2016 IEEE 16th International Conference on Data Mining

Feature Grouping using Weighted ¢/; Norm for
High-Dimensional Data

Bhanukiran Vinzamuri®, Karthik K. Padthe®, and Chandan K. Reddy7L
*Dept. of Computer Science, Wayne State University, Detroit, MI- 48202
Email: {bhanukiranv, karthikp} @wayne.edu
TDept. of Computer Science, Virginia Tech, Arlington, VA-22203
Email: reddy @cs.vt.edu

Abstract—Building effective predictive models from high-
dimensional data is an important problem in several domains
such as in bioinformatics, healthcare analytics and general
regression analysis. Extracting feature groups automatically from
such data with several correlated features is necessary, in order
to use regularizers such as the group lasso which can exploit
this deciphered grouping structure to build effective predic-
tion models. Elastic net, fused-lasso and Octagonal Shrinkage
Clustering Algorithm for Regression (oscar) are some of the
popular feature grouping methods proposed in the literature
which recover both sparsity and feature groups from the data.
However, their predictive ability is affected adversely when the
regression coefficients of adjacent feature groups are similar,
but not exactly equal. This happens as these methods merge
such adjacent feature groups erroneously, which is also called
the misfusion problem. In order to solve this problem, in this
paper, we propose a weighted ¢; norm-based approach which
is effective at recovering feature groups, despite the proximity
of the coefficients of adjacent feature groups, building extremely
accurate predictive models. This convex optimization problem
is solved using the fast iterative soft-thresholding algorithm
(FISTA). We depict how our approach is more effective at
resolving the misfusion problem on synthetic datasets compared
to existing feature grouping methods such as the elastic net, fused-
lasso and oscar. We also evaluate the goodness of the model on
real-world breast cancer gene expression and the 20-Newsgroups
datasets.

Keywords-regression; regularization; feature grouping; high-
dimensional data.

[. INTRODUCTION

Extracting feature groups from high-dimensional data is
an extremely important problem in several domains such as
bioinformatics, healthcare analytics and general regression
analysis. Real-world datasets from these domains have an
inbuilt feature grouping structure which is difficult to decipher
apriori. Groups of features can be interpreted as clusters where
features within each cluster (group) are highly correlated and
differ significantly from the features in other groups. However,
this task is conceptually different from clustering the features
or co-clustering, as these methods are primarily used in an
unsupervised setting, whereas feature grouping is done in a
supervised setting such as classification or regression.

One of the advantages of developing accurate feature group-
ing algorithms is to discover inherent feature groups present in
the dataset, and then utilize structured sparsity methods such as
the group lasso along with this discovered grouping structure
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to build effective models with good predictive ability [1]—
[5]. Tt is also desirable for regression models built on high-
dimensional data to recover cohesive and homogenous feature
groups with good accuracy, as this reduces the error variance
of the model and increases its generalizability.

Existing regularization methods such as lasso are not capa-
ble of performing feature grouping. Elastic net, fused-lasso and
oscar are popular methods which perform feature grouping,
but the elastic net does not promote equality of coefficients
among the features in each group [6]. The fused-lasso [7]
is not capable of grouping positive and negative variables
together even if they share similar magnitude of regression
coefficients, and oscar [8] solves a quadratic programming
(QP) problem and it’s computationally expensive to compute.
More importantly, these feature grouping methods are not
capable of solving the misfusion problem which is explained
below.

A. The Misfusion Problem

In this section, we present an illustration of the misfusion
problem on a small synthetic dataset. In Figure 1, we present
a scenario of how feature grouping algorithms such as oscar
are unable to resolve the misfusion problem [9]. We consider
a small dataset with seven features F' = {f1, fa,...f7}
and plot these feature indices on the X-axis and their cor-
responding ground truth regression coefficient values 5* on
the Y-axis in Figure 1. Ground truth 5* values are segregated
into three groups which are G1={f1, fa, f3} with 55 =0.21,
G2={f4,f5} with ﬁé2=0‘24, and G3={f6, f7} with 553=04
The response variable Y=X[3* + ¢ is created where X €
R00X7 i a random feature vector matrix created using the
normal distribution A/(0,1), and € is the error term which is
created using N'(0,1). Subsequently, we fit an oscar regression
model on this dataset and we plot the learned regression
coefficient values () on the Y-axis in Figure 1(b).

