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Abstract:

A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for
rigid folding, and this folding process can be stopped when two of its facets bind together. Such
facet-binding will induce self-locking so that the overall structure stays at a pre-specified
configuration without additional locking elements or actuators. Self-locking offers many
promising properties, such as programmable deformation ranges and piecewise stiffness jumps,
that could significantly advance many adaptive structural systems. However, despite its excellent
potential, the origami self-locking features have not been well studied, understood, and utilized.
To advance the state of the art, this research conducts a comprehensive investigation on the
principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for
the first time, this study expands the 4-vertex structure construction from single-component to
dual-component designs and investigates their self-locking behaviors. By exploiting various
tessellation designs, this research discovers that the dual-component designs offer the origami
structures with extraordinary attributes that the single-component structures do not have, which
include the existence of flat-folded locking planes, programmable locking points and
deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively
induce piecewise stiffness jumps. The results of this research provide new scientific knowledge
and a systematic framework for the design, analysis, and utilization of self-locking origami

structures for many potential engineering applications.
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1 Introduction

Over the recent decades, the influences of origami—an ancient art of paper folding—have
expanded deep into the field of science and engineering [1-3]. One reason behind such
development is that the principles of folding can be translated into designs of sophisticated
three-dimensional structures with various functionalities. Given that folding-induced mechanical
properties are scale-independent, origami-inspired designs have been applied to applications with
vastly different length scales: such as nano-scaled DNA origami [4], micro-scaled biomedical
devices [2,5,6], macro-scaled printable robots [2,7,8], sandwich panels [9], actuators [10], and
large-scaled aerospace [11] and architectural elements [1,12]. One of the recently emerging
research topics is origami-based mechanical metamaterial [13-19]. By programming the
constituent origami cells’ geometry, kinematic and mechanical properties of the metamaterial can
be tailored within a large design space; and some unorthodox characteristics like auxetic effects
[14,15] and multistability [15,18,19] can be achieved. Most of the aforementioned examples are
based on a particular subset of folding pattern called rigid-foldable origami, whose folding only
involves crease hinge rotation without deforming the quadrilateral facets, so that origami can be
made by relatively stiff materials for broad applications.

An interesting feature of rigid origami folding is “/ocking”. When it occurs, the origami
structure fixes at a particular configuration and cannot be folded further. There are various
mechanisms that can cause locking. For example, undesired locking may happen if the facet
thickness of rigid-origami is not negligible. Due to the facet thickness, the actual installed hinges
may deviate from the ideal position and prevent folding by generating a locking state. In addition,
the facets of thick origami can come into contact with each other and stop folding, even though
the corresponding zero-thickness kinematic model does not predict any self-intersections.
Typically, locking reduces the achievable range of folding so it is to be avoided. In the case of
thick origami, different techniques have been suggested to regain the full range of folding [20—
22]. On the other hand, in applications like self-deployable structures [11] and self-folding

devices [2,6], prescribed and controllable locking becomes beneficial or even indispensable
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because the ability to limit folding and to stay at a desired configuration is crucial. One way to
achieve controllable locking is by introducing additional locker elements [9,23]. In some micro
self-folding devices, self-aligned locking hinges made of solder were employed at the edges of
origami panels [6,24]. These locking hinges functioned as a stabilizing stop to increase fault
tolerance in folding and ensure pre-specified folding angles; they could also improve the
mechanical strength of the structure and enhance the cooperativity during folding. Another
method to achieve controlled locking is by utilizing active materials. For example, a combination
of shape memory alloys (SMA) and shape memory polymers (SMP) could create a self-folding
laminate with controllable locking ability [25,26]: the SMA functions as an actuator to generate
folding deformation, while the SMP locks the achieved deformation.

Other than relying on additional locker elements or active materials, controllable locking
can also be achieved by harnessing the intrinsic characteristics of origami folding. One
particularly interesting locking mechanism is facet-binding [14]. In a generic degree-4 vertex
origami, there can exist a binding fold that is capable of fully closing while others are not, so that
the two facets astride this fold line will bind together and induce locking [27]. Such a locking
mechanism is named as “self-locking” in this paper. Schenk et al. [14] demonstrated an example
of self-locking structure by connecting two different Miura-ori units together: folding
deformation of this structure can be stopped at a predetermined configuration. Compared to other
locking mechanisms, self-locking from facet binding is promising due to its simplicity and
reliability. However, other than the particular example reported in [14], there is a lack of
comprehensive investigation on the design and properties of self-locking structures. Especially,
given the richness of origami tessellation methods, there can be different designs to achieve
self-locking, and the corresponding locking behavior and kinematic properties can be very
diverse. Currently there is no fundamental understanding of these interesting topics.

Motivated by the potentials of self-locking structures as well as the aforementioned
limitations in the current state of the art, the research reported in this paper will fully characterize

the self-locking in degree-4 vertex (for short, 4-vertex) origami. The reason for focusing on
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4-vertex origami is because it is the simplest pattern that can be periodically tessellated in three
directions and possesses only one continuous degree-of-freedom (DoF) for folding [27]. The
following fundamental but largely unaddressed questions will be answered: How to enrich the
4-vertex structure designs by incorporating multiple cells with different geometries? Which
structures possess the self-locking ability and what is the corresponding locking behavior? How
to program the self-locking structures’ kinematic properties? How would the mechanical
properties change when self-locking happen? Answering these questions could significantly
advance the state-of-the-art knowledge on self-locking structures and facilitate their applications.

This paper is structured as follows: § 2 briefly reviews the geometry of 4-vertex cells. This
is followed by the construction of 4-vertex origami sheets and stacked blocks in §3, where new
design ideas that incorporate dual components are presented. §4 presents the principles of
achieving self-locking, with a major focus on determining the facets that first bind during folding.
In §5 and §7, we exhibit new kinematic attributes of the structures that originated from
self-locking and examine how to tailor them. An experimental exploration on the structure
stiffness before and after self-locking occurs is reported in §7. Finally, a brief summary

concludes the paper.

