876

Beamforming Design for

Power Transfer Systems:

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 2, FEBRUARY 2017

Wireless Information and
Receive Power-Splitting

Versus Transmit Time-Switching

Ali Arshad Nasir, Member, IEEE, Hoang Duong Tuan, Duy Trong Ngo, Member, IEEE,
Trung Q. Duong, Senior Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract— Information and energy can be transferred over the
same radio-frequency channel. In the power-splitting (PS) mode,
they are simultaneously transmitted using the same signal by
the base station (BS) and later separated at the user (UE)’s
receiver by a power splitter. In the time-switching (TS) mode,
they are either transmitted separately in time by the BS or
received separately in time by the UE. In this paper, the BS
transmit beamformers are jointly designed with either the receive
PS ratios or the transmit TS ratios in a multicell network that
implements wireless information and power transfer (WIPT).
Imposing UE-harvested energy constraints, the design objectives
include: 1) maximizing the minimum UE rate under the BS trans-
mit power constraint, and 2) minimizing the maximum BS
transmit power under the UE data rate constraint. New iterative
algorithms of low computational complexity are proposed to
efficiently solve the formulated difficult nonconvex optimization
problems, where each iteration either solves one simple convex
quadratic program or one simple second-order-cone-program.
Simulation results show that these algorithms converge quickly
after only a few iterations. Notably, the transmit TS-based WIPT
system is not only more easily implemented but outperforms
the receive PS-based WIPT system as it better exploits the
beamforming design at the transmitter side.

Index Terms—Energy harvesting, power splitting, quadratic
programming, second-order cone programming, time switching,
transmit beamforming, wireless information and power transfer.

I. INTRODUCTION

ENSE small-cell deployment is identified as one of the
‘big pillars’ to support the much needed 1, 000 increase
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in data throughput for the fifth-generation (5G) of wireless
networks [1]. While there is a major concern with the energy
consumption of such a dense small-cell deployment, recent
advances in wireless power transfer allow the emitted energy
in the radio frequency (RF) signals to be harvested and
recycled [2]-[6]. The scavenged radio frequency energy is
stored in the device battery and later used to power other signal
processing and transmitting operations. For example, a radio
frequency-powered relay can be opportunistically deployed
to extend network coverage without the need to access a
main power supply. The wireless power transfer from a base
station (BS) to its users (UEs) is viable in a dense small-cell
environment, because the close BS-UE proximity enables an
adequate amount of radio frequency energy to be harvested
for practical applications [7]-[9].

The two basic realizable receiver structures for separat-
ing the received signal for information decoding (ID) and
energy harvesting (EH) are power splitting (PS) and time
switching (TS) [10]. In the PS approach, information and
energy are simultaneously transmitted using the same signal
by the BS. At the UE, a power splitter is employed to divide
the received signal into two parts of distinct powers, one
for ID and another for EH. In the receive TS approach,
instead of the power splitter a time switch is applied on the
received signal, allowing the UE to decode the information in
one portion of time and harvest the energy in the remaining
time. In the transmit TS approach, information and energy are
transmitted by BS in different portions of time. The UE then
processes the received signals for ID and EH separately in
time. The TS structure has received considerable research
attention (see [3], [11]-[13]) due its simple implementation.
Although the performance of the receive TS approach can
be worse than the PS approach [3], that of the transmit
TS approach has not been reported in the literature.

Transmit beamforming is beneficial for both PS-based
and TS-based WIPT systems. With beamforming, the
signal beams are steered and the radio frequency energy is
focused at the desired UEs. Beamforming design without
energy harvesting has been studied for multicell multi-input-
single-output (MISO) [14]-[18] or single-cell MISO [19]
networks. Except for [17] and [18], all the formulated prob-
lems are solved in a decentralized manner by applying
Lagrangian duality and uplink-downlink duality. In a single-
cell energy harvesting MISO network with PS-based receivers,
[20]-[24] jointly design transmit beamformers at the BS and
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receive PS ratios at the UEs to minimize the sum beamforming
power under UE signal-to-interference-plus-noise-ratio (SINR)
and EH constraints. This indefinite quadratic problem is then
recast as a semidefinite program (SDP) with rank-one matrix
constraints. The rank-one matrix constraints are dropped to
yield a semidefinite relaxation (SDR) problem. To deal with
the rank-more-than-one solution given by SDR, [24] pro-
poses using a randomization method after SDR. As shown
in [25]-[27], the performance of such a method is inconsistent
and could be poor in many cases. An approximate rank-one
solution with compromised performance has been proposed
in [28]. Suboptimal algorithms based on zero-forcing and
maximum ratio transmission are proposed in [21] and [24].
As expected, they are outperformed by the SDR solution.
Surprisingly, the joint design of transmit beamformers and
TS ratios at the receivers has not been adequately addressed
in the literature although it is much easier to implement
TS-based receivers. The main reason is that even the SDR
approach does not lead to computationally tractable solutions
in this case. Also to the best of our knowledge, such joint
design has not been previously considered for the transmit
TS case.

This paper addresses the joint design of transmit
beamforming and either PS ratios or transmit TS ratios in
a WIPT-enabled MISO multicell network. We choose to
investigate the transmit TS approach instead of the receive
TS counterpart because of its potential to outperform the
receive PS approach. As will be shown later, it is actually the
case. Specifically, we consider two important design problems:
1) maximizing the minimum UE rate under BS transmit power
and UE harvested energy constraints, and 2) minimizing the
maximum BS transmit power under UE rate and harvested
energy constraints. As the considered optimization problems
are highly nonconvex, their global optimality is not theoreti-
cally guaranteed by any practical methods.

Here we exploit the partial convexity structure of the
problems to propose new algorithms based on either quadratic
programming iteration or second-order cone iteration. Signif-
icantly, our simulation results with practical parameters show
that the proposed algorithms for the receive PS-based WIPT
system tightly approach the bounds provided by the SDR
approach. This observation demonstrates their ability to locate
the global optimum of the original nonconvex problems in
the considered numerical examples. While upper/lower bounds
are not available for the transmit TS-based WIPT system
using the SDR approach, our practical simulation results
reveal that this system outperforms the receive PS-based
system due its ability to efficiently exploit the transmit beam-
forming power. It is worth noting that the TS-based WIPT
system 1is typically simpler to implement than the PS-based
counterpart.