One can clearly observe from Figure 1(b) that oscar has mis-
fused groups GG1 and G5 without recovering G correctly. This
is due to the proximity of their regression coefficient values
and oscar is unable to differentiate features in group G; from
G>. In contrast to existing methods, our approach presented
in this paper effectively resolves the misfusion problem as
can be seen in Figure 1(c), with a minor trade-off being the
complete recovery of the ground truth. This misfusion problem
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Fig. 1: A simple illustration demonstrating the misfusion problem and the results obtained by applying existing methods and

our approach.

can be seen in many high-dimensional regression problems
where coefficient values vary marginally across feature groups,
and it needs to be addressed appropriately in order to build
robust predictive models.

B. Our Contributions

The major contributions of this paper are as follows.

We propose a novel weighted ¢; norm regularized linear
regression algorithm for feature grouping which solves the
misfusion problem to build a more effective predictive
model compared to existing feature grouping methods such
as the elastic net, fused-lasso and oscar.

We formulate this as a convex optimization problem and
solve it efficiently using the fast iterative soft-thresholding
algorithm (FISTA).

We evaluate the goodness of prediction of our approach
on high-dimensional real-world datasets, namely, the 20-
Newsgroups and breast cancer gene-expression datasets. We
also evaluate our approach on three synthetic datasets and
visualize the feature groups obtained.

This paper is organized as follows. In Section II, we describe
the related work on feature grouping algorithms. In Section III,
we present the preliminaries needed to comprehend our ap-
proach. In Section IV, we present our proposed weighted
{y approach by explaining the formulation of the proximal
operator and the corresponding algorithm. In Section V, we
conduct experiments to evaluate the performance of our ap-
proach compared to baseline models on the 20-Newsgroups,
breast cancer gene-expression and synthetic datasets.

II. RELATED WORK

In this section, we briefly review existing methods for
supervised feature grouping. The elastic net [6] which uses
a convex combination of the ¢; and /5 norms groups corre-
lated features together. However, the regression coefficients
of features within a group are not equal which leads to
the misfusion problem explained earlier. The kernel elastic
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net [12] is an extension of the elastic net which can capture
feature correlation more effectively using a kernel matrix. It
was proven to outperform the elastic net for highly correlated
data but it does not address the misfusion problem.

The fused-lasso [7] uses a combination of the /1 norm
and a smoothness term which is used to capture the differ-
ence among the regression coefficients of adjacent features.
Penalizing this difference promotes equality of coefficients
among features which helps to capture feature groups. In
this manner, the fused-lasso improves over the elastic net
by promoting feature coefficient equality within a group.
However, it assumes that such a temporal ordering exists
among adjacent features in the real-world data which need
not always be observed.

Oscar [8] improves over both the fused-lasso and the
elastic net by capturing homogeneous groups and it does
not assume any temporal ordering among features. However,
the quadratic programming-based solver employed in oscar
is not scalable. The alternate direction method of multipliers
(ADMM) [11] has been used to accelerate the graph-based
oscar regression [10], but this modified approach requires the
feature graph to be provided apriori which need not be known
in advance for most datasets.

In contrast to the aforementioned methods, the main goal of
our weighted ¢; norm-based formulation is to obtain groups
of features efficiently by directly resolving the misfusion
problem. This is also different from the weighted ¢; norm
proposed in [13], where the focus is on learning sparsity
efficiently with fewer examples and not feature grouping. In
addition, in this approach the weights are optimized over
several iterations, whereas our approach uses a fixed set of
weights which satisfy a pre-specified ordering scheme which
is explained in the next section.

III. PRELIMINARIES

In this section, we present the preliminaries needed to
comprehend our weighted ¢; norm-based algorithm for feature



TABLE I: Notations used in this paper.

Notation | Description

number of instances.

number of features.

R™*P feature matrix.

R™ response variable.

RP regression coefficient vector.
non-increasing sorted |z|.
permutation matrix.
weighted ¢; norm.

RP weight vector.

monotone non-negative cone.
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grouping. Table I presents important terms and notations used
in this paper. We now explain the interpretation of each
of these notations in detail. Lower case letters =, y denote
column vectors and their transposes are denoted as =7, y”,
respectively. The i*" and j** components of these vectors are
written as x; and y;, respectively. Matrices are written in
upper case (such as X) and the i*" column vector of X is
represented using X;. The vector with the absolute values of
the components of the vector x is written as |z|. For a vector
2 € RP the i*" largest component of x is represented using
Ty This implies that S I S Using this
analogy, we define |z|; which represents the vector obtained
by sorting the absolute values vector of x (denoted by |x|) in
non-increasing order so that |z|;;; > |x]jg) > ... > ||, and
ties are broken arbitrarily. This vector based transformation of
|z| to |z|, can be done using the permutation matrix P, i.e,
|z, = P(|z|)|x|. The permutation matrix follows the property
P(|z])~'=P(]z|)T and it sorts the entries of |x| in a non-
increasing order. With this background, we now discuss the
formulation of oscar briefly and introduce the weighted ¢4
norm.

