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To understand the performance of a queueing system, it can be
useful to focus on the evolution of the content that is initially in ser-
vice at some time. That necessarily will be the case in service systems
that provide service during normal working hours each day, with the
system shutting down at some time, except that all customers already
in service at the termination time are allowed to complete their ser-
vice. Also, for infinite-server queues, it is often fruitful to partition
the content into the initial content and the new input, because these
can be analyzed separately. With i.i.d service times having a non-
exponential distribution, the state of the initial content can be de-
scribed by specifying the elapsed service times of the remaining initial
customers. That initial content process is then a Markov process. This
paper establishes a many-server heavy-traffic (MSHT) functional cen-
tral limit theorem (FCLT) for the initial content process in the space
Dp, assuming a FCLT for the initial age process, with the number of
customers initially in service growing in the limit. The proof applies
a symmetrization lemma from the literature on empirical processes
to address a technical challenge: For each time, including time 0,
the conditional remaining service times, given the ages, are mutually
independent but in general not identically distributed.

1. Introduction. Heavy-traffic (HT) functional central limit theorems
(FCLT’s) for the standard G/G/s queueing model, with unlimited waiting
space and service in order of arrival, expose the impact of the stochastic vari-
ability in the arrival and service processes on the transient and steady-state
performance. This is important because the general G/G/s model is far less
tractable than its Markovian M /M /s counterpart, even for the special case
in which the interarrival times and service times come from independent se-
quences of i.i.d. random variables. From [14, 41], we know that conventional
heavy-traffic theory tells a simple story: With conventional heavy-traffic,
where the arrival rate increases to the maximum possible service rate with
a fixed number of servers, the arrival and service processes contribute via
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their joint FCLT. Thus, with appropriate time and space scaling, we obtain
the same reflected Brownian motion (RBM) limiting diffusion process for the
G /G /s model as for the M /M /s model (and thus also for the M /M /1 model)
except for a modification of the constant diffusion coefficient to account for
the different variability. (For a discussion of interesting and important vari-
ability effects, see §9.6 of [41].) Moreover, assuming a deterministic limit for
the scaled initial number in system, the initial conditions are not influenced
by the variability at all, and only affect the initial state of the RBM.

Many-server heavy-traffic (MSHT) FCLT’s tell a different story: With a
MSHT FCLT, where both the arrival rate and number of servers increase
without bound, and there is no extra time scaling, the variability in the
service process and the initial conditions contribute in a more complicated
way. Thus, the early MSHT FCLT in [13] was only for the GI/M /s model,
having i.i.d. exponential service times. With that condition, in Theorem
3 of [13] it was only necessary to assume that the properly scaled initial
conditions converges to a nondegenerate limit. From §7.3 of [29], we know
that MSHT limits for the G/M /s model and the G/M /s + M counterpart
with customer abandonment from queue also depend on their general arrival
processes only via its FCLT behavior, but non-M service processes influence
the performance at all times through the service times that are in progress
at those times.

Thus, in order to obtain a MSHT FCLT with a Markov limit process
for models without i.i.d. exponential service times, except for very special
cases [42], it is necessary to keep track of the elapsed service times and
is convenient to greatly simplify the assumption for the initial conditions.
For i.i.d. phase-type service-time distributions, we can keep track of the
elapsed service times by keeping track of the number of phases of each type
in service at each time, as in §4 of [13], Theorem 3 of [40], [33] and other
papers. More generally, to obtain a Markov limit process, it is necessary to
use two-parameter processes or measure-valued processes that keeps track of
all the service times in process at each time as in [20, 17, 18, 19, 30, 31, 35].

However, even these new general results make strong simplifying assump-
tions about the initial conditions. That is so even in the infinite-server (IS)
setting, where (under regularity conditions) the old content can be analyzed
separately from the new content. For example, Pang and Whitt [30, 31]
assumed that the system starts empty or with i.i.d. remaining service times.

Of course, if we are considering a stationary model, then we are usually
interested in the steady-state distribution. Clearly, the steady-state distribu-
tion should be independent of the initial conditions under general regularity
conditions. Thus, when we are interested in the steady-state distribution of
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a stationary model, there is little interest in the initial conditions; then it is
of only minor technical interest to show that the steady-state distribution is
independent of the initial conditions, in both pre-limit and limit processes.

