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Abstract: The mixed molecular orbital and valence bond (MOVB) method has been used to

generalize the explicit polarization (X-Pol) potential to incorporate charge delocalization resonance

effects in the framework of valence bond theory. In the original X-Pol method, a macromolecular

system is partitioned into individual fragments or blocks, and the molecular orbitals of the system

are strictly localized within each block. Consequently, these block-localized molecular orbitals

(BLMOs) are nonorthogonal across different blocks. In the generalized X-Pol (GX-Pol) theory,

we construct charge delocalization VB states by expanding the localization space from monomer

blocks into pairwise delocalized blocks. Thus, the expansion of the basis space leads to charge

delocalization between monomer pairs, and a series of pairwise delocalization states can be

constructed. In general, L-body delocalized states can be analogously defined by grouping L

monomer blocks into one. The Hartree product wave function for each state can be fully

antisymmetrized, which introduces explicitly exchange repulsion among all blocks. The GX-Pol

wave function is a linear combination of all L-body charge transfer (valence bond) states, which

incorporates charge delocalization and their resonance as well as static correlation effects. The

GX-Pol method provides a general and rigorous theory to incorporate charge delocalization

explicitly into these fragment-based electronic structural methods for macromolecular systems.

1. Introduction

The explicit polarization (X-Pol) method is the first practical

fragment-based molecular orbital1–5 approach for macromo-

lecular simulations2,6–8 in which a Hartree product wave

function is used on the basis of antisymmetric wave functions

of individual subsystems. By construction, molecular orbitals

in the X-Pol wave function are strictly localized within the

subspace defined by each individual block; that is, these are

block-localized molecular orbitals (BLMOs). However, the

use of a Hartree product wave function neglects exchange

repulsion and charge transfer effects between different

blocks. Previously, an empirical Lennard-Jones potential was

used to account for the repulsive interactions,1–5,8 and we

have presented an approach to incorporate the exchange

repulsion explicitly into the X-Pol method by antisymme-

trizing its wave function.9–13 It was found that the total

exchange repulsion is short-ranged, as is well-known, and

is essentially pairwise additive for two water trimer com-

plexes examined.9 The latter is somewhat surprising in view

of the need for orthogonalization of the BLMOs. Neverthe-

less, these findings suggest that the use of pairwise energy

terms could be a very good approximation for the treatment

of exchange repulsion interactions.

The strict block localization of molecular orbitals within

each subsystem in the X-Pol wave function also excludes

charge transfer (CT) contributions between different

blocks.11,14–20 Although the amount of charge transferred is

relatively small, the energy component due to CT effects

can be significant and it is important in hydrogen-bonded

interactions,15,20 critical for biomolecular modeling. The

inclusion of charge transfer effects in the X-Pol method can

be easily accomplished, but it necessarily requires the
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expansion of the orbital space of the localization blocks, and

a number of approaches can be envisioned. Here, we describe

one approach to systematically include CT configurations

into a generalized X-Pol (GX-Pol) wave function.

Methods for treating fragmental electronic structures may

be traced to the work of McWeeny21 or even earlier, who

discussed the density matrices of orthogonal group functions;

however, Stoll and Preuss22 were the first to describe a

procedure based on many-body interaction energy correction

to improve the energy of such a fragment molecular orbital

approach as an approximation to the Hartree-Fock (HF) or

density functional energy:

where E0 is the total monomer energy and the subsequent

summations correspond to the dimer, trimer, etc., corrections.

The many-body interaction energy correction approach of

Stoll and Preuss treats the monomer, dimer, trimer, etc., terms

in the electrostatic field of the rest of the system.22,23 This

is different from the many-body decomposition scheme of

Stillinger and co-workers,24 in which the many-body terms

do not include polarization by the rest of the system. The

energy correction at each order of expansion (dimer, trimer,

etc.) is obtained by subtracting the interaction energies of

the preceding order, making the computational procedure a

fast-converging, build-up approach that is exceedingly simple

and straightforward.25,26 However, the molecular wave

function is not available from such a fragment molecular

orbital approach, and the somewhat ad hoc energy addition

and subtraction scheme makes it difficult to obtain analytical

gradients of the total energy (of course, it is always possible

to obtain the gradients by a variety of procedures, at the

expense of higher computational costs).4 It is important to

note that the configuration weights of different many-body

terms are not identical, although it is implicitly assumed to

be the same in this approach.