Oscar is convex and shape of the norm ball is octagonal.
The oscar regularizer is defined as in Eq. (1), where the /4
term promotes sparsity and the pairwise /., term promotes
equality in magnitude of each pair of elements |3;|, | 3;| among
the % feature pairs present in the dataset. This can also
be interpreted as the feature grouping component of oscar.

h(B) =X || Bl + X2 Y max{|Bi],18;]}

i<j

6]

We now define the weighted /; norm and the regularized
linear regression problem in Eq. (2).

1
in-|y—XB3+Q 2
arg min o || y — XB |3 + Q(8) @

QB) =l wo By I

In this equation, w is a weight vector of non-increasing
weights, which is defined as w = {wy > wy > ... > w, > 0}
and © is the element-wise multiplication (Hadamard Product).
This can be written as w € K;, which represents the monotone
non-negative cone [14]. This definition of the weighted ¢;
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norm now makes the oscar regularizer a specific case of this
weighted ¢; problem with the weights as (w; = A1 + Aa(p —
i) Vi=1,2,...p.). Apart from oscar, other regularizers such
as the lasso and /, also become special cases of the weighted
¢y norm. When all the w; values are fixed, the weighted ¢,
norm becomes the weighted lasso. Similarly, when w; = 1
and w; = 0,V i = 2,3,...,p, then the weighted ¢; norm
becomes the /., norm. In the next section, we formulate the
proximal operator [15] for the weighted ¢; norm and use it
within an accelerated proximal gradient (APG) algorithm for
solving this problem efficiently.

IV. THE PROPOSED METHOD

In this section, we present an accelerated proximal gradient
FISTA-based algorithm to solve the weighted ¢; norm reg-
ularized linear regression problem. This algorithm uses the
proximal operator for the weighted ¢; norm and we present
the method for obtaining it efficiently. We also discuss the
complexity of our approach.

A. Proximal operator for Weighted {1 Norm.

The proximal operator for €2, which is denoted by prox(.)
is defined in Eq. (3) for any v € RRP using the standard
definition of a proximal operator proposed in [15]. We will
now simplify the proximal operator using the steps provided
below and explain the procedure for obtaining it.

1
proxg(o) =arg iy (5 15— P +99) @

In Eq. (3), we must estimate proxg(v) in order to employ
it within the FISTA framework. We use the fact that w, 8 €
K} C RP and mention the steps needed to simplify Eq. (3)
further as follows

!
prox,(v) = arg min = || 8 —v |2 + w?p 4)
BeK, 2
in o 5~ (v—w) I3
= arg min — —(v—w
g sext 2 2

st B1>B2>...>206,>0

The simplification yields Eq. (4) which needs to be solved to
obtain proxg,(v). This computation can be interpreted as con-
sisting of two operations which are (i) obtaining the projection
(v—w) onto the monotone cone K,, = {1 > f2 > ... > B,}
by solving Eq. (5), and (ii) applying a subsequent projection
of this result onto RPT by clipping the negative values.

(&)

1 2
arg min o | §— (v —w) |2
Br=PB2>...>2 By

This projection problem in Eq. (5) has the form as given in
Eq. (6) which is also called the isotonic regression problem

which is a submodular convex optimization problem [16]. To
solve Eq. (5), we use an existing isotonic regression solver

s.t



such as the pool adjacent violators algorithm (PAVA).

p

i (Y 6
argfeli@z;f ) ©)
st y1 <y<...<y,

PAVA [17] is one of the most efficient methods for solving
the isotonic regression problem with O(p logp) time complex-
ity. By applying this PAVA algorithm to solve Eq. (5) and
then by applying the clipping operator to project the result
onto RPT, we obtain proxg,(v). This proximal operator is now
used within the FISTA-based algorithm given in Algorithm 1,
which is the proposed weighted ¢; norm regularized linear
regression solver.