In contrast, here we are motivated by the desire to develop asymptotic
approximations for the time-varying behavior of nonstationary models, hav-
ing time-varying arrival rates. However, even then, we may be unconcerned
about initial conditions. Under regularity conditions, we anticipate that the
time-varying behavior of a nonstationary models, having a time-varying ar-
rival rate, will be independent of the initial conditions after a reasonable
amount of time has passed. Concrete results in that direction are provided
for the Gy/M;/s; + GI; fluid model in [22]. In particular, the existence of
periodic limits and a more general asymptotic lack-of-memory property are
established.

However, here we are primarily motivated by the desire to develop asymp-
totic approximations that apply to time-varying behavior of nonstationary
models over shorter time intervals, where both the initial conditions and the
new input may contribute significantly to system performance. We are also
interested in describing system performance after an arrival process has been
turned off. To the best of our knowledge, this is the first paper to address
these problems.

In particular, in this paper we establish a MSHT FCLT for the initial
content process (ICP) of a large-scale queueing system. The ICP specifies
the number of customers that were initially in service at time 0 and are still
in service later at time ¢ and the elapsed service times since their arrival
times before time 0. Assuming that the service times come from a sequence
of independent and identically distributed (i.i.d.) random variables, indepen-
dent of the arrival process and system history, the ICP is a Markov process,
and thus provides a useful description of the system state at each time. The
key assumption is a FCLT for the initial age process, which requires that
the number of customers initially in service grows. The technical challenge
is treating non-identically distributed remaining service times.

Since MSHT FCLT’s for IS models can be fruitfully applied to establish
associated MSHT FCLT’s for finite-server models [24, 32, 34], our results
here have broader implications. In particular, we intend to apply the results
here to establish a MSHT FCLT for the G¢/GI/s; + GI model with time-
varying arrival rate and staffing, customer abandonment (the +GI) and
alternating overloaded (OL) and underloaded (UL) intervals, extending the
FCLT for the G;/M/s; + GI model in [24]. The present results apply in
three ways. First, the theory here applies directly to UL intervals, which can
directly be regarded as IS models, starting off with customers in service with
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elapsed service times, determined from the previous OL interval. Second, the
theory here also directly applies to the initial content in service during an OL
interval, determined from the previous UL interval (because the dynamics of
the ICP is not affected by the finite service capacity). Third, the theory will
once again apply to treat the number of waiting customers in an OL interval,
because then we can regard the abandonment times as service times; see [24].
There is much more to the total proof, but the present paper provides a key
component.

To demonstrate that our assumptions directly cover meaningful cases for
IS models, we establish our main MSHT FCLT for the ICP in a more general
context. In particular, we consider an IS model in which all arrivals before
time 0 have i.i.d. service times with one service-time cdf, while all arrivals
after time 0 have i.i.d. service times with another service-time cdf. We refer
to the model as G;/GI° GI” /oo (using the superscript o for old and v for
new). This model represents switching from one kind if service to another
in an IS model at time 0.

As usual for FCLT’s, we consider a sequence of models indexed by n.
For each n, there are infinitely many servers, so that each customer enters
service immediately upon arrival. In system n, there is a general arrival
process with a time-varying arrival rate function A\, (t) = nA(f) (the Gy),
so that the arrival rate is scaled by n, the usual many-server heavy-traffic
scaling. We will specify the arrival process only by the requirement that it
satisfy an FCLT; see Assumption 1 below.

We assume that the system operated in the past (prior to time 0) as
a conventional Gy/GI /oo, model with i.i.d. service times that are indepen-
dent of the arrival process, distributed according to a cumulative distribution
function (cdf) G. We assume that new input in the system operates after
time 0 according to a G¢/GI /oo IS model with i.i.d. service times that are
independent of the arrival process, with service times distributed according
to the cdf G,. As in the usual many-server heavy-traffic scaling, the two
service-time cdf’s G and G, are not scaled by n. Our approach is designed
especially to treat the case in which these cdf’s are different and not ex-
ponential. An important nontrivial case covered by this Gy/GI°, GI" /oo 1S
model is an IS system starting empty at time tg < 0. The ICP then describes
the state of old content after time O.