In this paper, we use the mixed molecular orbital and

valence bond (MOVB) approach to generalize the X-Pol

wave function into a multistate X-Pol wave function in the

framework of valence bond theory.27–33 In the generalized

explicit polarization (GX-Pol) wave function, charge transfer

as well as exchange repulsion effects can be systematically

determined by the self-consistent field (SCF) method for the

entire system. Rather than an ad hoc energy correction

expansion, the approach is similar to the traditional multi-

configuration self-consistent field (MCSCF), and complete-

active-space self-consistent field (CASSCF) or equivalently

ab initio valence bond self-consistent field (VBSCF) meth-

ods,34 applied to treating the resonance of charge transfer

VB states. Consequently, static correlation effects are, at least

partially, included into the GX-Pol method. In the following,

we first present the theoretical background in section 2. Then

we summarize the computational details to illustrate the

generalized X-Pol method. Results and discussion are given

in section 4, followed by a summary of the main conclusions

from this work.

2. Method

For completeness, we first briefly outline the “monomeric”

X-Pol wave function.1–5 Here, we use the phrase “monomer

X-Pol” to emphasize that the total molecular wave function

of a condensed-phase system including proteins is con-

structed from monomer wave functions to distinguish it from

the generalization to many-body delocalized states to be

described below. Then, we introduce the dimeric charge delo-

calization state to construct a two-body X-Pol wave function

and its generalization to many-body X-Pol wave functions.

Finally, we propose to employ these charge delocalization

states as effective valence bond (VB) configurations in

VBSCF optimization.27,28,30–32 We emphasize here that

although the theory and illustrative examples are given in

terms of wave function theory, the method and algorithm

are identically applicable to density functional theory (DFT),

by use of block-localized density functional theory (BLDFT)

to define VB states, as described in ref 27. We also discuss

the distinction between consistent diabatic configuration

(CDC) and variational diabatic configuration (VDC) meth-

ods.32

2.1. Block Localization and the Monomeric X-Pol

Wave Function. In the X-Pol method,1-5 a macromolecular

system is partitioned into M blocks. The ath block contains

ka basis functions and na electrons, and there are a total of K

primitive basis functions and N electrons in the system:

Molecular orbitals in a given block are written as linear

combinations of the primitive basis functions located on

atoms in that specific subspace {�µ
a; µ ) 1, ..., ka}:

The X-Pol wave function is constructed from the monomer

blocks as a Hartree product of the determinant wave functions

of individual blocks:1

where Â is an antisymmetrizing operator, Rx is the normal-

ization constant, and Φa is a successive product of the

occupied spin orbitals in the ath subsystem (eq 3):

For convenience in the following discussion, eq 4 is called

the “monomer” X-Pol wave function, which itself can be

antisymmetrized as a block-localized wave function

(BLW):10–13,30,31

The antisymmetrized X-Pol wave function, also known as

BLW,10 includes explicitly the interfragment eXchange

interactions (X-Pol-X)9 that are ignored in the Hartree

EHF ≈ E0 + ∑
ab

dimers

(Eab - E0) + ∑
abc

trimers

∆Eabc + ... (1)

K ) ∑
a)1

M

ka and N ) ∑
a)1

M
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a
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cjµ
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product X-Pol wave function (eq 4) but are approximated

empirically by Lennard-Jones terms.1-3

2.2. Charge Transfer (Delocalization) States and

Many-Body X-Pol Wave Functions. Since the molecular

orbitals (MOs) are strictly block-localized within each

subsystem by construction, there is no possibility of charge

transfer between different monomer blocks.10,11,27 The charge

delocalization energy due to intermolecular (or interfragment)

