IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX

Pre-Processing Censored Survival Data using
Inverse Covariance Matrix based Calibration

Bhanukiran Vinzamuri, Yan Li and Chandan K. Reddy, Senior Member, IEEE

Abstract—Censoring is a common phenomenon that arises in many longitudinal studies where an event of interest could not be
recorded within the given time frame. Censoring causes missing time-to-event labels, and this effect is compounded when dealing with
datasets which have high amounts of censored instances. In addition, dependent censoring in the data, where censoring is dependent
on the covariates in the data leads to bias in standard survival estimators. This motivates us to develop an approach for pre-processing
censored data which calibrates the right censored (RC) times in an attempt to reduce the bias in the survival estimators. This
calibration is done using an imputation method which estimates the sparse inverse covariance matrix over the dataset in an iterative
convergence framework. During estimation, we apply row and column-based regularization to account for both row and column-wise
correlations between different instances while imputing them. This is followed by comparing these imputed censored times with the
original RC times to obtain the final calibrated RC times. These calibrated RC times can now be used in the survival dataset in place of
the original RC times for more effective prediction. One of the major benefits of our calibration approach is that it is a pre-processing
method for censored data which can be used in conjunction with any survival prediction algorithm and improve its performance. We
evaluate the goodness of our approach using a wide array of survival prediction algorithms which are applied over crowdfunding data,
electronic health records (EHRs) and synthetic censored datasets. Experimental results indicate that our calibration method improves
the AUC values of survival prediction algorithms, compared to applying them directly on the original survival data.

Index Terms—survival analysis, pre-processing, right censoring, imputation, healthcare, crowdfunding.

1 INTRODUCTION

ENSORING is a common phenomenon that appears in
many real-world application domains such as health-
care, engineering, social sciences, etc. In longitudinal stud-
ies, observations are called censored when the information
about their event time is incomplete. For example, let us
consider a healthcare application where a set of patients are
being monitored over a period of time for a the occurrence
of a particular event of interest (such as risk for readmission
or death). A patient who does not experience the event
of interest within the duration of the study is said to be
right censored [1]. The survival time of such a patient is
considered to be atleast as long as the duration of the
study. Another important example of right censoring is
when a subject drops out of the study before the end of
the study and did not experience the event until that time.
These characteristics make censoring an important issue in
survival analysis representing a particular type of missing
data. This problem is also called the missing time-to-events
problem and has a significant practical value [2], [3], [4].
In traditional survival analysis, the model is built on
such data by labeling the censored instances with a value
such as the duration of the study or last known follow up

e B. Vinzamuri is with the IBM Thomas]. Watson Research Center,
Yorktown Heights, NY 10598.

E-mail: bhanu.vinzamuri@ibm.com.

Y. Li is with the Department of Computer Science at University of
Michigan, Ann Arbor, MI 48109.

E-mail: yanliwl@umich.edu.

C. K. Reddy is with the Department of Computer Science at Virginia Tech,
Arlington, VA 22203.

E-mail: reddy@cs.vt.edu.

Manuscript received December 31, 2015; revised February 3, 2017; accepted
June 13, 2017.

<+

time [5], [6], [7]. This phenomenon is called right censoring
and is observed in several real-world datasets. This can
become a significant problem, especially when the data has
many right censored instances (> 40% of overall number of
instances). To overcome this problem, we propose to solve
it by developing an approach called calibrated survival
analysis which can learn an appropriate probable time-to-
event label value for the right censored instances. We now
explain our motivation for developing this framework for
calibrating time-to-event values for censored instances by
explaining the inherent problem associated with censored
data, and we also explain the two-dimensional correlation-
based structure in censored data using an example from the
crowdfunding domain.

1.1

Censoring in data can be divided into two kinds of methods,
namely, independent and dependent censoring. Indepen-
dent censoring is a phenomenon where the covariates and
censoring are assumed to be independent [6], [8]. Only
under this assumption alone, traditional estimators such
as Kaplan-Meier (KM) remain unbiased yielding true esti-
mates. However, most datasets violate independent censor-
ing and exhibit a phenomenon called dependent censoring
where the covariates in the data and censoring are correlated
with each other. In this scenario, the KM estimator is biased
which affects the performance of several existing survival
analysis methods.

To address this issue, in this paper, we present an ap-
proach called calibrated survival analysis which employs
a novel form of censoring called imputed censoring. The
goal of imputed censoring is to reduce the bias in standard

Motivation

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 2

survival estimators, and this is accomplished by using a
regularized inverse covariance-based imputation algorithm.
We use covariance-based imputation methods as they are
well equipped to capture correlations between censored in-
stances while performing imputation which other methods
such as matrix factorization do not capture.

The correlation structure in censored data exhibits a
unique phenomenon which can be explained by considering
a typical crowdfunding scenario. In this scenario, we define
an event of interest as the time taken by a project to reach
its pre-defined goal amount and succeed. Considering two
projects which got censored, one can notice that to impute
the time-to-event labels for these instances two factors need
to be considered which are (i) time taken by instances
similar to both of them to reach the goal amount (row-wise
correlation) (ii) importance of similar features for both cen-
sored instances in determining the time-to-event (column-
wise correlation). To account for both these phenomena, we
use a row and column based regularization approach within
an inverse covariance estimation procedure to appropriately
estimate the time-to-event label. Our proposed calibrated
survival analysis approach imputes the time-to-event labels
for censored instances using a regularized inverse covari-
ance matrix approach. In this paper, we present both the
column-based (REC) and the row, column based (TREC)
algorithms in Section 3.

Another important motivation for proposing a calibrated
survival analysis framework for such real-world censored
datasets can be obtained from the theory of representation
learning [9]. Representation learning attempts to learn a
novel representation of the data which captures the inherent
structure, so that any predictive algorithm can perform bet-
ter on the learned new representation. In calibrated survival
analysis, through imputed censoring, we are effectively
learning a new represenation of the original survival data by
solving the bias problem explained earlier. We also state that
imputed censoring preserves the original censored nature
of the problem, and does not output a predictive model
directly. Hence, our proposed approach can be used in
conjunction with other existing predictive survival analysis
methods. In other words, our method can be treated as an
important pre-processing step that incorporates correlation
structures and accordingly imputes the censored values.

1.2 Our Contributions
The major contributions of this paper are as follows:

o Propose a calibrated survival analysis framework which
uses a novel imputed censoring approach to model the
time-to-event variable. This imputed censoring approach
uses a row and column regularization based inverse
covariance estimation algorithm to impute the censored
instances. The goal of this approach is to impute the labels
for the censored instances by estimating their probable
time-to-event labels in order to build a more effective
representation of the survival data which an algorithm
can leverage upon.

e Study the formulation of our row and column based
regularized inverse covariance method which is used in
imputed censoring exhaustively. We discuss the proper-
ties of this algorithm using the L; and L, regularizers,

but the framework can work with any regularizer with a
defined L, norm where (p > 1).

o Evaluate the effectiveness of our calibration method by
comparing the survival AUC (concordance index) [10]
values obtained using standard survival regression algo-
rithms on the data with and without our time-to-event
calibration. We also conduct experiments to assess the
convergence and the impact of regularizers and regular-
ization parameters on the performance of our algorithm.

This paper is organized as follows, In Section 2, we

present the related work on the topic of using censoring
with machine learning methods. In particular, we explain
the advancements in the field of Cox regression and also
discuss other approaches which integrate censoring with
Bayesian methods. In Section 3, we introduce important no-
tations and definitions. In Section 4, we explain the formu-
lation of the proposed algorithms which integrate censoring
with regularized inverse covariance models. In Section 5,
we present the experimental results obtained using our
methods and present the tables comparing the results before
and after applying calibration and we also present runtime
and convergence results. Finally, in Section 6, we present the
conclusions derived at the end of our study and discuss the
practical implications of the proposed work.