The rest of the paper is organized as follows: Section II
considers the optimization of the receive PS-based WIPT
system whereas Section III considers the optimization of the
transmit TS-based WIPT system. Section IV evaluates the
performance of our proposed algorithms via numerical exam-
ples and analyzes their computational complexity. Finally,
Section V concludes the paper.

Fig. 1. Downlink multiuser multicell interference scenario consisting of
K cells. To keep the drawing clear, we only show the interference scenario
in cell 1. In general, the interference occurs in all K cells.

Notation: Standard notation is used throughout the paper.
In particular, N{-} denotes the real part of its argu-
ment, V denotes the first-order differential operator, and
(x,y) = xfy.

II. MAX-MIN RATE AND MIN-MAX POWER
OPTIMIZATION FOR RECEIVE POWER-
SPLITTING WIPT SYSTEMS

Consider the downlink of a K-cell network. As shown in
Fig. 1, the BS of a cell k € X £ {1,..., K} is equipped
with M > 1 antennas and it serves Nj single-antenna UEs
within its cell. By BS k and UE (k, n), we mean the BS that
serves cell k and the UE n € A} £ {1, ..., Ni} of the same
cell, respectively. Assume universal frequency reuse where all
UEs in all cells share the same frequency band. While the
radio spectrum is best utilized in this approach, the signal
interference situation among multiple UEs in multiple cells is
most severe. Beamforming is then used to mitigate the effects
of interference by steering the signal beams in the intended
directions.

Denote by w; ; € CM*1 the beamforming vector used
by BS k € X for its UE (k,71) where 1 € A = {1,..., N;}.
Lethg, , € CM*1 be the flat fading channel vector between
BS k and UE (k, n), which includes large-scale pathloss and
small-scale fading. Denote by X i the information signal to
be transmitted by BS k to UE (k, 1) where E{|x; ;]?} = 1.
The complex baseband signal received by UE (k, n) can then
be expressed as

— H o a
Ven = D M D0 Wit M
1;67( 7169\6;
where zj , ~ CN(O,JGZ) is zero-mean circularly complex
’ 2

Gaussian noise with variance ¢“ at the receive antenna

a
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of UE (k, n). To show the effect of interference at UE (k, n),
let us explicitly write (1) as

H H
Ykn = hk,k,nwk,”xk:" + hk,k,n Z Wi, nXk,n
neN \{n}

+ Z h]gk,n Z Wl;,ﬁxlz,r_z + ZZ,n‘
kex\ ik} REN
The first term in (2) is the intended signal for UE (n, k), the
second term is the intracell interference from within cell k,
and the third term is the intercell interference from other cells
ke K\ {k}.

The short BS-UE distances make it practical for the UEs to
implement the wireless information and power transfer. Thus,
UE (k, n) applies the power splitting technique to coordinate
both information decoding and energy harvesting. Specifically,
the power splitter divides the received signal yy , into two parts
in the proportion of a , : (1 — ag,,), where ay,, € (0,1) is
termed the PS ratio for UE (k, n). The first part N hen Yien
forms an input to the ID receiver as

Ok,n Vi + Z;,n

)

H a c
= Vi | 20 D Wk T2 | F 2l O
kex neN;
where zi , ~ (0, 062) is the additional noise introduced by

the ID receiver circuitry. Upon denoting w £ (Wi, n ke x,neng
and & £ [0 nlkex.nen;, the SINR at the input of the ID
receiver of UE (k, n) is given by

A |h]€{k’nwk,n |2

SINR;., £ : (4)
Cok,n(W, ak,n)
where
Pk (W, 04 ) = Z by wial®
nen;\{n}

intracell interference

+ Z Z |h/€{k,nwlz,ﬁ|2 +0112 + acz/ak,n-
ke x\{k} NENE

intercell interference

Assuming a normalized time duration of one second, the
energy of the second part /1 — ak ,yk,» of the received signal
Yk,n 18 harvested by the EH receiver of UE (k, n) as

)

where the constant (%, € (0,1) denotes the efficiency of
energy conversion at the EH receiver,! and

Pia(W) & > > b wi gl

];Ey(ﬁeﬂ@

Ek,n(W, ak,n) £ (k,n(l - ak,n) (Pk,n(W) + 0,‘12) )

Ey n can be stored in a battery and later used to power the
operations of UE (k, n) (e.g., processing the received signals
in the downlink, or transmitting data to the BS in the uplink).

I The value of Ck,n 18 typically in the range of 0.4 — 0.6 for practical energy
harvesting circuits [5].
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A. Max-Min Rate Iterative Optimization

First, we aim to consider the max-min rate optimization
problem, which provides fairness in allocating the radio
resources to the most disadvantaged user, especially that at
the cell edges. As this user suffers from severe interference
and only achieves low throughput, it is sensible to maximize
its throughput for an acceptable quality of service. We aim to
jointly optimize the transmit beamforming vectors wy , and
the PS ratios ay , for all k € X, and n € A} by solving the
following max-min rate optimization problem:

b/, Winl?
max min Inf{ 1+ —kkn TR (6a)
Wi, €CMX1 keX,nen (Pk,n(wa ak,n)
Ok,n E(O,l):
VkeX, neN
st Iweal? < P, Vke K (6b)
neN
DU Iwknl® < P, (6¢)
ke K neN;
Epn(W,axn) > e, Vke X, neaf.  (6d)

Constraint (6b) caps the total transmit power of each BS &
at a predefined value P;"™. Constraint (6¢) ensures that the
total transmit power of the network will not exceed the
allowable budget P™**, which helps limit any potential undue
interference from the considered multicell network to another
network. Constraint (6d) requires that the minimum energy
harvested by UE (k, n) exceeds some target e,‘g’lin“ for useful EH.
It is obvious that (6) is equivalent to the following max-min
SINR problem:

. A |h£{k,l’lwkan|2
max min fin (W, ) & —kn
Wi, €CMx1 | keX,nen; Pk (W, Gk )
arn€(0,1),
V keX, neNg
s.t. (6b) — (6d). 7

While (6b) and (6¢) are convex, the objective in (7) is not
concave and the constraint (6d) is not convex due to the strong
coupling between wy , and aj, in both the SINR and EH
expressions [see (4) and (5)]. Moreover, the objective in (7)
is also nonsmooth due to the minimization operator. Indeed,
(7) is a nonconvex nonsmooth function optimization problem
subject to nonconvex constraints. If one fixes ay, at some
constants, problem (7) would still be nonconvex in wy ;. It is
not straightforward to even find a feasible solution that satisfies
constraints (6b)-(6d).