2. Four-vertex origami geometry
(a) Cell geometry

A generic 4-vertex (G-4) cell consists of four rigid parallelogram facets connected by four ideal
creases that meet at a point; its geometry can be characterized by two length parameters (a, b)
and four sector angles a, (i=1,2,3,4), see figure la. To ensure developability and avoid

triviality, we assume X, =27 and a, <a [27], which reduce the number of

%
independent sector angles to three. A partially folded state of the cell can be described by the
dihedral angles p, (i=1,2,3,4) between adjacent facets; conventionally, p, €(0,7) for
“mountain” fold, p, €(7,27) for “valley” fold, p,=7 for unfolded state, and p, =0 or
27 for fully-folded state. To facilitate the analysis, in this research we assume that fold 4 has

the opposite type (say, “valley” fold) from the rest (i.e., p, is the unique fold, which calls for
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a,+a,<m [27]), and fold 1 is capable of fully closing to 0" (i.e., p, is the binding fold). We
remark that such assumption provides generality because it is always possible to map a 4-vertex

design to such arrangement via rotation and reflection.

Note that the ideal rigid-foldable 4-vertex cell retains a one continuous degree-of-freedom
for folding. Hence, based on spherical trigonometry the dihedral angles p, (i =2,3,4) can be
expressed as functions of p, [28]

cosa, —cosa, cosé
p, = arccos + arccos

sina, sin&

cosa, —Cos a cos 5}
. . 2
sina, siné

cosé —cosa, cosa,

p; = arccos . : , (2.1)
sina;sina,

cosa, —cosa, cosé
L, = arccos +arccos

sing, siné

cosa,; —cos o, oS 5]
. . 3
sina, siné

where & =arccos(cos o, cosa, +sin ¢, sina, cos p,) .

In 4-vertex cells, geometry constraints can be applied on sector angles to generate
non-generic 4-vertex cells. If o, +a, =a, +a,, the 4-vertex cell can be folded to a flat state; if
o+, =a,+a,, the two creases p, and p, are collinear. Hence, based on whether
possessing flat-foldability or single collinearity, the 4-vertex cells can be classified into 4 types
(figure 15 and table 1) [29,30]: the G-4 cell cannot be folded flat nor has collinear folds; the
general flat-foldable (GFF) cell possess flat-foldability; the single-collinear (SC) cell has a pair
of collinear folds; and the Miura-ori cell possesses both characters. Note that each additional

constraint reduces the number of independent sector angles by one.

Table 1. Geometry of 4-vertex cells.

Geometry constraints other Independent sect

than X, =27 o, <X,

i

G-4 / 3 o, a,, a,
GFF o t+a, =a, +a, 2 Q, a,
SC o +ao, =a,+a, 2 a, a,
, _ o +a,=a,+a

Miura-ori e 1 a,

o +a, =a, +a,
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Figure 1. Four-vertex origami geometry. (a) Initial flat state and partly folded state of a G-4 cell. (b) Evolution
among the G-4 cell and three types of non-generic 4-vertex cell. (¢) Construction of the nested-in and bulged-out

stacked units.
(b) Stacking origami

Two 4-vertex cells of the same type but with different geometries are possible to be stacked
along their zig-zag creases into a stacked unit, see figure 1¢. During folding, the two cells should
always be kinematically compatible so that they can keep connected at the zig-zag creases.
Previous work [14,29] have derived the conditions for building GFF, SC, and Miura-ori stacked

units, which are listed below for convenient use

a' cosa cosal cosa;
— = : 2.2)

> -~ Jii
a cosa]  cosal cosa,

Here, the superscripts “I” and “II” denote the bottom cell and the top cell, respectively. For
Miura-ori, the last equation in (2.2) is trivial [14]. We take «;" as the independent parameter of

the top cell, and without loss of generality, we let a” >’ so that the bottom cell can be either
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nested into the top cell or bulged out from the top cell, corresponding to two topologically
different configurations. Note that such stacked unit remains a single degree of freedom for
folding, because the folding angles of the top cell can be uniquely determined by the bottom cell
[29]. We remark that the G-4 cell cannot be stacked as such due to the inherent bending

deformation.
3. Construction of 4-vertex origami structures

In this research, two classes of 4-vertex origami structures will be designed and studied: one is
single-layer origami sheets; and the other is origami blocks. This section introduces the

construction principles.
(a) 4-vertex origami sheets

When constructing sheets with 4-vertex cells, to ensure design simplicity and practical feasibility,
the component cells are assumed to be of the same type; to ensure geometry compatibility, their
length parameters (a and b) are set to be identical. However, their sector angles can be
different. Hence, we propose two designs: single-component sheets [18] and dual-component

sheets.

Single-component sheets: Repeating cells of identical geometry in the length and width
directions is a straightforward idea to construct sheets without additional geometry constraints,
see schematic illustration in figure 2a. Waitukaitis et al. have pointed out that such design would
introduce three new vertices, namely, the rotated original vertex, the complementary vertex, and
the rotated complementary vertex [18]. However, these three vertices remain the same type as the
original vertex, and do not change the folding kinematics (unique fold, binding fold, and binding
angle) of the original vertex [18]. Hence, only the original vertex needs consideration when
studying the single-component sheets. In what follows, this design will be briefly denoted as
“(AA)”, where the repetitive “A” indicates the construction of sheets with identical cells. Based
on this design idea, single-component G-4, GFF, SC, and Miura-ori sheets can be accordingly

constructed, and are named as G-4,,,, GFE,, , SC,,, ,and Miura,,, sheets, respectively.