2 RELATED WORK

In this section, we present the related work in the area

of using machine learning methods for survival analysis,

and also describe imputation methods for censored data. In
the survival analysis domain, Cox regression has garnered
significant interest from researchers in the biostatistics and

machine learning communities [2], [11].

o Cox regression and its extensions: Cox regression is a semi-
parametric method which uses a proportionality hazards
(PH) assumption. It is widely used because of its effective
performance and ease of availability. Some of the major
extensions to Cox regression include using the lasso, elas-
tic net and kernel elastic net regularizers [12], [13]. Graph
regularization has also been used with Cox regression,
where the graph laplacian is used as a penalty [14].
Finally, structured regularizers have also been used with
Cox regression to integrate group based information into
the optimization problem [13]. Other extensions include
integrating active learning with Cox regression which
can help an expert build an interactive Cox regression
framework [15].

e Bayesian methods for censored data: Censored Naive Bayes
(CensNB) is an approach which applies the standard
Naive Bayes algorithm for censored data [16]. In this
algorithm, the conditional survivor function is learned by
initializing the functions using non-parametric densities,
which are then subsequently smoothed using a weighted
loess smoother. These models use an approach called in-
verse probability of censoring weighting (IPCW) for each
of the records in the dataset. Bayesian Networks-based
methods have also been used to enhance the performance
of survival trees [17], [18]. The imputation on missing in-
stances is done using the bayesian network computed on
complete instances and the model has shown to perform
well in clinical trials.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 3

o Estimation of missing time-to-events: Multiple imputation
for censored data is a method where the failure times are
imputed using an asymptotic data augmentation scheme
based on the current estimates and the baseline survival
curve [19]. Once this is done a standard procedure such as
Cox regression is applied to the imputed data to update
the estimates. A similar problem has been dealt within
the crowdsourcing domain which predicts the time-to-
event directly using the survival function [20]. Misglasso
is an extension to the approach for imputing missing
values by using the graphical lasso algorithm [23], [24].
Other popular approaches include the Softlmpute algo-
rithm which uses a nuclear norm minimization subject to
constraints to fill the missing entries [25]. Risk stratified
imputation in survival analysis is another approach which
performs stratified imputation of missing time-to-events
based on groups of patients who are similar to each
other. The stratification is done to ensure that not too
many samples are imputed, and the imputation is done
among censored instances which are similar to each other.
An auxiliary variable approach to multiple imputation in
survival analysis is proposed in this paper with the goal
to improve efficiency using Monte Carlo methods [26].
Finally, Elastic net Buckley James (EN-B]J) [27] is a method
which directly models the response for events using the
least squares method, and for the censored instances the
response variable is imputed using the conditional expec-
tation values given the corresponding censoring times and
covariates. This algorithm uses the elastic-net regulariza-
tion term with this AFT model and was applied on high-
dimensional genomic data obtaining good performance.

Our approach is different from the methods mentioned
above as we aim at calibrating the time-to-event value and
build a more effective representation of the survival data.

Our approach is unique as it does not build a learner, and

it can be used as a pre-processing step along with any base

survival prediction algorithm to enhance its performance.

3 PRELIMINARIES

In this section, we explain an overview of our proposed
method for converting a censored dataset into a calibrated
censored dataset. We begin by presenting the table of nota-
tions used in this paper in Table 1.

In this section, we present an overview of our pre-
processing calibration method which can convert any given
dataset with right censoring into a calibrated right censored
dataset. In this approach, we build a framework that uses
both single and composite regularization by imposing reg-
ularizers and user provided penalty parameters on both the
rows (single) and rows, columns (composite) of the feature
matrix.

Before presenting the algorithmic details, we review the
notations used throughout the paper. In this paper, we will
often refer to right censoring as censoring and vice versa. 1,,
represents a unit vector of n entries. We use 7 to denote the
row index and j to denote the column index.

X here represents the concatenated matrix of the features
and time-to-event label values. We assume that X originally
is not centered w.rt. row and column means. The last
column of X corresponds to the time attribute (I'). The

TABLE 1: Notations used in this paper

Description

n number of instances

p number of columns

X R"™*P data matrix

1 censored indicator variable
by

A

n X n Row covariance matrix
P X p column covariance matrix

V4 mean of i row

i mean of j* column
qr row regularizer

Pr row penalty

qc column regularizer
Pe column penalty

remaining features correspond to the survival covariates.
The time-to-event labels for those instances which are right
censored originally are represented using 7,,;,. The labels
finally learned after using our approach are referred to
as Tiq1ip. We will also use the abbreviation (RC) for right
censored instances frequently through the remainder of this
section.

The observed and missing parts of row ¢ are o; and
m;, respectively, and o; and m; are the analogous parts of
column index j. Let m and o denote the complete set of
missing and observed elements, respectively. X; ,, denotes
the observed components of an uncensored observation ¢
and X; ,,,, denote the missing components of a censored in-
stance. This is defined this way inorder to include the notion
of both missing feature values and the missing time-to-event
label information for the censored instance. However, this
is simplified later on when we confine the missingness to
the last column of the matrix alone which corresponds to
the time attribute. For each instance in X, we partition the
mean and covariance to correspond to the observed parts of
instance 7 and denote them by p,, and A,, ,,, respectively.

We now look at the probability distribution used for
estimating time-to-event labels in this paper. This distribu-
tion is called a mean-restricted matrix variate normal distri-
bution [28] which has certain desirable properties such as
non-negativity and dual covariance parameters which are
needed for modeling censored event times. We provide the
formulation of the probability distribution below.

p(U7M7E7A) = (27T>_np/2|2|_p/2|A|—n/2 (1)

1 -
X etr< - i(X - ’Ulg)) — 1(n)uT)A !

(X — Ula) — l(n),uT)TE_l>

In Eq. (1), etr(-) represents the exponential of the trace
term here. It can be clearly seen here that the row and
column means are subtracted from X to center the concate-
nated feature time matrix. This distribution implies that the
time-to-event labels are modeled with a mean v; + 1 along
with variance ¥;;AA ;. Due to this formulation, the estimated
time-to-event labels are non-negative which cannot be guar-
anteed with the simple normal distribution. This makes the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 4

mean-restricted matrix variate normal distribution ideally
suited for modeling probable non-negative event times for
censored instances.

This modeling can also be viewed as a random effects
model where the estimated time-to-event label value can
be expressed as v; + p; + €;; where €;; ~ N(0,X;4,;)
which has two additive fixed effects depending on the row
and column means and a random effect whose variance
depends on the product of the corresponding row and
column covariances.

The goal of this method is to impute the time-to-event
for RC events, and in this process, calibrating it to a more
optimal value. This is called the calibration step of our
method where we impute the time-to-event labels for the
right censored instances. We emphasize that the imputed
censoring employed here preserves the censoring in this
dataset.

4 PRE-PROCESSING USING INVERSE COVARI-
ANCE MATRIX BASED CALIBRATION

In this section, we present the flow diagram of our approach
which is followed by presenting the two methods for cali-
brated survival analysis. We begin by explaining the REgu-
larized inverse covariance based Calibration (REC) method,
and then present the Transposable REgularized covariance
based Calibration (TREC) method. Before exploring the
inner details of these algorithms, we state explicitly that
both these approaches are only meant to build a more
effective representation of the original survival data. The
time values in the calibrated censored dataset are not the
predicted values, but are only estimated by our iterative
convergence framework in an effort to facilitate the process.

4.1 Overview of Our Approach

Survival Data
@) (1))
Y A Y
. . Right Censored
Feature Matrix Event Times (RC) Times
@ (2) @ @
- Y Y Y
¢ Create Compare
y Estimated vs RC —
Dataset e N
(Z) missing Labels Times
A
(4)
@) (3) Estimate
o | Imputed Times
™| for RC Instances
using REC, TREC (5)
v
F_eature Ma'trix » Final Survival _Calibrated RC
with Event Times Dataset Times and Status
(6) (6)

Fig. 1: Flow diagram of our approach.

We provide a flow diagram in Fig 1 which explains how
our approach works on right censored survival data. We

labeled the flow diagram with numbers which indicate the
steps and the direction being taken in the process. Initially,
in (1), we identify the set of right censored (RC) instances in
the dataset and extract the features, events and the original
RC times and store them. In (2), we replace these times using
temporary missing labels in order to facilitate our method
for identifying and imputing these selected instances. These
are combined with the features and events extracted from
(1) to create a concatenated dataset. Before creating this
concatenated dataset, the features and events are also stored
separately to be used in the final step.