In principle, both problems (6) and (7) could be solved
by the d.c. (i.e., difference of convex functions) optimization
framework of [29] and [30], where each function fi , (W, o ,)
in the objective (6a) would be recast as a d.c. function
in numerous constrained additional variables. The objective

min  fx (W, ar ) in (6a) would then be represented as
ke K,neN;

a difference of a convex nonsmooth function and a smooth
convex function for the d.c. iteration technique of [31] to
apply. In this paper, we will develop a new and more efficient
approach to solve problem (7).



NASIR et al.: BEAMFORMING DESIGN FOR WIRELESS INFORMATION AND POWER TRANSFER SYSTEMS 879

. _ _ H
As observed in [32], for Wi, = e /'arg(hk:k:"wk’”)wkjn,

one has [h wi,| = b, Wi, = R Wil > 0
and |h,ffkn,wk,n| = |h,f,1kn,v'vk,,,| for (k',n") # (k,n) and
7 £ /—1. The original problem (7) is thus equivalent to the
following optimization problem:

max fi (W.a ) N (h{hk k, ,,Wk,n})2
Wi, €CM*1 ke?(,ne ko kon Pk,n (w, ak,n)
ak,ne(oal),
V keX, neNi
(8a)
st Ry Win} =0, Vke X, neag, (8b)
(6b), (6¢), (6d). (8c)

Since the function fk n (Wi, 1 & (%{hk . nwk,n})z/t is con-
vex in wg, € CM*! and ¢ > 0 [26], it is true that [33]

fk,n (Wk,n» r) > fk,n (Wl(:,),» t(K))
AV i W), 10, (Wi, 1) — (W), 109))
= 2N {h/gk,n (K)} N {hk k,n Wk, n} /[(K)
~ (n [t we)) ey ©)

for all wy, € CMx1 w,((",z e CM=1 ¢ 5 0,t®) > (. There-
fore, given (W), ™)) from the «x-th iteration, substituting
t = @k.n(W, ai,,) and t®) = gok,,,(w("), a,ﬁkz) into the above
inequality (9) gives

fenWoaen) = fE W, an), YW, o) (10)
where
- . 29t { W) e | 90 (B, wen )
fkn (W,ak’n) - (K)
’ (Dk,n(W(K) O )
(Wi {h,fk W ,),}) Pkon (W, Gkn)
— (11)

The function fk( )(w ak,n) is concave quadratic and agrees
with fi . (W, ax.,) at (W', a(K)) as

fin® . ) = W, . (12)

Next, the nonconvex energy harvesting constraint (6d) can
be expressed as

min

Ck
W"a) — Pen(W) <0f, VkeX, neng, (13)
\n — Ck,n
which is still nonconvex. From
|hk kon WV, il
I Al
H
. (x) _ H _ B (rc)
+ 20 [(wgﬁ) hk,k,nh;,k,nwk,ﬁ] . YW w];’;_l (14)

it follows that

Pia(W) = pio(w), Yw and pe, (W) = pi) (w®)) (15)

Algorithm 1 QP-Based Iterative Optimization to Solve

Problem (7)

1: Initialize x := 0.

2: Choose a feasible point (w,(cor)l,ako)) Vk € K,n € N\g of
).

3: repeat

4 Solve QP (17) for w" and a7, Vk € &, n € 2.

5

6

Set k :==1x + 1.
. until convergence of the objective in (7).

where
pENW) 2 = pra(w®)
1233w { g b w )
key(nE%

Therefore, whenever (w("),a(")) is feasible for (6d), the
nonconvex constraint (6d) is inner-approximated by the convex
constraint

min
ek n

() 2
_— = W) <o, Vk e X, n € \.
Ck,n(l - ak,n) pk ( )

(16)

From (12) and (16), for a given (W]((Kr)l, a,(ckr)l) the following
convex quadratic program (QP) prov1des minorant maximiza-
tion for the nonconvex program (7):

max  min f (w,akn)
W (CMXI ke ’
kn€
ak,ne(oal), neN
Vke K ,neNy

s.t. (6b), (6¢), (8b), (16). 17)

Using (17), we propose in Algorithm 1 a QP-based iterative
algorithm that solves the max mln SINR problem (7). Here,
the initial point w® £ [w ]keg( neag can be found by
randomly generating M x 1 complex vectors followed by
normalizing them to satisfy (6b) and (6c). For a given w©),
AR [a,ﬁor)l]keg(,neg\@ is then generated by solving (6d) with
an equalitgf sign. In each iteration of Algorithm 1, only one
simple QP (17) needs to be solved. The solution of which is
then used to improve the objective value in the next iteration.

Proposition 1: Algorithm 1 generates a sequence
{(w®), a("))} of improved points for (7), which converges to
a Karush-Kuhn-Tucker (KKT) point.

Proof: Let us define

F(w,a) £ min fi , (W, a,,) and
ke
nen
F(w, o) £ min fi5) (W, i),
neng
which satisfies [cf. (10) and (12)]
F(")(w,oc) > F(w, a)Vw,a and
FO (W), g0y = p) () )y,
Hence,
F(W(K+1)’a(1€+1)) > F(K)(W(K+1),u(K+l))

> FOW® g0 = Fw®) | ).
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where the second inequality follows from the fact that
(WD o@Dy and (w®), ¢®)) are the optimal solution and
a feasible point of (17), respectively. This result shows that
(wttD oDy is a better point for (7) than (w®), a®)).
Furthermore, the sequence {(W(K),O[(K))} is bounded by
constraints (6b) and (6¢). By Cauchy’s theorem, there is a
convergent subsequence {(w*), &)} with a limit point
(W, a), ie.,
lim
V—>—+00

[F(w("”), « )y — F(w, a)] —0.