The system performance after time 0 can be characterized by the pair of
two-parameter stochastic processes (X,,°(t,y), X»"" (¢,y)) with t > 0 and y >
0. The variable X%°(¢,y) counts the number of customers that were already
in service at time 0 and are still in service at time ¢ and have elapsed service
times that are less than or equal to y (here y > t since they started service
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prior to time 0). The variable X"(¢,y) counts the number of customers
that arrived after time 0 and are still in service at time ¢ and have elapsed
service times that are less than or equal to y (here 0 < y < t since they
started service after to time 0). (The superscripts are chosen to help, with
e denoting elapsed, o old and v new.) Given the assumptions on the service
times, the stochastic process (X%, X5,") = {(X5°(¢,-), Xn"(t,-)) : t > 0} is
a Markov process with time domain [0, 00) and state space D?, where D is
the usual function space of right-continuous real-valued functions with left
limits, endowed with the usual Skorohod topology [41].

Our main result, Theorem 3.2, is an FCLT for (X;°, X;,;"”) jointly with
other processes in the space Dpz of D?-valued functions in I. The use of
Dpe2 follows [30, 31, 38]. It is an alternative to measure-valued approaches
in [3, 17, 18, 43] and distribution-valued approach in [35]. The alternative
approaches are appealing for simplifying arguments and revealing structure;
e.g., [35] shows that the the heavy-traffic limit for the G/G /oo model can
be regarded as a tempered-distribution-valued Ornstein-Uhlenbeck diffusion
process, generalizing the diffusion process limit for the M/GI /oo model in
[3]. On the other hand, the Dy framework here evidently admits more contin-
uous functions, and so has more immediate applications via the continuous
mapping theorem. Explicit connections between the two approaches for the
fluid limits are made in [16].

We contribute here by treating the ICP X°; the limit for X" comes from
[30]. As in [30], and in Louchard [26] and Krichagina and Puhalskii [20] be-
fore, we work with the empirical process of the service times. As can be seen
from §2.2 of [41], §14 of [1] and especially Shorack and Wellner [36], empirical
processes and associated statistical tests have been a major focus of FCLT’s,
ever since [4], so that there are many useful tools for queueing theory.

In particular, to address the technical challenge of non-identically dis-
tributed remaining service times, we draw on Chapter 25 of [36], which in
turn uses a symmetrization argument from [27], which can be traced back

o [39]. Substantial new arguments are required as can be seen from the
tightness proof in §4.2.3. Evidently, this is the first use of symmetrization
technique to analyze a queueing model with non-identically distributed ser-
vice times.

We emphasize engineering relevance, e.g., by providing an explicit char-
acterization of the limit process, exposing key structure (see Remark 3.3)
and providing explicit formulas for time-varying means, variances and covari-
ances that lead to an effective algorithm for computing relevant performance
measures, as confirmed by simulation experiments, which mostly appear in
an appendix. on the authors’ web pages.
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Organization of the paper. In §2, we specify the model operating after time
0 in more detail. We define its key performance functions, specify the MSH'T
scaling, and our detailed assumptions. At this point, we represent the be-
havior before time 0 by the assumed behavior of the ICP at time 0 in As-
sumption 1. In §3 we state our main results and in §4 we prove them. In §5
we show that our results apply to the G;/GI°, GI” /oo model starting some
time before time 0, if we assume that the limit for the arrival process has
independent increments, because then the ICP at time 0 has the properties
assumed in Assumption 1. From this case, we can also see that the results
are consistent with the previous results in [30].

Extra materials are given in the appendix. In §A we review a necessary and
sufficient condition for tightness in space Dp. In §B we review useful results
used in the proofs. In §C we give proofs omitted in the main paper. In §D
we report simulation results for a challenging test case having non-Markov
arrival process, non-exponential service-time distribution, and general initial
conditions. In §E we provide additional simulation results. In §F we provide
the first characterization of the steady-state distribution of the new and old
content in the stationary G/GI /oo model.

2. The model. We start by considering the model after time 0; we show
that the results can be applied to the G;/GI° GI" /oo model starting with
the initial conditions here at some time before time 0 in §5. Even though
we consider time with ¢ > 0, we are especially interested in those customers
who arrived before time 0. Their history will be captured by the initial age
process, which coincides with the ICP at t = 0.

