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Abstract—In this paper, a joint source-channel coding ap-
proach is taken to the problem of securely computing a function
of distributed sources over a multiple-access wiretap channel that
is linear with respect to a finite field. It is shown that if the joint
source distribution fulfills certain conditions and the function to
be computed matches the linear structure of the channel, secrecy
comes for free in the sense that the fundamental limit (i.e., the
secrecy computation-capacity) is achieved without the need for
stochastic encoding. Furthermore, the legitimate receiver does
not need any advantage over the eavesdropper, which is in stark
contrast to standard physical-layer security results.

Index Terms—Secure distributed computation, computation
coding, multiple-access wiretap channel, physical-layer security

I. INTRODUCTION

Secure distributed computation, also known as secure multi-
party computation, has a long-standing history in computer
science and dates back to the seminal work of Yao [1]. From
an information-theoretic perspective, however, it is still in
its infancy and there exist only very few results. In [2], for
instance, Tyagi et al. introduce a new multiuser source model
and provide necessary and sufficient conditions under which
a function of the sources can be securely computed. Within
the original model of [1], Lee and Abbe determine in [3] the
least amount of randomness needed to securely compute a
function of distributed sources, which provides a novel notion
of the complexity of a function. In the second part of that
paper, the authors consider a probabilistic (i.e., Shannon-type)
source model for which security is assumed to be achieved
asymptotically in the coding block length. In [4], Data et al.
take a distributed source coding approach similar to that in
[3]. They assume the information to be drawn from a joint
memoryless source and then derive bounds on the amount
of randomness and communication needed to asymptotically
obtain secure computation results.

Each of the above-referenced works assumes the commu-
nication between any given pair of source terminals takes
place over a noiseless channel of infinite capacity. Whereas
distributed computation over noisy channels and networks has
been received a lot of attention in recent years [5]–[10], po-
tential security issues have not yet been sufficiently addressed.
In this paper, we therefore take a joint source-channel coding
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approach to the problem of securely computing a function
of distributed sources over a multiple-access wiretap channel
(MAWC). In particular, we extend our previous work [11] to
the class of MAWCs that are linear with respect to some finite
field. It is shown that if the joint source distribution fulfills
certain conditions and the function to be computed matches
the linear structure of the channel, secrecy comes for free in
the sense that the secrecy computation-capacity is achieved
without the need for stochastic encoding. Furthermore, the
legitimate receiver does not need any advantage over the
eavesdropper, which is in stark contrast to secure separation-
based coding schemes.

Separation-based schemes suffer from imposing a secrecy
constraint as they only exploit the random structure of the
underlying MAWC. The coding scheme considered in this
paper goes one step further and also exploits the algebraic
structure of the channel. Note that a similar approach is taken
in [12] and [13] for the problem of securely communicating
messages over a Gaussian bidirectional relay channel.

The rest of the paper is organized as follows. Section II
introduces the system model and provides the problem state-
ment. In Section III, we define the class of Fp-linear MAWCs
and provide the main results of this paper. By means of a
simple example, the results are then discussed in Section IV.
Finally, Section V concludes the paper and provides a short
discussion of the results.

Notation: A length-n sequence Xn of random variables
is considered as a column vector whenever multiplied by a
matrix. For μ ∈ [0, 1], H(μ) = −μ log2 μ−(1−μ) log2(1−μ)
denotes the binary entropy function with the convention
0 log2 0 = 0. The Bernoulli distribution with parameter μ ∈
[0, 1] is denoted as Bern(μ), which means that X ∼ Bern(μ)
takes on value 1 with probability μ. Finally, δij denotes the
Kronecker delta, which is 1 for i = j and 0 otherwise.

II. PROBLEM STATEMENT

Let S1 and S2 be two sources defined over finite alphabets
S1 and S2, and assume they are drawn from some joint
probability mass function PS1S2

. In the presence of an eaves-
dropper, the sources are communicated to a legitimate receiver
over a noisy channel. Unlike the usual setup in which the
legitimate receiver wishes to reliably reconstruct the sources
while keeping the eavesdropper ignorant of them [14]–[17],
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Fig. 1. Secure computation of a function U = f(S1, S2) over a MAWC.

in this paper the legitimate receiver intends to reliably and
securely compute a symbol-by-symbol function

f : S1 × S2 → U , (S1, S2) �→ U := f(S1, S2)

of the sources, where U denotes the range of f (finite set). In
what follows, we simply refer to f as the desired function.