Dual-component sheets: Two cells of the same type but with different sector-angle
assignments can also be connected under some geometry constraints. A schematic illustration of
this design idea is shown in figure 2b, where each column is composed of identical cells (A or B),

while each row is made up of cells with two different sector-angle assignments (A and B). Such
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design is denoted by “(A,B)” for simplicity, where “A” and “B” indicate the two different cells.
Based on this design idea, dual-component G-4, GFF, SC, and Miura-ori sheets can be
constructed, and are named as G-4,, , GFF,, , SC,y , and Miura, 5 sheets,

respectively.

Certain geometry constraints must be satisfied by cells A and B so as to have geometry
compatible connections. To derive these constraints, an (A-B-A) element is considered so that
both A-B and B-A connections are included (figure 2b). Cells A and B are characterized by
sector angles «,; and a, (i=1,2,3,4), respectively; and their folding status are described by
dihedral angles p, and p, (i=1,2,3,4), respectively. At the connection between cells A and
B, a new 4-vertex cell C is generated, with four sector angles denoted by f. and four folds
denoted by 0, ; at the connection between cells B and A, a new 4-vertex cell D is generated,
with four sector angles denoted by 7, and four folds denoted by 0.. Since each facet is a
parallelogram, the sector angles f, and 7, in cells C and D are not independent and can be

expressed by @, and oy

B=r—oay, by=r—ay, f=n—-0a,, f,=r—-a,;

N=T=Qyyy V) =T = Qs Y3 =T =CQpy, V) =T =y

(3.1)

To ensure the sheet’s developability, f

i

and 7, have to satisfy the constraints Z B, =27 and
Z ¥, =2 , which give rise to I

Oy +0y, + 0y + 0y, =27 (3.2)

‘ 0,
3% 3 sheet (flat state) 3x3 sheet (flat state) L, Cell C ) Cell D

Figure 2. Schematic illustrations of the two sheet designs. (a) Single-component sheets (AA). (b) Dual-component
sheets (A, B).
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Table 2. Geometry constraints and independent sector angles for constructing dual-component sheets (A, B).

Single cell constraints other than

2o, =27 anda, <X,

i#j

Connecting

constraints

Extra constraints

to generate cells C

and D

Cell C

Cell D

Independent sector angles

/ G-4 G-4 5 (A:3; B:2) Oy yp> A yys O, Oy
Ap, =T —C, GFF G-4 4(A3,B1) 1504y, O yys Oy
G-4 x5, / (3.2) Ay =m—a, G-4 GFF 4 (A:3; B:1) Ay Qs O yys A,
Apy =TT =y,
Ay, =r—a, GFF GFF 3 (A:3; B:0) Oy Oy Oy
a,+a,,=a,+a,,,
GFFsp) oo (32) / G-4 G4 3(A2;Bi) IR
Op) + gy =0y + gy
/ SC SC 4 (AZZ; B:2) Oy, A yys A, Uy
Ay, =y Miura-ori SC 3 (A:2; B:1) Oy, Qs O
SC Opt0,=0,1T0,, (3.2)
oo Oy +0py =0lpy + 0y, ' O = Ay SC Miura-ori 3 (A:2; B:1) O > Xys5 Apy
Opy =y . . . .
Miura-ori  Miura-ori 2 (A:2; B:0) QY0
Up =y
Ot =010,
. Oy + gy =0y, + 0y,
Miura,, , e (3.2) / sC sC 2 (A:1;B:) A5

Ay T0yy =+ 0y,

O + 0y =Qpy + 0y,
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Equation (3.2) and the constraints on single cells A and B together constitute the conditions
that «,, and o, have to satisfy (Table 2, columns 2 and 3). Moreover, if imposing extra
constraints (Table 2, column 4) the newly generated cells C and D can be of different types as
cells A and B. Here we assume that the folding directions of the constituent cells in the sheet are
identical, i.e., in each cell (A, B, C, and D) it is always fold 2 or 4 (dihedral angles with subscript
2 or 4) that acts as the unique fold, and fold 1 or 3 (dihedral angles with subscript 1 or 3) that
acts as the binding fold. It follows that connecting two different G-4 cells together, the middle
cells (C and D) can be either G-4 or GFF; connecting two different SC cells together, the middle
cells can be either SC or Miura-ori; however, connecting two different GFF cells together, the
middle cells can only be G-4; and connecting two different Miura-ori cells together, the middle
cells can only be SC. In sum, there are totally ten different cases of dual-component sheets. For
each case, the number of independent sector angles and a choice of independent sector angles are

listed in table 2, columns 7 and 8.

We remark that such design would also introduce complementary vertices of the A, B, C,
and D [18]. However, they will not affect the folding kinematics of the original vertices, and as a

result do not need additional consideration.
(b) 4-vertex origami blocks

Similar as the sheet construction, stacked units of the same type can be repeated in a plane.
Moreover, they can be further stacked along the height direction into a block. To ensure
kinematical compatibility, the length parameters at the connecting creases are set to be the same;
however, their sector angles can be different. Hence, corresponding to the two sheet designs, two

block designs are proposed: single-component blocks and dual-component blocks.

Single-component blocks: Repeating identical stacked units S, in three directions can
generate a single-component block. Figure 3a schematically illustrates this design (S,S,),
where the nested-in configuration is taken as an example. Based on this design idea,
single-component GFF, SC, and Miura-ori blocks can be constructed and are named as GFE ¢ ,

SCs,s, » and Miurag ¢ , respectively.
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(@)
Stacked

- 3x3x3 nested-in 3x3x3 nested-in
single-component block dual-component block

Figure 3. Schematic illustration of the two block designs. (a) Single-component block (S,S,) . (b)
Dual-component block (S,, S;).

Dual-component blocks: Stacked units with different sector-angle assignments can also be
connected under some geometry constraints. Noting that connecting two different GFF cells will
generate an un-stackable G-4 cell at the connection, GFF stacked unit is ruled out for building
dual-component blocks, and only SC and Miura-ori cells are considered. Figure 35 schematically
illustrate this design idea (taking the nested-in configuration as an example), where each column
is composed of identical stacked units (S, or S;), while each row consists of stacked units with
two different sector-angle assignments (S, and S;). The arrangement of stacked units remains
the same on each layer of the block. Such design is denoted by “(S,, S;)”, where “S,” and “S;”
indicate the two stacked units with different geometries. Based on this design idea,
dual-component SC and Miura-ori blocks can be constructed and are named as SCg ¢, and

Miura ) blocks, respectively.