We are primarily interested in the ICP X °(¢, ), but we also consider the
associated process for the new input X" (¢,%)). In addition to the pair of
two-parameter stochastic processes (X5, °(t,v), X5 (t,y)), counting the old
and new customers in the system at time ¢ with elapsed service times at
most y, we also define the closely related pair of two-parameter stochastic
processes (X7, °(t,y), Xn"(t,y)), counting the old and new customers in the
system at time t with remaining service times at least y. Of course, these
remaining-time processes are usually not directly observable, but they do
usefully represent the future demand. However, they are tightly linked with
the other processes. In particular, they are linked via the simple relations
Xn(ty) = Xn(t +y) — X5(t +y,y) and X7(ty) = Xn(t) — X5(6 — v, 9),
where X,,(t) is the total number of customers in system n at time ¢; i.e.,
Xn(t) = XE(t,00) = X7 (¢,0).

As indicated in §1, it is important to treat the old and new customers
separately. Let XE(t,y) = X" (t,y) + Xn°(t,y) and X! (¢,y) = X" (t,y) +
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X7°(t,y). As in [30], for the new arrivals we have

Ny (t)
21) Xe(ty) = > 1AM+ S>1), 120, y>0,
i=Np((t—y)T)
Nn(t)
v _ (n) .
(22) XMty = Y WA +Si>t+y), t>0,y>0
i=1

where Agn) is the arrival time of the i*" customer and S; is the associated
service time in system n. The service times S; has not been scaled by n,
hence no superscript.

Now we turn to the processes associated with initial customers already
in the system at time 0. Let 7,,; denote the length of time the ith customer
has been in service (age in service) at time 0 in system n. Without loss of
generality we assume the ages are ordered 0 < 7,1 < 7,2 <.... Then

X5 0,(y—t)*)

(23)  Xg°(ty) = > Lm(m) >t), t>0,y>0,
=1
Xn(0)
(24) Xp°(ty) = 1(ni(Tni) >t+y), t>0,y>0,
=1

where X¢(0, (y — ¢)T) is the total number of customers at time 0 that have
been in service for time (y —¢)* = max {y — ¢, 0}.

The key property we will exploit is the conditional independence property:
Conditional on the sequence of service age random variables {7,,; : ¢ > 1},
the sequence {n;(7,,) : @ > 1} is a sequence of mutually independent random
variables with conditional tail probabilities

C
(2.5) Pmi(z) > t|mi =2) = Hy(t) =1 — H,(t) = %m,
(z)

forx > 0,t > 0, where G°(z) = 1—G(x) is the complementary cdf (ccdf) for
the service distribution of old customers. The primary difficulty in the proof
stems from the fact that, conditional on the sequence of service age random
variables {7,; : ¢ > 1}, the random variables 7;(7,;) are not identically
distributed.

Given the processes (2.1)-(2.4) and the equalities X, (t) = X5 (t,00) =
X/ (t,0), we can define the departure process associated with initial and
new customers from the n'"* queue. Let D9 (t) (D%(t)) be the total number
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of initial (new) customers who have departed by time t. Then necessarily
D¢ (t) = X, (0) — X2(t) and DY (t) = Np(t) — X} (t). Hence D, (t) = DS(t) +
Dr(t) = X, (0) + Np(t) — X (t) represents the total number of departures
by time ¢.

Associated scaled processes. Let the associated LLN-scaled processes
be

Nu(t) = No(t)/n,  X5(ty) = X;(t.y)/n,
(2.6) Dn(t) = Du(t)/n,  Xy(t,y) = X5 (t,y)/n.

~—

Let the associated CLT-scaled processes be

f( = 220 iy =
(2.7) f)n(t)zw, X7 (t,y) Xﬁ(t,y);ﬁnX’"(t,y)7

where the centering terms A(t), X¢(t,y), X" (t,y), D(t) are deterministic
functions (fluid limits) to be specified below in Assumption 1 and Theo-
rem 3.1.