In (3), we apply the two main algorithms which will
be discussed in this section, namely, REC and TREC. This
gives us the imputed times for RC instances which are now
compared with the original RC times in (4). The procedure
used to compare these times is discussed in this section
after the REC algorithm. After this step, in (5), we obtain
the calibrated RC times and status variables. Finally, in (6),
these calibrated outputs are combined with the feature and
event matrix from (2) to obtain the final survival dataset.
With this overview of our approach, we now look into the
details of the two main algorithms proposed here, namely,
REC and TREC.

4.2 REC Algorithm

In this section, we begin by explaining the REC method
which receives the censored dataset as the input and outputs
the calibrated times and status, which are used for learning
the final model. This algorithm is designed using an iterative
convergence style optimization procedure where we initialize
the missing time-to-event values and update our estimates
iteratively until convergence is observed.

We now present the regularized likelihood equation
used in REC algorithm in Eq. (2) which uses a single column
based regularization term. One can notice that an important
difference between this and the EM algorithm term is the
regularization term used. Imputation is a part of the E step
of the algorithm in which the conditional expectation of the
complete data log-likelihood is taken given the current pa-
rameter estimates. The computation in REC can be divided
into two parts which are (i) imputation-based calibration
and (ii) covariance correction steps respectively. We outline
both these steps in Eq. (3), (4).

n

1 _
Eobs (M? A) = 5 Z[log |Ao:oi - (2)
=1

(Xo, — Moi)TA;:}Oi (Xo, — /’l’oi)] —pe || AT ||qc

The first step, imputation-based calibration, is given
in Eq. (3). This step also involves the covariance-based
correction term and the next step is given in Eq. (4). The
covariance-based correction term is defined so because it is
added to the cross products forming the covariance matrix.

Xij=E(Xij | Xionp/,A) ®)
— ILL’/VTIL + A;ni,oi A:)T,})L ('/Ei70i - /’LZJL)’ if] € mg
Xi,ja if j € 0;
Ciiit = A;nia"”i - A{’”h‘)iA:)Zy})i Aloz‘,mz:’ if -j’ j/ €m;
2 0, otherwise

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 5

We can notice that in the covariance correct1on term
¢; j; is non-zero only when both j and j are missing
(censored in our context). The second step of our REC
algorithm is the rnax1mlzat10n step which is given in Eq. (5).
In this maximization step, A'is computed which is done by

replacing p with fin A,

E(XijXig | Xiop i, A) = XijXijr +cijry (@)

In Algorithm 1, we follow an iterative convergence rou-
tine similar to the traditional EM algorithm with the only
difference being the introduction of a row-based regulariza-
tion term and the corresponding covariance correction term.
We set g,.=1 using the L; regularizer due to its formulation
as the graphical lasso which can be solved using coordinate-
descent techniques efficiently.

Q(0)6%) pe | A g, ()

_MJ)+C7,]]]

= DoglaY) - %tr(A/Afl) -

Ay =B [(@y

jj - uj)(jjij

Algorithm 1 REC Algorithm

1: Input: features and time matrix X, status d

2: Output: calibrated RC times T4, calibrated status
Ocalib

3: Initialization:

(a) Store original RC times 7,,;; and replace them
with temporary missing labels.
(b) Set the missing labels as:)A(lm = Yico; Xij/Mi
(c) Set u(® A©) as the empirical mean, covariance.
4: E Step:
(a) Compute E(X; j|zio,, p®) AR as in
Eq. (3)
(b) Compute E(X; ; X; j| Xi o, ™, A)) as in
Eq. (4)
5: M Step:
(a) Update Estimates: u]&A
(b) Maximize penalized log- hkehhood w.rt. A7
to obtain the new estimate A

6: Repeat Steps 3-5 until convergence.

7: Estimate imputed RC times (73,,;,) and compare with
original RC times (15,;4) using the CompareTimes proce-
dure given in Fig 2.

8: Output calibrated time-to-event variable T, and cali-
brated status .40

In Algorithm 1, in Line 3, we do segregate the survival
data as outlined in (1) and (2) in Fig 1. In Lines 4-6, we do
the EM style optimization as explained above to iteratively
estimate the values for RC instances until convergence is ob-
served. In Lines 7-8, we employ the CompareTimes procedure
as given in Fig 2, where we compare the imputed RC times
obtained from Line 6 and compare those to the original RC
times. The comparison is done using the following rule. We
know that for right censored instances there is a chance for
the event to occur in the future which is not captured due to
censoring. After applying REC, if the imputed RC time for
an instance exceeds its original RC time, we conclude that
this can be considered as an event and relabel it accordingly.
We also modify the censored status (J) from 0 to 1 to

indicate this is an event. This modified vector is stored in
the calibrated status vector (J.4.:5). However, if the imputed
RC time is less than or equal to the original RC time, we
cannot make any conclusion whether this is an event or not.
So instances in this category are left unchanged and their
censored time and status are the same as their original RC
times and status, respectively.

This column-based regularization captures one aspect
of imputing censored instances by considering the feature
importance among different censored instances in determin-
ing their corresponding time-to-event labels while imputing
them. This approximation of the probable event time for
right censored instances as done by our approach is one of
its hallmarks which eventually leads to generating a better
representation of the survival data. We now present the
TREC algorithm which improves over REC by considering
the two-dimensional correlation structure in contrast to
the uni-dimensional correlation approach employed by the
former method.

Apply REC,
TREC and
estimate

Imputed RC

Times

Set those RC
instancesas | yes
events with

Imputed RC
Times > Original

imputed RC
Times
No
Leave RC
Instances
unchanged

Fig. 2: Flow diagram for the CompareTimes procedure.

4.3 TREC Algorithm

In this section, we present the TREC algorithm which
tries to learn the inverse covariance matrix from censored
data by imposing row and column-based regularization
on the likelihood function. This is called the Transposable
REgularized covariance based Calibration (TREC) method
for censored data. The novelty of this framework lies in
interpreting censoring as an imputation problem on the
time-to-event variable by modeling its dependence on both
row and column based features [29]. The formulation for the
log-likelihood function in TREC is given by Eq. (6).

U, 1., 8) = Llog [E7! + 2 log [A| (6)
1 _ _
— 5Tr(z HX =01l = Lyu")ATHX —vll,) = 1pyu")T)
—pr || D o —Pec |l AT llq.
In Eq. 6), ||I-llq. = = x| lg. and g, and g. are either

1 or 2, which corresponds to either L; or L, regularizer.
We consider these two choices as they are the most popular
regularizers employed. Considering the L; norm when ¢,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 6

are q. are set to 1 it is observed that solution obtained
reaches a stationary point, but it not guaranteed to be the
global maximum.

This happens because of the higher number of stationary
points when using the L; penalty. However, maximization
with the L; penalties can be achieved by applying the
graphical lasso algorithm. This coordinate-wise maximiza-
tion method used in the graphical lasso leads to a simple
iterative algorithm, but it does not necessarily converge to a
global maximum.

While considering the Lo penalty, on the other hand, the
problem can be solved by taking the eigenvalue decompo-
sition and a global maximum can be found. This leads to a
global maximum, but the solution does not have a simple
iterative form as in the case of the L; norm. However, in
both the cases, we observe that better initialization of the
row and column estimates can result in a faster convergence
rate.

The optimal way of beginning such assignment is
through initializing them with their corresponding MLE
estimates for faster convergence. In this regard, we now give
the proof for the maximum likelihood estimate (MLE) of the
mean parameters.

