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Abstract: The mixed molecular orbital and valence bond (MOVB) method has been used to
generalize the explicit polarization (X-Pol) potential to incorporate charge delocalization resonance
effects in the framework of valence bond theory. In the original X-Pol method, a macromolecular
system is partitioned into individual fragments or blocks, and the molecular orbitals of the system
are strictly localized within each block. Consequently, these block-localized molecular orbitals
(BLMOs) are nonorthogonal across different blocks. In the generalized X-Pol (GX-Pol) theory,
we construct charge delocalization VB states by expanding the localization space from monomer
blocks into pairwise delocalized blocks. Thus, the expansion of the basis space leads to charge
delocalization between monomer pairs, and a series of pairwise delocalization states can be
constructed. In general, L-body delocalized states can be analogously defined by grouping L
monomer blocks into one. The Hartree product wave function for each state can be fully
antisymmetrized, which introduces explicitly exchange repulsion among all blocks. The GX-Pol
wave function is a linear combination of all L-body charge transfer (valence bond) states, which
incorporates charge delocalization and their resonance as well as static correlation effects. The
GX-Pol method provides a general and rigorous theory to incorporate charge delocalization
explicitly into these fragment-based electronic structural methods for macromolecular systems.

1. Introduction

The explicit polarization (X-Pol) method is the first practical
fragment-based molecular orbital'~ approach for macromo-
lecular simulations>®~® in which a Hartree product wave
function is used on the basis of antisymmetric wave functions
of individual subsystems. By construction, molecular orbitals
in the X-Pol wave function are strictly localized within the
subspace defined by each individual block; that is, these are
block-localized molecular orbitals (BLMOs). However, the
use of a Hartree product wave function neglects exchange
repulsion and charge transfer effects between different
blocks. Previously, an empirical Lennard-Jones potential was
used to account for the repulsive interactions,' ™% and we
have presented an approach to incorporate the exchange
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repulsion explicitly into the X-Pol method by antisymme-
trizing its wave function.’'* It was found that the total
exchange repulsion is short-ranged, as is well-known, and
is essentially pairwise additive for two water trimer com-
plexes examined.” The latter is somewhat surprising in view
of the need for orthogonalization of the BLMOs. Neverthe-
less, these findings suggest that the use of pairwise energy
terms could be a very good approximation for the treatment
of exchange repulsion interactions.

The strict block localization of molecular orbitals within
each subsystem in the X-Pol wave function also excludes
charge transfer (CT) contributions between different
blocks.'""'*2° Although the amount of charge transferred is
relatively small, the energy component due to CT effects
can be significant and it is important in hydrogen-bonded
interactions,'>2° critical for biomolecular modeling. The
inclusion of charge transfer effects in the X-Pol method can
be easily accomplished, but it necessarily requires the

10.1021/¢ct100292g © 2010 American Chemical Society
Published on Web 07/15/2010



X-Pol Theory and Charge Delocalization States

expansion of the orbital space of the localization blocks, and
a number of approaches can be envisioned. Here, we describe
one approach to systematically include CT configurations
into a generalized X-Pol (GX-Pol) wave function.

Methods for treating fragmental electronic structures may
be traced to the work of McWeeny21 or even earlier, who
discussed the density matrices of orthogonal group functions;
however, Stoll and Preuss>?> were the first to describe a
procedure based on many-body interaction energy correction
to improve the energy of such a fragment molecular orbital
approach as an approximation to the Hartree—Fock (HF) or
density functional energy:

dimers trimers
Eg=~E,+ Y (E,—E)+ Y, AE, + .. (1)
ab abc

where Ej is the total monomer energy and the subsequent
summations correspond to the dimer, trimer, etc., corrections.
The many-body interaction energy correction approach of
Stoll and Preuss treats the monomer, dimer, trimer, etc., terms
in the electrostatic field of the rest of the system.”*** This
is different from the many-body decomposition scheme of
Stillinger and co-workers,?* in which the many-body terms
do not include polarization by the rest of the system. The
energy correction at each order of expansion (dimer, trimer,
etc.) is obtained by subtracting the interaction energies of
the preceding order, making the computational procedure a
fast-converging, build-up approach that is exceedingly simple
and straightforward.”>*® However, the molecular wave
function is not available from such a fragment molecular
orbital approach, and the somewhat ad hoc energy addition
and subtraction scheme makes it difficult to obtain analytical
gradients of the total energy (of course, it is always possible
to obtain the gradients by a variety of procedures, at the
expense of higher computational costs).* It is important to
note that the configuration weights of different many-body
terms are not identical, although it is implicitly assumed to
be the same in this approach.

