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ABSTRACT 

The objective of this investigation is to develop a new total Lagrangian continuum-based liquid 
sloshing model that can be systematically integrated with multibody system (MBS) algorithms in 
order to allow for studying complex motion scenarios. The new approach allows for accurately 
capturing the effect of the sloshing forces during curve negotiation, rapid lane change, and 
accelerating and braking scenarios. In these motion scenarios, the liquid experiences large 
displacements and significant changes in shape that can be captured effectively using the finite 
element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements are used in this 
investigation to describe complex mesh geometries, to capture the change in inertia due to the 
change in the fluid shape, and to accurately calculate the centrifugal forces, which for flexible 
bodies do not take the simple form used in rigid body dynamics. A penalty formulation is used to 
define the contact between the rigid tank walls and the fluid. A fully nonlinear MBS truck model 
that includes a suspension system and Pacejka’s brush tire model is developed. Specified motion 
trajectories are used to examine the vehicle dynamics in three different scenarios – deceleration 
during straight-line motion, rapid lane change, and curve negotiation. It is demonstrated that the 
liquid sloshing changes the contact forces between the tires and the ground – increasing the 
forces on certain wheels and decreasing the forces on other wheels. In cases of extreme sloshing, 
this dynamic behavior can negatively impact the vehicle stability by increasing the possibility of 
wheel lift and vehicle rollover.  
  

Keywords: liquid sloshing; centrifugal forces; absolute nodal coordinate formulation; tanker 
truck. 
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1. Introduction 

The field of fluid dynamics has been extensively studied for decades using, for the most part, 

Eulerian approaches.  Another area of application that has recently seen significant advances is 

vehicle dynamics, which is often examined using MBS algorithms based on a total Lagrangian 

approach. Nonetheless, fluid-vehicle interaction impacts many areas of science and technology 

including rail, highway, aerospace, and marine transportation. Although materials, including 

crude oil and other hazardous materials (HAZMAT), are transported using a variety of methods, 

including rail, shipping vessels, and pipelines, transportation by highway vehicle dominates the 

industry, generating more revenue and creating more jobs than the other modes of transportation 

combined, as shown by the data presented in Table 1. Due to the extent of public roads in the US 

and the sheer volume of freight vehicles, the tonnage of materials transported using highway 

vehicles far outweighs all other methods. This is true for both non-hazardous and hazardous 

materials, as shown in Table 2 [1].  

Rollovers are more common in tanker trucks than passenger vehicles because trucks have a 

higher center of gravity. Rollovers can occur due to a variety of reasons, including vehicle and 

road conditions, load size, and the most common, driver error, which accounts for up to 78% of 

tanker truck rollovers [2]. Hazardous materials are regularly transported by tanker trucks, and 

accidents in which the tank is compromised and the contents are released can lead to damage to 

the environment and the surrounding infrastructure, fires and explosions, and civilian injuries 

and casualties [3, 4].  In the last decade alone, highway transportation accidents comprised the 

majority of all HAZMAT incidents, with 144,296 out of a total of 166,494 incidents; other 

incidents include air, railway, and water transportation accidents. Highway accidents have also 

proven to be the most deadly and costly, accounting for 100 out of 105 documented fatalities and 



4 
 

1,520 out of 2,129 injuries, at a cost of $6.1 billion out of $8.2 billion in damages [5]. Therefore, 

thorough testing and virtual prototyping are necessary to ensure better vehicle design and 

stability. However, because physical prototyping is expensive, inefficient, and time-consuming, 

it is necessary to develop accurate predictive models to investigate the effect of liquid sloshing 

on the dynamics of highway vehicles subject to different loading conditions and motion 

scenarios. 

Although recent advances allow for modeling more accurate fluid behavior, most 

commonly used models are insufficient in adequately capturing the dynamics of the fluid in 

complex motion scenarios, particularly in the cases of three-dimensional finite rigid body 

rotations. Early sloshing models represented the fluid as a series of planar pendulums or mass-

spring systems [6 – 9]; spherical and compound pendulums were later used to capture 

nonlinearities in the motion and damping was added to include the effect of energy dissipation 

[10]. Discrete inertia models have been used extensively in studying sloshing dynamics in the 

aerospace industry since 1960s [8, 11, 12]. However, while these discrete inertia models have 

been improved over time, such models cannot be used to accurately capture the change in inertia 

due to a change in fluid shape and the complex dynamics that results from the vehicle motion 

[13]. Furthermore, the discrete rigid body models do not allow for modeling the continuous free 

surface of the fluid, and it has been found that such models significantly under-predict the 

maximum amplitude of oscillation and the sloshing frequency [14]. Nonetheless, discrete 

pendulum models are still being used to study the effect of fluid sloshing on vehicle dynamics 

and stability because of the difficulties encountered in integrating computational fluid dynamics 

(CFD) and vehicle modeling algorithms [15]. This is attributed to the fact that CFD 

investigations are mostly focused on the use of the Eulerian approach and do not consider the 
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effect of three-dimensional rotations, which cannot be accurately captured using existing 

incremental FE formulations. Consequently, most FE fluid models are simplistic due to the 

inherent difficulties in accurately capturing the fluid behavior, particularly in applications related 

to vehicle dynamics. For example, a sloshing fluid will experience large deformation and finite 

rotation, and many commercial FE formulations are not capable of handling such behaviors 

accurately or efficiently. Furthermore, because of the interaction between fluid and the tank 

walls, liquid sloshing results in variety of dynamic behaviors, including symmetric and 

asymmetric motion, planar and non-planar motion, and rotational and irrotational motion [16 – 

18]. Furthermore, in flexible body dynamics, the centrifugal forces which result from curve 

negotiation are not simply measured by the rigid body dynamics equation 2
smV r , where m  is 

the mass of the body, sV  is the forward velocity, and r   is the radius of curvature of the curve 

[19]. In flexible body dynamics the centrifugal forces take a more complex form that depends on 

the body deformation. Additional difficulties arise when more accurate or complex fluid models 

are integrated into full vehicle models. Many FE and CFD formulations, for example, do not 

easily lend themselves to integration with MBS algorithms as discussed in the literature [18].  

In order to address the challenges encountered in the analysis of the important economic, 

environmental, and safety problem of liquid sloshing, this investigation makes the following 

specific contributions: 

1. A formulation that correctly captures the geometry of the fluid and tank is used in order 

to accurately represent the distributed inertia and elasticity of the fluid. In order to 

develop these new and unique sloshing geometry models, ANCF elements that produce 

accurate geometry are used, eliminating the need for using B-spline and NURBS (Non-

Uniform Rational B-Spline) representations for developing the complex fluid geometry. 
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The effect of the initially curved fluid geometry, which cannot be captured accurately 

using existing FE formulations, is properly accounted for in this investigation, leading to 

a systematic integration of the geometry and analysis by adopting one fluid mesh from 

the outset. Such an important goal cannot be achieved using other MBS formulations that 

employ modal representation for the fluid displacements, as in the case of the floating 

frame of reference (FFR) formulation [18]. 

2. The ANCF geometry/analysis mesh developed is used to formulate the inertia forces 

using a non-modal continuum-based approach. Proper definition of the inertia forces is 

necessary in order to be able to predict the effect of the sloshing on the vehicle dynamics 

and stability. In particular, a continuum-based and general definition of the centrifugal 

forces in terms of the fluid displacement is developed and used to shed light on the 

approximation made using the simple rigid body dynamics formula 2
smV r . Accurate 

definition of the centrifugal forces is particularly important in the definition of the vehicle 

balance speed that should not be exceeded during curve negotiations. 

3. An ANCF fluid/tank car walls penalty contact formulation is developed and used to 

determine the generalized contact forces associated with the ANCF nodal coordinates 

which include absolute position and gradient vectors. The penalty contact formulation 

developed in this investigation takes into account the fluid large displacement and 

complex geometry that result from the sloshing effect. 

4. It is shown in this investigation how general constitutive fluid models can be developed 

and integrated with ANCF complex fluid geometry models, thereby opening the door for 

future investigations that focus on adopting new and highly nonlinear constitutive fluid 

models as well as experimenting with different tank designs that have different, complex, 
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and unconventional geometries. In so doing, the field of liquid sloshing can be 

significantly advanced to a new level. 