Theorem 1. The MLE estimates for v and i are
(Xej = fi5)

p
(Xir — i)

n

@)

5 — 3P
0=2%;_,

i =X,

Proof. Expanding the trace term of (M, X, A) w.r.t. g and v
and then taking partial derivatives, we get

ol
= 22 u1TA —2n (X —1uT)A™ =0
v
=017 =X — 147
17X —1u” Xej — 11
- = (U):Z§:1 cj — Hj
D p
This can be extended in a similar manner to obtain i as well
which ends the proof. O

With these MLE initial estimates derived, we now pro-
pose the TREC algorithm with the L; and L, norms as
regularizers. The algorithm uses a strategy similar to block
coordinate descent by maximizing on one block of coor-
dinates at a given time, thus saving considerable compu-
tational time [30]. Conditional maximization (CM) is done
with respect to one block of coordinates either ¥ ~! or A~

We now put these steps together and present all the
details in Algorithm 2. In this Algorithm, we begin by
initializing © and /i from the observed uncensored instances
using the MLE estimates given in Eq. (7). We then use these
values to initialize the time-to-event label and begin the
computation as given in Eq. (10).

After convergence, the final values of ¥ and [are calcu-
lated, subsequently 75, is computed through our imputa-
tion step. Subsequently, we use the CompareTimes procedure
to obtain T4 and d.qi Which are the final outputs.

We now provide the details of the convergence and
complexity of our TREC algorithm. The novelty of our
framework lies in estimating both the row and column

Algorithm 2 TREC Algorithm

1: Input: Features and time matrix X, status ¢, regulariza-
tion parameters py., P, Gr, qc

2: Output:Calibrated RC Times T4, calibrated status
Ocalib

3: Initialization:

(a) Estimate ¥ and i from observed uncensored
instances using Eq. (7).
(b) Initialize time for censored instances as ¥; + (i;
(c) Start with nonsingular estimates 3 and A.
(d) Initalize matrices G,C, F, D.
4: E Step(A): Calculate XTX 71X + G(X71)
as in Eq. (10)
5: M Step(A):
(a) Update estimates of © and /.
(b) Maximize Q with respect to A~! to obtain A
using gradient as given in Egs. (11) and (12).
6: E Step(¥): Calculate XA~1XT + F(A~1)
as in Eq. (10)
7: M Step(2):
(a) Update estimates of © and fi.
(b) Maximize Q with respect to ¥ 7! to obtain)
using gradient as in Eqgs. (11) and (12).

8: Repeat Steps 3-7 until convergence.

9: Estimate imputed censored times (7,,) and compare
with original RC times (75,44) using the CompareTimes
procedure given in Fig 2.

10: Output calibrated time-to-event variable T.,;;, and cali-
brated status dcqz50-

sparse inverse covariance matrices. The complexity asso-
ciated with each column wise computation is O(np) and
this computation over p columns amounts to a O(np?) time
complexity. The resulting optimization problem is convex
with respect to each term and it can be efficiently solved
using blockwise descent methods.

4.4 Algorithm Analysis

We now develop the steps involved in the blockwise op-
timization algorithm mathematically, beginning with the
observed data log-likelihood which we seek to maximize.
We use this term X/ ; to condense the likelihood equation
to express it in a simpler form as given in Eq. (8).

o1d = Sy (Xoyj = Vo,) ®)

v, 1, 3,8) = S[2)_y log | X5, [+, [AL, |

07,04

ol SR

_ = n * _ T * _ —1
2T‘T(2:1(Xz,oi /J’Oi) (Xz,oi MOz‘)Aoi,oi)
= [=7 Mlgy —pe 1 A7 [lq.

We now derive a simple form to express each of our
blockwise steps. One is expressed with respect to X! and
the other with respect to A~ as in Eq. (10). This is possible
because of the structure of the matrix-variate model, specif-
ically the trace term. The model parameters are represented
using § = {v, 1,2, A}. The E step, denoted by Q(6 | 6, X,),

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 7

is expressed in Eq. (9).
QO | eleo) = E(l(v, 1, 3, A) | XOvol) &)
x E[Tr(XTS A7 X)|X,,0]
x THE(XTS X | X,,0)A7Y
x Tr[BE(XAT'XT | X,,0)27Y
We now provide the proof for our proposition for obtain-

ing the simple forms of the conditional maximization step
which will be used in our blockwise algorithm.

Proposition 2: The E step is proportional to the following form

ETr(XTS XA | X,,6]
= Tr[(XT2 X + G(Z71)A™Y
= Tr[(XA'XT + F(A™Y)E7Y
where X = E(X | XO,H/) and
Tr(CUYE1) Tr(CUP) 1)

(10)

Tr(CPDy-1) Tr(CPP) L)

Tr(DUD AT Tr(DUM A~

Tr(D"DA-T) Tr(D™ A~

C(JJ/) = COU(chach’ | Xoyel)
D(ii/) _ COU(XiT7Xi,T | Xo,g/)

We now present the proof for this proposition

Theorem 2. We first show that
E[Tr(XTS ' XA Y)X,,0] =
T[(XTE71X + G(21)A™Y

Proof. Let A = XTY 71X, then,

E[Tr(XTS'XA™Y) | X,,0] = Tr[E(A|X,,0), A™']

’ . T 1 ’

B(A;|X0,0) = B(XIO7'X, 1 |X,,0')
B[} Y XXy 01X, 0]

k=1t=1
=YD XX + 2> O oy

t=1

k=1 k=1t=1
_ vTy—1% i) y—1
-)(cjE ch/ + Tr(C(Jj)E)

Thus, E(A|X,,0) = XTS ' X + G(271)
The proof showing
E[Te(XTS'XA™Y) | X,,0]
=Tr[(XTE X + F(A™Y)n™Y]

is similar to the calculation above with B = XA~1XT
E(Bii|X,,0) = Xiup AT XD 4+ Te(DEIA™Y
O

We now present the gradient equations which are being
used in TREC with the L; and Ly norms in Egs. (11) and
(12).

0Q XTY X +G(EY 2. .

AT A — - - sgn(A™) (11)
0Q XAIXT + F(A™Y) 2p, o

-1 Y- » - sgn(X77)

We use a notation now through the remainder of this
paper to represent the regularizer being used in TREC. L-
TREC represents using the L; norm in TREC. The same
notation can be extended to the L,-TREC algorithm.

oQ XTS X +G(=Y 4pe

gAT AT o a8 (12
0Q . XA'XT+ FATY Apr g

ox-1 P D

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
using the proposed REC, TREC methods for calibrated
survival analysis on EHRs, Crowdfunding (Kickstarter) [31]
and synthetic datasets. In Figure 3, we present a bar graph
which plots the censored statistics for the kickstarter and
EHRs. One can clearly observe that the distribution of
right censored instances is higher for the kickstarter data
compared to the EHRs, which is an important characteristic
of the data collected from the crowdfunding domain.

In this section, we will discuss the data collection and
pre-processing steps for the EHRs and kickstarter datasets.
We conduct various experiments to study the importance
of imputing censored instances using our methods. We
provide plots which illustrate the improvements obtained in
survival regression algorithms after applying our approach.
Finally, we also study the effect of both the regularizers and
regularization parameters on the runtime performance of
our algorithms.

B Kickstarter
| B EHR

[
o

'y
o

N
=]

% of Censoring
w
o

=
o

Dataset

Fig. 3: Percentage of right censored instances in EHR and
Kickstarter datasets.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 8

5.1 Dataset Description

We will first describe the various kinds of datasets used in
our experiments. This includes the Kickstarter data, EHRs
and synthetic datasets. We explain the data collection and
pre-processing steps involved with each of these datasets.

TABLE 2: Kickstarter data statistics for 18,143 projects

Attr Mean | Min Max StdDev
Goal 26,531 | 100 | 100,000,000 | 758,366
Pledged | 11,023 | 100 6,224,955 78,550
backers 138 1 35,383 633
Days 31 1 60 10.5

TABLE 3: Description of censored statistics in the Kickstarter
projects

Name | Startdate Enddate | # Projects | Censored (%)
Kick1 | 1/12/2013 | 1/1/2013 4175 52.99
Kick2 | 1/1/2014 | 15/3/2014 5229 47.36
Kick 3 | 16/3/2014 | 31/4/2014 5720 51.25
Kick4 | 1/5/2014 | 30/6/2014 2969 48.58

5.1.1 Crowdfunding datasets

For the experiments in this paper, we obtained six months
of Kickstarter (a popular crowdfunding platform) data from
www.kickspy.com. This dataset spans from 12/15/13 to
06/15/14, which consists of projects characterized by 30
project-based attributes. The attributes in the kickstarter
datasets include a number of static features such as project
goal amount, duration, textual content, etc., and two dy-
namic features: per-day increase in number of backers and
pledged amount as given in Table 3. In this manner, a total
of 18,143 projects with over 1 million backers were obtained
and processed using the procedures followed in [32]. The
attribute used to determine the censoring in the kickstarter
datasets is the duration of the project.

