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Abstract: The goal of this study is to bring current computational thinking in STEM educational 

efforts in line with the increasingly computational nature of STEM research practices. We 

conducted interviews with STEM practitioners in various fields to understand the nature of CT as 

it happens in authentic research settings and to revisit a first iteration of our definition of CT in 

form of a taxonomy. This exploration gives us insight into how scientists use computers in their 

work and help us identify what practices are important to include in high school STEM learning 

contexts. Our findings will inform the design of classroom activities to better prepare today’s 

students for the modern STEM landscape that awaits them. 

Introduction 
Conducting scientific research without computing is now almost unthinkable. Due to recent 

advances in high-speed computation and analytical methods, science is becoming an increasingly 

computational endeavor. These advances have, in turn, created a growing need to educate students 

as future scientists, engineers, and mathematicians who understand how to make use of 

computational tools and methodologies to achieve scientific goals. Computational skills extend 

beyond programming to include a larger set of skills broadly captured by the concept of 

computational thinking (Wing, 2006). The importance of bringing computation to science 

education is particularly evident from the inclusion of “Computational Thinking Practices” in the 

Next Generation Science Standards (NGSS Lead States, 2013). To better understand the scope of 

computational thinking (CT) within STEM disciplines, we interviewed 17 professional STEM 

practitioners. The goal of this study was to identify the characteristic CT practices that are most 

important for STEM professionals across a range of disciplines. By interviewing scientists, the 

definition of CT in STEM is grounded in CT practices as they are used in the real world. In this 

way, we are drawing on a social-cultural research tradition that makes “a distinction between the 

laboratory, where cognition is studied in captivity, and into the everyday world, where human 



cognition adapts to its natural surroundings” (Hutchins, 1995, p. xiv). Similar projects have taken 

this approach for understanding CT among STEM professionals (Malyn-Smith & Lee, 2012). Our 

work extends this approach by emphasizing the implications of CT practices on shaping high 

school math and science classrooms. 

Perspectives and Motivation 
Though still a relatively young and emerging set of disciplines, computational sciences are 

now ubiquitous in all aspects of STEM professions (ACM/IEEE-CS Joint Task Force on 

Computing Curricula, 2013). STEM fields have seen a renaissance in experimental approaches 

primarily due to the availability of more powerful computers, accessibility of new analytical 

methods, and the development of highly detailed computational models in which a diverse array 

of components and mechanisms can be incorporated (Augustine, 2005). The advances in 

computing allow researchers across disciplines to envision new problem-solving strategies and to 

test new solutions in both the virtual and real world (Wing, 2006). These advances have in turn 

created a pressing need to educate students in computational methods and techniques to support 

the rapidly changing landscape of research across the STEM disciplines (Henderson, Cortina, & 

Wing, 2007, p. 195). Towards this end, a growing body of research has argued for, and documented 

success associated with, bringing computational thinking into science classrooms (Guzdial & 

Soloway, 2003; Hambrusch, et al., 2009; Jona et al., 2014; Sengupta et al., 2013; Wilensky, Brady, 

& Horn, 2014). The importance of CT practices and their role in education is becoming 

increasingly recognized (National Research Council, 2011), however, defining exactly what this 

skill is comprised of remains an open question (Grover & Pea, 2013). The goal of this study is to 

understand and define what constitutes computational thinking within STEM disciplines and what 

form it should take in school STEM classrooms. This study is part of our larger effort to prepare 

future generations of scientists by embedding CT into high school STEM curricular materials.  

We addressed the challenge of defining computational thinking for STEM by creating a 

taxonomy consisting of 22 CT practices (Weintrop et al., 2016). In creating the first iteration of 

our taxonomy, we primarily drew on multiple resources including: (1) exemplary educational 

activities involving computational thinking in STEM; (2) existing concept inventories and 

standards documents and other computational thinking literature; and (3) feedback from other 

STEM researchers, teachers and curriculum developers, and STEM professionals whose work 

heavily relies on computation. Figure 1 shows our taxonomy broken down into four main 



categories: data practices, modeling and simulation practices, computational problem solving 

practices, and systems thinking practices. Each category is composed of a subset of five to seven 

practices. Weintrop et al. (2016) reports our approach of infusing CT into STEM coursework and 

also presents our taxonomy along with detailed descriptions of each element of the taxonomy.  

As the next phase of this study, we are currently in the process of refining and extending 

our taxonomy, drawing on multiple new resources. The two main resources for this process are: 

(1) data collected at schools where our CT activities and assessments have been implemented and 

tested over the past three years; and (2) interviews with STEM professionals whose work relies on 

computation. In this paper, we present findings from our interviews that inform the next iteration 

of our taxonomy. The goal of these interviews is to validate and improve the first iteration of our 

taxonomy and its emerging categories, as well as to provide supplemental data on the nature of 

computational thinking as it happens in authentic scientific settings.   

Methods and Data Sources 
To better understand the nature of CT practices in STEM disciplines, we conducted semi-

structured clinical interviews with 17 STEM practitioners (5 females and 12 males). These 

interviews were carried out with 6 academic faculty from mathematics and science disciplines, 9 

graduate students pursing degrees in STEM disciplines, one post-doctoral researcher, and one 

scientist from industry. The practitioners’ expertise covered various STEM disciplines including 

physics and astronomy, biology, biochemistry, materials science, chemistry, computer science, 

earth and planetary sciences, and transportation engineering (see figure 3 for a breakdown of 

participants’ STEM backgrounds). Seven of the 9 doctoral students were fellows in an NSF GK-

12 program that linked STEM graduate students (who used computation in their research) with 

high school teachers to develop classroom-ready activities. These participants were particularly 

valuable as they had firsthand experience translating their CT practices into high school 

educational contexts.  