5. The analysis presented in the paper demonstrates for the first time how an ANCF liquid 

sloshing model can be integrated with an MBS system computational algorithm that 

ensures that the kinematic algebraic constraint equations are satisfied at the position, 

velocity, and acceleration levels. Such new ANCF fluid/MBS algorithms will allow for 

investigating a large class of liquid sloshing problems that cannot be solved using 

existing approaches. The purpose of this analysis is to create a high fidelity model which 

is capable of capturing more details than can be described by existing modeling methods. 

It is important to note that simple models can still be valuable if real-time simulations are 

required. In these cases, both simple vehicle and fluid models can be used to significantly 

reduce the computer simulation time. High fidelity continuum-based models, on the other 

hand, are necessary in order to account for the distributed inertia and viscoelasticity of 

the fluid. 

6. The use of the formulation and computational procedure developed in this study is 

demonstrated using a fully nonlinear MBS model of a commercial medium-duty tanker 

truck developed using the general purpose MBS software SIGMA/SAMS (Systematic 

Integration of Geometric Modeling and Analysis for the Simulation of Articulated 

Mechanical Systems). The fluid in the tank is represented by an ANCF mesh which 

allows for capturing the change in inertia due to the change in shape of the fluid, as well 

as visualizing the change in the fluid free surface while correctly capturing the centrifugal 

forces. The interaction between the rigid tank walls and the ANCF fluid is formulated 

using the penalty approach. The MBS model includes a suspension system and Pacejka’s 
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brush tire model is introduced to represent the ground-tire contact [20]. Specified motion 

trajectories are used to examine three different working conditions – deceleration under 

straight-line motion, rapid lane changing, and negotiating a curve. Reduced integration is 

used to increase computational efficiency when the fluid viscosity forces are calculated. 

7. The results of this investigation show that sloshing has the effect of increasing contact 

forces on some wheels and decreasing contact forces on other wheels. Severe sloshing 

behavior can cause vehicle instability; in extreme cases, wheel lift and vehicle rollover 

may occur. 

In liquid sloshing problems, the main focus is on the nominal motion of the fluid that affects the 

vehicle dynamics. Therefore, turbulence is not an issue and is not normally considered in liquid 

sloshing investigations since it has a negligible effect on the vehicle dynamics and stability. For 

this reason, fluid turbulence is not considered in the analysis presented in this paper, which is 

organized as follows: basic force concepts relevant to curve negotiation of a vehicle carrying 

fluid cargo are discussed in Section 2. In Section 3, the inertial forces of a flexible body due to 

curve negotiation are considered in the case of an ANCF mesh. Section 4 discusses the important 

topic of the fluid geometry mesh and its relevance to the integration of computer-aided design 

and analysis (I-CAD-A), Section 5 describes the fluid constitutive model used in this study, and 

Section 6 presents the fluid-tank interaction and contact detection algorithm. In Section 7, the 

components of the MBS vehicle model used in this investigation are detailed and Section 8 

explains the trajectory coordinate constraint formulation used to define the specified motion of 

the vehicle. The numerical results of the three motion scenarios previously mentioned in this 

section are presented in Section 9 and the effects of fluid sloshing on vehicle dynamics are 
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analyzed by comparing the response of the ANCF fluid model with an equivalent rigid body 

model. Section 10 presents the summary of and conclusions drawn from this study.  

 

2. Basic force concepts 

In this section, a simplified planar vehicle model subjected to discrete forces is analyzed in order 

to have an understanding of how the contact forces on the tires change as a tanker truck enters a 

curve. A force diagram for this model during straight-line motion is presented in Fig. 1, where 

,w tF  is the tank gravity force at the tank center of mass located at a vertical distance tz  from the 

ground, ,w fF  is the fluid gravity force at the fluid center of mass located at a vertical distance fz  

from the ground, LN  and RN  are the normal forces on the left and right wheels, respectively, 

located a distance ay  from point O , and the motion is in the horizontal plane in the direction of 

the dashed arrow as shown in the figure. During straight-line motion, the fluid is not displaced 

laterally and there are no centrifugal forces exerted on the vehicle. By taking the moments of the 

forces about point O , as expected, these steady-state normal forces are found to be 

 w, , 2L R t w fN N F F   ; that is, each wheel carries half of the total weight of the vehicle.  

This is contrasted by the force diagram in Fig. 2, where the vehicle has entered a counter-

clockwise constant-radius curve, indicated by the dashed arrow above the diagram. Centrifugal 

forces ,C tF  and ,C fF  are exerted on the tank and fluid, respectively, lateral friction forces fF  are 

exerted on both tires in the opposite direction, and the center of mass of the fluid has shifted 

laterally due to the centrifugal force, displacing the gravity force ,w fF  by a distance fy . Taking 

the moments due to these forces, one can obtain the equations for the left and right tire contact 

forces in this case as , ,L w t w f RN F F N    and 
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    , , , , , 2R a C t t C f f w f f w t w fN x F y F y F x F F     , respectively. It can be shown that in the 

case of straight-line motion, these equations reduce to the equations given previously because the 

centrifugal forces C,tF  and ,C fF  and the lateral displacement of the fluid fx  will be equal to 0.  

Using this simple analysis, one can examine how the contact forces on the tires change 

when a vehicle enters a curve. In Fig. 3, the steady-state normal force equations are used to 

calculate the contact forces for the first 0.7s, then the constant-radius curve contact force 

equations are used for the following 9.3s. This represents a vehicle driving in a straight line 

initially before entering a constant-radius curve at 0.7s, where it remains for the rest of the 

simulation. While the results of this figure, obtained using the simple analysis and the simple 

force equations previously presented in this section, do not capture the oscillations of the fluid 

because the lateral shift of the fluid fy  is assumed to remain constant for simplicity, it is evident 

from these results that the contact force on the outer tire increases and that on the inner tire 

decreases. This change is due to the lateral shift of the center of mass of the fluid, which is a 

result of the outward inertia force acting on the fluid. The lateral shift of the fluid and thus the 

outward inertia forces act to increase the roll moment and thus increase the contact force on the 

outer tire. 

These simplified results can be made more realistic by using simulation results in the 

equations instead of constant theoretical values. By replacing the position of the center of mass 

of the fluid fy  and fz  and the centrifugal force on the fluid ,C fF  with the simulation results that 

will be presented in detail in Section 9.3, the resulting contact forces calculated by the previously 

derived equations will capture the sloshing behavior. This effect is evident from the results 

presented in Fig. 4, where the contact forces oscillate with time due to the oscillatory motion of 

the liquid. The discontinuity in the plot is due to the fact that the theoretical calculations assume 
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a sudden change from straight-line to constant-radius curve trajectories. In more realistic 

scenarios, a spiral segment is used to connect the straight and curved sections in order to ensure a 

smooth transition. 

 

3. Continuum-based inertia force definition 

Inertial forces play an important role in the dynamics and stability of a vehicle negotiating a 

curve. The centrifugal force is exerted on the vehicle in the outward normal direction of the 

curve. If the bank angle   of the curve is zero, the only opposing force is the inward lateral 

friction force due to the contact between the tires and the ground. When the bank angle is 

different from zero, the centrifugal force of a vehicle with mass m  is also opposed by the 

component of the gravity force along the normal to the curve. If the rigid body assumptions are 

used and additionally the vehicle forward velocity sV  along the tangent to a curve of radius of 

curvature r  is assumed constant, one must have an upper limit on the velocity sV , called the 

balance speed, such that 2 sins fnmV r mg F  , where g  is the gravity constant and fnF  is the 

component of the friction force along the normal to the curve. Clearly, in deriving this force 

expression, the effect of other forces such as suspension forces is not taken into account. It 

follows that the balance speed is defined by  sins fnV r mg F m  . Because the friction 

force cannot be predicted with high degree of accuracy, a conservative estimate of the balance 

speed is normally defined in rigid body dynamics as sinsV rg  ; this is the formula often used 

to develop operation guidelines for vehicles negotiating curves. A vehicle negotiating a curve 

with radius of curvature r  must not be operated at a speed higher than the balance speed in order 

to avoid rollover. It is clear from the equation sinsV rg  , in which the effect of friction is 
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neglected and the assumption of rigidity is used, that the balance speed does not depend on the 

mass of the vehicle, and therefore, the guidelines specify a balance speed for a curve with 

specific geometry defined by the radius of curvature and bank angle. It is clear that in the case of 

liquid sloshing, the simple expression of the balance speed sinsV rg   cannot be in general 

used because the outward inertia force does not take the simple form of 2
smV r  .  