Similar as the sheet construction, new types of stacked units can be generated at the
connection between S, and S;. Connecting two SC stacked units can generate a SC or
Miura-ori stacked unit at the connection; connecting two Miura-ori stacked units, the middle
stacked unit can only be SC. For each case, the constraints on the bottom cell geometries are the
same as those for constructing dual-component sheets (see table 2). In addition, the stacked units

S, and S; have to meet an additional constraint to ensure compatible connection

cosa,  cosay,

(3.3)

u 7
cosa,, COSdy
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Table 3. Geometry constraints and independent sector angles for constructing dual-component blocks (S,, S;).

Constraints ~ Stacking and

Stacked Stacked Independent sector angles

Type on bottom  connecting . :
: unit C type  unit D type
cells constraint

SC SC 5(8,:3;

.
NS
N
EQ
iQ
“:Q
EQ
EQ

Miura-ori SC 4(8,:3; S;:1) alal,al; al
SCs, s,) Table 2 (2.2), (3.3)
SC Miura-ori 4 (S,:3; S,:1) aal,adl; al,
Miura-ori ~ Miura-ori 3 (S,:3; S,:0) alal,al
Miura g ¢ Table 2 (2.2),(3.3) SC SC 3(8,:2; S,:1) al,alh; al,

It indicates that the sector angle «,, of the top cellin S, are no longer independent, but rather
constrained by §,. As a summary, table 3 lists the geometry constraints, the number of
independent sector angles, and a choice of independent sector angles for dual-component block

construction.

4. Principles of achieving self-locking

In this section, we present the principles of achieving self-locking in 4-vertex sheets and blocks.
To understand and harness the self-locking property, it is necessary to determine the locations
where facet-binding will happen, i.e., to identify the global binding fold during folding; this

constitutes the major focus of this section.
(a) Self-locking mechanisms

Our recent studies have shown that the G-4 and SC cells, the GFF and SC stacked units possess
self-locking ability. Two mechanisms contributed to their self-locking behavior have been
identified: in-cell facet-binding and inter-cell facet-binding [29]. The first mechanism refers that
two facets in the same cell bind together to prevent the cell from further folding; and the latter
one indicates that facets of different cells bind together to prevent the structure from further

binding.

Hence, self-locking structures can be identified by evaluating whether a 4-vertex structure
possess a cell (or stacked unit) with self-locking ability. If a sheet contains a G-4 or SC cell, it

will self-lock at a non-flat position. Based on this, self-locking sheets can be identified and are
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Table 4. Identification of self-locking 4-vertex sheets and blocks.

Sheet type Self-locking Block type Self-locking
G4, .
Single- Single-
com GFE, GFE .
ponent component
sheet SCian N block SCs.s.) *
Miura,, Miura ¢
G4 :
Dual- GFF Dual-
component ) component
sheet SC(A,B) N block SC(SA ,Sp) *
Miura, , . Miura g , .

summarized in table 4. It reveals that the single-component G-4 and SC sheets and all of the
due-component sheets possess self-locking ability. Similarly, based on whether containing a GFF
or SC stacked units, self-locking blocks can be identified and are summarized in table 4. It shows
that single-component GFF and SC blocks and all of the dual-component blocks possess
self-locking ability.

(b) Self-locking in 4-vertex sheets

This subsection aims at determining the global binding folds of the 4-vertex sheets. To facilitate
the analysis, we still assume that fold 1 in cell A is capable of fully closing to zero (i.e., ©, in
single-component design or p, in dual-component design is the binding fold). Hence, in
single-component G-4 and SC sheets (G-4,,,, and SC,,), facets astride the binding fold (i.e.,
p,) in each component cell will always bind first, inducing self-locking of the whole sheet [29].
Figure 4a and 4b show the fully folded state of a G-4,, and SC,,, sheet, respectively,
where the closing folds are denoted by bold lines, and the binding facets are denoted by shades.

In dual-component sheets, dihedral angles of cells A, B, C, and D in the sheet can be
determined and expressed as functions of p, by successively employing the spherical
trigonometry, see illustration in figure 5. Hence, folding is still a one degree-of-freedom motion.

Note that some folds are shared by two cells, which gives rise to identity relations p, =03,

Py =01, Pp=0y,and p;=0.
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(a) G-4 sheet (b) SC sheet
A P 1 P P
' ’ P
indi \ Binding
Bf};:deltr;g Cell A Cell A Cell A facets Cell A Cell A Cell A

Figure 4. Single-component self-locking sheets at the fully-folded state. (@) 3 X1 G-4 sheet (¢, =36",.., ... ,
a, =72") and (b) 3X1 SC sheet (¢, =36 .~"). The binding facets (shade) and the binding folds (bold) are
pointed out.

2%y

Figure 5. Spherical geometry of the dual-component sheets. (a) Illustration of the flat sheet geometry, where each
4-vertex is denoted by a unit circle with center A, B, C, and D, corresponding to cells A, B, C, and D (dashed),
respectively. (b) Illustration of the partially-folded 4-vertex A. The outer edges of the 4-vertex locates on a unit
sphere, and cut the sphere surface into a spherical polygons. (c) Schematic plots of the spherical polygons generated
by cutting the sphere surfaces with the 4-vertices. The spherical polygons from left to right correspond to vertices A,
C, B, and D, respectively. In each spherical polygon, & divides it into two spherical triangles, and all the dihedral
angles can hence be calculated based on spherical trigonometry. The shared dihedral angles in different polygons are
denoted by dashed circles.