The spaces D and Dp. The limits are established in the function space
D = D([0, ), R) of right continuous functions with left limits equipped with
the Skorohod J; topology and the associated metric d, [6, 15, 37, 41]. Prod-
ucts of that space are equipped with the product topology. Since all limits
will almost surely have continuous sample paths, convergence in J; topol-
ogy is equivalent to uniform convergence over compact sets (time intervals).
For the two-parameter processes, the processes are random elements of the
space Dp = D([0,00),D([0,00),R)) of D-valued functions. Since the space
(D, J1) is a complete separable metric space, this space of D-valued functions
falls within Skorohod’s [37] original framework; see [30, 38] for more details.
We prove convergence in these spaces by using the compactness approach,
i.e., by proving convergence of the finite dimensional distribution (fidis) and
tightness of the processes; see [1, 6, 15, 41] for tightness criteria in D and
Theorem 6.2 of [30] for tightness criteria in Dp. We review the tightness
criteria in Dp in §A.1.

Assumptions. Our key assumption is a joint FCLT for the arrival pro-
cess of new customers after time 0 and for the initial ages. We discuss the
appropriateness of this assumption in Remarks 2.3 and 2.4 below and in §5.

Xﬁ(ta y) — nXe(t7 y)
\/ﬁ )

AssuMPTION 1 (Joint FCLT for the arrival process and initial ages).
The CLT-scaled ICP and external arrival processes defined in (2.7) jointly
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satisfy the FCLT
(2.8) (Xﬁ(O,),Nn) = (XE(O,-),N) in D? as n— oo,

where Xﬁ(O, -) and N are two independent zero-mean continuous Gaussian
processes. We assume that the deterministic centering terms in (2.7), which
come from the associated functional weak law of large numbers (FW LLN)
stated below in (2.10), can be represented as

(2.9) X°(0,z) = /090 a(u)du, x>0, and A(t) = /Ot AMu)du, t>0,

where the fluid initial age density a(x) and arrival rate function A(t) in (2.9)
are nonnegative real-valued functions that are integrable over all bounded
intervals.

REMARK 2.1 (FWLLN for the arrival process and initial content in ser-
vice). As an immediate consequence of Assumption 1, we have a FWLLN
for N,, and X£(0,-), i.e., as n — 00,

(2.10) (X£(0,4), N, X,(0)) = (X°(0,-),A,X(0)) in D*xR.

REMARK 2.2 (The zero-mean Gaussian assumption). The zero-mean
Gaussian requirement of Assumption 1 is not required for the convergence,
but it is required for drawing the useful conclusion that the limit process
also has this structure, as in (3.4) below. Nevertheless, the assumption is
natural. Extensions are possible, as illustrated by §10 of [24].

REMARK 2.3 (joint convergence and independence of the limits). If the
arrival process is a nonhomogeneous Poisson process, so that the IS model
becomes M;/GI° GI" /oo, then the new input after time 0 is independent
of the initial content, so that the independence of the two limit processes
follows directly from the two separate limits in Assumption 1. But, more
generally, the number of customers in service at time 0 and the ages of
the service times of those customers typically will not be independent of
the arrivals after time 0. Thus, Assumption 1 may not be easy to ver-
ify. Nevertheless, Assumption 1 is very reasonable. It is what we expect
to be true in great generality. For example, consider a Gy/GI /oo system
starting empty in the finite past. Even though the arrival process may
not have independent increments, from [30] we know that it is common
for the limit of the arrival process to be a time-transformed Brownian mo-
tion (BM), which has independent increments. In particular, that occurs if
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we assume that the arrival process is a deterministic time transformation
of any arrival process that satisfies an FCLT with a BM limit. For such
limits, it is natural to start with a stationary process, such as an equilib-
rium renewal process, but it suffices to have the FCLT with a BM limit,
as discussed in §7 of [28]. With either an ordinary or equilibrium renewal
process, the limit process will be N () = exBo(A(t)), where B, is a stan-
dard BM, A(t) is the deterministic time transformation, corresponding to
the limiting cumulative arrival rate function and c?\ is the squared coeffi-
cient of variation (SCV, variance divided by the square of the mean) of
an interarrival time in the ordinary renewal process. For all these repre-
sentations, the arrival FCLT and the independence of the limit is satis-
fied, as assumed in Assumption 1. In addition to [28], see [8, 11, 21, 25]
for uses of this representation of nonstationary non-Poisson arrival pro-
cesses.