When ANCF finite elements are used, the expression of the outward inertia force differs 

significantly from the expression used in rigid body dynamics. For ANCF finite elements, the 

vector of nodal coordinates can be written as the sum of two vectors as o d e e e , where oe  is 

the vector of nodal coordinates before displacement and de  is the vector of displacements that 

include large liquid reference displacements including finite rotations as well as the liquid 

deformations. Therefore, the outward inertia force, as will be demonstrated in this section, 

becomes function of the liquid motion and the simple expression 2
smV r  is no longer applicable 

for the calculation of the balance speed or for accurate force analysis during curve negotiations. 

Furthermore, the vector oe  can be used to systematically account for the initial curved geometry 

of the liquid. As described in the literature, this can be accomplished by using the matrix of 

position vector gradients oJ , where  o o     J X x Se x , where x  defines the element 

parameters in the straight configuration, S  is the shape function matrix, and oX S e  defines the 

reference configuration before displacement. 

In order for the vehicle to safely remain on the road, the outward inertia force must not 

exceed the sum of the inward friction and gravity forces. Although the centrifugal force on a 

rigid body negotiating a curve takes a simple form, as previously mentioned, the same expression 

does not apply to curve negotiation of a flexible body, because such a force expression is 
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function of the deformation [17]. In general, the outward inertia force inF  of a flexible body or 

an ANCF finite element negotiating a curve is defined as d
T

o
in o oV

F V  r n , where o  and oV  

are, respectively, the mass density and volume of the flexible body in the reference curved 

configuration, r  is the absolute acceleration vector of an arbitrary point on the body, and n  is 

the outward unit normal vector to the curve. The volume in the curved reference configuration is 

related to the volume in the straight configuration V  before the liquid assumes the shape of the 

container by the equation d do oV J V , where o oJ  J . It is clear from the equation 

d
T

o
in o oV

F V  r n  that the component of the acceleration along the tangent to the curve will not 

contribute to the outward force vector. When ANCF finite elements are used, the absolute 

acceleration vector of an arbitrary point can be written as r Se  . If the flexible body is 

discretized using en  ANCF elements, the outward inertia force vector that must be used to define 

the vehicle balance speed can be written as  1 1
d d

Te e

j j
o o

n nj j j T j j j j
in o o o oj jV V

F V V 
 

   r n n S e  , 

where superscript j  refers to the element number. One can also write 

   1 1
de e

j
o

n nT j j j j T j j
in o oj jV

F V
 

   
  n S e n S e  , where d

j
o

j j j j
o oV

V S S . A standard FE 

assembly procedure can be used by writing j je B e , where jB  is a Boolean matrix and e  is the 

vector of nodal coordinates of the body. It follows that  1
enT j j T

in j
F


 n S B e n Se  , where

1
en j j

j
 S S B  is the constant assembled matrix of the constant element jS  matrices. Numerical 

integration can be systematically used to evaluate the outward inertia force T
inF  n Se  if 

analytical integration of the element shape functions is to be avoided. In this case, one can create 
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a mesh of pn  points on the flexible body and if an assumption is made that the mesh consists of 

only one type of ANCF elements, then approximation of inF  can be written as 

 1
pnT k k

in k
F m


 n S e , where km  is the lumped mass associated with the mesh point k , kS  is 

the assembled matrix of the element  k j jk jS S x B  matrices, and jkx  is the vector of the 

element spatial coordinates  Tx y zx  evaluated at the mesh point k  that corresponds to 

element j .  

Alternatively, one can use the moment of mass to write dC o oV
m V r r , where m  is the 

total mass of the liquid, Cr  is the global position vector of the liquid center of mass, and r Se  

when ANCF finite elements are used. It follows that    d d
o o

C o o o oV V
V m V m   r r S e , 

which can be simply written as  C mr Se , and  C mr Se  . Therefore, the outward inertia 

force vector can be written in an alternate form as  T
in CF m n r . Because of the liquid 

oscillations, Cr  will not remain constant relative to the curve, and as a consequence, the outward 

inertia force is not in general constant as in the case of a rigid body negotiating a curve. 

 

4. ANCF description of the fluid geometry 

In this section, the development of the initially curved ANCF geometry of the fluid that assumes 

the shape of a rigid cylindrical tank is discussed. The tank used in this investigation has a 

cylindrical geometry as shown in Fig. 5, and therefore, it is required for the ANCF fluid mesh to 

have the same the shape of the container it fills and at the same time represent different levels of 

the free surface. The use of the ANCF absolute positions and gradients as nodal coordinates 
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allows for efficient shape manipulation and for obtaining the accurate complex geometry without 

the need for using the CAD B-spline and NURBS representations that have rigid recurrence 

structure [21, 22]. As previously mentioned, in the ANCF description, the assumed displacement 

field can be written as ( , ) ( ) ( )t tr x S x e , where r  is the global position vector, [   ]Tx y zx  is the 

vector of the element spatial coordinates, t  is time, S  is the time-independent element shape 

function matrix, and e  is the vector of the element nodal coordinates that include absolute 

position and gradient coordinates [23]. The superscript j  that refers to the element number is 

omitted here for notational simplicity. The vector of element nodal coordinates e  can be written 

as o d e e e , where oe  is the vector of nodal coordinates in the reference configuration and de  

is the vector of nodal displacements. The assumed displacement field can then be written as 

 ( , ) ( ) ( ) ( )o dt t t r x S x e e . Using the general continuum mechanics description 

 ( , ) ,t t r X X u X , where X  is the absolute position vector of an arbitrary point in the 

reference configuration and u  is the displacement vector, one can write oX Se  and du Se . 

By choosing the elements in the vector oe  appropriately, initially curved structures can be 

defined in a straightforward manner using ANCF elements [21]. 

The fully-parameterized ANCF solid element [24, 25], based on an incomplete 

polynomial representation, is used in this investigation to represent the fluid by applying the 

proper fluid constitutive model which will be discussed in Section 5. In this case, the arbitrary 

fluid material point on element j  can be written as 
8

,1 ,2 ,3 ,4

1

j k k k k jk j j

k
S S S S



   r I I I I e S e , 

where I  is the 3 3  identity matrix; detailed shape function and nodal coordinate expressions 

can be found in Appendix A of this paper. For example, consider the element j  which has the 
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initially curved structure shown in Fig. 6. The matrix of position vector gradients at node k  can 

be written as          jk jk jk jk
x y zo o o o

   xr r r r . For the specific element geometry shown in Fig. 6, 

by adjusting the magnitude of the gradient vector  1j
y o

r  without changing the gradient vector 

orientation, the position vector gradients at node 5 will be        5 5 5 5  j j j j
x y zo o o o

   xr r r r , 

where   is the stretch factor used to represent the stretch of the edge; the value of   can be 

obtained by taking the ratio between the arc lengths of curves 5-8 and 1-4. Following this 

procedure, the complex geometry of the fluid structure can be created, as shown in Fig. 7. The 

mesh used in this investigation consists of 48 ANCF solid elements and the mesh has a total 

number of degrees of freedom of 1260. 