For every «, there is v such that x, < x < x,41, and so

0= lim [F(W'"),a®™))— F(W,a)]
V—>400
< lim [FW"%,a") — F(w,a)]
K——+00
< lim [Fw®+), a®)) — F(W,a)] =0, (18)
V—>—+00

which shows that lirf Fw®, a" ) = F(w,a). Each
K— 100

accumulation point {(W, &)} of the sequence {(w®), ™))} is
indeed a KKT point according to [34, Th. 1]. [ |

It is noteworthy that our simulation results in Sec. I'V further
show that the QP-based solution in Algorithm 1 achieves
the upper bound given by the SDR (A.l) described in the
appendix.

B. Iterative Optimization for Min-Max BS Power

Next, we will address the min-max BS power optimization
problem, which targets minimizing the highest BS radiated
power. The motivation is to limit undue interference from any
BS to the neighboring cell users. Therefore, the interference
(and hence throughput) at individual users is balanced across
the whole network. The min-max BS power optimization
problem is formulated as follows:

min  max IWenl? st (6d), (19a)
Wk,nE(CMXl, kex n%:\&{ n
arn€(0,1),
Vke K ,neN,
by Wenl® = 70 0k (W, an),
Vke K, nen. (19b)

Here, (6d) requires that the amount of energy harvested by
UE (k,n) exceeds some target e;")' for useful EH, whereas

(19b) ensures a minimum throughput In (1 + ylzﬂ,’iln) for each

UE (k,n). Similar to the max-min SINR problem (7), this
problem (19) is nonconvex due to the strong coupling between
Wi, and ay,, in the harvested energy expression (5).

Given that the SINR constraint (19b) can be expressed as a
second-order cone (SOC) constraint,2 we now address problem
(19) via second-order cone programming (SOCP) in the vector
variables wy , € CM>1_Similar to (8b), we make the variable
change oy, — a,%’n in (19) to express (19b) as

R {hgk,an,n} > \/y,éf‘,i“\/gok,n(W, 0!;%,,,), Vk e K, n e N,
(20)

2This only means the SINR function is quasi-convex. Therefore, the SOCP-
based optimization approach cannot be applied to solve problem (7).
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Algorithm 2 SOC-Based Iterative Optimization to Solve
Problem (19)

1: Initialize x := 0.

2: Choose a feasible point (w,((?r)l,a,(c(’)g), Vk € K,n € N\g of

(19).

3: repeat

4 Solve SOCP (24) for w"" and o, vk € . n €
N

50 Setwx:=x+1.
6: until convergence of the objective (19).

which is equivalent to the following SOC:

L H i
E)l{hk,k,,,wk,n} =4/ Vkr?,l,n

Oq
Ocli,n

" N )
( E,k,nwk’”)E,ﬁeK,N\{hn} P
Vke X, nenN, (21)

(”"" ! ) >0, Vkex, ne 22)
1 Ok,n

where (hf’ Wi -)_ is an (KN — 1) x 1 column
koen TR | G e g a0\ ko) ( )

vector. On the other hand, under the variable change ok, —
a,%’n in (16), the harvested energy expression (5) is inner-
approximated by the following convex constraints:

min
ek,n
Cen (1 — (Z]%’n)

As (w®), a®)) is also feasible for (23), the optimal solution
(wHD g &+Dy of the following convex program is a better
point for (19) than (w®), a®)):

(23)

a’

— p,?j(w) < 2, Vke K, n € N.

. 2

o (21),(22), (23). 24
wk,filglwl Iknea%z IWenll” st (21),(22),(23). (24
Ak €(0,1), tin neN
Vke K ,neN

In Algorithm 2, we propose an SOC-based iterative algo-
rithm to solve problem (19). In order to obtain an initial
feasible point for SOCP (24), we cannot use the inner-
approximated EH constraint (23) due to its dependence on the
previously optimized beamforming vector w*). However, the
original EH constraint (6d) can be implied by the following
hard (tighter) constraint in a,inl and a slack variable ﬁl?,m:

e/t

ﬁk,n

at H
— Sl{hk,k,nwk,n}

IA

0, Vke X, ni e Az (25a)

1, Vke X, neAN,

which is independent of w3 Hence, the initial point for
SOCP (24) can easily be obtained by solving the follow-
ing SOCP:

Bin+ai, < (25b)

min max E ||wk,,,||2
Wy, €eCMx1 kex neN
ak,ne(oal)’ ﬂk,n’ tkns
Vke K ,neN

s.t. (21), (22), (25a), (25b). (26)

3The satisfaction of the constraint (25) implies the satisfaction of the original
EH constraint (6d).
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Once initialized from a feasible point, Algorithm 2 solves
one simple convex SOCP (24) at each iteration, the solution
of which is then used in the next iteration to improve the
objective value. Similar to Proposition 1, it can be shown that
Algorithm 2 generates a sequence {(W®), @®))} of improved
points for problem (19), which converges to a KKT point. Our
simulation results in Sec. IV further show that the SOC-based
solution in Algorithm 2 achieves the lower bound given by the
SDR (A.2a), (A.2b), (A.le), (A.1f) described in the appendix.

III. MAX-MIN RATE AND MIN-MAX POWER
OPTIMIZATION FOR TRANSMIT TIME-
SWITCHING WIPT SYSTEMS

Unlike the power-switching system model in Sec. II, in the
time-switching based system, a fraction of time 0 < p < 1
is used for power transfer while the remaining fraction of time
(1—p) for information transfer. Here p is termed the TS ratio.
For power transfer, we want to design beamforming vectors
wf,n with the achievable harvested energy pEj , (WE), where

ErnWE) 2 G (pra(WE) +62),

pk"(w )_ ZZ |hkknwlfn 2’

key(neﬂ\g(

and wf £ [W;f,,]ke x.neag- For information transfer, we want
to design beamforming vectors wk with the achievable data
rate
|hH W[ |2
(1—p)nf 1+ kknikln
Pk,n (w')
where
I\ & H I 2
Prn(W') = Z thy e Wi il
neng\{n}
intracell interference
wl 2 2
+ Z Z |hk k, n ,n O-a ’
ke K\ {k} NENE
intercell interference
and w! £ [w,ﬁ o Jkex neag. Therefore, the individual BS and

total power constraints for the TS-based system are

p O IWEI+ A =p) D lw 1P < P,
neN neNg
Vk € KX
(27a)
PO D IWEPH T =p) D D w1 < P,
ke X neqj ke K neng
(27b)

respectively. Here, the following constraints must also be
imposed:
(28)

IWE 17 < P™, lwi,|I> < P™, Vk € X, n € 2.