Each project in our kickstarter database is tracked over
a period of time until either its goal date is reached or it
obtains the goal amount. If a project reaches its goal amount
(event in this scenario) in a specified duration (time-to-
event) this is measured as a success. However, failure to
reach the specified goal amount by the end of the study
would imply that the instance has been censored (possibly
attains the goal amount at a later time). With this notion of
censoring, we present the percentage of censored instances
in kickstarter data in Table 3.

5.1.2 Electronic Health Records (EHRs)

We now provide the description for the EHRs considered.
These datasets are longitudinal EHRs for patients admitted
at the Henry Ford Health System, Detroit, Michigan over a
period of 10 years. The event here is heart failure readmis-
sion and the duration is measured after the patient has been
discharged from primary index hospitalization.

The statistics with the right censored percentages are
provided for 5 of our sample datasets in Table 4. Readm-
index represents the index of readmission for the patients.
EHRO is for data for the index hospitalization. Similarly,
EHRn represents the dataset for the n'” rehospitalization

for the patient set considered. It should be noted that as n
increases the number of patients will be reduced.

TABLE 4: Basic Statistics for EHRs

Readm | Rows | Columns | Censored (%)

EHR 0 4417 77 22.20

EHR 1 3410 77 17.98

EHR 2 2749 77 16.44

EHR 3 2209 77 13.63

EHR 4 1801 76 12.05
5.1.3 Synthetic datasets

We generate synthetic datasets by setting the pairwise cor-
relation between any pair of covariates to vary from -
0.5 to 0.5. Feature vectors of different dimensionality are
generated to construct three synthetic datasets. For each of
these synthetic datasets, the generated failure times 1" are
generated through a Weibull AFT model.

We compare the effect of calibrated survival analysis on
any given dataset before and after applying it, by evaluating
the performance using a standard survival learner. In our
experiments, for each dataset, we create a new one after
applying TREC based calibration and this is labeled as With,
and the version before applying TREC based calibration is
labeled as Without. We use this notation throughout this
section.

5.2 Performance Evaluation

We will now describe the evaluation metrics used in this
work along with some of the implementation details for
both the algorithms proposed in this paper as well as details
pertaining to baseline comparison algorithms.

5.2.1 Evaluation metrics

In this section, we explain the evaluation metrics used for
our experimental results. Popular metrics used in survival
analysis, such as time-based AUC and survival AUC aim at
evaluating the relative risk of a event for two instances, than
predicting the absolute survival times for these instances.
These metrics are introduced below.

AUC(T,) = P(Y; < Y;|Y; < T.,Y; > T.)
1 N N
- Y Y i<y

num(Te) Yi<T. Y;>Te

(13)

In Eq. (13), we define the time-based AUC estimated at
any given time T,. num(T,) denotes the number of compa-
rable pairs at time 7, and I is an indicator function. AUC(T%)
can be used to define the Survival AUC metric which
measures the weighted average of the time-based AUC as
given in Eq. (14). In this equation, T, represents the set of all
possible event times in the dataset, and num represents the
cumulative number of comparable pairs calculated over all
event times.

1
Survival AUC = —— E AUC(T) - num(T,) (14)
num £

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 9

5.2.2 Implementation details

We implemented both REC and TREC in the R program-
ming language. As mentioned earlier we implemented
the versions corresponding to both the L; and Ly norms
in TREC. The glasso R package was used for solving
the graphical lasso problem for solving the corresponding
subproblems in REC and TREC. The iterative blockwise
gradient descent algorithm was implemented as the main
optimization routine for solving TREC. The corresponding
parameters for regularization in REC and TREC were de-
termined through five-fold cross validation.

In this section, we will refer to L>-TREC as TREC, and
this has been used for obtaining the results in this section.
As mentioned earlier, we prefer the Ly norm as it gives
us a global maximum compared to the L; norm. So all
the calibrated datasets have been generated using the Lo-
TREC and REC algorithms. We reiterate explicitly that if a
regularizer is not mentioned with TREC, then it is assumed
to be the Lo-TREC algorithm itself. As REC uses the L;
norm alone, we do not specify the norm explicitly, and it
assumed that REC refers to using the L; norm formulation
only.

We now briefly discuss the implementation details per-
taining to baseline comparison algorithms. The software for
CensNB is available at ! and we used our code for KEN-
COX and OSCAR-COX [13]. The randomForestSRC and
CoxNet R packages are used for running random survival
forests and EN-COX, respectively.

We now briefly explain the baseline imputation algo-
rithms used for comparing the performance of REC and
TREC. The first baseline algorithm is Softimpute which is
a method which uses the nuclear norm regularizer and
iteratively replaces the missing elements with those ob-
tained from a soft thresholded singular value decomposition
(SVD). It tries to minimize the nuclear norm subject to
certain constraints [25].

The other baseline method is Misglasso which is a
method that replaces the missing values using the standard
graphical lasso by modifying the update step in the EM
iteration [24]. We implement the misglasso algorithm by
using the graphical lasso R package (glasso). The softimpute
R package is used for the Softimpute algorithm. The code for
REC and TREC algorithms is available here?.

5.3 Integrating TREC with Survival Regression Algo-
rithms

In this section, we present results which demonstrate the
robustness of TREC algorithm on several datasets. We do
not report the results obtained after applying REC as this
is simply a part of the TREC framework, and we do not
want to highlight this as two different contributions while
presenting the results. REC is more simpler in terms of
formulation and obtaining a solution compared to TREC.
However, TREC is more robust in terms of performance
which will be shown in this section. The baseline algorithms
used in for comparison in this section are
1) Elastic net Cox (EN-COX) [12]: EN-COX integrates the
elastic net penalty with the Cox partial log-likelihood

1. https:/ /sites.google.com/a/umn.edu/jwolfson/software
2. https:/ / github.com/MLSurvival/survutils

loss function to deal with correlated features in survival
data.

2) Kernel elastic net Cox (KEN-COX) [13]: KEN-COX sup-
plements EN-COX with an additional feature kernel
term to capture more feature correlation among the
survival covariates.

3) Oscar Cox (OSCAR-COX) [13]: This method uses the
Octagonal Shrinkage Clustering Algorithm for Regres-
sion (OSCAR) [33] as a regularizer along with the Cox
partial log-likelihood loss function to capture feature
grouping among survival covariates.

4) CoxBoost [34]: This is an extension of Cox regression
which uses the boosting method to create an ensemble
of learners.

5) Censored Naive Bayes (CensNB) [16]: This is a
bayesian based approach which uses inverse probabil-
ity weighted censoring (IPCW) mechanism to obtaining
probability estimates for prediction.

6) Random Survival Forests (RSF) [35]: RSF and CoxBoost
are ensemble based methods which use survival trees
and boosting for prediction, respectively.

7) Boosted Concordance Index (BoostCI) [36]: This approach
optimizes the concordance index directly to build an ef-
fective regression model in contrast to other maximum
likelihood based approaches such as Cox regression.

8) Elastic net Buckley James (EN-BJ) [27]: EN-BJ uses a semi-
parametric accelerated failure time (AFT) model with
elastic net regularization.

The results from Tables 5 and 6 indicate that when TREC
is applied on the censored dataset (With), the survival
regression algorithm is able to yield a better performance
in comparison to using the original right censored dataset
(Without). We attribute this better performance to the fact
that TREC models the censored missing time-to-event val-
ues using a row and column regularization method which
infers the correlation patterns among censored instances
which is needed to impute the time-to-event labels for
RC instances correctly. The improvements in survival AUC
values are prominent with both Cox regression-based algo-
rithms as given in Table 5, and other survival algorithms as
given in Table 6. These improvements also confirm that the
performance of our approach does not depend on using any
specific kind of survival regression algorithm.