REMARK 2.4 (Performance forecasting using limits in Assumption 1).
For engineering purposes, the limits in Assumption 1 can be understood as
estimators (approximations) for future demand posed by new input and
initial content. The goal here is to develop performance forecasting for-
mulas as functions of the limits in Assumption 1. It will be clear from
the formulas and examples that the general initial conditions (represented
by the initial fluid age function X€¢(0,-) and the associated stochastic
limit process Xe(O,-)) can be a significant part of the performance
functions. O

We also impose additional regularity assumptions, which evidently are
not too restrictive for engineering applications. We first impose conditions
on the two service-time cdf’s. Even though not restrictive, both assumptions
are used critically in the analysis; see Remark 3.2 and Lemma 4.4.

AssuMPTION 2 (Regularity conditions for service-time cdf’s). The two
service-time cdf’s G and G, are assumed to be continuous. In addition, the
cdf G has a probability density function (pdf) g satisfying 0 < g(x) < ¢ =
sup, o g(x) < oo for all x > 0.

We also impose a regularity condition on the initial content. It is used in
the proof of tightness in Dy in §4.2.3.

AssumPTION 3 (Regularity conditions for the initial content). We as-
sume that there exists y' > 0 such that X,(0) — X,(0,y") =0 for alln > 1
w.p.1..

PODFTECHNOLOGIES

Toals & Components for Senous Developers


http://www.pdf-technologies.com

INITTAL CONTENT PROCESS 105

3. Main results. In this section, we present the new FWLLN and
FCLT for the G¢/GI° GI" /oo model. They extend the corresponding re-
sults for the G/GI /oo model in §3 and §5 of [30] by treating more general
initial conditions. In particular, the results for the new arrivals come from
[30], but unlike §5 of [30], Assumption 1 here makes the remaining service
times at time 0 be conditionally independent, given the ages, but not identi-
cally distributed random variables. We state the FWLLN first, but give no
separate proof, because it is a consequence of the FCLT.

THEOREM 3.1 (FWLLN). Consider the sequence of Gi/GI° GIV /o
queues satisfying all assumptions in §2. As n — oo,
(3.1)
(Nn,Xg(o, Y, X700, -),Xﬁ,Xﬁ,Xn,Dn):(A,Xe(O, ), X7(0,-), X X", X, D)

in D3 x D2 x D?, where the limit is continuous and deterministic with X (t) =
X€(t,00) = X"(t,0), and

Xt y) = X°(y) + X (6y),  X7(Ly) = X0t y) + X" (),
(y—t)* t

xolty) = [1 a@Hi0dn XUy = [ Gie- s ds
0 (t—y)t+
[e'e) t

X7t y) = / a(@)HE(t 4+ y)de, X (t,y) = / GE(t 4y — 5)A(s) ds,
0 0

(3.2)

D(t)=A(t) — X(t) = /000 a(x)Hy(t) dz —i—/o G, (t—s)A(s)ds

and a(x) being the initial fluid limit age density and \(s) being the arrival
rate function specified in Assumption 1.

For real numbers a and b, let a V b = max {a, b} and a A b = min {a, b}.

THEOREM 3.2 (FCLT). Consider the sequence of Gy/GI° GI" /oo IS
models satisfying all assumptions in §2. As n — oo,

(3.3) (Nn,f(;(o, -),X;(o,-),X;,X;,Xn,ﬁn)
- (N, Xe(0,-), X7(0, ),X@,X’“,X,f))

in D3 x ID)]%) x D2, where the stochastic limit process for the two-parameter
ICP, the scaled number of customers in service at t with age at most y, is

(3.4) Xe(t,y) = X7V (ty) + X5 (ty) + X7t y) + X5°(t,y),
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o€,V o€,V -€,0 (-€,0 . .
where X7, X", X7%and X5° are independent zero-mean Gaussian pro-
cesses with continuous sample paths,

(35) Xty = /( GE(t — 5) AN (s),

t—y)*
t 00
(36)  XS(y) = / e >t — s)dKo(A(s), @),
(- Jo

where N is the limit process in the assumed FCLT for the arrival process
specified in Assumption 1, and K, (t,x) = U(t,G(x)), with U being a stan-
dard Kiefer process, capturing the variability of the new service times, and
independent of N; Xf’o 18 a zero-mean Gaussian process with the covariance
function

(3.7) CF((t1,01) (12, 32)) = Cov (X7 (01,01), X7 (02,12) )

(y1—t1) T A(y2—t2)™

- / Hoy(ty A ta) HE (1 \ £2) dX(0, 1),
0

and X5° has the representation

) (y—t)* R
(38) X£°(ty) = /0 HE(t) dX*(0, )
R N (y—t)*
= HE, 1 (DXE(0, (y — 1)) — /0 X0, u—)dHE(H),

where (X€(0, -),XG(O,-)) is the limit of the initial age process in Assump-
tion 1 and (2.10). The joint limit (3.3) follows from the displayed limit. The
other limit processes X, D and X" are specified in the corollaries below.