The max-min rate optimization problem for the TS-based
system is then formulated as

max min (1 —p)In(l + fix wh)) (29a)
O<p<l, ke K ,neN;
wi’nE(CMXI,xe{I,E}
s.t. pEgn(wF) > e, (29b)
(27), (28). (29¢)

And the min-max BS power optimization problem for the
TS-based system is formulated as

: E 2
1 —
omin  max p D IWEL T+ (1= p)

wj’ne(CMXl,xe{E,I} neN

x> Iwi, P (30a)
neN

st (1= p)In (14 fia(wh) = rfin, (30b)
(28), (29b) (30¢)

where (30b) ensures that the minimum rate r,‘c“;" (in nat/sec/Hz)
is achieved.

Remark 1: The transmit TS-based WIPT system is different
from the receive TS-based WIPT system [10] which switches
the received signal yx, in (1) in the proportion of time
0 < ak,, < 1 for information decoding. Accordingly, the joint
design of the transmit beamformer w and receive TS ratios
o = [0 nlkex.nes is formulated as

(I = ak,n) In(1 + fien (W)

max min
O<oap <1, keK,neN;

Wk,nE(CMXl

s.t. (6b), (6¢),

and oy E o (W) = ¢’ 31)
and

min
O<ag,, <1,
Win E(CMXI

max > Wil

ne?\@

s.t. okn Exn(W) > e]r(nzn,

(I = an) In(1 + fien(W)) = rmm- (32)
Compared with the receive PS-based optlmlzatlon problems
(7) and (19), the power and EH constraints in (31) and (32)
remain the same while the data rate in (31) and (32) is lower.
The receive PS-based design thus outperforms the receive
TS-based design in general. On the other hand, the transmit
TS-based optimizations (29) and (30) exploit the separate
designs of w! for ID and w’ for EH. For this reason, they
outperform the receive PS-based designs in (7) and (19) as
will be shown later.

A. Iterative Max-Min Rate Optimization

We will now solve the nonconvex problem (29). First, let
us make the following change of variable:

l—p=1/B, (33)
which satisfies the linear constraint
L > 1. (34)
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Thus, the power constraints (27) become the following convex
constraints:

ZMA+ZMn

neN; ne.‘?\@
< prax 4 — z IWE I, Vke X (352)
nEM
2 2w, +ﬁ 22w,
ke X nenj ke K neng
< pmax 4 Z > Iwe,l (35b)
ke?(ne?\@

Similar to (8), problem (29) can now be equivalently expressed

by
1 N{h w 2
max ln — ln 1 + ({kk—nkn})
a,p, ke K,neN; IB Pk,n (WI)
wjne(CM“,xe{I,E}
(36a)
s.t. ‘h{hkknwkn}>0 Vk € K, n € NG, (36b)
£ e ( 1 ) 2
kn(W?)> ——1+——=) -0, (36¢)
p I’Z( ) Ck,n ﬁ 1 a
(28), (34), (35). (36d)

Note that unlike (8), the objective function in (36) is quite
complex to handle due to the additional factor 1/£, while the
power constraint (35) is nonconvex. To deal with this, we first
exploit the fact that the function f(x, ) = w is convex
in x > 0,7 > 0 which can be seen by examining its Hessian.
The following inequality for all x > 0, X > 0,7 > Oand 7 > 0
then holds true:

In(1 +1/x) _ - -
B 2ln(l + 1/x) 1 X
- r f(x+1) &+ Dxr
In(1 + 1/x)
— Tl. (37
By replacing 1/x — x and 1/x — X in (37), we have
In(1
m >a—— —ct (38)
t X
where a = 21n(1t+x) + t(x+1) > 0,b = r'(;‘fil) > 0,¢c =
%1 > (. From that,
2
Lol N (h{hk kn Wk n})
p— n L
B Cok,n(wl)
I
> q®) — p® P (W) _ C(K)'g (39)

2
(SR {hlflk nwk n })
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where
) _ ln(l +d(K)) d® 0
Y Y LI e R
p) — (d(i 0
SO (d®) 4 1) ’
(
(o - 0 +d®)
(p)2
2
d" = (m {hlgk nwlﬁ Slx)}) [0k (wh ), (40)
Now, using

2
(o {néfwia})

> 20, 2nWin AR {hfk nwli,n}
— (ot wE)) 2 vt

together with (39) leads to

()

—In| 1+
Cok,n(wl)

b(x) (pk n(w )
Yk, n(wk n)

—cWp L FSwl gy @l

for

Vin(Wi,) >0, Vke X, nea. (42)

As the function fk(’;) (w!, p) is concave on (42), the follow-
ing convex program provides minorant maximization for the
nonconvex program (36) for a given (WE-(0) wl.(6) ,B(")):

W, )y

min
ke K ,neN;

max (43a)

w;:”e(CMX‘,xe{I,E}

MZMN+ZMn

nEM HEM

ﬁ(K) Z 20 {(wk n(K)) Wi n}
nEM

SweMR vke x,

W%m
DD AWEIP + ZZmn
ke?(ne?\&(

ke?(ne?\&(

Z Z 2%{(“’1( oL Wkn}

(K)
ﬁ ke?( neN;

- G 2 2 P

ke K neN

ZZ[Z%{

key(neﬂ\é(

max
=P

(43b)

P max

(43c)

wE O pH E
ke Mokt }
E,(x)

k,k,n " k,n
emln 1
k,n 2
> l+——)—02 (43d
ko i| Ckn( ﬁ 1) ¢ ( )

(28), (34), (36b), (42). (43e)

Here, convex constraints (43b), (43c) and (43d) are the inner
approximations of nonconvex constraints (35) and (36d) due
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Algorithm 3 Iterative Optimization to Solve Problem (36)

Algorithm 4 Iterative Optimization to Solve Problem (47)

1: Initialize x := 0.

1: Initialize x := 0.