B. FISTA-based Algorithm

In this section, we present the solver for the weighted /4
norm regularized linear regression problem, which uses the
fast iterative soft-thresholding algorithm (FISTA) [18]. FISTA
is a variant of the iterative soft-thresholding algorithm (ISTA)
which uses the accelerated proximal gradient (APG) method
based on Nesterov’s technique [19]. First-order optimization
methods such as FISTA converge at a rate of O( ) compared
to traditional gradient methods which have a slow convergence
rate of O(ﬁ)

In Algorithm 1, we describe the FISTA-based algorithm
used to learn the regression coefficient vector. The inputs
to the algorithm are X, Y, the Lipschitz constant L which
is estimated using the maximum value among all the Eigen
values (A(X T X)). The weight vector w is also provided, and
it is used for the weighted /; norm computation as given
in Eq. (2). w satisfies the property that w € K such that
wy > wg > ... > w)y, > 0. In this algorithm, after initializing
the parameters, proxg, is computed by solving Eq. (4) using
the PAVA algorithm and the subsequent projection using the
clipping operator onto RP*. In Lines 4 and 5 the updates
are done as per the accelerated proximal gradient method.
Subsequently, in lines 6-10, the final converged regression
coefficient vector is returned.

C. Complexity Analysis

The number of iterations for the FISTA algorithm to obtain
an e-optimal solution is O(1/4/€). The computation of the
proximal operator for the weighted /1 norm requires solving
Eq. (5) which has a time complexity of O(p logp) as mentioned
earlier for the PAVA algorithm. The projection onto RP* using
the clipping operator takes constant time. Hence, the total

( (n+logp) ). We

observe that for most of the real-world datasets n > logp, so
the complexity of this algorithm is O(np/+/€).

time complexity of the algorithm is O

V. EXPERIMENTAL RESULTS

In this section, we present the experiments conducted to
evaluate the performance of our weighted ¢; approach. We
explain the details pertaining to the synthetic dataset creation
and also describe the real-world datasets used. We also explain
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Algorithm 1: FISTA-based solver for the weighted /;
norm regularized linear regression.

Input: Feature Vector X € R™*P, Response vector
Y € R, Lipschitz constant L = 2A,,,, (X7 X),
Weight vector w, Tolerance parameter tol, max
iterations max_iter.

Output: Regression coefficients 5 € R?

Initialize: 8y € RP,uy = Py, t1 = 1;

for k=1 to max_iter do

B = proxq, (uk — XT(Xuy — )/L) using Eq. (4) ;

1

1+4t2
tht1 =

U1 = B + <tk+l> Br — Br-1) 3

if || Bk — Br—1 ||2< tol then
‘ break;
end

L

end
Return [y, ;

—
=]

the implementation details for these methods. We conduct
different experiments to assess the goodness of prediction and
recovery of feature groups using the proposed approach.

A. Datasets Description

1) Synthetic datasets: We created three synthetic datasets
with moderate dimensionality which are Syn-1, Syn-2 and Syn-
3. We include a feature grouping pattern in these datasets
which is specified below. This allows to visualize the goodness
of feature grouping methods for moderate dimensionality
datasets. The response variable in these datasets is created
using the linear regression model which can be written as
y=X 3*+¢ where 3* € RP and € ~ N(0,0?) is the error term.
Features for these datasets are generated as X ~ AN(0,C)
where C'=[¢;;] is a covariance matrix.

1) Syn-1: 0=3, ¢;;=0.7"771, p=8,

B*=[ 3,2,1.5,0,0,0,0,0 ]7.
2) Syn-2: 0=3, ¢;;=0.71"77!, p=8,
B*=[ 3,0,0,1.5,0,0,0,2 ]7.
3) Syn-3: 0=15, ¢;;=0.5 when i # j, and 1 otherwise,
p=40 and 8*=[0,---,0,2,---,2,0,---,0,2,...,2]T.
——— ——— ——
10 10 10 10

2) 20-Newsgroups dataset: This dataset is a collection
of approximately 20,000 newsgroup documents, partitioned
evenly across 20 different newsgroups'. We extracted 5 pairs
from the 20 different newsgroups to form 5 datasets as given
in Table II. In this table, we use short acronyms to represent
the names of the datasets concisely. We treat each of these
5 pairs as a binary classification problem, where in we label
each document in the dataset with the newsgroup it belongs
to. As a part of the preprocessing step, we do stemming to

"http://qwone.com/~jason/20Newsgroups/



TABLE II: Description of the datasets used in our experiments.
Dataset # Features | # Instances
Syn-1 8 280
Syn-2 8 280
Syn-3 40 800
breast-cancer 8141 295
ath vs gra 7943 2000
win vs rel 8442 2000
auto vs moto 7094 2000
bb vs hoc 7909 2000
fs vs msw 6678 2000

reduce the redundancy of words and remove the stop words.
We only consider words which appear in atleast 4 documents.
Subsequently, we build a weight matrix using the TF-IDF
method which is commonly used in text analytics to obtain
a feature vector-based representation.