In this paper, we use the mixed molecular orbital and
valence bond (MOVB) approach to generalize the X-Pol
wave function into a multistate X-Pol wave function in the
framework of valence bond theory.?’>* In the generalized
explicit polarization (GX-Pol) wave function, charge transfer
as well as exchange repulsion effects can be systematically
determined by the self-consistent field (SCF) method for the
entire system. Rather than an ad hoc energy correction
expansion, the approach is similar to the traditional multi-
configuration self-consistent field (MCSCF), and complete-
active-space self-consistent field (CASSCF) or equivalently
ab initio valence bond self-consistent field (VBSCF) meth-
ods,* applied to treating the resonance of charge transfer
VB states. Consequently, static correlation effects are, at least
partially, included into the GX-Pol method. In the following,
we first present the theoretical background in section 2. Then
we summarize the computational details to illustrate the
generalized X-Pol method. Results and discussion are given
in section 4, followed by a summary of the main conclusions
from this work.
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2. Method

For completeness, we first briefly outline the “monomeric”
X-Pol wave function.'™ Here, we use the phrase “monomer
X-Pol” to emphasize that the total molecular wave function
of a condensed-phase system including proteins is con-
structed from monomer wave functions to distinguish it from
the generalization to many-body delocalized states to be
described below. Then, we introduce the dimeric charge delo-
calization state to construct a two-body X-Pol wave function
and its generalization to many-body X-Pol wave functions.
Finally, we propose to employ these charge delocalization
states as effective valence bond (VB) configurations in
VBSCF optimization.?”-**3°32 We emphasize here that
although the theory and illustrative examples are given in
terms of wave function theory, the method and algorithm
are identically applicable to density functional theory (DFT),
by use of block-localized density functional theory (BLDFT)
to define VB states, as described in ref 27. We also discuss
the distinction between consistent diabatic configuration
(CDC) and variational diabatic configuration (VDC) meth-
ods.*

2.1. Block Localization and the Monomeric X-Pol
Wave Function. In the X-Pol method,! > a macromolecular
system is partitioned into M blocks. The ath block contains
k, basis functions and n, electrons, and there are a total of K
primitive basis functions and N electrons in the system:

M M
K=Yk, and N= D n, )
a=1 a=1

Molecular orbitals in a given block are written as linear
combinations of the primitive basis functions located on
atoms in that specific subspace {y; u = 1, ..., ks}:

# = D i (3)

The X-Pol wave function is constructed from the monomer
blocks as a Hartree product of the determinant wave functions
of individual blocks:'

W = RA(D)A(D,)..AD,,) 4)

where A is an antisymmetrizing operator, R, is the normal-
ization constant, and @, is a successive product of the
occupied spin orbitals in the ath subsystem (eq 3):

®, = ¢4, )

For convenience in the following discussion, eq 4 is called
the “monomer” X-Pol wave function, which itself can be
antisymmetrized as a block-localized wave function
(BLW):0-13:30.31

M
Wt = R?A( I <I>a) 6)

The antisymmetrized X-Pol wave function, also known as
BLW,' includes explicitly the interfragment eXchange
interactions (X-Pol-X)’ that are ignored in the Hartree
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product X-Pol wave function (eq 4) but are approximated
empirically by Lennard-Jones terms.' >