charge transfer can be very important for hydrogen-bonding

complexes and biomolecular interactions.11,15,20,35–39 For

example, the energy component due to charge transfer in

the dimer complex of water amounts to -0.4 kcal/mol11 of

the total hydrogen bonding energy (-5 kcal/mol).40 Note

that the term charge transfer used here is more rigorously

related to electronic delocalization to distinguish it from the

diabatic states in electron transfer reaction; however, in this

paper, we use both charge transfer and charge delocalization

without specific distinction since the method is equally

applicable to electron transfer processes. In the monomer

X-Pol method (eq 4), charge transfer effects are modeled

effectiVely as electrostatic interactions as in molecular

mechanics, which is adequate in the spirit of force field

development to keep the formalism simple and the compu-

tational procedure efficient.1–4,8 On the other hand, in

situations where the explicit treatment of charge transfer

effects is of interest,20,27 it is desirable to define a general

approach to treat this effect in the X-Pol theory.

To this end, we generalize the monomer X-Pol wave

function to dimer, and generally, many-body, X-Pol wave

functions. First, we define a charge transfer state between

monomers a and b, whose wave function is written as a

Hartree product of the antisymmetric (determinant) wave

function of the dimer (ab) and the antisymmetric wave

functions of all other monomers:

where R(ab) is the normalization constant for the wave

function defined above. Clearly, it is straightforward to define

analogously a fully antisymmetrized dimer X-Pol (X-Pol-

X) wave function:

An important distinction between the wave functions

defined by eqs 4 and 7 (and by eqs 6 and 8) is that the

molecular orbitals in the dimer, indexed by (ab), Φab, are

expanded over the basis functions of the entire dimer space,

in contrast to that in eq 4 with strict block localization within

each monomer space. Thus, there are M - 1 blocks

remaining in the state defined by eq 7 (and eq 8) since two

blocks are combined to form a single dimeric subsystem.

Importantly, since the wave function specified in eq 7 or 8

represents the expansion of basis space, it introduces charge

delocalization effects between monomers a and b in com-

parison with that of eq 4. The energy difference between

these two states (eqs 6 and 8) corresponds to the X-Pol

charge transfer energy between the two subsystems according

to our interaction energy decomposition analysis (EDA)

based on block-localized wave function (BLW):11,41

Consequently, the individual dimer X-Pol wave function in

eq 7 (or eq 8) represents a CT state between two monomer

blocks, in the presence of the electrostatic field of the rest

of the system. We note that, unlike other EDA approaches,41,42

the intermediate wave functions at all stages of the decom-

position analysis are fully defined and Variationally opti-

mized,11 providing the most relevant reference states in

polarization and charge transfer analysis.12,20,43

We define the total dimeric generalized X-Pol (GX-Pol)

wave function as a linear combination of all dimeric charge

transfer states:

where the subscript X2 specifies a GX-Pol wave function at

the dimer CT level and c(ab) is a configuration coefficient to

be optimized along with all the BLMO coefficients in exactly

the same fashion as in standard MCSCF or VBSCF

methods.34,44 In fact, the interpretation of the configuration

specified by eq 7, and the fully antisymmetrized counterpart

(eq 8), is an effective valence bond state, and eq 10 is a VB

wave function defined by these CT states (the valence bond

resonance integrals between determinant states are given

below). Thus, the generalization of the X-Pol method to the

treatment of multiconfigurational states is equivalent to the

previously described MOVB theory30,31 which has been used

in the study of chemical reactions in solution,20,28–31 cluster

analysis,29 and a range of charge transfer analysis appli-

cations.12,15–17,20,43,45 MOVB has been presented with the

use of ab initio molecular orbital thoery,28,30–32 semiempirical

methods,33,46 and density functional theory.27

The ground-state energy of the entire system, including

all or some dimeric CT contributions, is minimized by a

valence bond self-consistent field (VBSCF) method, which

can be expressed as follows:

A general, many-body X-Pol wave function can be defined

similarly. Thus, for a full system separated into M blocks

(monomers), the L-body GX-Pol wave function is

where the subscript XL denotes the L-body GX-Pol wave

function, and the individual effective VB configuration is

defined analogously as in eq 7 by grouping L blocks into

one delocalized subsystem. Equation 12 defines a full range

of many-body GX-Pol wave functions, from the simplest case

in which each monomer block is fully separated and the

molecular orbitals are strictly block-localized (the monomer

X-Pol wave function) to the full delocalization of the entire

system, which is the Hartree-Fock result. Of course, it is

clear from eqs 10 and 12 that, in contrast to the method of

Ψ(ab) ) R(ab)Â(Φ1)...Â(Φab)...Â(ΦM) (7)