 

5. ANCF fluid constitutive model 

A general ANCF fluid constitutive model that can account for the initially curved configuration 

is developed in this section. The proposed fluid model ensures the continuity of the displacement 

gradients at the nodal points and allows for imposing a higher degree of continuity across the 

element interface by applying algebraic constraint equations that can be used to eliminate 

dependent variables and reduce the model dimensionality at the prepossessing stage [25]. In 

order to describe the fluid-structure interaction, the penalty approach, described in Section 6, is 

used to evaluate the contact and friction forces between the fluid and the rigid tank. By using the 

non-modal ANCF approach, the fluid elastic forces can be formulated without imposing 

restrictions on the amount of deformation and rotation within the elements. Figure 8 shows the 

three configurations of the fluid; the straight, curved reference, and current configurations. As 

previously mentioned, the volume of the fluid in the curved reference configuration oV  is related 
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to the volume in the straight configuration V  using the relationship d do oV J V , where o oJ  J  

is the determinant of the matrix of position vector gradients  o o     J X x Se x . Therefore, 

integration with respect to the reference domain can be converted to integration with respect to 

the straight element domain. This allows for using the original element dimensions to carry out 

the integrations associated with the initially curved configuration. The matrix  o o  J Se x  is 

constant and can be evaluated at the integration points using the ANCF element shape function 

and the vector of nodal coordinates in the reference configuration [21]. The matrix of position 

vector gradients  X Y Z   J r X r r r , which is used to determine the Green-Lagrangian 

strain tensor   2T ε J J I , can be written as 

     
1

1
x y z x y z e oo oo


                    

r r x
J r r r r r r J J

X x X
, where 

 e      J r x Se x . The relationship between the volume defined in the current 

configuration v  and the volume in the curved reference configuration oV  can be written as 

d d ov J V  where J  J . It follows that 1d d d do e o o ev J V J V J V  J J . 

The linear fluid constitutive equations can be defined using the Cauchy stress tensor and 

can be assumed as   tr 2p     σ D I D  where the temperature effect is neglected and the 

fluid is assumed to be incompressible, σ  is the symmetric Cauchy stress tensor, p  is the 

hydrostatic pressure,   and   are Lame’s material constants, I  is a 3 3  identity matrix, tr  

refers to the trace of a matrix, and D  is the rate of deformation tensor [23, 26]. If the 

incompressibility condition is imposed using a penalty method, the first two terms will vanish 

and the constitutive model reduces to 2σ D . It is convenient to use the second Piola-Kirchoff 
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stress tensor since it is associated with the Green-Lagrangian strain tensor defined in the 

reference configuration. One has 1 1 1 1
2 2

T T

P J J    σ J σJ J DJ , where 1 1T D J εJ , 

 T T 2 ε J J J J   and   J r X  . For an arbitrary element j  in the fluid body, the virtual work 

of the fluid stress forces can be written as  

1

2: d : d
j j

o

j j j j j j j j
s P o

v V

W v V  


    σ J J σ ε     (1) 

where  j j j j   ε ε e e . The virtual work of the fluid viscous forces can then be written as  

 1 1

2 : d 2 d
T

j j
o o

j j j j j j j j j j j j
s P o r r o v

V V

W V J V    
 

     σ ε C ε C : ε Q e   (2) 

where 
Tj j j

r C J J  is the right Cauchy-Green deformation tensor, and upon using the identity 

1 1T Tj j j j j j
e o e oJ    J J J J J , the vector of generalized viscosity forces j

vQ  associated with the 

ANCF nodal coordinates can be written as 

   

 

1 1 1 1

1 1

02 d 2 d

2 d

j j
o

j

j j
j j j j j j j j j j j j
v r r o r rj j

V V

j
j j j j j

e r r j
V

J V J V

J V

 



   

 

 
   

 


 



 



ε ε
Q C ε C : C ε C : J

e e

ε
C ε C :

e

 


  (3) 

In this case, the integration over the current configuration domain is converted to integration 

over the straight configuration domain.  

The incompressibility condition is imposed using the penalty method. Figure 8 shows 

that the volume relation between the reference and current configuration is d dj j j
ov J V , 

therefore, 1j jJ  J  and 0jJ   still hold for the initially curved fluid. By assuming the 

penalty energy function  2
1 2j j j

IC ICU k J  and the dissipation function  2
2j j j

TD TDU c J  , 
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where j
ICk  and j

TDc  are the two penalty coefficients, the generalized penalty forces associated 

with the ANCF nodal coordinates that result from imposing the two penalty conditions can be 

defined as  

  
 

1

=

T

T

j j j j j j j
IC IC IC

j j j j j j j
TD TD TD

U k J J

U c J J

       


     

Q e e

Q e e  
    (4) 

where  trj j jJ J D  and j j j jJ J    e e  . Knowing that 

( ) ( ) ( )j j j j j j j j j j
X Y Z Y Z X Z X YJ         r r r r r r r r r , j jJ e  can be written more explicitly,  by 

differentiating any of the three expressions for jJ  with respect to je , as 

     T T T
T Tj j

j j j j j j j j j
X Y Z Y Z X Z X Yj j

J J    
             

S r r S r r S r r
e e




  (5) 

By defining the generalized forces associated with the fluid element coordinates je , the 

generalized forces associated with the fluid body coordinates e  can be obtained using a standard 

FE assembly procedure. 

6. Fluid – tank interaction 

The fluid should remain inside the tank regardless of the severity of the sloshing and these 

boundary conditions of the mesh can be defined in multiple ways. One can impose constraints on 

the boundary nodes, using either Lagrange multipliers or elimination of dependent variables. 

Because this method is often more computationally expensive, in this investigation, the penalty 

method is used to formulate the interaction between the fluid body and the rigid tank walls. The 

tank deformation is not considered in this analysis because the main focus of this investigation is 

on studying the sloshing. Figure 9 shows the contact geometry in the radial direction; the radius 

of the tank is tr , superscript t  refers to the tank, fr  is an arbitrary point on the fluid body, and 
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tR  is the position vector of the tank reference point defined in the global coordinate system. The 

position of an arbitrary point of the fluid defined in the tank local coordinate system can be 

written as   1 2 3  
T T Tft t ft t f t ft ft ftu u u      u A u A r R , where tA  is the 3 3  transformation 

matrix which defines the tank orientation, and the bar notation means the vector or matrix is 

defined in the body local coordinate system. The inequality      2 2 2

2 3
ft ft tu u r   implies that 

the fluid point is inside the tank and there is no need for applying a penalty force. On the other 

hand, the equation      2 2 2

2 3
ft ft tu u r   implies that penalty forces must be applied in order to 

prevent the fluid from penetrating the tank walls. In this case, the penetration can be evaluated as 

   2 2

2 3
ft ft tu u r    . The unit normal n at the fluid/tank contact point can be defined as 

   2 2

2 3 2 30  
Tt ft ft ft ftu u u u      

n A . The location of the contact point on the tank wall with 

respect to the tank coordinate system can be defined as 1 0 0
Tt t t ftr u    u n A . This 

equation can be used to define the global position vector of the contact point on the tank as 

t t t r R u . The relative velocity vector can be defined as ft f t
r  v r r  . The components of the 

relative velocity between the fluid and the tank points along the normal vector and the tangent 

plane at the contact point can be defined, respectively, as ft T ft
rn rv  n v  and  ft ft T ft

rt r r v v n v n . If 

the magnitude of the tangential relative velocity ft
rtv  is larger than zero, one can define the unit 

tangent vector ft ft
rt rtt v v . The magnitude of the penalty normal contact force can be defined as 

pn p pF k C     , where pk  and pC  are penalty stiffness and damping coefficients [25]. The 
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penalty force vector can then be defined as p pn p pnF F  F n t , where p  is an assumed 

friction coefficient between the fluid and the tank walls.  

Knowing the ANCF element j  on which the fluid/tank contact point lies, one can 

develop an expression for the generalized penalty contact forces associated with the fluid 

element nodal coordinates. The virtual work of the penalty force acting on the fluid and tank can 

be written as T f T t
p p pW   F r F r , which can be written as 

 T j j T t t t t
p p pW     F S e F R u G θ   [27], where jS  is the element shape function matrix 

evaluated at the contact point, tu  is the skew symmetric matrix associated with the vector tu , 

and tG  is the matrix that relates the absolute angular velocity vector tω  of the tank to the time 

derivatives of the tank orientation parameters tθ , that is, t t tω G θ . It follows that the 

generalized reaction forces exerted on the element j  of the ANCF fluid body can be written as 

Tj j
ep pQ S F , while the generalized penalty forces exerted on the tank and associated with the 

tank reference coordinates tR  and tθ  are given, respectively, as  

,
Tt i t t

R p p   F F F G u F      (6) 

A similar procedure can be used to evaluate the interaction forces between the fluid and the rigid 

tank in the longitudinal direction. This contact geometry is shown in Fig. 10. 