In addition, in this experiment, we also report the p-
values measuring whether the difference between the model
built on the calibrated data using TREC differs significantly
from the model built without calibration. We report these
p-values in brackets next to the concordance index. These
are reported for two algorithms here, namely, CoxBoost
and EN-BJ only as the performance of our pre-processing
approach does not depend the algorithm being used for
prediction. This value is calculated by comparing two con-
cordance indices using this method [37] and estimating
if their difference is statistically significant by calculating
the corresponding p-values. Using these metrics the better
performing model among the With and Without calibrated
datasets is marked in bold in Tables 5 and 6 for each
algorithm. The p-values in Tables 5 and 6 indicate that
survival models built on the calibrated data are more robust
as indicated by the overall low p-values. p-values < 0.05

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX

10

TABLE 5: Comparison of Survival AUC values with standard deviation (std) and p-values for different Cox regression
algorithms without and with (TREC) applied on kickstarter, EHR and synthetic censored datasets

Dataset EN-COX KEN-COX OSCAR-COX CoxBoost
Without | With | Without | With | Without | With | Without | With (p-value)
Kick 1 0.812 0.835 0.794 0.803 0.811 0.843 0.831 0.866 (0.039)
(0.071) | (0.044) | (0.011) | (0.027) | (0.093) | (0.064) | (0.022) (0.075)
Kick 0.811 0.865 0.819 0.841 0.832 0.874 0.803 0.825 (7e-9)
(0.132) | (0.048) | (0.031) | (0.073) | (0.045) | (0.031) | (0.045) (0.071)
Kick 3 0.807 0.820 0.793 0.833 0.814 0.833 0.793 0.827 (6e-15)
(0.049) | (0.033) | (0.104) | (0.079) | (0.022) | (0.067) | (0.097) (0.019)
Kick 4 0.773 0.817 0.782 0.811 0.821 0.853 0.811 0.833 (4e-7)
(0.088) | (0.045) | (0.091) | (0.037) | (0.102) | (0.076) | (0.050) (0.061)
EHR 0 0.585 0.606 0.618 0.605 0.632 0.643 0.631 0.642 (0.041)
(0.094) | (0.113) | (0.021) | (0.065) | (0.016) | (0.025) | (0.033) (0.089)
EHR 1 0.592 0.609 0.611 0.637 0.629 0.655 0.622 0.625 (3e-14)
(0.106) | (0.041) | (0.087) | (0.055) | (0.031) | (0.074) | (0.011) (0.061)
EHR 2 0.598 0.605 0.624 0.611 0.618 0.599 0.637 0.665 (5e-16)
(0.082) | (0.041) | (0.038) | (0.091) | (0.028) | (0.116) | (0.081) (0.064)
EHR 3 0.581 0.595 0.611 0.639 0.607 0.626 0.631 0.648 (9e-21)
(0.016) | (0.019) | (0.058) | (0.022) | (0.030) | (0.084) | (0.011) (0.082)
FHR 4 0.618 0.633 0.641 0.655 0.644 0.661 0.689 0.675 (1e-8)
(0.043) | (0.096) | (0.088) | (0.101) | (0.041) | (0.037) | (0.021) (0.066)
Syn 1 0.668 0.673 0.681 0.699 0.677 0.664 0.693 0.715 (2e-7)
0.027) | (0.074) | (0.065) | (0.032) | (0.072) | (0.121) | (0.084) (0.033)
Syn 2 0.872 0.902 0.890 0.910 0.927 0.943 0.872 0.933 (0.009)
(0.039) | (0.104) | (0.088) | (0.057) | (0.018) | (0.041) | (0.032) (0.017)
Syn 3 0.727 0.719 0.785 0.854 0.887 0.931 0.856 0.922 (4e-10)
(0.096) | (0.041) | (0.016) | (0.041) | (0.043) | (0.109) | (0.037) (0.029)

TABLE 6: Comparison of Survival AUC values with with standard deviation (std) and p-values for CensNB, RSE, BoostCI
and EN-BJ algorithms without and with (TREC) applied on kickstarter, EHR and synthetic censored datasets

Dataset CensNB RSF BoostCI EN-BJ
Without | With | Without | With | Without | With | Without | With (p-value)
ik 1 0771 | 0.804 | 0.802 | 0799 | 0785 | 0.803 | 0818 | 0.824 (0.017)
(0.066) | (0.089) | (0.069) | (0.088) | (0.113) | (0.045) | (0.029) (0.054)
ok 2 0783 | 0.809 | 0811 | 0.833 | 0743 | 0733 | 0853 | 0.879 (0.03D
(0.145) | (0.07D) | (0.044) | (0.077) | (0.082) | (0.103) | (0.077) (0.141)
ok 3 0761 | 0753 | 0732 | 0.758 | 0.763 | 0725 | 0.835 0.841 (1e-4)
e 0.002) | (0.087) | (0.043) | (0.021) | (0.089) | (0.088) | (0.022) (0.071)
ok 4 0722 | 0773 | 079 | 0.812 | 0722 | 0744 | 0839 | 0.851 (0.019)
. 0.091 . 0.028 . 0.114 . 0.064
5 (0.013) | (0.091) | (0.057) | (0.028) | (0.097) | (0.114) | (0.102) (0.064)
cHRo | 0572 | 0591 | 059 | 0611 | 0517 | 0552 | 0504 | 0.601(1e26)
0.037) | (0.078) | (0.069) | (0.07D) | (0.093) | (0.064) | (0.033) (0.081)
CHR 1 0575 | 0588 | 0583 | 0.609 | 0543 | 0565 | 0571 | 0.604 (de-10)
0.092) | (0.044) | (0.117) | (0.08D) | (0.025) | (0.07D) | (0.062) (0.110)
cHR2 | 0573 | 0606 | 0581 | 0591 | 0575 | 0591 | 0566 | 0601 (7e-12)
(0.044) | (0.097) | (0.118) | (0.039) | (0.068) | (0.013) | (0.034) (0.045)
chR3 | 0609 | 0631 | 0611 | 0.63 | 0626 | 0.63 | 0593 | 0.614 Ge-16)
(0.177) | (0.085) | (0.035) | (0.087) | (0.041) | (0.045) | (0.025) (0.088)
R4 | 0621 | 0659 | 0633 | 0627 | 0665 | 0693 | 0638 0.644 (1e-9)
(0.034) | (0.082) | (0.069) | (0.076) | (0.901) | (0.119) | (0.081) (0.067)

o 1 0654 | 0.661 | 0633 | 0642 | 0643 | 0679 | 0641 | 0.669 (2e-10)
Y 0.099) | (0.133) | (0.078) | (0.091) | (0.125) | (0.188) | (0.105) (0.087)
2 0.847 | 0.867 | 0852 | 0905 | 0836 | 0.896 | 0.866 0.875 (3-8)
Y (0.109) | (0.086) | (0.122) | (0.076) | (0.065) | (0.018) | (0.026) (0.004)

o 3 0714 | 0764 | 0834 | 0.841 | 0740 | 0.748 | 0.780 0.799 (Le-4)
y (0.09) | (0.155) | (0.071) | (0.033) | (0.027) | (0.164) | (0.019) (0.031)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 11

are considered to be good enough to show the statistical
significance of the results obtained using our methods. A
good survival model will have high concordance index and
low p-values as illustrated in the results from Tables 5 and
6. We attribute the good performance of these algorithms
due to our effective calibration technique which enhances
the predictive power of survival algorithms.

5.4 Impact of Regularizers and Regularization Parame-
ters on TREC Algorithm

In this section, we study the influence of the row and
column regularizers and parameters on the convergence and
runtime of the TREC algorithm. We study the runtime using
both L; and Ly regularizers in TREC to assess their time
efficiency. We use one of the kickstarter datasets (Kick 1) for
this experiment. The values of the row and column regular-
ization parameters were obtained using cross validation for
this dataset.

8000
= L1 norm , 4
s,
6000 |— L2 norm 7’ b
g ,
8 L7
i}"i 4000 - e PR
) - 4
£ s L7
= 2000 e - 1
-, Phe
Phe -
_ - -
0 L L Z == L L L
0 500 1000 1500 2000 2500 3000

Number of Instances

Fig. 4: Runtime on Kickstarter dataset using L, Lo-norms
in TREC.