2.2. Charge Transfer (Delocalization) States and
Many-Body X-Pol Wave Functions. Since the molecular
orbitals (MOs) are strictly block-localized within each
subsystem by construction, there is no possibility of charge
transfer between different monomer blocks.'*!''#” The charge
delocalization energy due to intermolecular (or interfragment)
charge transfer can be very important for hydrogen-bonding
complexes and biomolecular interactions.'''>-2-33-3% For
example, the energy component due to charge transfer in
the dimer complex of water amounts to —0.4 kcal/mol'' of
the total hydrogen bonding energy (—5 kcal/mol).*® Note
that the term charge transfer used here is more rigorously
related to electronic delocalization to distinguish it from the
diabatic states in electron transfer reaction; however, in this
paper, we use both charge transfer and charge delocalization
without specific distinction since the method is equally
applicable to electron transfer processes. In the monomer
X-Pol method (eq 4), charge transfer effects are modeled
effectively as electrostatic interactions as in molecular
mechanics, which is adequate in the spirit of force field
development to keep the formalism simple and the compu-
tational procedure efficient."™® On the other hand, in
situations where the explicit treatment of charge transfer
effects is of interest,”®?’ it is desirable to define a general
approach to treat this effect in the X-Pol theory.

To this end, we generalize the monomer X-Pol wave
function to dimer, and generally, many-body, X-Pol wave
functions. First, we define a charge transfer state between
monomers a and b, whose wave function is written as a
Hartree product of the antisymmetric (determinant) wave
function of the dimer (ab) and the antisymmetric wave
functions of all other monomers:

W, = R,A®).AD,). AD,) 7

where R is the normalization constant for the wave
function defined above. Clearly, it is straightforward to define
analogously a fully antisymmetrized dimer X-Pol (X-Pol-
X) wave function:

W, =R, AD,..@,..0,) 8)

An important distinction between the wave functions
defined by eqs 4 and 7 (and by eqs 6 and 8) is that the
molecular orbitals in the dimer, indexed by (ab), @, are
expanded over the basis functions of the entire dimer space,
in contrast to that in eq 4 with strict block localization within
each monomer space. Thus, there are M — 1 blocks
remaining in the state defined by eq 7 (and eq 8) since two
blocks are combined to form a single dimeric subsystem.
Importantly, since the wave function specified in eq 7 or 8
represents the expansion of basis space, it introduces charge
delocalization effects between monomers a and b in com-
parison with that of eq 4. The energy difference between
these two states (eqs 6 and 8) corresponds to the X-Pol
charge transfer energy between the two subsystems according
to our interaction energy decomposition analysis (EDA)
based on block-localized wave function (BLW):!!#!
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Consequently, the individual dimer X-Pol wave function in
eq 7 (or eq 8) represents a CT state between two monomer
blocks, in the presence of the electrostatic field of the rest
of the system. We note that, unlike other EDA approaches,*!**
the intermediate wave functions at all stages of the decom-
position analysis are fully defined and wvariationally opti-
mized,"" providing the most relevant reference states in
polarization and charge transfer analysis.'*?**3

We define the total dimeric generalized X-Pol (GX-Pol)
wave function as a linear combination of all dimeric charge
transfer states:

MM
Ox, = 2 C(ab)lpévb) (10)

a=1 b=a+l

where the subscript X2 specifies a GX-Pol wave function at
the dimer CT level and c(4) is a configuration coefficient to
be optimized along with all the BLMO coefficients in exactly
the same fashion as in standard MCSCF or VBSCF
methods.>*** In fact, the interpretation of the configuration
specified by eq 7, and the fully antisymmetrized counterpart
(eq 8), is an effective valence bond state, and eq 10 is a VB
wave function defined by these CT states (the valence bond
resonance integrals between determinant states are given
below). Thus, the generalization of the X-Pol method to the
treatment of multiconfigurational states is equivalent to the
previously described MOVB theory®>! which has been used
in the study of chemical reactions in solution,?%28-3! cluster
analysis,?” and a range of charge transfer analysis appli-
cations.'>13-17:204345 N[OVB has been presented with the
use of ab initio molecular orbital thoery,?**°~? semiempirical
methods,***® and density functional theory.?’