As illustrated in Fig. 1, we model the communication be-
tween the source terminals and the receiving parties as a
discrete memoryless MAWC, which consists of finite input
alphabets X1 and X2, two finite output alphabets Y and Z ,
and a conditional probability mass function PY Z|X1X2

. As
the channel is assumed to be memoryless, we have
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For some k ∈ N, Sk

m ∈ Sk
m denotes a length-k sequence of

independent and identically distributed copies of source m,
m = 1, 2. In order to reliably compute the corresponding
sequence of function values, Uk, at the legitimate receiver, the
source terminals employ a length-n computation code defined
as follows [5].

Definition 1. Let f be a fixed desired function. A (k, n)
computation code for f and any given MAWC consists of:

• Encoders

φm : Sk
m → Xn

m , m = 1, 2 ,

each of which maps k source symbols to a length-n
codeword (i.e., φm(skm) = xn

m);
• A decoder at the legitimate receiver

ψ : Yn → Uk ,

which maps each channel output sequence to a length-k
sequence of function values (i.e., ψ(yn) = ûk).

The average probability or error of a (k, n) computation
code is defined as

P (n)
e := P

[
Ûk �= Uk

]
,

whereas the information about the source sequences leaked to
the eavesdropper is measured by1

L(n) := I(Sk
1 ;Z

n) + I(Sk
2 ;Z

n) .

1Note that L(n) simply combines the individual leakages I(Sk
m;Zn), m =

1, 2, into a single constraint.
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Fig. 2. Fp-linear MAWC.

Definition 2. For a given desired function and a given MAWC,
a rate R := k/n is said to be an achievable secrecy
computation-rate if for every ε > 0 there exists an n0 = n0(ε)
and a sequence of (nR, n) computation codes such that for all
n ≥ n0

P (n)
e ≤ ε and L(n) ≤ ε .

Definition 3. For a given desired function and a given MAWC,
the secrecy computation-capacity is defined as

Csc := sup{R : R is an achievable secrecy computation-rate}.

Characterizing the secrecy computation-capacity for arbi-
trary desired functions and arbitrary MAWCs is a challenging
problem. Throughout the rest of the paper, we therefore focus
on the particular class of Fp-linear MAWCs.

III. Fp-LINEAR MULTIPLE-ACCESS WIRETAP CHANNELS

Let Fp denote some finite field of order p and let the source
and the channel input and output alphabets be all equal to Fp.
Then, we define an Fp-linear MAWC as follows.

Definition 4. A memoryless MAWC is said to be Fp-linear if
and only if

PY Z|X1X2
= PY Z|W with W := h1X1 ⊕p h2X2 ,

and hm ∈ Fp\{0}, m = 1, 2. Here and hereafter, 0 denotes
the zero symbol in Fp and ⊕p addition over Fp, respectively.

A. Secrecy Computation-Capacity

Before stating the main result of this paper, we need the
notion of a weakly symmetric channel [18, p. 190].

Definition 5. A discrete memoryless channel with transition-
probability matrix PY |W is weakly symmetric if the rows of
PY |W are permutations of each other and

∑
w PY |W (y|w) =∑

w PY |W (y′|w), for all y, y′ ∈ Y .

Theorem 1. Let the desired function be

f : F2
p → Fp , U = f(S1, S2) = a1S1 ⊕p a2S2 ,

for some a1, a2 ∈ Fp\{0}, and the joint source distribution,
PS1S2

, such that PSmU = PSm
PU , m = 1, 2. Furthermore, let

PY |W (i.e., the channel to the legitimate receiver) be weakly
symmetric. Then,

Csc =
log2(p)−H

(
PY |W (·|w)

)
H(U)

, (1)



where H
(
PY |W (·|w)

)
denotes the entropy of an arbitrary row

of transition-probability matrix PY |W .

Proof: The proof is deferred to Appendix A.
Carefully examining (1) reveals that under the assumptions

made, the secrecy computation-capacity does not depend on
PZ|W (i.e., the eavesdropper’s channel). This is possible as
the source sequences protect each other like one-time pads.