Once having all the dihedral angles of cells A, B, C, and D, the problem of determining the
global binding fold is reduced to examining which dihedral angle first reaches zero. This dihedral
angle can only stay at one of the possible binding fold in each cell, i.e., p, and p,; incell A
(equivalently, o, in cell C and 0, in cell D), p; and p,, in cell B (equivalently, J; in
cell Dand o, in cell C). Using the assumption that p,, is the binding folding of cell A (hence,
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P < P,), we are able to determine the global binding fold of the sheet by comparing the three
dihedral angles p,,, Pz ,and P, 1€,

Binding fold=min{p,, 04/, Ps:}> 4.1)

where the dihedral angles p, and p,, can be written as functions of p,,

5

sina ,, sina ,, COS P, +COS & ,; COS A4, — COS AL, COS amj

Pp = arccos( : :
sina,, sina,,

(4.2)

sina ,, sina ,, COS P, +COS A, COS A 4, —COS AL, COS U, )

Pps = arccos[ . .
sina,, sinay,

In what follows, explicit conditions for determining the global biding fold will be derived for
each case. Notations “ XX, XX, = XX +XX,” are used to indicate the types of the

component cells and the newly-generated cells in a sheet.

We first study the most generic case G-4,+G-4; - G-4.+G-4,,. Here, the sector angles
a,,a,,,0,, incell Aand a,,q,, in cell B are independent. According to table 2, the sector
angles @z, and @ in equation (4.2) can be written as Qg =a,+ta, -0y ,

ay, =2r—(a, +a, +ag,). Through algebraic analysis, condition (4.1) can be rewritten as

P, ifcos(a, —a,,)<cos(2a,-a,-a,)
&cos(a, —a,, )<cos(aA1+aA2+2aB4);
Binding fold= Py> ifcos(a, —a,,)>cos(2a, —a, -a,,) )
& cos (20, —a,, - 2)<cos(aA1+aA2+2aB4)
Py, ifcos(a, —a )>cos(aA1+aA2+2aB4)
& cos(2a, - a,,)>cos(a, +a,,+2a,,).

Due to the generality of this case, the obtained condition (4.3) applies to all the other cases.
Moreover, by incorporating extra constraints on sector angles (listed in table 2) and the identity

relations among dihedral angles, simplified conditions can be derived.

Table 5 lists the conditions and the global binding folds, for each case of the
dual-component sheets. Detailed expressions of the conditions are provided in Electronic
Supplementary Material (ESM). For each type of the dual-component sheet, an example is
sketched in figure 6.
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Table 5. Locking behavior of the self-locking sheets.

» Global Flat-folded Schematic
Sheet types Condition L ) ) )
binding folds  locking plane illustrations
Pa /
G-4,+G-4; > G4, 1G4, (4.3) P / figure 6a
Pg3 /
> C figure 6b
G-4, +G-4, — GFF.+G-4,, ESM (A 1) I ke
Pri /
Pa /
G4, +G-4, — G4.+GFE, ESM (A 2)
Pgs / figure 6¢
G-4,+G-4, — GFE.+GFE, ESM (A 3) P> Pgss C figure 6d
, A
GFF, +GFF, — G-4.+G-4, ESM (A 4) N
Psis> Pgs B figure 6e
Pa /
SC,+SC, — SC.+SC, ESM (A 6) Psi / figure 6f
Pps /
) C figure 6
SC,+SC, —>Miura +SC,  ESM (A7) a0 o
P /
. P /
SC,+SC, — SC.+Miura, ESM (A8)
Pgs / figure 64
SC,+SC, — Miura.+Miura ESM (A 9) P> Psa C figure 6i
, A
Miura,, +Miura, —SC.+SC,  ESM (A 10) e s
Pr1> Pp3 B figure 67

(¢) Self-locking in 4-vertex blocks

Our previous work [29] has determined the binding facets for single-component stacked blocks
(GFF and SC). For the sake of completeness, we briefly review the results here. The assumption
that o, is the binding fold of the bottom cell will be employed. Figure 7a and 7b show the fully
folded states of a GFF block and a SC block, respectively, with both the nested-in and bulged-out
configurations. For the GFF stacked block, at the nested-in configuration, facets of the bottom
cell and facets of the top cell will bind together (i.e., inter-cell facet-binding), and the connecting
crease between them ( p.) act as the global binding folds; at the bulged-out configuration, the
bottom cell folds flat (i.e., in-cell facet-binding). For the SC stacked block, at the nested in

configuration, two facets of the bottom cell and two facets of the top cell bind together
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(a) (b)

Binding
facets

<
Cell C Cell B Binding Cell C
folded flat folded flat facets
(h) 0]
folded flat folded flat

Figure 6. Dual-component self-locking sheets at fully folded states, where the binding facets (dark facets), the
global binding folds (bold creases), and the flat-folded cells (dashed polygons) are marked. “A” and “B” indicate the

component cell A and cell B, respectively.

(a) GFF block (b) SC block
) & N ,V/
Nested-in Bulged-out Nested-in Bulged-out I

Figure 7. Single-component self-locking blocks at the fully-folded state, with both the nested-in and bulged-out
configurations. (a) 2 X2 X 1 GFF block («a =36,.., .-, .. ) and (b) 2X2X 1 SC blocks
(af =36',., .-, o, -.). The binding facets (shade) and the binding folds (bold) are marked; the binding

connecting crease is denoted by p,..
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simultaneously (i.e., in-cell and inter-cell facet-binding), p{, o, and p. act as the binding
folds; at the bulged-out configuration, two facets in the bottom cell bind together, and two facets
of the top cell bind together at the same time, but they do not inter-bind (i.e., in-cell

facet-binding), p/ and p/ are the binding folds.