Ψ(ab)
A

) R(ab)
A

Â(Φ1...Φab...ΦM) (8)

∆E(ab)
CT

) 〈Ψ(ab)
A |H|Ψ(ab)

A 〉 - 〈Ψx
A|H|Ψx

A〉 (9)

ΘX2 ) ∑
a)1

M

∑
b)a+1

M

c(ab)Ψ(ab)
A

(10)

EX2 ) 〈ΘX2|H|ΘX2〉 (11)

2404 J. Chem. Theory Comput., Vol. 6, No. 8, 2010 Gao et al.



Stoll and Preuss,22 there is no redundancy to have to

determine lower-body states to construct an L-body GX-Pol

wave function since the GX-Pol method is not a build-up

model and the charge delocalization of the lower-order

contributions is fully encompassed in the GX-Pol states. For

example, it is not necessary to construct monomer and dimer

states to form a “trimer correction” term.

It is of interest to point out that the intermediate VB wave

functions, generally defined by eq 12, are multiconfigura-

tional wave functions, and they include partially static

correlation effects and dispersion contributions.27 An explo-

ration of this property is of considerable interest and remains

for future investigations.

2.3. Consistent and Variational Diabatic Configura-

tions. Previously, we have classified the effective VB states

optimized by the VBSCF method as consistent diabatic

configurations (CDC) in that the individual VB states, called

diabatic configurations, are consistently optimized to yield

the minimum ground-state energy.32 An alternative method

is to use a configuration interaction (CI) approach to optimize

the configuration coefficients in eq 10 with fixed BLMOs in

each effective VB state that has been variationally optimized

individually.28,30–33 We call these VB states the variational

diabatic configurations (VDC).32 Obviously, the CDC and

VDC states have different energies for the same state defined

by eq 7 (and eq 8) since they are obtained by different energy

minimization targets.32 In the latter case, one solves the

generalized secular determinant equation to yield the con-

figuration coefficients and the ground-state energy:27,28,30–32

where M2 ) M(M - 1)/2 is the total number of dimer

configurations, S(ab),(st) is the overlap matrix between dimer

configurations (ab) and (st), and the Hamiltonian matrix

element and VB resonance integral is defined by27,30–32,47

We note that the explicit expression of eq 14 has been

given previously,30,31 and again, the approach described here

is applicable to both molecular orbital theory and density

functional theory as described by Mo et al.14 and by Cembran

et al.27

3. Computational Details

All computations have been performed by use of a locally

modified GAMESS program48 and the Xiamen University

Valence Bond (XMVB) program.34 The valence double-�

6-31+G(d) basis set with polarization and diffuse functions

was used to optimize the trimer geometries, and the aug-

cc-pCVDZ49 basis set was used in energy calculations. The

goal here is to illustrate the significance of resonance effects

by coupling dimeric charge delocalization VB states in the

GX-Pol theory. A more thorough examination with a larger

set of systems will be published later. The minimum energy

configuration of a cyclic water trimer structure, c-W3, along

with another trimer configuration, s-W3, which was con-

structed by minimizing the dimer water complex first

followed by placing a third water molecule at the C2 image

about the bisection of the acceptor water molecule, are

adopted in this study. Both structures are depicted in Figure

1.

Throughout the following discussion, each water monomer

in the trimer complexes is partitioned as a monomer block,

and their geometries are kept as those in the optimized

configuration at the HF/6-31+G(d) level. The notation Ψ(ab)
A

) Â(ΦabΦc}, where a, b, c ) 1, 2, or 3, is used to represent

a charge delocalization state between water molecules a and

b in the electrostatic field of the third water monomer c. We

use the fully antisymmetrized wave function that also

includes explicitly exchange repulsion between different

blocks. To estimate the dimeric charge delocalization energy,

the block-localized wave function for the triblock system

ΨX-Pol-X ) Â{Φ1Φ2Φ3} is also determined.9 The structural

weight is determined as described by Chirgwin and Coul-

son.50

|
H11 - ES11 ... H1,M2 - ES1,M2

... ... ...
HM2,1 - ESM2,1 ... HM2,M2 - ESM2,M2

| ) 0 (13)