 

7. MBS vehicle components 

The MBS model used in this numerical investigation consists of 21 bodies which have 147 

absolute coordinates because Euler parameters are used to describe the body orientations. These 

bodies are subjected to 115 constraint equations, leading to a model with 32 degrees of freedom. 

The 10 tires are modeled using Pacejka’s brush tire model, which is discussed in Section 7.1 [20]. 
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The four-bar Ackermann steer axle, which allows the truck to turn, is described in Section 7.2. 

Other bodies include two rear axles, the cab, the tank, the frame rails, and a ground body. Inertial 

properties for the individual bodies are listed in Table 3; the products of inertia are assumed to be 

zero. The wheelbase of this vehicle is 4.064 m and the track width is 1.939 m. The front wheels 

are attached to the steer axle using the steering knuckles with revolute joints; this allows the 

wheels to rotate about the lateral axis to produce the desired forward motion, and about the 

vertical axis to allow the vehicle to turn. For simplicity, the steering knuckles and tie rod arms 

are modeled as a single body. The rear wheels are connected to the drive axles with revolute 

joints allowing rotation about the lateral axis. The cab and tank are rigidly attached to the frame 

rails and these three bodies are assumed in this model to represent the chassis (sprung mass). The 

capacity of the tank is roughly 3,000 gallons, which is typical of a medium-duty commercial 

vehicle that services residential areas. In order to induce the most extreme sloshing scenarios, the 

tank is assumed to be half-filled with water (with viscosity of 0.001 kg/m.s [28]). The penalty 

coefficients used in this investigation to enforce the incompressibility conditions 1jJ   and 

0jJ   are 91 10  and 41 10 , respectively. The chassis and axles are connected by the 

suspension system which in this investigation is modeled using linear spring-damper elements as 

explained in Section 7.3. The stiffness and damping coefficients used in this model are provided 

in Table 4. 

7.1 Brush tire model 

In this investigation, the forces exerted on the tires by the ground are calculated using the brush 

tire model [20]. Four coordinate systems which define the orientations of the tire body i  and the 

ground body j  are introduced. The ground coordinate system which describes the orientation of 

the ground body is given by the matrix j j j j   A i j k , where the columns ji  , jj  , and jk  



23 
 

are unit vectors along the ground coordinate axes j j jX Y Z  . In this investigation, jA  is assumed 

to be the identity matrix except in the case of uneven terrains, such as a hill, bumpy road, or 

inclined ramp. The three other coordinate systems are used in the tire formulation and are 

depicted in Fig. 11. The tire coordinate system defined by the matrix i i i i   A i j k  is rigidly 

attached to the center of the tire and rotates with the tire. The matrix i i i i
o o o o   A i j k  

describes the intermediate tire coordinate system (ITCS) which is also rigidly attached to the 

center of the tire, but does not share the pitch rotation with the tire. The axes of i
oA  are defined 

as  i i j i i j i
o

     A j k j j k j . Finally, the contact point coordinate system located at the 

contact point between the ground and the tire is defined by the matrix 

i i i i i i i j
c c c c o c c         A i j k i k i k . Using the ITCS transformation matrix i

oA , the contact 

point between the tire and the ground can be defined as i i i i
c o oc r R A u , where iR  is the global 

position of the ITCS origin and i
ocu  is the position of the contact point with respect to the ITCS 

origin. The velocity vector of the contact point can then be obtained by differentiating the 

position vector with respect to time, and is defined as i i i i
c oc  r R ω u , where iR  is the 

velocity of the ITCS origin, iω  is the absolute angular velocity vector of the tire defined in the 

global coordinate system, and i i i
oc o ocu A u . 

The brush tire model accounts for the normal, lateral, longitudinal, and rotational friction 

forces, as well as an aligning torque, also referred to as the spin moment in rail vehicle dynamics. 

In this investigation, it is assumed that the material properties are the same in the lateral and 

longitudinal directions, which is a simplifying assumption often made in the literature [20, 22, 29, 

30, 31]. The normal force in the contact point coordinate system is calculated simply as 
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1.5 | |z z z zF K C       where K  is the radial stiffness coefficient of the tire, z  is the vertical 

penetration of the tire with the ground, C  is the radial damping coefficient, and z  is the rate of 

change of the penetration. In order to determine the lateral and longitudinal friction forces, the 

slip angle   and slip ratio vector ξ  are needed. First, the slip velocity sv  is defined as 

 0 0
TT i i

s sx sx c rc c rcv v      v i v j v , where rcv  is the velocity of the tire with respect to 

the ground at the contact point. The slip ratio vector ξ  is 

0 0
T T

x y sx r sy rv v v v          ξ , where rv  is the tire forward velocity. The slip 

angle   is determined as  1tan y  . The model parameter   is defined as 22 / 3p zc a F   

where pc  is the tread element stiffness per unit length, a  is half the contact patch length,   is 

the friction coefficient, and zF  is the magnitude of the normal force. The coefficients pc  and   

are specified for both the lateral and longitudinal directions, so both x  and y  can assume 

different values. In this investigation, it is assumed that , ,p x p yc c  and x y   , so x y  . The 

slip angle where the pure sliding starts, sl , is defined as  1tan 1sl  . 

The lateral and longitudinal friction forces on tire body i  in the contact point coordinate 

system are determined by    3sgn 1i
j sj j z jF v F     if | | sl   and  sgni

j sj j zF v F   if 

| | sl   for ,j x y  where 1j j j     is a simplifying model parameter. The aligning torque 

i
zM  is also calculated in the contact point coordinate system depending on the slip angle  , as 

    3sgn 1i
z y z y yM aF       if | | sl   or 0i

zM   if | | sl   in the case of pure sliding. 

To determine the moment due to the rotational friction force  i

y r
M  in the intermediate tire 
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coordinate system, a sinusoidal function is used to smooth the forces near 0y  . This moment 

is defined as    sgn
i

y y r zr
M F    if | |y t   and    sgn( ) sin | | 2

i

y y r z y tr
M F       

when | |y t  , where r  is the rotational friction coefficient, and t  is assumed to be 101.0 10 . 

The forces and moments obtained in this section for the tire can be defined in the appropriate 

coordinate system for the inclusion in the Newton-Euler equations that govern the motion of the 

tire which is treated in the brush model as a rigid body. 

7.2 Ackermann steering mechanism 

In order for a vehicle to be able to negotiate a turn with minimal tire scrub, the Ackerman 

steering mechanism is often used. The Ackermann steering system is a four-bar mechanism 

which allows the wheels to be oriented at different angles with respect to the forward direction. 

The four-bar mechanism consists of the front axle as the ground link, two tie rod arms, and a tie 

rod, as shown in Fig. 12. The tie rod is connected to the tie rod arms with spherical joints to 

avoid over-constraining the mechanism. By specifying the geometry of the Ackerman 

mechanism, each of the front wheel forward velocity vectors remains tangent to a circular arc 

whose origin is located at the instantaneous center of rotation of a line element connecting the 

centers of the two wheels, thus reducing tire scrub. The linkage geometry can be defined by two 

equations, cosh r   and 2 sins t r   , where h  is the distance between the axle and the tie 

rod, r  is the length of the tie rod arm,   is the angle between the tie rod arm and the normal to 

the axle, s  is the length of the tie rod, and t  is the length of the axle, as shown in Fig. 13. 

Because the length of the axle and the wheelbase are known for the vehicle model used in this 

investigation to be 1.939 m and 4.064 m, respectively,   can be calculated as 13.42o. In the 

optimization study by De-Juan et al. [32], it was found that for an axle length of 1.5 m, the 
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optimum tie rod length and tie rod arm length are, respectively, 1.27 m and 0.3 m. To determine 

the remaining parameters of the steering mechanism, it was assumed that the steering mechanism 

dimensions are proportional to the dimensions of the optimal mechanism geometry obtained in 

the study by De-Juan et al. [32]. Using this assumption, the geometry parameters obtained were 

r   0.3878 m, s   1.7590 m, and h   0.3772 m.  