In Figure 4, we plot the runtime in seconds on the Y-
axis, and the number of instances sampled from Kick 1
dataset are labeled on the X-axis. We run both our L; and
Lo norm based TREC algorithms separately to measure
their runtime. We can observe that among the two norms
Lo-norm is more time efficient compared to the L;-norm.
The L; norm uses the graphical lasso solver and the higher
number of stationary points observed in this formulation
results in higher runtime to obtain convergence. This makes
the Ly norm the more efficient regularizer due to better
scalability. However, the Ly norm does not provide sparse
solutions with respect to the inverse covariance matrix
estimated which affects the interpretability of the solution
when dealing with high-dimensional datasets. So there is a
trade-off between choosing the L; and Ly-norms.

In another experiment, we also study the impact of the
choice of the regularization parameters on the convergence
of TREC. In Figure 5, the X-axis represents the indices of
the four kickstarter datasets used in this paper. The Y-axis
represents the number of iterations needed for TREC to
converge for each dataset using three sets of regularization
parameter values. The legend indicates the values chosen
for the regularization parameters p, and p.. We observe that
the choice of regularization parameters does not affect the
convergence, as there is no uniform pattern observed. So
these experiments allow us to conclude that the choice of

4

T
(2.5,2.5)
Cis5 ||

w

Number of Iterations
- N

1

2 3 4
Kickstarter datasets

Fig. 5: Iterations for convergence using Ls-norm based
TREC.

regularizer is important, but the value of these regulariza-
tion parameters does not affect the convergence of TREC
significantly. We conducted this analysis also to evaluate
the impact of the regularization parameters on the survival
AUC values. We observed that the survival AUC values did
not change much which indicates that our framework is not
sensitive to the row and column regularization parameters
in terms of both runtimes and performance.

5.5

In this experiment, we plot the survival AUC values of the
learning algorithm when we gradually sample instances
from the calibrated data (With) using different methods
for imputing the missing time-to-event values in survival
data. This experiment helps us interpret how the calibrated
samples are contributing towards building a more efficient
model as they are sampled iteratively. The approaches used
for imputation in this experiment include Softlmpute [25],
Misglasso [24], REC and TREC. In this experiment, we
present the results for the synthetic datasets, kickstarter
datasets and EHRs.

The learning algorithm considered for this experiment
was the (EN-COX) algorithm. As determined from the pre-
vious experiment, the choice of the learning algorithm was
not a part of our approach, so we can choose any arbitrary
survival learner. We train the initial survival model using
all the uncensored instances, and we continuously sample
instances from a pool of censored instances and add them
to retrain a survival model. These censored instances have
been imputed using REC and TREC. Simultaneously, we
also impute these instances iteratively using SoftImpute and
Misglasso before training a new survival model.

As imputed censored instances are added to the training
data from the censored pool, we retrain the model and plot
the survival AUC values on this combined dataset of the
initial set of uncensored instances and the sampled censored
instances. From the plots in Figure 6, we observe that the
survival AUC values improve for most of the cases, with
the improvements being prominent for TREC compared to
other competing methods and REC stands as the second
best method.

The better performance of TREC is because it is effective
in interpreting the missing values in the time-to-event labels
for censored instances, as it imputes these values con-
sidering the two-dimensional correlation structure within

Improvement in AUC with Imputed Censoring

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX

12

0.95 T
0.68 T T —
= SoftImpute 3 S?ftimpute
0.66F|=*—=Misglasso — —e—Misglasso
—8=REC [[| ===REC
8 0. 64 |——TREC 3 —*TTREC
2 <
~0.62 ;
5 -
; 0.6 a
*5 o]
©0.58 @
0.56
0.5 10 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 80 0. 70 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 80
Percentage of censored samples Percentage of censored samples
(a) AUCon Syn 1 (b) AUC on Syn 2
—+—SoftImpute == SoftImpute
0.86 J =
—e+—Misglasso 0.86 =—==Misglasso }
0.84F | —a—rEC 0.84| | —a=REC
50.82 ——TREC %0.82 ——TREC
E 0.8 ',"; 0.8
->l 0.78¢ ; 0.78
4
20.76 é 0.76
0.74 0.74
0.729 0.72+ |
0 . 7 I 1 L 1 1 L L 0 7 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Percentage of censored samples Percentage of censored samples
(c) AUC on Kick 1 (d) AUC on Kick 2
— —— SoftImput.
0.86 SoftImpute i 0.86 c-) mpute]
—+—Misglasso ——Misglasso
0.84f | —a=REC 1 0.84| —==REC 1
é ——TREC § 0.82 | —+TREC
":‘,’ E 0.8
g ; 0.78
3 30.76
0.74
0.72¢
0 . '7 Il Il Il Il L L L 0 . '7 Il Il Il Il Il L L
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Percentage of censored samples Percentage of censored samples
(e) AUC on Kick 3 (f) AUC on Kick 4
0.62 T 0.66 T T
- Sc.sft Impute =—=SoftImpute
=—e—Misglasso —e—Misglasso
0.6 |===REC 0.64[|—a=REC
9 —4TREC 9] ——TREC
2]
_ o 0.62
g [
E E 0
4 .
a a
0.54 7 0.5
0 520 I I I I I I L I I L L Il Il |
10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Percentage of Censored Samples Percentage of censored samples

(g) AUC on EHR 0 (h) AUCon EHR 1

Fig. 6: Survival AUC values at varying percentages of censored samples obtained for calibrated synthetic, kickstarter and
EHR datasets using REC, TREC, SoftImpute and Misglasso methods.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 13

the covariance matrix in its formulation. Calibrated time-
to-event labels tend to provide the survival model with
more discriminative information which is evident from the
improvement in the survival AUC values.

6 CONCLUSION

In this paper, we presented a framework for pre-processing
survival data by calibrating the time-to-event labels for right
censored instances in the dataset. We motivate the necessity
for this application by considering the two-dimensional
correlation structure in censored data which needs to be
inferred by a method before labeling these censored in-
stances. These methods are very useful in several real-
world application problems such as (i) mining clinical data
to identify hospital readmissions (ii) following projects in
crowdfunding to determine their success. Traditional sur-
vival learners cannot be used directly for such data, since
the time-to-event label information that is used for censored
instances is incomplete. Erroneous time-to-event labels in
such instances could misguide the learning algorithm which
is undesirable.

To overcome this problem, we introduce a pre-
processing method which makes it easy for a domain
expert to convert right censored data to calibrated right
censored data which is a more effective representation of
the dataset. We studied two methods in this paper, namely,
REC and TREC. REC uses the column-based regularization
and TREC uses a composite row and column-based regu-
larization. The experimental results reveal that both these
methods help in improving the survival AUC of algorithms
in comparison to other methods. This work can be extended
to interval based censoring to identify methods to calibrate
censored instances in that domain.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation grants 1IS-1707498, 11S-1619028 and 1IS-1646881.
The authors would like to thank Dr. David E. Lanfear from
Henry Ford Health System, Detroit, MI for providing us
with electronic health records for our analysis. We also
acknowledge the contributions of Dr. Vineeth Rakesh from
Wayne State University for providing us with the crowd-
funding datasets.

REFERENCES

[1] H. Koul, V. Susarla, and]J. Van Ryzin, “Regression analysis with
randomly right-censored data,” The Annals of Statistics, vol. 9,
no. 6, pp. 1276-1288, 1981.

[2] D.R. Cox, “Regression models and life-tables,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 34, no. 2, pp 187-
220, 1972.

[3] A. Coolen and L. Holmberg, “Principles of survival analysis,”
Oxford University Press, 2013.

[4] P. Sasieni, “Cox regression model,” Encyclopedia of Biostatistics,
1999.

[5] P. Wang, Y. Li, and C. K. Reddy, “Machine learning for survival
analysis: A survey,” ACM Computing Surveys, pp. 1-38, 2017.

[6] J.P. Klein and M. L. Moeschberger, Survival analysis: techniques for
censored and truncated data. Springer Science & Business Media,
2005.