Corollary 1. If we drop the assumption that PY |W is weakly
symmetric, then

R =
I(W ;Y )

H(U)

is an achievable secrecy computation-rate, with W uniformly
distributed over Fp.

Remark 1. The leakage analysis in the proof of Theorem 1
implies also I(Sk

m;Y n) ≡ 0, m = 1, 2. In other words, the
legitimate receiver is prevented from obtaining information
about the source sequences as well.

B. Secure Separation-Based Computation

The coding scheme used in the achievability part of the
proof of Theorem 1 (see Appendix A-A) is based on linear
random codes. In particular, the source terminals employ
the same linear joint source-channel code and transmit their
codewords concurrently to make use of the algebraic structure
of the Fp-linear MAWC. In this section, we analyze what
computation rates are achievable when the terminals follow a
secure separation-based approach [11]. In a secure separation-
based scheme, encoders and decoders are divided into two
parts. The first part (i.e., the source code) distributively com-
presses the sources into messages, whereas the second part
(i.e., the multiple-access wiretap code) is used to protect the
messages against the channel noise and the eavesdropper.

The feasibility of a secure separation-based scheme is deter-
mined by the distributed compression-rate region of f along
with the secrecy capacity region of the underlying MAWC.

Definition 6. Let f be a fixed desired function and M1 and
M2 finite message sets. Then, the distributed compression-
rate region of f , R(f), is the set of all rate pairs (R1, R2),
with Rm := log2 |Mm|/n, such that for every ε > 0 there
exists a k0 = k0(ε), sequences of source encoders φ(s)

m : Sk
m →

Mm, m = 1, 2, and a sequence of source decoders ψ(s) :
M1 ×M2 → Uk such that P[Ûk �= Uk] ≤ ε for all k ≥ k0.

Definition 7. The secrecy capacity region, Cs, of a given
MAWC is the closure of the convex hull of all rate pairs
(R1, R2) such that for every ε > 0 there exists an n0 =

n0(ε), sequences of channel encoders φ
(c)
m : Mm → Xn

m,
m = 1, 2, and a sequence of channel decoders ψ(c) : Yn →
M1 × M2 such that P[(M̂1, M̂2) �= (M1,M2)] ≤ ε and
I(M1,M2;Z

n) ≤ ε for all n ≥ n0. Here, Mm ∈ Mm denotes
the message sent by terminal m.

Definition 8. A secrecy computation-rate R is said to be
achievable with a separation-based coding scheme if

R(f) ∩ Cs(R) �= ∅ ,

BSC(μ) BSC(ν)
W

Z

YX1

X2

Fig. 3. Physically degraded binary modulo-2 adder MAWC, where BSC(μ)
denotes a binary symmetric channel with crossover probability μ.

where Cs(R) :=
{(

R1

R
, R2

R

) ∣∣ (R1, R2) ∈ Cs
}

.

Remark 2. Slepian-Wolf source coding in combination with
multiple-access wiretap coding can be seen as a particular
instance of a secure separation-based scheme. A secrecy
computation-rate, R, is then achievable if RSW ∩ Cs(R) �= ∅,
where RSW refers to the Slepian-Wolf rate region [18].

As of the writing of this paper, for arbitrary f and arbitrary
MAWCs, R(f) and Cs are unknown. Thus, we restrict our
attention to Fp-linear MAWCs that are physically degraded.

Definition 9. An Fp-linear MAWC is said to be physically de-
graded if the wiretap channel PY Z|W is physically degraded;
that is, if W → Y → Z forms a Markov chain in that order.

Theorem 2. Let the sources be statistically independent, U =
S1 ⊕p S2, and the MAWC Fp-linear and physically degraded.
Then, the best secrecy computation-rate achievable with sep-
aration is

R =
maxPW

(
I(W ;Y )− I(W ;Z)

)
H(S1) +H(S2)

.

Proof: The proof is deferred to Appendix B.
The result demonstrates that secure separation-based coding

schemes generally suffer from imposing a secrecy constraint
(i.e., the achievable secrecy computation-rates depend on the
eavesdropper’s channel).