7.3 Suspension system design 

The suspension system of the truck is modeled using linear spring-damper elements. The spring-

dampers are oriented to provide restoring forces in the longitudinal, lateral, and vertical 

directions – the vertical springs are used to support the weight of the chassis, cab, tank, and fluid, 

while the longitudinal and lateral springs are used to prevent relative motion in the longitudinal 

and lateral directions, respectively. The spring-dampers are located at each end of the three axles, 

resulting in 18 elements total. The vertical springs on the rear axles are initially compressed to 

aid in supporting the weight of the tank and fluid and to minimize oscillations at the beginning of 

the simulation when the vehicle reaches equilibrium.  

 

8.  Specified motion trajectories 

In numerical simulations, two methods can be used to produce the MBS motion; the first is to 

apply forces on the system components, while the second is to specify motion trajectories using 

algebraic constraint equations. The latter approach of using constraint equations is more 

appropriate when it is required to precisely follow certain trajectories and correctly capture their 

geometry, as is the case in this investigation. In order for the tanker truck model to follow 

different specified paths necessary to create the motion scenarios to be investigated in this study, 

trajectory coordinate constraints must be imposed. Three coordinate systems are used to define 
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the type of the trajectory coordinate constraint used in this investigation: the global coordinate 

system XYZ , the trajectory coordinate system ti ti tiX Y Z  , and the body coordinate system 

ir ir irX Y Z , as shown in Fig. 14 [33, 34]. Six trajectory coordinates ip  are used to specify the 

motion of a body, where 
Ti i ir ir ir ir irs y z      p  , is  is the arc length along the 

user-specified trajectory, iry  and irz  are the lateral and vertical displacements of the body with 

respect to the specified trajectory, and ir , ir , and ir  are the three Euler angles describing the 

relative rotations of the body coordinate system with respect to the trajectory coordinate system. 

Because a curve can be completely defined using one parameter, Frenet frame geometry is 

employed to write the matrix tiA  that defines the orientation of the trajectory coordinate system 

in terms of three Euler angles ti  , ti  , and ti  which can be expressed in terms of the arc 

length parameter is  as  ti ti is   ,  ti ti is   , and  ti ti is   [33]. The transformation 

matrix irA  that defines the orientation of the body coordinate system with respect to the 

trajectory coordinate system is developed using the three time-dependent Euler angles  ir t  , 

 ir t  , and  ir t . Using this description, the global position vector of an arbitrary point on the 

body can be written as i i i i
p p r R A u , where iR  is the global position of the origin of the body 

coordinate system, i ti irA A A  is the transformation matrix which defines the orientation of the 

body coordinate system in the global coordinate system, and i
ppu  is the position vector of the 

arbitrary point, defined in the body coordinate system.  

 While trajectory coordinate constraints can be applied to the translation and/or orientation 

of a body, only translational coordinate constraints are needed in this investigation to specify the 

vehicle forward motion during straight line motion, rapid lane change, and curve negotiation. A 
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translational trajectory coordinate constraint on body i  can be written as R, ( ) 0i
k kC p f t    for 

1,2,3k  , where kC  is the constraint function corresponding to the trajectory coordinate R,
i

kp , 

R,
i

kp  is the thk  component of 
Ti i ir ir

R s y z   p , and ( )f t  is the time-varying function 

defining the values of the trajectory coordinate ,
i
R kp . For example, to constrain the vehicle to 

move along a specified path with a constant forward velocity sV , the constraint applied to the 

body coordinate system of the front axle can be written as 0i i
o sC s s V t    , where i

os  is the 

initial arc length coordinate.  Because in this investigation, the equations of motion are 

developed using the absolute Cartesian coordinate formulation, it is necessary to define the 

trajectory coordinates in terms of the absolute Cartesian coordinates using the relationship 

 , ,i ir ir i ti ti irs y z    g R R A u 0 , where irR  is the global position of the body coordinate 

system with respect to the trajectory coordinate system and iru  is the position vector of the 

center of mass of the body in the trajectory coordinate system. For a given set of absolute 

Cartesian coordinates, this set of nonlinear equations can be solved iteratively to determine the 

arc length parameter is  as well as the coordinates iry  and irz . The constraint Jacobian matrix 

associated with the absolute Cartesian coordinates can also be systematically developed and used 

to enforce the constraints at the position, velocity, and acceleration levels. The driving constraint 

forces that produce the desired motion can be determined using Lagrange multipliers and the 

trajectory coordinate constraint Jacobian matrix [33]. 

 

9. Equations of motion 
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The vectors and matrices defined in the previous sections enter into the general formulation of 

the equations of motion for the MBS vehicle model, which may include rigid and flexible bodies. 

The equations of motion can be written as [33]:   
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  (7) 

where rM  and eM  are the mass matrices associated with the rigid and flexible ANCF body 

coordinates, respectively, 
rqC , eC , and sC  are the constraint Jacobian matrices associated with 

the rigid, elastic, and non-generalized trajectory coordinates, respectively, rq , e , and s are the 

accelerations of the rigid reference, elastic, and non-generalized trajectory coordinates, 

respectively, λ  is the vector of Lagrange multipliers associated with the constraints, rQ  and eQ  

are the vectors of generalized forces associated with the rigid and elastic coordinates, 

respectively, and dQ  is a vector resulting from the second time derivative of the vector of 

constraint equations. The equations of motion are solved numerically using the Adams-Bashforth 

integration technique, and a solution algorithm that ensures that the constraint equations are 

satisfied at the position, velocity, and acceleration levels. Because the equations of motion are 

second order differential equations, two sets of initial conditions (coordinates and velocities) are 

required to obtain a unique solution. The initial coordinates and velocities of the rigid bodies, 
0r

q  

and 
0r

q , the initial coordinates and velocities of the nodes of the flexible ANCF bodies, 0e  and 

0e , and the initial non-generalized coordinates and velocities 0s  and 0s  are user-specified and 

known at the beginning of the simulation. The initial velocities of all bodies and nodes vary 
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depending on the maneuver being considered in the numerical simulation. These maneuver 

scenarios are presented in Table 5. 

  

10. Numerical results 

The dynamic behavior of the tanker truck model, created in the MBS dynamics software 

SIGMA/SAMS and shown in Fig. 15, was examined using three different motion scenarios, each 

of which produces different fluid motion. In the first scenario, the truck decelerates under 

straight-line motion, such that the fluid primarily exerts longitudinal forces on the tank. In the 

second scenario, the truck performs a lane change, which causes the fluid to exert alternating 

lateral forces on either side of the tank. In contrast, in the third scenario the truck is assumed to 

negotiate a wide curve, such that the lateral motion of the fluid is continuous and exerted on one 

side of the tank only. Steady state is achieved before the simulation results are reported in order 

to eliminate the transient effects. Another model in which the fluid is represented by a rigid body 

with equivalent inertial properties was also created; the rigid fluid body is rigidly attached to the 

tank so that the sloshing motion is prevented but the fluid inertia is correctly accounted for. This 

model was also examined using the same three scenarios so that the effect of the fluid sloshing 

on vehicle dynamics can be isolated and evaluated. 

10.1 Straight line deceleration scenario 

For this scenario, the truck begins at a highway speed of 55 mph and brakes to 20 mph as seen in 

the velocity - position plot in Fig. 16. This scenario could occur if braking is suddenly applied in 

an attempt to avoid a rear-end collision. As seen in Fig. 17, the sloshing phenomenon is clearly 

evident as the fluid moves in the longitudinal direction towards the front end of the tank as a 

result of the sudden braking. It is important to note that the section on the top of the tank is an 
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exterior section that the fluid cannot enter (refer to Fig. 5); therefore, the fluid fills the front 

portion of the tank during braking.  