H(ab),(st) ) 〈Ψ(ab)
A |H|Ψ(st)

A 〉 (14)

Figure 1. Schematic representation of (a) the minimum water

trimer structure (c-W3) and (b) a symmetric configuration (s-

W3).
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4. Results and Discussion

Listed in Tables 1 and 2 are the total and relative energies

for the isolated monomers at their complex configurations,

the antisymmetrized X-Pol (i.e., X-Pol-X) trimer (ΨX-Pol-X),

and the dimeric charge delocalization states [Ψab
A )

Â(ΦabΦc)]. The upper limit of charge transfer interaction

energy between a pair of water molecules, in the presence

of the third water in the trimer complex, is the energy

difference between the two variational diabatic configurations

Ψab
A and ΨX-Pol

A . Using these VDC states as the effective VB

configurations, one can carry out a configuration interaction

calculation by optimizing only the configurational coefficients

of the MOVB wave function.28,30,31 In this case, the

individual charge delocalization states remain unchanged, and

thereby the resonance among these states, or the diabatic

coupling, is not necessarily optimal. The energy from this

procedure (eq 13) is called the VDC-MOVB(3) method,

where the number in parentheses indicates the number of

configurations used in the VB optimization. Alternatively,

MOVB wave function can be fully optimized following

standard procedures such as MCSCF and VBSCF methods

in which both the orbital and configurational coefficients are

simultaneously varied.32 Since the individual CT diabatic

states are obtained consistently with the ground-state energy

minimization, the result is denoted by CDC-MOVB(3). Here,

resonance effects make important contributions.

Table 2 shows that the X-Pol binding energies for the two

water trimer complexes, c-W3 and s-W3, are -8.65 and

-4.43 kcal/mol, respectively, significantly smaller than the

fully delocalized HF results (-11.77 and -6.37 kcal/mol).

The difference represents the total charge delocalization

effects (also called charge transfer in energy decomposition

analysis) due to block localization imposed by the X-Pol

wave function, which are -3.12 and -1.94 kcal/mol,

respectively. The energies due to charge transfer between a

pair of water molecules are shown in parentheses, which are

in the range of -0.97 to -1.12 kcal/mol for the c-W3

complex. Apparently, the charge transfer effect between two

water molecules is significantly enhanced in the presence of

the polarization by the third water in comparison with the

water dimer alone, which has a CT energy of -0.2 and -0.4

kcal/mol from the 6-31++G(d,p) and aug-cc-pVTZ basis

sets. The pairwise charge delocalization energies are very

similar for the three pairs in c-W3 since each water accepts

and donates a hydrogen bond from the other two water

molecules. On the other hand, monomers W2 and W3 (Figure

1) are placed in a repulsive orientation in the trimer complex

s-W3, which exhibits little charge transfer effects (-0.05

kcal/mol), which are depicted in Figure 2. These two water

monomers (W2 and W3) have a C2 symmetry about the

molecular axis of the central water (W1), which accepts a

hydrogen bond from each of the W2 and W3 monomers.

The charge transfer energies are -0.93 kcal/mol for each of

the two hydrogen bonds.

The resonance effects due to charge delocalization from

VDC-MOVB(3) calculations are modest, lowering the X-Pol

energy by -1.75 and -1.78 kcal/mol in the two complexes.

Specifically, in the cyclic complex, c-W3, which involves a

sequence of donor and acceptor hydrogen bonds, 56% of

the total charge delocalization effect is obtained in the

configuration interaction approach, suggesting that there is

a strong cooperative effect in the overall charge delocaliza-

tion interaction that is not fully included in the VDC

approach. In the case of s-W3, in which there is little

cooperative interaction, 92% of charge delocalization con-

tributions are determined. Full relaxation of the GX-Pol wave

function, by simultaneous optimization of both the orbital

and configurational coefficients in the CDC-MOVB method,

achieves the greatest extent of valence bond resonance effect.