The ground-state energy of the entire system, including
all or some dimeric CT contributions, is minimized by a
valence bond self-consistent field (VBSCF) method, which
can be expressed as follows:

Ey, = (Ox,|H|Ox,) (11)

A general, many-body X-Pol wave function can be defined
similarly. Thus, for a full system separated into M blocks
(monomers), the L-body GX-Pol wave function is

M M M y
Oy = z Z Z Cab---f\P(ab~-~f)
a=lb=a+1 f=a+L-1 (12)

L summation terms

where the subscript XL denotes the L-body GX-Pol wave
function, and the individual effective VB configuration is
defined analogously as in eq 7 by grouping L blocks into
one delocalized subsystem. Equation 12 defines a full range
of many-body GX-Pol wave functions, from the simplest case
in which each monomer block is fully separated and the
molecular orbitals are strictly block-localized (the monomer
X-Pol wave function) to the full delocalization of the entire
system, which is the Hartree—Fock result. Of course, it is
clear from eqs 10 and 12 that, in contrast to the method of
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Stoll and Preuss,”” there is no redundancy to have to
determine lower-body states to construct an L-body GX-Pol
wave function since the GX-Pol method is not a build-up
model and the charge delocalization of the lower-order
contributions is fully encompassed in the GX-Pol states. For
example, it is not necessary to construct monomer and dimer
states to form a “trimer correction” term.

It is of interest to point out that the intermediate VB wave
functions, generally defined by eq 12, are multiconfigura-
tional wave functions, and they include partially static
correlation effects and dispersion contributions.?” An explo-
ration of this property is of considerable interest and remains
for future investigations.

2.3. Consistent and Variational Diabatic Configura-
tions. Previously, we have classified the effective VB states
optimized by the VBSCF method as consistent diabatic
configurations (CDC) in that the individual VB states, called
diabatic configurations, are consistently optimized to yield
the minimum ground-state energy.* An alternative method
is to use a configuration interaction (CI) approach to optimize
the configuration coefficients in eq 10 with fixed BLMOs in
each effective VB state that has been variationally optimized
individually.?®°% We call these VB states the variational
diabatic configurations (VDC).*> Obviously, the CDC and
VDC states have different energies for the same state defined
by eq 7 (and eq 8) since they are obtained by different energy
minimization targets.’*> In the latter case, one solves the
generalized secular determinant equation to yield the con-

figuration coefficients and the ground-state energy:?’-2%-30-32
H,, — ES), Hyy = ESipp
. . =0 (13)
Hypy = ESypy o Hann = ESun

where M2 = M(M — 1)/2 is the total number of dimer

configurations, S s s the overlap matrix between dimer

configurations (ab) and (st), and the Hamiltonian matrix

element and VB resonance integral is defined by?’-*03>4

_ A A

Hapysn = (W IV ) (14)

We note that the explicit expression of eq 14 has been

given previously,*®*! and again, the approach described here

is applicable to both molecular orbital theory and density

functional theory as described by Mo et al.'* and by Cembran
et al.?’

3. Computational Details

All computations have been performed by use of a locally
modified GAMESS program®® and the Xiamen University
Valence Bond (XMVB) program.** The valence double-&
6-311+G(d) basis set with polarization and diffuse functions
was used to optimize the trimer geometries, and the aug-
cc-pCVDZ* basis set was used in energy calculations. The
goal here is to illustrate the significance of resonance effects
by coupling dimeric charge delocalization VB states in the
GX-Pol theory. A more thorough examination with a larger
set of systems will be published later. The minimum energy
configuration of a cyclic water trimer structure, c-W3, along
with another trimer configuration, s-W3, which was con-
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Figure 1. Schematic representation of (a) the minimum water
trimer structure (c-W3) and (b) a symmetric configuration (s-
Ws).

structed by minimizing the dimer water complex first
followed by placing a third water molecule at the C, image
about the bisection of the acceptor water molecule, are
adopted in this study. Both structures are depicted in Figure
1.