In dual-component blocks, self-locking is caused by the facet-binding in SC stacked units.
Note that when a SC cell self-locks, the corresponding SC stacked unit self-locks simultaneously,
and the binding folds in the bottom and top cells are corresponding to each other. As a result, the
conditions for determining the global binding fold in dual-component SC and Miura sheets are
still valid for the corresponding stacked blocks. We list these conditions in table 6, where
notations “ XX +XXs — XX +XX; ” are adopted to indicate the types of component stacked
units and the newly generated stacked units in a block. Detailed expressions are provided in the
Electronic Supplementary Material (ESM). For each type of the dual-component block, an

example is illustrated in figure 8.

LS, folded flat

Figure 8. Dual-component self-locking blocks at the fully-folded state, with the nested-in configuration as an
example. The binding facets (shade), the global binding folds (bold creases), and the flat-folded cells (dashed
polygons) are marked. “S, ” and “S;, ” indicate the component stacked units.
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Table 6. Locking behavior of the self-locking blocks.

" . Flat-folded Schematic
Sheet types Condition Global binding folds . : :
locking plane illustrations
PPl /
SCs, 78G5, > SCs +5G, ESM(B 1) Ot O / figure 8a
P32 P /
~ PN Dy P S figure 8b
SCS +SCS —> Miurag +SCS ESM (B 2) P2 L. LrizLra (¢
A B C D 7 Vi /
pBl > pBl
1 a /
SCq, +SCs, — SC_+Miurag ESM (B 3) P Pa
DOy Prs / figure 8¢
SCSA +SCSB —> 1\/ﬁl.11’8,SC +MiuraSD ESM (B 4) pf” , pf]; plln’ pg} SC ﬁgure 8d
I . I 1
Miura,SA -i-MiuraSB —>SC +8Cq ESM (B 5) P> Pas Pz Lz S,
Pis Pats Piss Pas Sy figure 8e

(d) Dual-component tessellation designs

Note that randomly arranging the component cells A and B (or stacked units S, and S;) in a
row will not create new cells other than C and D (or new stacked units other than S. and S).
Hence, the conditions for determining global binding folds keep valid for any tessellation.
Basically, two tessellation designs are possible: (1) an alternate arrangement of cells A and B (or
stacked units S, and S;) to ensure periodicity, see schematic illustration in figure 9a; (2)

repetition of a component cell (or stacked unit) at certain positions of the structure (figure 95).

We want to remark that theoretically, self-locking structures can be constructed with more
than two component cells (or stacked units). If introducing an additional component cell (or
stacked unit) with extra geometry constraints, the structure still retains a single
degree-of-freedom for folding, and the global binding folds are still consistent with the dihedral
angle that first reaches zero. Hence, incorporating more components will not alter or enrich the
locking behavior; rather, it will complicate the structure design and manufacturing. This is why

only single-component and dual-component structures are considered in this research.
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Figure 9. Dual-component sheet tessellations. (a) An alternate arrangement of cells A and B. (b) Repetition of cells

A and B at certain positions of the structure.

5. Programmable flat-folded locking planes and locking points

Locking points indicate the locations where facet-binding happens, i.e., the locations where the
global binding folds locate. Particularly, note that in the dual-component structures, flat-foldable
cells or stacked units can be included, even though the sheet or block as a whole does not possess
flat-foldability. Hence, if the global binding folds locate in the flat-foldable cells or stacked units,
a flat-folded locking plane can be generated, which is a particular type of locking point.

The number of locking points and their locations are important information for the
utilization of self-locking structures. For example, the facets/creases material at the locking
points needs careful selection so as to tailor the structure’s mechanical property. Active materials
or actuators are always set at the locking points for effective actuation and folding. In this section,
we show that with the dual-component designs, the flat-folded locking planes and the locking

points are programmable in terms of number and locations.
(a) Programmable flat-folded locking planes

Based on whether the global binding folds locate in the flat-foldable cells or flat-foldable stacked
units, the flat-folded locking planes can be determined and are listed in tables 5 and 6,
respectively. Note that such flat-folded locking plane cannot be achieved in single-component
designs; it is a new attribute brought by dual-component designs. In addition, by changing the
tessellation of component cells (or stacked units), the location and the number of flat-folded
locking planes are programmable. Figure 10 displays such an example that by tessellating three
Miura-ori cells A and three Miura-ori cells B, we could obtain sheets with one, two, and three
flat-folded locking planes. Note that the number of facets that are stacked up at the flat-folded
locking planes are designable, which could be exploited for tailoring the structure’s stability and

loading capacity.
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Suipjog

locking plane

Figure 10. Illustration of programmable flat-folded locking planes in self-locking sheets. The sheet in (a), (b), and (c)
are made up of three Miura-ori cells A and three Miura-ori cells B, but with different tessellation designs. One, two,

and three flat-folded locking planes (dashed rectangles) are generated when the sheets are fully folded.

(b) Programmable locking points

In a single-component structure, the locking points cannot be programmed; there are always »n
locking points locating at the binding fold in each component cell (or stacked unit) (figure 11a).
However, in dual-component structures, we could program the number and location of the

locking points by employing different tessellations.

To examine such programmability, we use the sheet as an example for illustration purposes.
We assume that a dual-component sheet consists of n component cells, with 7, cells A and
ny cells B (n,21, ny21, and n,+n,=n). If the sheet does not contain any flat-folded
locking plane, there would be either 7, or n, locking points, depending on whether the global
binding folds (i.e., the locking points) locate in cells A or cells B (figure 115). If flat-folded
locking planes are generated in cells A or cells B, the number of locking points can be varied
between 1 and min{n,,n,} (or min{n,,n,}+1, if locking points exist on both ends of the
structure). In this specific case, the number of locking points depends on the tessellation of cells
A and B: that is, it reaches the minimum when all of the flat-folded cells are concentrated at one
position (figure 11c¢), and reaches maximum if every two flat-folded cells are separated by the
other type of cell (figure 11d). If flat-folded locking planes locate in cells C, both cells A and B
have binding facets, and the number of locking points can be varied between max{n,n,} and
n. The number of locking points again depends on the cell tessellation. The minimum is

achieved when the cell arrangement allows as much cells C as possible (figure 1le); the

21/31



Paper submitted to Proceedings of the Royal Society A

maximum is achieved if cell C is not generated in the sheet (i.e., there is no “A-B” connection in
the sheet) (figure 11f). The number of locking points for both dual-component sheets and blocks

are summarized in table 7.