Corollary 2. In addition to the assumptions of Theorem 2 let
PY |W and PZ|W be weakly symmetric. Then,

R =
H
(
PZ|W (·|w)

)
−H

(
PY |W (·|w)

)
H(S1) +H(S2)

is the best secrecy computation-rate achievable with separa-
tion.

IV. A SIMPLE EXAMPLE

Consider the physically degraded F2-linear MAWC illus-
trated in Fig. 3, which is known as the binary modulo-2 adder
MAWC [11]. It is characterized by the input-output relations

Y = X1 ⊕2 X2 ⊕2 NY , (2a)

Z = Y ⊕2 NZ , (2b)

where NY ∼ Bern(μ) and NZ ∼ Bern(ν), μ, ν ∈ [0, 1].
Assume the joint source distribution to be doubly symmet-

ric; that is,

PS1S2
(s1, s2) =

1

2
(1− θ)δs1s2 +

1

2
θ(1 − δs1s2) , (3)



for (s1, s2) ∈ F
2
2 and some θ ∈ [0, 1]. We have the following

corollary to Theorem 1.

Corollary 3. Let the desired function be f : F2
2 → F2, U =

S1⊕2S2. Then, the secrecy computation-capacity of the binary
modulo-2 adder MAWC given in (2) is

Csc =
1−H(μ)

H(θ)
. (4)

Proof: The result follows by the facts that the binary
symmetric channel with parameter μ ∈ [0, 1] is of capacity
maxPW

I(W ;Y ) = 1 − H(μ) and for the joint source
distribution given in (3) we have H(U) = H(θ).

The following result, which is a corollary to Theorem 2,
provides the secrecy computation-rate achievable with the best
separation-based coding scheme.

Corollary 4. Let the desired function be f : F2
2 → F2, U =

S1 ⊕2 S2. Then, for the binary modulo-2 adder MAWC given
in (2),

R =
1

2

(
H(ν′)−H(μ)

H(θ)

)
, (5)

with ν′ := (1−μ)ν+(1−ν)μ, is the best secrecy computation-
rate achievable with separation.

Proof: For θ ∈ (0, 1) the sources are correlated, which
contradicts the assumption of Theorem 2. Nevertheless, if we
use the linear source-code of the proof of Theorem 1, we
achieve a sum compression-rate of 2H(θ) ≤ H(S1)+H(S2),
which is optimal for PS1S2

as given in (3) [11].
According to Remark 2, using Slepian-Wolf coding also

results in a valid secure separation-based strategy: the legiti-
mate receiver first reliably and securely decodes the individual
source sequences and then computes Ŝk

1 ⊕2 Ŝk
2 to obtain

an estimate of Uk. The corresponding achievable secrecy
computation-rate is

R =
H(ν′)−H(μ)

1 +H(θ)
. (6)

Fig. 4 compares (4), (5), and (6) for μ = θ = 0.1 and
different values of ν. It can be seen that for the particular
example considered in this section, secure separation-based
computation achieves at best half the secrecy computation-
capacity. What is more remarkable, however, is that for ν
either zero or one, the secrecy computation-rates vanish. Thus,
joint source-channel coding schemes may not only signif-
icantly outperform separation-based schemes but in certain
cases they are even necessary to achieve nonzero performance.

V. CONCLUSION

We have considered the problem of securely computing
linear functions over discrete multiple-access wiretap chan-
nels. For the class of channels that are linear with respect to
some finite field, we have determined the secrecy computation-
capacity as the corresponding fundamental limit. In com-
parison to the computation rates achievable with a secure
separation-based strategy, the capacity achieving scheme does
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Fig. 4. Comparison of the secrecy computation-capacity (4) with the best
achievable separation-based rate (5) and the rate achievable with Slepian-Wolf
source coding (6), for μ = θ = 0.1.

not depend on the eavesdropper’s channel and hence there is
no need for stochastic encoding.

Interesting problems for future work include extensions to
the Gaussian case as well as characterizing the set of joint
source distributions for which PSmU = PSm

PU , m = 1, 2,
which was a crucial assumption. Note that for the binary case
this question has a clear answer [11, Th. 2].

APPENDIX A
PROOF OF THEOREM 1

For the proof of the theorem, we are mainly following the
proof of [5, Th. 1] (see also [11]).