Throughout the following discussion, each water monomer
in the trimer complexes is partitioned as a monomer block,
and their geometries are kept as those in the optimized
configuration at the HF/6-314+G(d) level. The notation W,
= A(d)abcbc}, where a, b, c = 1, 2, or 3, is used to represent
a charge delocalization state between water molecules a and
b in the electrostatic field of the third water monomer c. We
use the fully antisymmetrized wave function that also
includes explicitly exchange repulsion between different
blocks. To estimate the dimeric charge delocalization energy,
the block-localized wave function for the triblock system
Wy pox = A{CI)ICI>2(I)3} is also determined.’ The structural
weight is determined as described by Chirgwin and Coul-

SOH.SO
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Table 1. Computed Total Energies for the Cyclic Water
Trimer Minimum Structure and for a Symmetric Trimer
Geometry?

total energy (hartrees)

method c-Ws; s-W;
7 + DS + DY —228.128 79 —228.129 19
wil —228.147 55 —228.139 35
Wepo = A(D1D2P3) —228.142 58 —228.136 26
Was = A(®23®1) —228.144 37 —228.136 34
Wi = A(D13D2) —228.144 13 —228.137 75
Wi = A(®12D3) —228.144 31 —228.137 75
VDC-MOVB(3) —228.145 37 —228.139 09
CDC-MOVB(3) —228.151 16 —228.141 02

2 All calculations are performed with the aug-cc-pCVDZ basis
set at the HF/6-31+G(d) geometry.

Table 2. Computed Relative Energies for the Cyclic Water
Trimer Minimum Structure and for a Symmetric Trimer
Geometry?

relative energy (kcal/mol)

method c-W3 s-W;

DF + OF + OF 0.00 0.00

lPQ.pm :. A((I)1(I?2¢'3) —8.65 (000) —4.43 (OOO)
Yo = A(D23P1) —-9.78 (—1.12) —4.48 (—0.05)
Wy = A(D@13P2) —9.62 (—0.97) —5.37 (—0.93)
Wi = A(D12D3) —9.74 (—1.09) —5.37 (—0.93)
Wepy + CT —11.83 (—3.18) —6.35 (—1.92)
Wi —11.77 (-3.12) —6.37 (—1.94)
VDC-MOVB(3) —10.40 (—1.75) —6.21 (—1.78)
CDC-MOVB(3) —14.03 (—5.38) —7.42 (—2.99)

2 All calculations are performed with the aug-cc-pCVDZ basis
set at the HF/6-31+G(d) geometry. Values in parentheses are
interaction energies due to charge transfer [AEGL)] without
basis-set superposition error correction.

4. Results and Discussion

Listed in Tables 1 and 2 are the total and relative energies
for the isolated monomers at their complex configurations,
the antisymmetrized X-Pol (i.e., X-Pol-X) trimer (Wx po1.x),
and the dimeric charge delocalization states w4, =
A(CD,,bCDC)]. The upper limit of charge transfer interaction
energy between a pair of water molecules, in the presence
of the third water in the trimer complex, is the energy
difference between the two variational diabatic configurations
W4, and W po. Using these VDC states as the effective VB
configurations, one can carry out a configuration interaction
calculation by optimizing only the configurational coefficients
of the MOVB wave function.?®3%3! In this case, the
individual charge delocalization states remain unchanged, and
thereby the resonance among these states, or the diabatic
coupling, is not necessarily optimal. The energy from this
procedure (eq 13) is called the VDC-MOVB(3) method,
where the number in parentheses indicates the number of
configurations used in the VB optimization. Alternatively,
MOVB wave function can be fully optimized following
standard procedures such as MCSCF and VBSCF methods
in which both the orbital and configurational coefficients are
simultaneously varied.*® Since the individual CT diabatic
states are obtained consistently with the ground-state energy
minimization, the result is denoted by CDC-MOVB(3). Here,
resonance effects make important contributions.

Gao et al.