2: Choose a feasible point (W@, wl-©@ ) of (36). 2: Choose a feasible point (W@, wl- @ gO) of (47).
3: repeat 3: repeat
4:  Solve convex program (43) for 4. Solve the convex program (48) for
(WE,(K+1), WI,(K+1), ﬁ(K-‘rl)). (WE,(K-FI), WI,(K+1), ﬁ(K-‘rl)).
5. Setx:=x+1. 5. Setx:=x+1.
6: until convergence of the objective in (36). 6: until convergence of the objective (48).
to the convexity of function —||X||2 which leads to until a positive optimal value is attained. If problem (45)
x> S 2R {(X(K))HX} [[x 12 v e or (46) is infeasible with BO or solving (46) fails to give
> B, VxeC e CV, a positive optimal value, we repeat the above process for
B B (B%)? a different value of #© in order to find a feasible point
B>0, BY¥>0. (44 (WE,(O),WI,(O),5(0)).4

The proposed solution for the max-min rate problem (36)
(and hence (29)) is summarized in Algorithm 3. Similar to
Proposition 1, it can be shown that Algorithm 3 generates a
sequence {(wE:®), wl-(9) g1 of improved points of (36),
which converges to a KKT point. In Algorithm 3, the feasible
point gwE’(o),wl’(o),,B(O)) of (36) is found as follows. We
fix ,[)’(O and solve the following convex problem for fixed
Fmin > 0:

max min

R {hlglk nwlfn}
Wi, €CMX1 xe{l,E} ke K neN ” ’

— e/ (G (1= 1/89)), (4s0)
st 9 [nfl wl, | = Ve
Oq
hH 1 5
( k,k, N n)k Aex, N\ {k,n)
ke X, nenN, (45b)
(1=1/89) X2 IwE, 17 + (1/#“”)
nen;
X WP < PP, Yk e K, (45¢)
neN
(1=1/89) 3 3 Iwka 2+ (1/89)
ke K neNg
x>, IP < P, (45d)
ke K neN
(28) (45¢)

and then iteratively solve the following convex problem:

>3 [23{ {h,f W

kex NEN
|

max min
w , €CMX1 xe{l E} ke K,neN

H _ E, ()
thknwkn} ’hkkn ki

I RN B W
2 (14 ) -
s.t. (28), (45b), (45¢), (45d)

(46)

where the initial point Wi E.O) gor (46) is obtained from the
solution of (45). Problem (46) is solved for k = 0, 1,2, .

B. Iterative Min-Max Power Optimization

We now turn our attention to the min-max BS power
optimization problem (30), which is equivalently expressed as

min omax | 0 IwE, I Z W ll®
wjne(CMXl,xe{E,I} neN nEM‘
Z w17 (47a)
ne.‘?\@
s.t. (28), (34), (364), (47b)
1 m1n
5 (14 Sn D) =7 (470)

From (41) and (44), the following convex program provides
majorant minimization for the nonconvex program (47) for a

given (WE @, ;i:f,K), B
én>i(1)1 max z Wi, 1% + = z Iwi I

Wi, €CM xe(E,T) neN neM

ﬂ(x) 2. {(wk (K))HW""}
nen
1 ﬁm)z Dwe I | 48a)
nen

s.t. (28), (34), (36b), (42), (43d), (48b)
£ ( , ﬁ) > ppnin, (48¢)

where fk(;) (w!, p) is defined in (41).

The proposed solution for the min-max BS power opti-
mization problem (47) (and hence (30)) is summarized in
Algorithm 4. Similar to Proposition 1, it can be shown that
Algorithm 4 generates a sequence {(wE:®), wl-®) p9)} of
improved points of (48), which converges to a KKT point.
In Algorithm 4, the feasible {(WE’(O), wh O 5(0))} of (47)

4Simulation results in Sec. IV show that in almost all of the scenarios
considered, problems (45) or (46) are feasible and a positive optimal value
of (46) is obtained in one single iteration for the first tried value ﬁ O =1.11.
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Fig. 2. Topology of the multicell network used in the numerical examples.

can be found by first fixing £ and solving the convex
feasibility problem with the following constraints:

e/ (e (1= 1/8©)) =i, wh,} <0,

ke X, nenN, (49a)
9 {h}zk,nw,in} N
Oa

X H 1

h! I 5

( k,k,nwk,n)lE,ﬁeK,N\{k,"} 2
ke X, ne, (49b)
(28), (36b). (49¢)

IV. NUMERICAL EXAMPLES AND COMPLEXITY ANALYSIS

In the numerical examples, a three-cell network model with
four UEs per cell shown in Fig. 2 is used. The cell radius is set
at 40 m and the BS-to-UE distance at 20 m to enable practical
WIPT [7], [8]. For large-scale propagation loss, a pathloss
exponent equal to 4 is assumed. For small-scale fading, a
Rician fading channel is generated according to

| Kr  1o0s 1 NLOS
hE,k,n = 1+ Kr hl},k,n + 1+ Kg hl;,k,n >

where K = 10 dB is the Rician factor; h¥0S € Cpsy; is the

k,k,n
line-of-sight (LOS) deterministic component; and hIENE(;)is
cn((0, 1) is a circularly-symmetric complex Gaussian random
variable that models the Rayleigh fading component. Here, the

far-field uniform linear antenna array model is used with

. . . T
_ [1, ik oIk ol <M71>6;,k,n]

Vk,k,n (50)

~

b
for 6y, , = 2mdsin(¢yy ,)/4 where d A/2 is the
antenna spacing, 4 is the carrier wavelength and ¢y, , is
the direction of UE (k,n) to BS k [21]. In the simulations,
Pr.x.n is generated as a random angle between 0° and 360°.
For simplicity and without loss of generality, we assume that
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Fig. 3. Maximized minimum UE rate for M = 4 and P™ =22 dBW.
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Fig. 4. Maximized minimum UE rate for P = 22 dBW, P,;“ax =16 dBW
and e = {—20, —10} dBm.

pMn =y in (19b), /M0 = ; in (30b), and G, = ¢,
e,r(n;n = e, Yk, n. Unless specified otherwise, we set the target

minimum EH threshold as ¢ = —20 dBm. In all simulations,
we also set ¢ 0.5, a2 —90 dBm and o} -90
dBm. The error tolerance used in the stopping condition is
set as 1073 for all algorithms. All simulations are conducted
using MATLAB 2015b and CVX 2.1 [35].