(@) n=5 (¢) n=5n,=2,n,=3 () n=5n,=2,n,=3

A A A

(Hh n=5n,=2,n,=3

Figure 11. Illustration of programmable locking points in self-locking sheets. The locking points are indicated by
arrows, and the flat-regions are indicated by dashed rectangles. (a) Single-component sheet. () Dual-component
sheet without flat-folded locking plane; it has 3 locking points. (¢) Dual-component sheet with flat-folded locking
planes generated in cells B; it has the minimum number of locking points, 1. (d) Dual-component sheet with
flat-folded locking plane generated in cells B; it has the maximum number of locking points, 3. (e) Dual-component
sheet with flat-folded locking plane generated in cells C; it has the minimum number of locking points, 3. (f)
Dual-component sheet with flat-folded locking plane generated in cells C; it has the maximum number of locking

points, 5.

6. Programmable deformability

Self-locking provides an origami structure with the ability to reach and maintain a specified
configuration. The deformation achieved during the folding process is determined by the origami

geometry and the tessellation methods. Here we define the deformation range as

(6.1)

where L, is the length of the structure when self-locking occurs, and L, is the initial length
when the origami sheet (or the bottom cells of the block) are flat. Hence, 7 measures the

deformability of the self-locking structure; the larger the value is, the stronger its deformability.

We still take the sheet as an example to examine how dual-component designs contribute to
the structures’ deformability. In single-component sheets, it is noticed that the deformation range

depends only on the constituent 4-vertex design (say, 77,). However, in dual-component designs,
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Table 7. Kinematical properties of self-locking structures.

- ) ) Deformation
Global binding folds # of locking points
range 7
G4, P n 4
SCiaa) P n 4
ye) n
G-4'A +G_4B - G_4C +G—4D # 4 (77,4 > 773)
pBl or pB3 nB
pBl nB
G-4,+G-4, — GFE.+G4,, (4 1)
P> Pgs [max{n,,n,}, n]
pAl nA
G-4,+G4, — G-4_+GFF, (4 1)
p33 nB
(%J‘ G_4A +G-4B — GFFC +GFFD pAl > pB3 [m.aX {nA > nB } > n] (77A > 773)
CD .
@ GFF, +GFE, — G-4.+G-4,, Pais Pz O Puls Pps [, min{n ,n,}(+1)] (17, or 17, 1)
o) n
SC,+SC, - SC +SC,, 4 4 (45 715)
pBl or pB3 nB
ye) n
SC,+SC, —> Miura_+SC, & ’ (14 75)
P> Pgs [max{n,,n,}, n]
. pAl nA
SC,+8Cy = SC+Miura,, (145 115)
p33 nB
SC, +SC, — Miura.+Miura P> Prs [max{n, ,n,}, n] (174> 1M3)
Miura , +Miura, — SC_+SC,, Pa>Paz O PpisPps [, min{n ,n,}(+1)] (7, or 17, 1)
GFEg.s. PO PP n un
SCissa Pes Lsl n 7,
7 Ve
pAl > pAl nA
SCSA +SCSB - SCSc +SCSD i 1 1 (4> 715)
pBl’pBl or pB3’pBS nB
7 Ve
. Pg1> P, n
T SC, +SC,, — Miurag +SC; it ; 1.5 75)
A B C D 7 /BN I 17
<X Pais Pas P> Prs [max{n,,n,}, n]
7 Ve
. PP n
SC, +SC,, —SC, +Miura_ st 4 M1, 1)
pB3 2 pB3 nB
SC, SC,, — Miurag +Miurag P P Phss Pos [max{n,,n,}, n] (45 15)
7 Y/ Vi
Miurag_+Miurag —>SCy +SC;_ P> Pav: Pas> P [, min{n,,n,}(+1)] (17, or 77,, 1)

Y S
O D15 Ppis Pp3s Pps

other than tailoring the constituent cell designs, the structure’s deformability can also be

programmed by adjusting the composition proportion of cells A and B. To illustrate such
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programmability, we assume that when the sheet is fully folded, cell A contracts from initial
length /,, to [,,, with deformation rage 7,=(/,,—/,)/l, ; and cell B contracts from the
initial length /;y to [, , with deformation range 77, =(ly, —/y)/l,,. Note that [, and [,
may not necessarily be the minimum length associated to their individual locking configurations.
Hence, the initial and final lengths of the structure can be written as

Ly=n,l,+ngly,

Ly=n,,, +ngly. (6.2)

Taking n,, ng, l,, l;, n,,and 717, as the independent variables, the deformation range of

the sheet 7 yields

_ 141 ko + 515150 ’

nl o +ngly,

n (6.3)

Note that with fixed cell designs and fixed numbers of cells A and B, the structure’s

deformability does not depend on cell tessellations.

The extreme values of 77 can be obtained by considering two limiting cases and assuming
that there are infinity number of cells. In the first case, there is only one cell B, ie., n, = (n—1)
and ny; =1, we have 7~ in the second case, there is only one cell A, ie., n, =1,
n, >n-1, we have 1~ Hence, by changing the tessellation based on requirements, the
deformation range 7 can take any value between 77, and 77,. Particularly, if cell A or B is
flat-foldable (i.e., 7, =1 or 17, =>1), 7—1 becomes possible, indicating that the sheet
would possess strong deformability (close to flat-foldability) as well as self-locking ability.

Deformation range of the stacked blocks can be similarly analyzed, summarized in table 7.

