the range that can be generated by the syringe pump used
in the experiment.
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