A. Results for Max-Min Rate Problems (7) and (29)

Algorithm 1, the nonsmooth optimization algorithm of [27]
and the SDR approach are used to solve the PS-based
problem (7), whereas Algorithm 3 is to solve the TS-based
problem (29). Assuming that P™®* = 22 dBW, Figs. 3 and 4
plot the maximized minimum UE rate for different values
of BS transmit power P"** and number of BS transmit
antennas M. Figs. 3 and 4 show that the minimum UE rate
improves by increasing the power budget P"** and the number
of BS antennas M, respectively, due to an increase in the
available radio resources. In Fig. 4, we also evaluate the
performance of the algorithms for different values of the target
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Fig. 5. Optimzed TS ratio p determined by Algorithm 3 for different numbers
of BS antennas M and P"™* = 16 dBW.

minimum EH threshold, ¢ = {—20, —10} dBm. Fig. 4 shows
that by increasing the target EH threshold from ¢ = —20 dBm
to e = —10 dBm, the achievable information rate is reduced
since more time (in the TS-based system) or power (in
the PS-based system) is required to meet the increased
EH requirement. However, it is important to mention that
the percentage of decrease in the information rate for the
TS-based system is significantly less than that for the PS-based
system.

In addition, we can see from Figs. 3 and 4 that the perfor-
mance of Algorithm 1 coincides with the upper bound obtained
by the SDR approach in all the considered simulation setups.
Although the proposed algorithm of [27] also achieves this
bound, it requires much higher computational complexity than
Algorithm 1 as will be analyzed shortly. It should be noted that
Algorithm 1 does not perform any bisection search as is the
case for both the SDR approach and the algorithm of [27].
Note further that the SDR approach only provides rank-one
matrices Wz,n in no more than 61.7% of the time [27].
In contrast, the nonsmooth optimization algorithm of [27]
always returns rank-one matrix solutions, and Algorithm 1
of course directly gives the optimal vectors wj;n because
no matrix optimization is involved. Figs. 3 and 4 also
show that the transmit TS-based WIPT system designed with
Algorithm 3 considerably outperforms the receive PS-based
counterpart. Such throughput enhancement is generally not
possible with the receive TS-based WIPT system as has been
reported in the literature. With its high performance and easy
implementation, the transmit TS-based solution is an attractive
candidate for practical WIPT systems.

Applying Algorithm 3 for the max-min rate problem (29),
Fig. 5 plots the optimized value of the transmit TS ratio p for
different values of the target EH threshold e and the number of
BS antennas M = {4, 5, 6}. As can be seen, by increasing the
target EH threshold e the optimized TS ratio p increases since
more time is required to fulfill the increased EH requirement.
It is further observed that the optimized value of the TS
ratio p is smaller in the presence of a larger number of BS
antennas.

—e—SDR (upper bound for PS)
8+ R —=—Proposed Algorithm 1 (PS)
—o— Proposed Algorithm 3 (TS)

» (9] o
T T T

w
T

min rate (bits/sec/Hz)

0 2 4 6 8 10 12 14 16 18
iterations

Fig. 6. Convergence of proposed Algorithms 1 and 3 for M = 4 and
P =16 dBW.

Fig. 6 illustrates the fast convergence of Algorithms 1 and 3
which terminate in as few as 8 and 4 iterations, respectively.
Here, each iteration corresponds to solving one simple QP (17)
in Algorithm 1, one convex problem (43) in Algorithm 3,
and one SDP (A.la)-(A.1f) in the SDR approach. Note that
initializing the proposed Algorithms 1 and 3 only requires a
single iteration.

The computational complexities of Algorithm 1, the non-
smooth optimization algorithm of [27], the SDR method
and Algorithm 3 are O(ia; (M + 1)3K3N3(BKN + K + 1)),
0(ipe)(M24+M+2)KN/2)3. (6K N+K +1)), O(ispr((M>+
M +2)KN/2)}(6KN + K + 1)) and O(iaz3 QKNM + 1)}
(3KN +2K + 3)), respectively [36]. Here, ia; = 11 is
the average number of times that QP (17) is solved by
Algorithm 1; ijpg) = 26.5 is the average number of times
that an SDP is solved by [27]; ispr = 17 is the average
number of times that the feasibility (convex) SDR (A.lb)-
(A.1f) is solved; and ip3 = 6.8 is the average number of
times that QP (43) is solved by Algorithm 3. Note that the
initialization (46) for Algorithm 3 requires 1.1 iterations on
average. For the particular case of M = 4, N = 4, K =3
and P™ = 16 dBW, Table I shows the average number
of iterations required (‘avg. # iter.”) as well as the num-
bers of scalar variables (‘scal var’), linear constraints (‘lin
cons’), quadratic constraints (‘quad cons’) and semidefinite
constraints (‘SD cons’) of the concerned algorithms. Clearly,
Algorithms 1 and 3 are the most computationally efficient as
they involve the smallest numbers of iterations, variables and
constraints.

B. Results for Min-Max BS Power Optimization
Problems (19) and (30)

Algorithm 2 and the SDR approach are used to solve prob-
lem (19) whereas Algorithm 4 is used to solve problem (30).
Figs. 7 and 8 plot the minimized maximum BS transmit power
for different values of the minimum rate r and number of BS
antennas M. As expected, the BS transmit power requirement
increases by setting higher target rates and decreases by using
more BS antennas, respectively. In Fig. 8, we also evaluate the
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TABLE I
COMPLEXITY ANALYSIS FOR Alg. 1, THE SDR APPROACH AND [27] (TO SOLVE PROBLEM (7)), AND Alg. 3 (TO SOLVE PROBLEM (29))

[ Algorithms [[ avg. # iter | scal var [ lin cons [ quad cons [ SD cons |
Alg. 1 (PS) 11 60 24 16 0
Algorithm of [27] (PS) 26.5 132 40 0 36
SDR approach (PS) 17 132 40 24 12
Alg. 3 (TS) 6.8 97 25 20 0
16 T | ; 0.25 ; T
©O SDR (lower bound for PS) —=—Proposed Algorithm 4, M=4
——Proposed Algorithm 2 (PS) —o—Proposed Algorithm 4, M=5
14 ——Proposed Algorithm 4 (TS) —e—Proposed Algorithm 4, M=6
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Fig. 7.  Minimized maximum BS transmit power for M = 5. Fig. 9. Optimized TS ratio p determined by Algorithm 4 for different
numbers of BS antennas M and r = 2.31 bits/sec/Hz.
22
0O SDR (lower bound for PS) 12 . . .
L ——Proposed Algor!thm 2 (PS)| | SDR (lower bound for PS
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Fig. 8.  Minimized maximum BS transmit power for r = 2.31 bits/sec/Hz
(i.e., y =6 dB) and e = {—20, —10} dBm.

performance of the proposed algorithms for different values
of the target minimum EH threshold ¢ = {—20, —10} dBm.
By increasing the target EH threshold from e = —20 dBm
to e = —10 dBm, the required BS transmit power increases
to meet the increased EH requirement. As can be observed,
Algorithm 2 achieves the lower bound given by SDR under
all the network settings considered. Furthermore, the transmit
TS-based WIPT system determined by Algorithm 4 clearly
outperforms the receive PS-based WIPT system by at least
3.5 dB in power.