Table 2 shows that the X-Pol binding energies for the two
water trimer complexes, ¢-W3 and s-W3, are —8.65 and
—4.43 kcal/mol, respectively, significantly smaller than the
fully delocalized HF results (—11.77 and —6.37 kcal/mol).
The difference represents the total charge delocalization
effects (also called charge transfer in energy decomposition
analysis) due to block localization imposed by the X-Pol
wave function, which are —3.12 and —1.94 kcal/mol,
respectively. The energies due to charge transfer between a
pair of water molecules are shown in parentheses, which are
in the range of —0.97 to —1.12 kcal/mol for the c-W;3
complex. Apparently, the charge transfer effect between two
water molecules is significantly enhanced in the presence of
the polarization by the third water in comparison with the
water dimer alone, which has a CT energy of —0.2 and —0.4
kcal/mol from the 6-314++G(d,p) and aug-cc-pVTZ basis
sets. The pairwise charge delocalization energies are very
similar for the three pairs in ¢-W3 since each water accepts
and donates a hydrogen bond from the other two water
molecules. On the other hand, monomers W2 and W3 (Figure
1) are placed in a repulsive orientation in the trimer complex
s-Wis, which exhibits little charge transfer effects (—0.05
kcal/mol), which are depicted in Figure 2. These two water
monomers (W2 and W3) have a C, symmetry about the
molecular axis of the central water (W1), which accepts a
hydrogen bond from each of the W2 and W3 monomers.
The charge transfer energies are —0.93 kcal/mol for each of
the two hydrogen bonds.

The resonance effects due to charge delocalization from
VDC-MOVB(3) calculations are modest, lowering the X-Pol
energy by —1.75 and —1.78 kcal/mol in the two complexes.
Specifically, in the cyclic complex, ¢-W3, which involves a
sequence of donor and acceptor hydrogen bonds, 56% of
the total charge delocalization effect is obtained in the
configuration interaction approach, suggesting that there is
a strong cooperative effect in the overall charge delocaliza-
tion interaction that is not fully included in the VDC
approach. In the case of s-Wj3, in which there is little
cooperative interaction, 92% of charge delocalization con-
tributions are determined. Full relaxation of the GX-Pol wave
function, by simultaneous optimization of both the orbital
and configurational coefficients in the CDC-MOVB method,
achieves the greatest extent of valence bond resonance effect.
The computed total stabilization energies, relative to the
monomer X-Pol result, in the two trimer complexes are
—5.38 and —2.99 kcal/mol for ¢-W3 and s-W3, respectively,
far greater than the total charge delocalization energy at the
Hartree—Fock level of theory. The MOVB method is a
multiconfigurational approach, which also includes partial
static correlation effects; this is reflected by the total
electronic energy, lower than the corresponding HF value
(Table 1). Thus, of the total stabilization energies in the
trimer complexes, —2.2 and —1.1 kcal/mol, the amounts
exceeding the corresponding HF binding energies, may be
attributed to dispersion correlation effects. For comparison,
Schutz et al.”' estimated that the MP2 contribution to the
binding energy of the ¢-W3 complex is —3.60 kcal/mol with
the HF optimized geometry and the 6-3114++G(d,p) basis
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(a)
& L)

(b)

o

Figure 2. Electron density difference contour between the
charge delocalized and the strictly localized systems,
p(Ap11pa13), in the s-W3 complex, (a) for the three pairs of
dimer charge transfer state, p(Ayast), and (b) for the
resonance state of the fully delocalized system from the two-
body generalized explicit polarization (GX-Pol) wave function,
p(®Ox2). The structure orientation is shown in Figure 1b and
the contour levels are at 0.0002 au with blue contours
representing gain in electron density and yellow contours
representing charge depletion.

set. The binding energy for the c-Wj3; complex has been
estimated to be —15.8 kcal/mol by use of CCSD(T)/CBS.*

Table 2 shows that the charge delocalization energies are
roughly additive in both cases. In particular, the sum of the
X-Pol energy and the total VDC charge delocalization energy
(‘I’?(_pol—l- CT) is very close to the corresponding HF interac-
tion energy. Here, the total charge delocalization energy is
the sum of the three pairwise charge transfer contributions
(e.g., —3.18 kcal/mol in the c¢-Wj structure). The fast
converging property, that is, a monomeric X-Pol calculation
followed by a variational dimeric charge delocalization
energy correction, in a many-body interaction decomposition
scheme?? can be attributed to the fact that the dominant,
nonadditive polarization effects'' have already been included
in the X-Pol wave function.! However, one should be
cautious about the seemingly good agreement in this ap-
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Table 3. Configuration Weights from the CDC and
VDC-MOVB(3) Wave Functions

c-W3 S-W3
configuration CDC vDC CDC vDC
Wi = A(da3®+) 0.384 0.375 0.000 —-0.875
WLA(D13D) 0.305 0.272 0.500 0.937
WHHA(D1,D3) 0.311 0.353 0.500 0.937