The computed total stabilization energies, relative to the

monomer X-Pol result, in the two trimer complexes are

-5.38 and -2.99 kcal/mol for c-W3 and s-W3, respectively,

far greater than the total charge delocalization energy at the

Hartree-Fock level of theory. The MOVB method is a

multiconfigurational approach, which also includes partial

static correlation effects; this is reflected by the total

electronic energy, lower than the corresponding HF value

(Table 1). Thus, of the total stabilization energies in the

trimer complexes, -2.2 and -1.1 kcal/mol, the amounts

exceeding the corresponding HF binding energies, may be

attributed to dispersion correlation effects. For comparison,

Schutz et al.51 estimated that the MP2 contribution to the

binding energy of the c-W3 complex is -3.60 kcal/mol with

the HF optimized geometry and the 6-311++G(d,p) basis

Table 1. Computed Total Energies for the Cyclic Water

Trimer Minimum Structure and for a Symmetric Trimer

Geometrya

total energy (hartrees)

method c-W3 s-W3

Φ1
o + Φ2

o + Φ3
o -228.128 79 -228.129 19

Ψ123
HF -228.147 55 -228.139 35

ΨX-Pol
A ) Â(Φ1Φ2Φ3) -228.142 58 -228.136 26

Ψ23
A ) Â(Φ23Φ1) -228.144 37 -228.136 34

Ψ13
A ) Â(Φ13Φ2) -228.144 13 -228.137 75

Ψ12
A ) Â(Φ12Φ3) -228.144 31 -228.137 75

VDC-MOVB(3) -228.145 37 -228.139 09
CDC-MOVB(3) -228.151 16 -228.141 02

a All calculations are performed with the aug-cc-pCVDZ basis
set at the HF/6-31+G(d) geometry.

Table 2. Computed Relative Energies for the Cyclic Water

Trimer Minimum Structure and for a Symmetric Trimer

Geometrya

relative energy (kcal/mol)

method c-W3 s-W3

Φ1
o + Φ2

o + Φ3
o 0.00 0.00

ΨX-Pol
A ) Â(Φ1Φ2Φ3) -8.65 (0.00) -4.43 (0.00)

Ψ23
A ) Â(Φ23Φ1) -9.78 (-1.12) -4.48 (-0.05)

Ψ13
A ) Â(Φ13Φ2) -9.62 (-0.97) -5.37 (-0.93)

Ψ12
A ) Â(Φ12Φ3) -9.74 (-1.09) -5.37 (-0.93)

ΨX-Pol
A + CT -11.83 (-3.18) -6.35 (-1.92)

Ψ123
HF -11.77 (-3.12) -6.37 (-1.94)

VDC-MOVB(3) -10.40 (-1.75) -6.21 (-1.78)
CDC-MOVB(3) -14.03 (-5.38) -7.42 (-2.99)

a All calculations are performed with the aug-cc-pCVDZ basis
set at the HF/6-31+G(d) geometry. Values in parentheses are
interaction energies due to charge transfer [∆E(ab)

CT ] without
basis-set superposition error correction.
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set. The binding energy for the c-W3 complex has been

estimated to be -15.8 kcal/mol by use of CCSD(T)/CBS.40

Table 2 shows that the charge delocalization energies are

roughly additive in both cases. In particular, the sum of the

X-Pol energy and the total VDC charge delocalization energy

(ΨX-Pol
A + CT) is very close to the corresponding HF interac-

tion energy. Here, the total charge delocalization energy is

the sum of the three pairwise charge transfer contributions

(e.g., -3.18 kcal/mol in the c-W3 structure). The fast

converging property, that is, a monomeric X-Pol calculation

followed by a variational dimeric charge delocalization

energy correction, in a many-body interaction decomposition

scheme22 can be attributed to the fact that the dominant,

nonadditive polarization effects11 have already been included

in the X-Pol wave function.1 However, one should be

cautious about the seemingly good agreement in this ap-

proach because the additive CT energy (-3.18 kcal/mol) is

greater than the total charge delocalization effect (-3.12 kcal/

mol). Note that, inasmuch as the difference is small, the sum

exceeds the total charge delocalization energy, without

inclusion of correlation contributions, is significant to indicate

the nonvariational discrepancy resulting from a lack of

consideration of cooperative effects of the entire system.