[7] D. W. Hosmer Jr, S. Lemeshow, and S. May, “Applied survival
analysis: Regression modelling of time to event data,” Wiley Series
in Probability and Statistics, 2008.

(8]

(9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

C.-F. Chung, P. Schmidt, and A. D. Witte, “Survival analysis: A
survey,” Journal of Quantitative Criminology, vol. 7, no. 1, pp. 59-98,
1991.

Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.
M. Gonen and G. Heller, “Concordance probability and discrim-
inatory power in proportional hazards regression,” Biometrika,
vol. 92, no. 4, pp. 965-970, 2005.

R. Tibshirani “The lasso method for variable selection in the cox
model,” Statistics in medicine, vol. 16, no. 4, pp. 385-395, 1997.

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “Regulariza-
tion paths for Cox’s proportional hazards model via coordinate
descent,” Journal of statistical software, vol. 39, no. 5, p. 1, 2011.

B. Vinzamuri and C. K. Reddy, “Cox regression with correlation
based regularization for electronic health records,” in IEEE 13th
International Conference on Data Mining. , 2013, pp. 757-766.

W. Zhang, T. Ota, V. Shridhar, J. Chien, B. Wu, and R. Kuang,
“Network-based survival analysis reveals subnetwork signatures
for predicting outcomes of ovarian cancer treatment,” PLoS Com-
put Biol, vol. 9, no. 3, pp. 1-16, 2013.

B. Vinzamuri, Y. Li, and C. K. Reddy, “Active learning based sur-
vival regression for censored data,” in Proceedings of the 23rd ACM
International Conference on Information and Knowledge Management.
ACM, 2014, pp. 241-250.

J. Wolfson, S. Bandyopadhyay, M. Elidrisi, G. Vazquez-Benitez,
D. M. Vock, D. Musgrove, G. Adomavicius, P. E. Johnson, and
P. J. O’Connor, “A naive bayes machine learning approach to
risk prediction using censored, time-to-event data,” Statistics in
medicine, vol. 34, no. 21, pp. 2941-2957, 2015.

P. M. Rancoita, M. Zaffalon, E. Zucca, F. Bertoni, and C. P.
De Campos, “Bayesian network data imputation with application
to survival tree analysis,” Computational Statistics & Data Analysis,
vol. 93, pp. 373-387, 2016.

M. J. Fard, P. Wang, S. Chawla, and C. K. Reddy, “A Bayesian Per-
spective on Early Stage Event Prediction in Longitudinal Data,”
IEEE Transactions on Knowledge and Data Engineering (TKDE),
vol. 28, no. 12, pp. 3126-3138, 2016.

W. Pan, “A multiple imputation approach to cox regression with
interval-censored data,” Biometrics, vol. 56, no. 1, pp. 199-203,
2000.

J. Wang, S. Faridani, and P. Ipeirotis, “Estimating the completion
time of crowdsourced tasks using survival analysis models,”
Crowdsourcing for search and data mining (CSDM 2011), vol. 31, 2011.
J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covari-
ance estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3,
pp. 432441, 2008.

P.]. Green, “On use of the EM for penalized likelihood estimation,”
Journal of the Royal Statistical Society. Series B (Methodological),
vol. 52, no. 3, pp. 443-452, 1990.

X.-L. Meng and D. B. Rubin, “Maximum likelihood estimation
via the ecm algorithm: A general framework,” Biometrika, vol. 80,
no. 2, pp. 267-278, 1993.

N. Stddler and P. Bithlmann, “Missing values: sparse inverse
covariance estimation and an extension to sparse regression,”
Statistics and Computing, vol. 22, no. 1, pp. 219-235, 2012.
R.Mazumder, T. Hastie, and R. Tibshirani, “Spectral regularization
algorithms for learning large incomplete matrices,” Journal of
machine learning research, vol. 11, no. 10, pp. 2287-2322, 2010.

C. L. Faucett, N. Schenker, and J. M. Taylor, “Survival analysis
using auxiliary variables via multiple imputation, with application
to aids clinical trial data,” Biometrics, vol. 58, no. 1, pp. 37-47, 2002.
S. Wang, B. Nan, J. Zhu, and D. G. Beer, “Doubly penalized
buckley—james method for survival data with high-dimensional
covariates,” Biometrics, vol. 64, no. 1, pp. 132-140, 2008.

B. Efron, “Are a set of microarrays independent of each other?”
The annals of applied statistics, vol. 3, no. 3, pp. 922-942, 2009.

G.I. Allen and R. Tibshirani, “Transposable regularized covariance
models with an application to missing data imputation,” The
Annals of Applied Statistics, vol. 4, no. 2, pp. 764-790, 2010.

D. M. Witten, R. Tibshirani, and T. Hastie, “A penalized matrix
decomposition, with applications to sparse principal components
and canonical correlation analysis,” Biostatistics, vol. 10, no. 3, pp.
515-534, 2009.

Y. Li, V. Rakesh, and C. K. Reddy, “Project success prediction
in crowdfunding environments,” in Proceedings of the Ninth ACM

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXX 14

International Conference on Web Search and Data Mining, pp. 247-256.
2016,.

[32] V.Rakesh, J. Choo, and C. K. Reddy, “Project recommendation us-
ing heterogeneous traits in crowdfunding,” in Ninth International
AAAI Conference on Web and Social Media, pp 337-346, 2015.

[33] H.D. Bondell and B. J. Reich, “Simultaneous regression shrinkage,
variable selection, and supervised clustering of predictors with
oscar,” Biometrics, vol. 64, no. 1, pp. 115-123, 2008.

[34] H. Binder, “CoxBoost: Cox models by likelihood based boosting
for a single survival endpoint or competing risks,” R package
version, vol. 1, 2013.

[35] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer,
“Random survival forests,” The annals of applied statistics, vol. 2,
no. 3, pp. 841-860, 2008.

[36] A.Mayr and M. Schmid, “Boosting the concordance index for sur-
vival data-a unified framework to derive and evaluate biomarker
combinations,” PloS ONE, vol. 9, no. 1, pp. 834-843, 2014.

[37] L. Kang, W. Chen, N. A. Petrick, and B. D. Gallas, “Comparing
two correlated C- indices with right-censored survival outcome: a
one-shot nonparametric approach,” Statistics in medicine, vol. 34,
no. 4, pp. 685-703, 2015.

Bhanukiran Vinzamuri is a postdoctoral re-
search scientist in the Data Science department
at IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, USA. He received his
Ph.D. degree in Computer Science and Engi-
neering from Wayne State University. Prior to
this, he finished his B. Tech and MS by Research
in Computer Science from International Institute
of Information Technology, Hyderabad (llIT-H).
His research interests are machine learning, bio-
statistics and healthcare analytics. His research
has been published in leading conferences and journals such as ICDM,
CIKM, SDM and DMKD.

Yan Li is a Postdoc fellow in the Department
of Computational Medicine and Bioinformatics at
University of Michigan, Ann Arbor. He received
his Ph.D. and M.S. from Wayne State University
and B.S. from Xidian University. His primary re-
search interests are Data Mining and Machine
Learning with applications to Healthcare Analyt-
ics and Bioinformatics. His research works have
been published in leading conferences and jour-
nals including SIGKDD, ICDM, WSDM, SDM,
CIKM, DMKD, and Information Science.

Chandan K. Reddy is an Associate Professor in
the Department of Computer Science at Virginia
Tech. He received his PhD from Cornell Univer-
sity and MS from Michigan State University. His
primary research interests are in the areas of
data mining, machine learning, and big data with
applications to healthcare, social network analy-
sis, and bioinformatics. His research is funded by
the NSF, NIH, DOT, and Blue Cross Blue Shield.
He has published over 90 peer-reviewed articles
in leading conferences and journals. He received
several awards for his research work including the Best Application
Paper Award at ACM SIGKDD conference in 2010, Best Poster Award
at IEEE VAST conference in 2014, Best Student Paper Award at IEEE
ICDM conference in 2016, and was a finalist of the INFORMS Franz
Edelman Award Competition in 2011. He is a senior member of the
IEEE and life member of the ACM.