proach because the additive CT energy (—3.18 kcal/mol) is
greater than the total charge delocalization effect (—3.12 kcal/
mol). Note that, inasmuch as the difference is small, the sum
exceeds the total charge delocalization energy, without
inclusion of correlation contributions, is significant to indicate
the nonvariational discrepancy resulting from a lack of
consideration of cooperative effects of the entire system.
Furthermore, the difference between the VDC and CDC
results presented above indicates that good agreement
between the additive results and the total HF interaction
energies is fortuitous since orbital relaxation is essential in
full VBSCF (MCSCF) charge resonance. It appears to be
important to further analyze the additive properties on a wider
range of structures and functionalities by use of the methods
described here.

Nevertheless, in practice, it appears to be a reasonable
strategy to use the X-Pol potential with an empirical estimate
for the exchange repulsion to carry out Monte Carlo and
molecular dynamics simulations of a condensed-phase
system,'->® followed by the pairwise CT and exchange
repulsion energy corrections to obtain more accurate results.
The most systematic approach is to employ the many-body
GX-Pol wave function in CDC-MOVB calculations to
determine the ground-state potential energy surface in
dynamics simulations.

The Chirgwin—Coulson structural weights>® from MOVB
calculations are given in Table 3 for both trimer complexes.
The structural weight can be formulated in a number of ways,

and the results in Table 3 are determined as follows:**>°

3
_ 2 A gh
W) = Capy T+ 2 C(ab)c(st)<lp(ah)lqj(sz)> (15)

(st)=(ab)

Obviously, eq 15 should not be confused with the familiar
Mulliken population analysis.’®> The structural weights
provide key insight into the nature of chemical bonding in
valence bond theory, and are an indication of the resonance
contributions of charge delocalization states in the present
analysis. In the case of the cyclic configuration, ¢-W3, the
hydrogen-bond strengths are very similar; thereby, both the
CDC and VDC methods yield similar structural contributions
in the total wave function. However, for the symmetric trimer
complex, s-W3, the charge transfer state W, has negligible
contribution to the charge delocalization of the entire system
in the CDC-MOVB wave function. The overlap integrals
between W(3, and the other two CT states are essentially
zero, and the structural weight for ‘I’f*ﬁ) is zero. However,
the variationally optimized diabatic states are strongly
overlapping, with calculated overlap integrals of 0.999
between Wy, and two other states. As a result, there is strong
out-of-phase mixing in these VDC states. The difference
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between the CDC and VDC is a further indication of the
lack of cooperative effects in the nonvariational optimization
of the total VDC wave function.

Figure 2 illustrates the individual pairwise charge delo-
calization effects in the electrostatic field of the other
monomer and the resonance delocalization results in the GX-
Pol wave function for the s-W3 trimer complex. The electron
density difference (EDD) isosurface''”? is obtained by
subtracting the strictly localized, but fully polarized, X-Pol-X
electron density from the corresponding delocalized wave
functions, for the dimer delocalized pairs (Figure 2a) and
for the valence bond resonance state (Figure 2b). In the dimer
delocalization states between W1 and W2 and between W1
and W3 (see also Figure 1), electron densities are depleted
(yellow contours) from the hydrogen-bond acceptor water
(W1), predominantly from oxygen, whereas charge densities
are accumulated (blue contours) along the hydrogen-bond
donor H—0 bond vector, principally located on the hydrogen
atom. There is no noticeable charge density variation (the
contour level was set to be 0.0002 au) in the W2—W3
delocalization state, consistent with the negligibly small
(—0.05 kcal/mol) CT energy. The resonance of these three
states, with nearly 50% contributions from the W1—W2 and
W1—W3 delocalization states and essentially zero structural
weight from the W2—W3 complex, shows the cooperative
effect of these states. The charge density loss from the
hydrogen-bond acceptor W1 water is spread out over the
entire molecule and symmetrized, along with some com-
pensating polarization gains in the inner part of the density
distribution. It is interesting to notice the alternating pattern
along the donor O—H bonds due to gain in charge density
from CT and polarization delocalization along the bond
vector. The overall molecular charge delocalization from
individual charge transfer states is well represented in the
total molecular electron density from the CDC optimization
of the GX-Pol wave function.