7. Locking-induced stiffness jump

In addition to the kinematic properties, this section explores the change in stiffness property due
to self-locking. Before facet-binding occurs, the origami structure deforms following the
kinematic relationships of rigid-folding: that is, the crease materials are bent like flexible hinges
but the facet materials remain un-deformed. Hence, the overall structure tangent stiffness comes
from the bending stiffness of the crease line material [15,18,31,32]. After self-locking, the
structure cannot be rigidly folded any more, and further loading will instead directly deform the

facet materials. Since the facet is typically stiffer than the crease, the overall stiffness can
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become significantly higher. Since the kinematic relationship of rigid-folding is no longer valid,
estimating the increased stiffness after self-locking would require finite element analyses [33] or
experiments [34]. In this research, we experimentally demonstrate the locking-induced stiffness

change based on two SC stacked unit prototypes.

Two SC stacked unit prototypes are fabricated as follows. The origami facets are water jet
cut out of steel plates (with thickness 0.254 mm), and the creases are made of adhesive-back
polyethylene films (with thickness 0.127 mm). Hence, the creases material is much softer than
the facets. Pre-folded spring-steel stripes are applied to crease lines to generate some bending
stiffness. The two stacked units are of the same geometry but with different bending stiffness at
the creases (i.e., pasting spring-steel stripes with different thickness; unit 1: 0.10 mm, unit 2: 0.18

mm).

We take eight compression tests in the length direction on each stacked unit separately.
Figure 12a shows the force-displacement curves together with the standard deviations (shades).
It shows that each curve consists of two segments with significantly different slopes. Linear
regression is performed on the first two curve segments, which gives the corresponding
approximated structure stiffness, shown in figure 12b. For both units, the overall stiffness
experiences a sharp jump from low values (0.341 and 0.877 N/mm) to high values (38.7 and
104.6 N/mm) due to self-locking. Before self-locking happens, the stiffness mainly comes from
the pre-bended spring-steel stripes at the creases; after the self-locking point, the facet material
bending contribute to the stiffness upsurge. Note that the compression tests are limited within a
safety range to prevent the prototypes from being damaged. Figure 12¢ displays the photos of the
stacked unit at three states: the initial stress-free state (i), the self-locking instant (i), and a state

after self-locking, with facet-bending (iii).

Figure 12 reveals an interesting locking-induced stiffness jump that has never been
observed or exploited in other origami structures. The low stiffness during the folding stage
offers an effective deploying and retraction mechanism with small actuation requirements; while
the measured two orders of magnitude increase in stiffness at the self-locked stage provides the
origami structure with high loading capacity. Note that although the experiments are performed
on SC stacked units and blocks, all the self-locking sheets and blocks shown in Section 5 would

possess similar stiffness jump properties.
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Figure 12. Separate compression tests on the two SC stacked units (nested-in configuration). (a) Force-displacement
curves of the two units; inset shows the positions where spring-steel plates are pasted. (b) Stiffness obtained through
linear regression, the stiffness values and the coefficient of determination ( R*) are given. (c) Photos of a unit at

three states i, i7, and iii; the binding facets at the self-locking instant ii are denoted by dashed rectangle.

8. Summary and Concluding remarks

This paper introduces a new category of origami structures with self-locking ability. We advance
the state of the art by carrying out a comprehensive geometry and kinematic analysis on
self-locking origami structures, and experimentally exploring their unique mechanical properties.
The constituent units for such structure are different types of 4-vertex cell. In addition to and
advancing from a single-component design, we incorporate two component cells (or stacked
units) of the same type but with different geometry into the construction. We gain new
knowledge and show that such two-component design produces a wide variety of sheets and
blocks, making it suitable for different applications. Facet-binding provides the origami
structures with self-locking ability, enabling them to stay at a pre-specified configuration without

additional locking elements or actuators. Principles of achieving self-locking in
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single-component and dual-component structures are illustrated via identifying the global

binding folds that first close during folding.

By examining different cell tessellations, we reveal that the dual-component construction
idea offers excellent programmability on the structures’ kinematical properties, including the
position and the number of flat-folded locking planes and locking points, and the deformation
range. Such programmability cannot be achieved in single-component structures. In addition, the
occurrence of self-locking can significantly affect the structure stiffness. Experiments
demonstrate that the structure will experience a significant stiffness-jump and exhibit piecewise

stiffness.

Given that the proposed and explored origami structures have such intriguing features as
self-locking, programmable kinematical properties, and variable stiffness, they have great
potential for scientific and engineering applications of various scales. For example, shape
morphing [35] typically require a structure to change its shape between two targeted
configurations with minimal actuation input, and then stay at the targeted shape while
withstanding external loads. Such requirements can be achieved by tailoring the crease designs
so that self-locking and the corresponding stiffness jump occur directly at the targeted
load-bearing configurations. Locking induced stiffness jump can also be utilized as an embedded
safety mechanism to prevent excessive deformations, which has many applications in robotic
systems. Furthermore, structures with discrete stiffness jump display very rich nonlinear
dynamic responses from harmonic excitations, so that self-locking origami can be developed into
a foldable system with embedded vibration isolation or control functions [36,37]. Other than
programmable deformation range and discrete stiffness jump, self-locking can enable other
functionalities. For example, the contact of facets could significantly re-distribute the stress
within the origami structure, therefore, self-locking could be exploited to reduce stress
concentration from folding and improve the overall system durability and reliability
[38,39].Moreover, although currently the self-locking behavior and locking-induced properties
are passive, we envision that they can be transformed to be active if actuation mechanisms are
included for folding. Available actuation methods include thermally-activation,
chemically-activation, optically-activation, electrically-activation, and magnetically-activation
(see review paper [2]); fluidic actuation [40-42] is also promising if the structure contains

embedded tubular chambers.
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Future research directions include development of passive and active self-locking
origami-based metamaterials, investigation of the self-locking origami structures in terms of
Lagrangian mechanics, self-locking origami dynamics, exploration of other types of structure
with self-locking abilities (e.g., Hencky type structures[43,44]), and consideration of self-locking

effects from the perspective of energy principles.
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