The interview protocol included questions about participants’ background, current program 

of research, the role of computers in their research, different computational challenges they faced 

in their work, and a discussion of the computational tools, simulation packages, and programming 

languages they relied on in their work. Each interview lasted approximately one hour and was 

video recorded, transcribed and coded by two researchers. We recruited the participants through 

referrals from STEM researchers and faculty in computational research. 



In this paper, we focus on a subset of interview protocol to answer the following research 

question: what CT practices are used in authentic scientific research settings? To study this 

question, we coded the interviews and examined which of the CT practices included in the 

taxonomy are used in the interviewees’ work. The findings from these interviews feed into our 

larger goal of defining what constitutes computational thinking within STEM disciplines to revise 

our taxonomy of CT practices (Weintrop et al., 2016). 

Preliminary Findings and Discussion 
Two researchers conducted an exhaustive coding of the interview transcripts in order to 

identify CT practices of our taxonomy. In this process, each researcher read through the transcripts 

and recorded lines with identified taxonomy elements. Here, we are only interested in studying CT 

practices used by STEM practitioners in their work and hence we focused on the portion of each 

interview where the interviewees described their current research. We did not log the instances in 

which taxonomy elements appeared in the interviewees’ talk about previous research, research by 

colleagues, or their opinion about computational STEM research. For this subset of interview 

transcript, we found 494 instances of CT practices in total. Instead of counting the number of times 

each element of taxonomy was identified in one interview, we did a binary count of the practices 

for each interview. This made our analysis more robust considering the semi-structured nature of 

the interviews. The binary counts showed whether a certain taxonomy element appeared in one 

interview (1) or not (0).  

Figure 2 illustrates a bar graph that summarizes the frequencies of all CT practices featured 

in the taxonomy. Each color corresponds to each taxonomy main category as shown in Figure 1 

and the height of each bar shows in how many interviews the practice was identified. The graph 

shows that all elements in our taxonomy have been identified in the interviews, with the analyzing 

data (da.4) practice being identified in all 17 interviews (the most frequent practice) and the 

communicating information about a system (st.4) practice being identified in only 4 interviews 

(the least frequent practice). Moreover, the most frequent CT practice in each of the four categories 

are: analyzing data (da.4) in data practices (17 interviews); using computational models to test 

and find solutions (ms.2) in modeling and simulation practices (11 interviews); programming 

(ps.2) in computational problem solving practices (16 interviews); and defining systems and 

managing complexity (st.5) in systems thinking practices (10 interviews). 



We then studied the identified codes with respect to the interviewees’ field of research. We 

first grouped the interviewees’ field of research into four disciplines: (1) physics, astrophysics, and 

earth sciences; (2) biology and chemistry; (3) computer science; and (4) engineering and materials 

science. Then, for each research discipline, we calculated the frequencies of practices identified in 

each taxonomy main categories. Figure 4 shows a bar graph that compares the percentages of CT 

practices among research disciplines. We found that each main category of CT practices is 

identified with approximately same percentage across different disciplines: around 30% use data 

analysis, 20% use modeling and simulation, 30-35% use computational problem solving, and 15-

20% use systems thinking.  

Moreover, we characterized the use of CT practices with respect to the role of computation 

in the interviewees’ research. Here, we grouped interviewees’ research into four categories: (1) 

purely computational research; (2) research that combines computation with experimentation; (3) 

research relying more on experimentation; and (4) purely theoretical research. Figure 5 illustrates 

the percentages of CT practices (in each taxonomy main category) that are used in different 

categories of research. We found that the use of data practices is more frequent for STEM 

researchers whose research relies more on experimentation than computation. Our findings also 

suggest that by increasing the role of computation in research, there is more use of systems thinking 

practices and modeling and simulation practices. Finally, we found that theoretical researchers 

mainly draw on computational problem solving practices in their work.  

Conclusion 
The overarching goal of this study is to bring current CT-infused STEM educational efforts 

in line with the increasingly computational nature of STEM research practices. Towards this end, 

we conducted interviews with STEM practitioners in various fields to understand the nature of 

computational thinking as it happens in authentic scientific research settings and to revisit and 

verify a first iteration of our definition of CT in form of a taxonomy. This exploration gives us 

greater insight into how scientists use computers in their everyday work and what CT practices are 

used in scientific research settings. The findings from these interviews help us identify what 

practices are important to include in high school math and science learning contexts. By 

understanding what modern science looks like in practice, and using that to inform the design of 

classroom activities, we can better prepare today’s students for the modern STEM landscape that 

awaits them.  
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Figure 1. Computational thinking in mathematics and science taxonomy (Weintrop et al., 2016) 

 

Figure 2. A bar graph illustrating the frequencies of all CT practices identified in the interviews. 
Each color corresponds to each taxonomy main category: data practices (blue); modeling and simulation 

practices (oranges); computational problem solving (green); and systems thinking (yellow). For each 
category, the most frequently observed practice is highlighted by a darker color. 

 



 

Figure 3. Breakdown of interviewees’ backgrounds by STEM field 

 

Figure 4. Breakdown of CT practices (in percentage) by interviewees’ research disciplines.  

 

Figure 5. Breakdown of CT practices (in percentage) by interviewees’ type of research with respect to the 

role of computation. DA: data practices; MS: modeling and simulation practices; PS: computational 

problem solving practices; and ST: systems thinking practices. 