The normal forces increase on the front tires and decrease on the rear tires, as evident in 

Fig. 18, because the center of mass of the fluid moves towards the front of the tank, as seen in 

the plot of the fluid center of mass presented in Fig. 19. A second peak occurs in the contact 

forces on the front tires near 7s due to the rebounding motion of the fluid after it impacts the rear 

of the tank and again sloshes longitudinally towards the front of the tank. Although the normal 

forces also increase on the front tires and decrease on the rear tires in the equivalent rigid body 

model due to the shift in inertia of the chassis on the suspension system, also seen in Fig. 18, the 

magnitudes are much less significant because the center of mass of the rigid fluid body remains 

constant with respect to the tank and the relative displacement of the chassis on the suspension 

system is small compared to the longitudinal displacement of the flexible fluid. The fluid free 

surface of the ANCF model returns to a flat shape once the truck reaches the lower speed, as 

seen in Fig. 20, and the normal forces return to approximately equilibrium in both models, as 

evident by the results presented in Fig. 18.   

10.2 Lane change scenario 

In the second motion scenario, the truck performs a lane change over a standard-width US 

highway lane of 3.7m, as seen in the plot of lateral - longitudinal position in Fig. 21. The lane 

change is completed in a relatively short time of 4s so that the fluid sloshing readily occurs, as 

seen in the series of images in Fig. 22 depicting the change in the free surface of the fluid mesh. 

The shift in the center of mass of the flexible fluid mesh as the truck negotiates the turns of the 

lane change causes the normal forces exerted on the tires on the outer edge of the curve to be 

greater than those exerted on the inner tires, as seen in Fig. 23. For the first half of the lane 
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change, the left tire (Fig. 23a) is the inner tire, and for the second half of the lane change, the 

right tire (Fig 23b) is the inner tire. This effect is also evident in the rigid body model due to the 

outward inertia forces, however the peak forces exerted are greater for the ANCF model than for 

the rigid body model due to the sloshing behavior, which is evident in the plot of the fluid center 

of mass presented in Fig. 24. Furthermore, it can be seen that the peaks in the normal forces on 

the outer tires of the rigid body model are the same after both the first and second halves of the 

lane change – 8 kN on the inner tire and 20.5 kN on the outer tire in both cases. However, this is 

not the case for the ANCF model tires – the changes in the normal forces from equilibrium are 

greater after the second half of the lane change (5.5 kN and 22.5 kN) as compared to the first (6.5 

kN and 21 kN). This is because the forces of the tank walls on the fluid during the second half of 

the lane change act in the same direction as the motion of the rebounding fluid, causing the 

lateral shift of the fluid to be larger than would have occurred due to free vibration only. After 

the lane change is completed, the normal forces on the tires of the ANCF model oscillate about a 

nominal value due to the lateral sloshing of the fluid, whereas the normal forces remain at 

steady-state after the rigid fluid model negotiates the lane change because the lateral position of 

the fluid is fixed with respect to the tank. These effects are also apparent in the lateral friction 

force results presented in Fig. 25. The peak lateral friction force on the inner tire is comparable 

between the ANCF model and the rigid body model because although the normal force is less for 

the ANCF model tire due to the outward shift of the fluid, the lateral velocity of the tire with 

respect to the ground is greater for the ANCF model tire, which negates the effect of the 

decreased normal force. This is clear from the results presented in Fig. 26, where the lateral slip 

velocity of a left tire is greater for the ANCF model during the lane change. 

10.3 Curve scenario 
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For the third scenario, the truck negotiates a wide curve as seen in Fig. 27, similar to an onramp 

or exit ramp of a highway, except that the bank angle is assumed zero for simplicity. While 

driving along a road of constant curvature and in the case of zero bank angle, the outward 

centrifugal force on a rigid vehicle due to the curve of the road is counteracted by the lateral 

friction force exerted on the tires; that is, 2
smV r mg  where m  is the mass of the vehicle, sV  

is the forward velocity, r  is the radius of curvature of the road,   is the coefficient of friction 

between the tires and the road, and g  is the gravitational constant. As previously discussed in 

this paper, the maximum speed at which the vehicle can traverse a curve without sliding can then 

be calculated as sV gr . For example, for a radius of curvature of 115 ft and a coefficient of 

friction of 0.7, the maximum calculated speed is 33.9 mph. However, due to the high center of 

gravity of the truck and increased chance of rollover, in practice vehicles cannot traverse a curve 

at the theoretical maximum speed. According to the National Highway Traffic Safety 

Administration (NHTSA), the maximum speed at which an average fully-loaded tractor-trailer 

can negotiate a curve of 150 ft is 30mph; at greater speeds, the chance of rollover is greatly 

increased [34]. Therefore, for this analysis, the constant forward speed is chosen to be 25 mph 

and the radius of curvature of the track is set to 150 ft, as shown in Fig. 27. As previously 

mentioned, the road is assumed to be flat with no super-elevation; this assumption is consistent 

with methods used in the literature [15]. 

The normal and lateral forces exerted on the tires of the rigid body model are larger on 

the outer tires and smaller on the inner tires, as seen in Figs. 28 and 29, respectively. This is due 

to the roll moment that is exerted from the centrifugal force on the vehicle. Because the radius of 

curvature is constant and the center of mass of the fluid in the rigid body model is not able to 

move, the centrifugal force is constant once the truck enters the curve, and thus the normal and 
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lateral forces are constant as well. The contact forces on the tires of the ANCF model, however, 

overshoot the constant value exerted on the rigid body model tires, and oscillate due to the 

sloshing motion and the change in the center of mass of the fluid, as seen in Figs. 28 and 29. 

Furthermore, while the centrifugal force on the rigid fluid is 2
smV r  as discussed in Section 3, it 

has been demonstrated that this is not the case for flexible bodies [19]. This is evident in Fig. 30, 

where the outward inertia force on the flexible fluid mesh oscillates with a maximum amplitude 

that exceeds the nominal rigid body model value by nearly 16%. This oscillation is due to the 

changing location of the center of mass of the fluid – while it is constant relative to the vehicle 

for the rigid body model, the sloshing phenomenon occurring in the flexible model results in 

oscillation of the center of mass, and thus the effective radius of curvature changes as the vehicle 

negotiates the curve. The sloshing amplitudes and thus the inertia and contact forces decrease 

with time for the ANCF model due to the fluid viscosity and the friction forces between the fluid 

and tank walls. In order to better understand the results presented in Fig. 30, Fig. 31 shows the 

position of the center of mass of the liquid with respect to the tank. This figure shows that 

because of the liquid oscillations, the simple equation 2
smV r  used to calculate the centrifugal 

force in rigid body dynamics is no longer applicable in the case of liquid sloshing. Figure 32 

shows the components of the normalized velocity of the liquid center of mass obtained by 

dividing by the vehicle forward velocity. Figure 32a shows the dimensionless velocity 

component tangent to the curve, while Fig. 32b shows the other two components. 

The magnitudes of the contact forces are not identical to those predicted by the analytical 

model in Section 2 because only two wheels were included in that analysis, and the weight of the 

tank and fluid is actually distributed over 10 wheels. However, the orders of magnitude of the 
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contact forces are the same and the relative changes in the forces were well predicted, and thus 

the analytical model verifies the simulation results.  