Figure 3 shows the local two-body charge transfer (CT)
in the presence of polarization of the third water, relative to
the fully localized monomer state in the cyclic minimum
energy complex, c-W3. The resonance delocalization of the
three states in Figure 3 determined by the GX-Pol model is
depicted in Figure 4a, which is compared with the charge
transfer (CT) effects in the fully delocalized HF determinant
wave function in Figure 4b. It is aesthetically pleasing to
visualize that the traditional Heitler—London—Slater—Pauling
valence bond resonance theory of localized configurations
as modeled by the GX-Pol method can provide an excellent
description of the charge delocalization (i.e., charge transfer)
as illustrated by the fully delocalized Hartree—Fock wave
function. Importantly, such analyses coupled with quantita-
tive structural weight can provide a deeper understanding
of intermolecular interactions, including charge transfer
effects in condensed phases.?’

5. Conclusions

The explicit polarization (X-Pol) method has been general-
ized to incorporate charge delocalization resonance effects
in the framework of valence bond theory. In the original
X-Pol method, a macromolecular system is partitioned into
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(b)

(c)

Figure 3. Electron density difference isosurface between the
pairwise charge delocalized and the strictly localized system,
p(Ap1y213), in the c-W3 complex: (a) W2—W3 dimer pair,
p(Azzip); (b) W1—W2 dimer pair, p(Ay1213); and (c) W1—W3
dimer pair, p(Ay13y2). The structure orientation is shown in
Figure 1a and the contour levels are at 0.0002 au, with blue
contours representing gain in electron density and yellow
contours representing charge depletion.
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(b)

Figure 4. Comparison of (a) resonance charge delocalization
modeled by the two-body GX-Pol wave function, ©x,, for c-W3,
which is a combination of the three states illustrated in Figure
3, and (b) charge transfer effects from Hartree—Fock theory.
Electron density difference from the three-block X-Pol-X state,
p(Ay1p213), is depicted at a contour level of 0.0002 au, with
blue contours representing gain in electron density and yellow
contours representing charge depletion. Note that the two
figures look identical, which is the main point illustrated here.

individual blocks, which may be a single water molecule, a
residue, a group of residues and molecules, or a subset of
atomic orbitals on the same or different atoms. Molecular
orbitals are strictly localized within each block, by virtue of
expansion of MOs over basis functions within each sub-
system only. Consequently, these block-localized molecular
orbitals (BLMOs) are nonorthogonal across different blocks,
but they can be orthogonal within each block. The X-Pol
wave function is constructed as a Hartree product of the
individually determinant wave functions of all blocks, which
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means that the exchange repulsion, dispersion correlation,
and charge transfer between different blocks are neglected
but are approximated empirically in X-Pol.

In the generalized X-Pol (GX-Pol) theory, we construct
charge delocalization VB states by expanding the block
localization space from individual blocks into pairwise
delocalized blocks. Thus, the expansion of the basis space
leads to charge delocalization between monomer pairs, and
a series of M x (M — 1)/2 pairwise charge delocalization
states (which can also be called charge transfer states) can
be constructed, where M is the total number of blocks
(subsystems). The wave function for each of these CT states
is a Hartree product of M — 1 blocks since two blocks have
been grouped into a single CT unit. In general, L-body
delocalized states can be analogously defined by grouping
L monomer blocks into one. The Hartree product wave
function for each state can be fully antisymmetrized, which
introduces explicitly exchange repulsion interactions among
all blocks. The GX-Pol wave function is a linear combination
of all L-body delocalization VB states, which incorporates
charge delocalization and their resonance as well as static
correlation effects. The GX-Pol theory is illustrated by
considering two water trimer complexes, one with a coopera-
tive hydrogen-bonding network and another consisting of
repulsive pair interactions. The illustrative examples show
that the GX-Pol method can effectively incorporate charge
delocalization and exchange repulsion explicitly in these
fragment-based electronic structural methods for macromo-
lecular systems.
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