Applying Algorithm 4 for the min-max BS power opti-
mization problem (30), Fig. 9 plots the optimized value of

iterations

Fig. 10. Convergence of Algorithms 2 and 4 for M =
2.31 bits/sec/Hz.

5 and

the transmit TS ratio p for different values of the target EH
threshold e and the number of BS antennas M = {4, 5, 6}.
Similar trends for the optimized TS ratio for Algorithm 3
in Fig. 5 can now be observed for Algorithm 4 in Fig. 9.
Finally, Fig. 10 shows that Algorithm 2 quickly converges
within three iterations to the theoretical lower bound obtained
after solving the relaxed SDR (A.2a), (A.2b), (A.le), (A.1f)
[see AppendixV]. In this algorithm, each iteration corresponds
to solving one SOCP (24). On the other hand, Algorithm 4
requires about six iterations to converge where each iteration
solves one QP (48).
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TABLE 1I
COMPLEXITY ANALYSIS FOR ALG. 2 AND THE SDR APPROACH (TO SOLVE PROBLEM (19)), AND ALG. 4 (TO SOLVE PROBLEM (30))

[ Algorithms [[ avg. # iter | scal var [ lin cons | quad cons [ SD cons | SOC cons |
Alg. 2 (PS) 3 72 12 24 0 12
SDR approach (PS) 1 132 36 24 12 0
Alg. 4 (TS) 6.99 97 25 28 0 0

The computational complexities of Algorithm 2, the
SDR method and Algorithm 4 are O(iAz(M +2)°k3

N4KN),  o(((M?+M+2)KN/2) 6KN)  and

0] (iA4(2KNM +1)Y3@KN + K + 2)), respectively  [36].
Here ia» = 3 and ia4 = 6.99 are the average numbers
of iterations required for Algorithms 2 and 4 to converge.
For the particular case of M = 4, N = 4, K = 3 and
r = 2.316 bit/sec/Hz, Table II shows the required number
of variables and constraints, where ‘SOC cons’ denotes the
required number of second-order cone constraints. Although
Algorithm 4 for the transmit TS-based WIPT system requires
more computational effort than Algorithm 2 for the receive
PS-based WIPT system, the former system outperforms the
latter system as previously shown in Figs. 7 and 8.

V. CONCLUSIONS

In this paper, we have jointly designed BS transmit beam-
formers with either the receive PS ratios or the transmit
TS ratio for a wireless energy harvesting multicell network.
The design objectives include maximization of the minimum
data rate among all UEs and minimization of the maximum
BS transmit power. To solve the highly nonconvex problem
formulations, we have proposed new iterative optimization
algorithms of low computational complexity that are based on
quadratic programming and second-order cone programming.
Simulation results with practical parameters show that the
algorithms converge quickly and that the transmit TS-based
WIPT system outperforms the receive PS-based WIPT system.
In the case of PS-based designs, the proposed algorithms
tightly approach the theoretical bound in the considered
numerical examples.

APPENDIX
SDR-BASED APPROACH TO SOLVE PROBLEMS (7) AND (19)

In the SDR-based approach, problem (7) in the beamform-
ing vectors wg , is recast as the following problem in their
outer products Wy , £ wk,,,wfn = 0:

max y (A.l1a)
Wk,nE(CMXM,
akn€(0,1),7,
V keX, neNg
1
st —Tr{H k,,Win) = D Tr{Hg Wi i)
4 e\ (n)
- Z z Tr{Hg ;. , Wi i}
ke K\ (k) €N
o2
>0l 4+ —, Vkexk, nen (A.1b)
Ok,n

Z Tr(Win) < PP, Vke X (A.1¢c)
neN
DD Tr{Wi ) < P™ (A.1d)
ke K neNg
Z Z Tr{HlE,k,nWIE,ﬁ}
];egcﬁeﬂ@
e]r{nin 5

>— 5B 5% VkeX, ne (A.le)

Ck,n(l - ak,n) “
Win =0, Vke X, neN (A.1)
rank(Wy ,) =1, Vke X, n € N\. (A.1g)

Let us denote W £ [Wi nlkex,nen;- By fixing y and
further ignoring the difficult rank-one constraint (A.1g), (A.1)
is relaxed to the feasibility SDP (A.1b)—(A.1f). Because (A.1b)
is the only constraint that involves y and it is monotonic in
y, the optimal value of y can be found via a bisection search
in an outer loop. The optimization process is repeated until
(W, «, y) converges to (W, a*,7%), Vk € K,n € AL, in
which case (A.la)-(A.1f) is solved. The obtained solution
by SDR approach is not guaranteed to be of rank one,
ie., rank(Wz,n) > 1 is mostly observed. Thus, the SDR-
based solution serves as an upper bound for max-min rate
problem (7) .

Similarly, problem (19) in the beamforming vectors wy , is
recast as the following rank-one constrained SDP in the outer
products Wy, = wk,,,w,‘zn =0, Vk € K,n € Ni:

miI}l y rknax Z Tr{Wy, .}
Wk,ne(c X 5 €X

ane(0,1), e

V keX, neng

(A.2a)

st Te{He g Wit = 750 | D Tr(Hekn Wi}

nen\{n}
0.2
+ D> D T Wiat ol +— ],
Fe\ (k) 1€ e
Vk e K, ne N\ (A.2b)
(A.le), (A.1D), (A.1g). (A.2¢)

By ignoring the rank-one constraint (A.1g), the optimal solu-
tion Zkex ZneM Tr{W;,n} of the SDR formed by (A.2a),
(A.2b), (A.le), (A.1f) provides a lower bound on the actual
optimal value of problem (19).
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