 

11. Summary and conclusions 

A total Lagrangian ANCF fluid formulation that can be systematically integrated with fully 

nonlinear MBS vehicle algorithms is proposed in this investigation. The new approach can 

capture the fluid distributed inertia and viscosity, can accurately predict the change in inertia due 

to the change in shape of the fluid, and can visualize the change in the fluid free surface, unlike 

other discrete inertia models which do not capture these significant details. The outward forces 

on the fluid during curve negotiation are derived and it is shown that these forces do not take the 

same simple form as the case of a rigid body negotiating a curve. As discussed in the paper, 

accurate modeling of the fluid geometry using ANCF elements can be achieved without the need 

for using computational geometry methods such as B-spline and NURBS representations which 

have a rigid recurrence structure unsuitable for MBS analysis. By using the approach proposed in 

this investigation, one geometry/analysis mesh is used from the outset. The fluid constitutive law 

and the fluid/tank interaction forces are developed. The penalty method is used to ensure that the 

fluid remains within the boundaries defined by the tank geometry. Both normal and tangential 

penalty contact forces are considered in this study. The MBS vehicle model components are 

described and the dynamics of the vehicle is examined using three contrasting motion scenarios 

in order to study the effect of sloshing on vehicle dynamics. The braking scenario examines the 

case of longitudinal sloshing of the fluid, a rapid lane change produces alternating lateral fluid 

forces on the tank, and curve negotiation sheds light on the case of steady-state outward forces 

due to the centrifugal effect.  
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The results presented in this investigation demonstrate that depending on the scenario, the 

sloshing phenomenon can increase the contact forces on some wheels while decreasing contact 

forces on other wheels, and this can lead to vehicle instability. In the case of brake applications, 

the fluid in the partially-filled tank surges forward, causing uneven wheel loading; in cases of 

severe braking, wheel lift may occur on the rear wheels of the vehicle. This can lead to difficulty 

controlling the vehicle and increased stopping distances due to lessened road contact, and the 

decrease in stability may result in jack-knifing for tractor-trailer vehicles. When entering a curve 

or performing a lane change, the outward centrifugal forces cause lateral displacement of the 

fluid, which also causes uneven wheel loading. In extreme cases of high speed or small radius of 

curvature, these changes could be significant enough to induce wheel lift on the inner wheels and 

increase the possibility of rollover compared to an equivalent truck carrying rigid materials. 

Furthermore, in cases where tire friction forces are decreased, such as on wet or icy roads, the 

possibility for vehicle instability increases even further and drivers must exercise extra caution. 

Future analysis can result in defining general rules for speed reduction of a tanker truck entering 

a curve in order to maximize vehicle stability and driver safety, proposing modifications to the 

tank geometry to reduce sloshing amplitudes and forces, and studying the effect of viscosity and 

incompressibility on the fluid dynamic behavior.  
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Appendix A 

The three-dimensional ANCF solid element, with an incomplete polynomial representation, used 

in this investigation is an 8-node element. The nodal coordinates jke  at the node k  of the finite 

element j  can be defined as  

T T T T T
1, ,8jk jk jk jk jk

x y z k   e r r r r     (A. 1) 

where jkr  is the absolute position vector at the node k  of the element j , and jk
xr , jk

yr and jk
zr  

are the position vector gradients obtained by differentiation with respect to the spatial 

coordinates ,x y  and z , respectively. The displacement field of each coordinate of the solid fluid 

element can be defined using an incomplete polynomial with 32 coefficients as 
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In this equation, , 1, 2, ,32k k   , are the polynomial coefficients. Using this polynomial 

description, the shape functions of the ANCF brick fluid element can be derived as follows: 
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where ,a b , and c  are, respectively, the dimensions of the element along the axes ,x y , and z  

directions, / , / , /x a y b z c     ,  ,  ,  0,1    , and , ,k k k    are the dimensionless 
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nodal locations for node k . The position vector of an arbitrary material point on element j  can 

be written as 

8
,1 ,2 ,3 ,4

1

j k k k k jk j j

k
S S S S



   r I I I I e S e    (A. 4) 

Where I  is the 3 3  identity matrix, jS  and je  are, respectively, the element shape function 

matrix and the vector of nodal coordinates which can be written as 
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Table 1. Economic Characteristics of the Transportation Industry in 2007 (U.S. Department of  

Mode Establishments Revenue (millions) Paid Employees 
Highway 120,390 217,833 1,507,923 
Railway* 563 49,400 169,891 
Waterway 1,721 34,447 75,997 
Pipeline 2,529 25,718 36,964 

*Data for Railway are for 2009. 

 

Table 2. Freight Tonnage in 2007 (U.S. Department of Transportation, 2011) 

Mode Hazardous Materials Non-Hazardous Materials 
Total Tons 

(Thousands)  Tons 
(Thousands) 

Percentage  
of Mode 

Tons 
(Thousands) 

Percentage 
 of Mode 

Highway 1,202,825 14 7,575,888 86 8,778,713 
Railway 129,743 7 1,731,564 93 1,861,307 

Waterway 149,794 37 253,845 63 403,639 
Pipeline 628,905 97 21,954 3 650,859 

Air 362 10 3,256 90 3,618 
 

Table 3. MBS model inertial properties 

Component Mass (kg) Ixx (kg.m2) Iyy (kg.m2) Izz (kg.m2) 
Wheels 56.7 4.25 7.77 4.25 

Front Axle 313 797 85.1 797 
Steering Knuckle 
and Tie Rod Arm 86.8 3.63 3.43 5.41 

Tie Rod 25.0 5.75 0.0077 5.75 
Rear Axle 410 202 10.6 202 

Cab 6804 3685 5265 6425 
Tank 1301 567 2324 2299 

Frame Rails 1579 151 3340 3340 
Rigid Fluid 5464 1204 11877 12555 

 

Table 4. Suspension parameters 

X Direction  Y Direction  Z Direction 
Spring 
(N/m) 

Damper  
(N.s/m) 

Spring 
(N/m) 

Damper  
(N.s/m) 

Spring 
(N/m) 

Damper  
(N.s/m) 

91.25 10   
41 10   

85 10  
41 10  

67.5 10  
55 10  
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Table 5. Initial velocities 

Maneuver Braking Lane Change Curve Negotiation 
Initial Velocity  

(mph) 
55 55 25 
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Figure 1. Force diagram of a vehicle during straight-line motion 

 

Figure 2. Force diagram of a vehicle during curve negotiation 
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Figure 3. Change in tire contact force during curve negotiation – theoretical values 

(  Left wheel,  Right wheel) 

 

Figure 4. Change in tire contact force during curve negotiation – simulation results 

(  Left wheel,  Right wheel) 
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Figure 5. Tank geometry 

 

Figure 6. Initially curved fluid geometry 
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Figure 7. ANCF fluid mesh 

 

 

Figure 8. Fluid configurations 
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Figure 9. Fluid-tank interaction in radial direction 

 

 

 

Figure 10. Fluid-tank interaction in longitudinal direction 
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Figure 11. Brush Tire model coordinate systems 

 

Figure 12. Ackermann steering mechanism 
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Figure 13. Steering mechanism geometry 

 

Figure 14. Trajectory constraint coordinate systems 
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Figure 15. Commercial medium-duty tanker truck model 

 

Figure 16. Velocity during braking 
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Figure 17. Fluid sloshing due to braking 

 

Figure 18. Normal force on a front tire and a rear tire during braking 

(  Rigid model front tire,  ANCF model front tire, 
Rigid model rear tire,   ANCF model rear tire) 
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Figure 19. Position of fluid center of mass relative to tank during braking 
(  Longitudinal direction,  Lateral direction,  Vertical direction) 

 

 

Figure 20. Flat free surface at steady state after braking 

 



58 
 

 

Figure 21. Lane change trajectory 

 

Figure 22. Lateral sloshing due to lane change maneuver 
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Figure 23. (a) Normal force on a left-hand tire and (b) a right-hand tire during a lane change 
(  Rigid model,  ANCF model) 

 

Figure 24. Position of fluid center of mass relative to tank during lane change 
(  Longitudinal direction,  Lateral direction,  Vertical direction) 
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Figure 25. (a) Lateral friction force on a left-hand tire and (b) a right-hand tire during a lane 
change 

(  Rigid model,  ANCF model) 

 

 

Figure 26. Lateral slip velocity on a left-hand tire during a lane change 
(  Rigid model,  ANCF model) 
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Figure 27. Curve trajectory 

 

Figure 28. Normal force on an outer tire and an inner tire during curve negotiation 
(  Rigid model outer tire,  ANCF model outer tire, 

Rigid model inner tire,   ANCF model inner tire) 



62 
 

 

Figure 29. (a) Lateral friction force on an outer tire and (b) an inner tire during curve negotiation 
(  Rigid model,  ANCF model) 

 

Figure 30. Outward inertia force on fluid during curve negotiation 
(  Rigid model,  ANCF model) 
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Figure 31. Position of fluid center of mass relative to tank during curve negotiation 
(  Longitudinal direction,  Lateral direction,  Vertical direction) 

 

Figure 32. Normalized velocity of the fluid center of mass in the (a) longitudinal and (b) lateral 
and vertical directions 

(  Longitudinal direction,  Lateral direction,  Vertical direction) 
 