Furthermore, the difference between the VDC and CDC

results presented above indicates that good agreement

between the additive results and the total HF interaction

energies is fortuitous since orbital relaxation is essential in

full VBSCF (MCSCF) charge resonance. It appears to be

important to further analyze the additive properties on a wider

range of structures and functionalities by use of the methods

described here.

Nevertheless, in practice, it appears to be a reasonable

strategy to use the X-Pol potential with an empirical estimate

for the exchange repulsion to carry out Monte Carlo and

molecular dynamics simulations of a condensed-phase

system,1–3,5,8 followed by the pairwise CT and exchange

repulsion energy corrections to obtain more accurate results.

The most systematic approach is to employ the many-body

GX-Pol wave function in CDC-MOVB calculations to

determine the ground-state potential energy surface in

dynamics simulations.

The Chirgwin-Coulson structural weights50 from MOVB

calculations are given in Table 3 for both trimer complexes.

The structural weight can be formulated in a number of ways,

and the results in Table 3 are determined as follows:34,50

Obviously, eq 15 should not be confused with the familiar

Mulliken population analysis.52 The structural weights

provide key insight into the nature of chemical bonding in

valence bond theory, and are an indication of the resonance

contributions of charge delocalization states in the present

analysis. In the case of the cyclic configuration, c-W3, the

hydrogen-bond strengths are very similar; thereby, both the

CDC and VDC methods yield similar structural contributions

in the total wave function. However, for the symmetric trimer

complex, s-W3, the charge transfer state Ψ(23)
A has negligible

contribution to the charge delocalization of the entire system

in the CDC-MOVB wave function. The overlap integrals

between Ψ(23)
A and the other two CT states are essentially

zero, and the structural weight for Ψ(23)
A is zero. However,

the variationally optimized diabatic states are strongly

overlapping, with calculated overlap integrals of 0.999

between Ψ(23)
A and two other states. As a result, there is strong

out-of-phase mixing in these VDC states. The difference

Figure 2. Electron density difference contour between the

charge delocalized and the strictly localized systems,

F(Âψ1ψ2ψ3), in the s-W3 complex, (a) for the three pairs of

dimer charge transfer state, F(Âψabψc), and (b) for the

resonance state of the fully delocalized system from the two-

body generalized explicit polarization (GX-Pol) wave function,

F(ΘX2). The structure orientation is shown in Figure 1b and

the contour levels are at 0.0002 au with blue contours

representing gain in electron density and yellow contours

representing charge depletion.

Table 3. Configuration Weights from the CDC and

VDC-MOVB(3) Wave Functions

configuration

c-W3 s-W3

CDC VDC CDC VDC

Ψ23
A ) Â(Φ23Φ1) 0.384 0.375 0.000 -0.875

Ψ13
A

Â(Φ13Φ2) 0.305 0.272 0.500 0.937
Ψ12

A
Â(Φ12Φ3) 0.311 0.353 0.500 0.937

w(ab) ) c(ab)
2
+ ∑

(st)*(ab)

3

c(ab)c(st)〈Ψ(ab)
A

|Ψ(st)
A 〉 (15)
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between the CDC and VDC is a further indication of the

lack of cooperative effects in the nonvariational optimization

of the total VDC wave function.