A. Achievability

1) Code Construction: For every fixed n, generate two
matrices An ∈ F

n×�
p and Bk ∈ F

�×k
p , each entry drawn

uniformly and independently at random from Fp, with

kH(U) < � < nmaxPW
I(W ;Y ) . (7)

Reveal An and Bk to the source terminals, the legitimate
receiver, and the eavesdropper.

Given source sequence skm, transmit the codeword

xn
m = φ(skm) = h−1

m amAnBks
k
m ,

m = 1, 2, where all operations are carried out over Fp.
2) Probability of Error Analysis: Notice that

Wn = h1X
n
1 ⊕p h2X

n
2

= AnBk(a1S
k
1 ⊕p a2S

k
2 )

= AnBkU
k . (8)

Effectively, (8) is a single terminal that wishes to reliably and
efficiently transmit the source sequences Uk over the discrete
memoryless channel PY |W . The random linear code induced
by the generator matrix An therefore has the objective of
protecting BkU

k against the channel noise, whereas the linear
code induced by Bk is used to compress Uk to its entropy.



As long as condition (7) is fulfilled, it follows from [19] and
[20] that there exist decoding functions ψ′ : Fn

p → F
�
p and

ψ′′ : F�
p → F

k
p such that for arbitrary ε > 0 and k, n large

enough, the average probabilities of error (averaged over An

and Bk) fulfill P[ψ′(Y n) �= BUk] < ε
2 and P[ψ′′(BUk) �=

Uk] < ε
2 . Thus, by means of the union of events bound we

obtain P
(n)
e < ε as long as R = k

n
<

maxPW
I(W ;Y )

H(U) .
Now, as PY |W is weakly symmetric, its capacity is

max
PW

I(W ;Y ) = log2(p)−H
(
PY |W (·|w)

)
, (9)

which is achieved with PW the uniform distribution over Fp.
It can be easily shown that multiplying Uk with An and Bk

results in Wn being uniformly distributed over Fn
p .

3) Leakage Analysis: In order to show that L(n) vanishes,
we analyze each of its terms individually. Notice that the
source and channel output sequences form the Markov chains

(Sk
1 , S

k
2 ) → (Xn

1 , X
n
2 ) → Wn → (Y n, Zn) , (10a)

Sk
m → Uk → AnBkU

k , (10b)

m = 1, 2. Therefore, we conclude

I(Sk
m;Zn|An, Bk)

(a)
≤ I(Sk

m;Wn|An, Bk)
(b)
= I(Sk

m;AnBkU
k|An, Bk)

(c)
≤ I(Sk

m;Uk|An, Bk)

= I(Sk
m;Uk)

(d)
= 0 ,

where (a) follows with (10a) from the data-processing in-
equality, (b) from (8), (c) with (10b) from the data-processing
inequality, and (d) from the assumption PSmU = PSm

PU

and the memorylessness of the sources. As this applies to
m = 1, 2, we have L(n) ≡ 0.

B. Converse

Dropping the secrecy constraint and joining the encoders,
it follows from the converse of the point-to-point separation
theorem [18] that for the average probability of error, P (n)

e ,
to vanish with increasing block length, every coding scheme
has to fulfill

kH(U) ≤ max
PX1X2

I(Xn
1 , X

n
2 ;Y

n) = nmax
PW

I(W ;Y ) .

Comparing the left with the right-hand side results in combi-
nation with (9) in a tight upper bound.

APPENDIX B
PROOF OF THEOREM 2

In [21], Dai and Ma were able to characterize the secrecy
capacity region for those MAWCs that are physically degraded
(i.e., (X1, X2) → Y → Z forms a Markov chain). From their
characterization it follows that the secrecy capacity region of
a physically degraded Fp-linear MAWC is given by

Cs =
{
(R1, R2)

∣∣R1 +R2 < max
PW

(
(I(W ;Y )− I(W ;Z)

)}
.

(11)

Thus, time sharing together with single-user wiretap coding is
optimal. On the other hand, it follows from [5, Lemma 1] that
for S1 and S2 statistically independent and U = S1⊕pS2, the
sources have to be transmitted in their entirety (i.e., R1+R2 ≥
H(S1) + H(S2)) in order to reliably decode U . Combining
this with (11) proves the result.
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