3) Breast Cancer dataset: We use a high-dimensional
breast cancer gene expression dataset’ in our experiments.
This dataset contains information about 8,141 genes for 295
breast cancer tumors. These tumor information were collected
from 295 women suffering from breast cancer. Out of the 295
tumors, 78 are metastatic which are labeled as 1 and 217 are
non-metastatic which are labeled as -1. To decrease the class
imbalance, we duplicate the metastatic class instances twice
before evaluating performance of models used here. This helps
to obtain unbiased results.

B. Performance evaluation

We use the Area Under ROC Curve (AUC) to compare
the performance of the proposed model with the baseline
models. Our proposed weighted /1 norm and its corresponding
proximal operator was implemented in R. The isotone R-
package is used to implement the PAVA algorithm. The R-
package Sparse Modeling Software (SPAMS) [20] was used to
implement algorithms such as the elastic net and fused-lasso.
To calculate AUC we use the R package pROC. The AUC
and standard deviation (std) are obtained using five-fold cross
validation. Parameter tuning of the regularization parameters
was done using a hold-out set for all the baseline models.
The weight vector (w) which follows a pre-specified ordering
in our weighted ¢, approach was generated using a Gaussian
Benjamini-Hochberg (BHq) procedure [21]. All codes used for
running the baseline models and our weighted ¢, algorithm are
available at this link to ensure reproducibility of our work?.

C. Goodness of Prediction

In Table IIT we provide the AUC (along with the standard
deviation) for six real-world binary classification tasks. We
obtain the binary classifier output from the regression-based
models by computing the sign of the predicted response
variable. We observe that for all the cases our weighted ¢,

Zhttp://Ibbe.univ-lyon1.fr/-Jacob- Laurent-.html?lang=fr
3https://github.com/Karthikpadthe/ICDM-2016
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approach does better compared to the remaining four models.
This proves the effectiveness of our approach for real-world
classification problems.

TABLE III: AUC (std) of our weighted ¢; approach compared
to other methods for various real-world high-dimensional
datasets.

Dataset elastic net | fused-lasso | oscar | weighted ¢4
breastcancer | 0734 0.776 0.745 0.796
(0.020) (0.025) | (0.039) |  (0.066)
0.836 0.820 0.810 0.955
ath vs gra (0.019) (0.044) | (0.016) |  (0.020)
. 0.880 0.876 0.870 0.968
win vs rel (0.023) 0.067) | (0.018) | (0.015)
0.867 0.878 0.841 0.979
auto vs moto 1 007y | (0.114) | (0.016) |  (0.004)
b ve oo 0.872 0.872 0.857 0.973
(0.025) 0.056) | (0.034) | (0.012)
b ve mew 0.880 0.828 0.854 0.977
(0.017) (0.117) | (0.009) |  (0.003)

D. Recovering Feature Groups

In this section, we conduct an experiment to visually assess
the goodness of our weighted ¢; approach compared to other
feature grouping methods for Syn-1, Syn-2 and Syn-3 datasets.
In Figure 2 the y-axis represents the feature regression coef-
ficients obtained after fitting four different feature grouping
algorithms for all three synthetic datasets and the x-axis
represents the feature indices. The first, second and third
rows in Figure 2 corresponds to Syn-1, Syn-2 and Syn-3
datasets, respectively. We can observe that oscar infers the
feature grouping structure for Syn-/ and Syn-2 datasets upto
some extent, whereas the fused-lasso and elastic net are not
effective at inferring the grouping structure. Our weighted
{1 approach recovers the ground truth almost completely for
Syn-1 and Syn-2. For Syn-3 dataset one can observe that all
competing algorithms perform poorly, but our approach is
relatively more effective at recovering the grouping structure,
and it successfully avoids misfusing the groups which can be
seen clearly.

VI. CONCLUSION

In this paper, we presented a weighted ¢; algorithm for
solving the misfusion problem while learning regression mod-
els from high-dimensional data with inherent feature groups
which are not known apriori. We formulated the proximal op-
erator for this weighted ¢/; norm and solved the corresponding
weighted ¢; norm regularized linear regression problem using
the FISTA algorithm. Our approach can automatically learn
the feature grouping structure, and it was more effective at
resolving the misfusion problem compared to existing methods
such as elastic net, fused-lasso and oscar. We conducted
experiments on the 20-Newsgroups and breast-cancer gene-
expression high-dimensional datasets to assess the goodness
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Fig. 2: Visualizing feature groups obtained on three synthetic datasets by applying four feature grouping algorithms.

of our approach. This work can be extended by developing
a more theoretical procedure of providing the optimal weight
sequence for the weighted /1 norm computation.
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