Figure 2 illustrates the individual pairwise charge delo-

calization effects in the electrostatic field of the other

monomer and the resonance delocalization results in the GX-

Pol wave function for the s-W3 trimer complex. The electron

density difference (EDD) isosurface11,53 is obtained by

subtracting the strictly localized, but fully polarized, X-Pol-X

electron density from the corresponding delocalized wave

functions, for the dimer delocalized pairs (Figure 2a) and

for the valence bond resonance state (Figure 2b). In the dimer

delocalization states between W1 and W2 and between W1

and W3 (see also Figure 1), electron densities are depleted

(yellow contours) from the hydrogen-bond acceptor water

(W1), predominantly from oxygen, whereas charge densities

are accumulated (blue contours) along the hydrogen-bond

donor H-O bond vector, principally located on the hydrogen

atom. There is no noticeable charge density variation (the

contour level was set to be 0.0002 au) in the W2-W3

delocalization state, consistent with the negligibly small

(-0.05 kcal/mol) CT energy. The resonance of these three

states, with nearly 50% contributions from the W1-W2 and

W1-W3 delocalization states and essentially zero structural

weight from the W2-W3 complex, shows the cooperative

effect of these states. The charge density loss from the

hydrogen-bond acceptor W1 water is spread out over the

entire molecule and symmetrized, along with some com-

pensating polarization gains in the inner part of the density

distribution. It is interesting to notice the alternating pattern

along the donor O-H bonds due to gain in charge density

from CT and polarization delocalization along the bond

vector. The overall molecular charge delocalization from

individual charge transfer states is well represented in the

total molecular electron density from the CDC optimization

of the GX-Pol wave function.

Figure 3 shows the local two-body charge transfer (CT)

in the presence of polarization of the third water, relative to

the fully localized monomer state in the cyclic minimum

energy complex, c-W3. The resonance delocalization of the

three states in Figure 3 determined by the GX-Pol model is

depicted in Figure 4a, which is compared with the charge

transfer (CT) effects in the fully delocalized HF determinant

wave function in Figure 4b. It is aesthetically pleasing to

visualize that the traditional Heitler-London-Slater-Pauling

valence bond resonance theory of localized configurations

as modeled by the GX-Pol method can provide an excellent

description of the charge delocalization (i.e., charge transfer)

as illustrated by the fully delocalized Hartree-Fock wave

function. Importantly, such analyses coupled with quantita-

tive structural weight can provide a deeper understanding

of intermolecular interactions, including charge transfer

effects in condensed phases.20

5. Conclusions

The explicit polarization (X-Pol) method has been general-

ized to incorporate charge delocalization resonance effects

in the framework of valence bond theory. In the original

X-Pol method, a macromolecular system is partitioned into

Figure 3. Electron density difference isosurface between the

pairwise charge delocalized and the strictly localized system,

F(Âψ1ψ2ψ3), in the c-W3 complex: (a) W2-W3 dimer pair,

F(Âψ23ψ1); (b) W1-W2 dimer pair, F(Âψ12ψ3); and (c) W1-W3

dimer pair, F(Âψ13ψ2). The structure orientation is shown in

Figure 1a and the contour levels are at 0.0002 au, with blue

contours representing gain in electron density and yellow

contours representing charge depletion.
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individual blocks, which may be a single water molecule, a

residue, a group of residues and molecules, or a subset of

atomic orbitals on the same or different atoms. Molecular

orbitals are strictly localized within each block, by virtue of

expansion of MOs over basis functions within each sub-

system only. Consequently, these block-localized molecular

orbitals (BLMOs) are nonorthogonal across different blocks,

but they can be orthogonal within each block. The X-Pol

wave function is constructed as a Hartree product of the

individually determinant wave functions of all blocks, which

means that the exchange repulsion, dispersion correlation,

and charge transfer between different blocks are neglected

but are approximated empirically in X-Pol.

In the generalized X-Pol (GX-Pol) theory, we construct

charge delocalization VB states by expanding the block

localization space from individual blocks into pairwise

delocalized blocks. Thus, the expansion of the basis space

leads to charge delocalization between monomer pairs, and

a series of M × (M - 1)/2 pairwise charge delocalization

states (which can also be called charge transfer states) can

be constructed, where M is the total number of blocks

(subsystems). The wave function for each of these CT states

is a Hartree product of M - 1 blocks since two blocks have

been grouped into a single CT unit. In general, L-body

delocalized states can be analogously defined by grouping

L monomer blocks into one. The Hartree product wave

function for each state can be fully antisymmetrized, which

introduces explicitly exchange repulsion interactions among

all blocks. The GX-Pol wave function is a linear combination

of all L-body delocalization VB states, which incorporates

charge delocalization and their resonance as well as static

correlation effects. The GX-Pol theory is illustrated by

considering two water trimer complexes, one with a coopera-

tive hydrogen-bonding network and another consisting of

repulsive pair interactions. The illustrative examples show

that the GX-Pol method can effectively incorporate charge

delocalization and exchange repulsion explicitly in these

fragment-based electronic structural methods for macromo-

lecular systems.
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