REMARK 3.1 (Correction in [30]). The limits for the new input follow
from [30], so the formulas in (3.5) and (3.6) should be consistent with [30].
However, here we make a correction, noting that the upper limit of the inner
integrals in (2.10), (2.15) and for X5(¢,y) in (3.16) of [30] all should be oo
instead of t. Similarly the upper limit of the second integral in the expression
for o2 .(t,y) in Theorem 4.2 of [30] also should be oo instead of ¢. After this
correction, the formulas in (3.6) and elsewhere are consistent with [30]. O

We next characterize all the other limit processes using the limit in (3.4).

Let gt denote equal in distribution for each t¢. Let B,(-) be an independent
BM (associated with service times of new customers).

PODFTECHNOLOGIES

Toals & Components for Senous Developers


http://www.pdf-technologies.com

INITTAL CONTENT PROCESS 107

COROLLARY 3.1 (Limits for the one-parameter queue length process).
Under the assumptions of Theorem 3.2, the limit for the total number in
service at t s

(3.9) X(t) = X¢(t,00) = XV(t) + X¥(t) + X0(t) + X3(¢),

where XY, X3, X{ and X3 are independent zero-mean Gaussian processes
with continuous sample paths and

(3.10)  XV(t) = X(t, 00) / GE(t— ) dN (s),

(3.11)  X¥(t) = X£¥(t, 00) = // L(z >t — s)dK,(A(s), )

4 _/O VG, (t — 5)GE(t — s)dBs(A(s)),

X0(t) = X7(t,00) is a zero-mean Gaussian process with the covariance
function

(3.12)
Cy(t, ) = Cov (X7(), X7(1))
— C9((t1,00), (t2, 00)) = /OOOHu(t AYVHE(V ) dXE(0, ),
and

(3.13) X3(t) = X5°(t,00) = /0 h HE(t) dX4(0,z).

COROLLARY 3.2 (Limits for the one-parameter departure process). Un-
der the assumptions of Theorem 3.2, The limit for the number of departures
byt is

(3.14) D(t) = DY () + D5 (t) + D9(t) + D5 (t),

where DY, D5, DY and D3 are independent zero-mean Gaussian processes,
with

(3.15) P = /0 Got — 5)dN(s),

(3.16) DY) = /0/()001(x§t—s)df(l,(1\(s),x)

4 / VG, (t — 8)GS(t — s)dBs(A(s)),
0
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D{(t) = —X{(t) being a zero-mean Gaussian process with covariance func-
tion Cov (Dg(t), bg(t')) = C9(t, '), and

(3.17) DY(t) = X(0) — X3(t / H,(t)dX®(0,z).

COROLLARY 3.3 (Limits for the remaining-service-time process). Under
the assumptions of Theorem 3.2, the limit X"(0,z) = X°(z) = X7°(z,00) +
X5°(z,00) for all x > 0 and

(3.18) X"(t,x) = X7V (t, ) + X5V (t,x) + X7t ) + X5°(t, x),

with X7, X3Y, X7 and X3 being independent zero-mean Gaussian pro-
cesses and

(319)  X[V(t,x) = /Gct—i—x—s)dN()

(38200  Xi(ta) = // Luts > t+a)dKy(A(s), u),

XP(tz) = XQ(t+a)=X{(t+x,00) and
Xy°(t,z) = X9(t+x)=X5(t+ x,00).

REMARK 3.2 (The stochastic integrals). The integrals in Theorem 3.2
should be interpreted just as in [30], as explained in Remark 3.2 there. In
particular, the deterministic integrals in (3.7) and (3.12) are all Stieltjes inte-
grals, while the integrals in (3.6), (3.11), (3.16) and (3.20) are two-parameter
stochastic integrals, just as in [23, 24, 30]. As in Theorem 3.2 and Remark
3.3 of [30], the continuity assumption on the cdf G, in Assumption 2 is used
to get the representation in terms of the Kiefer process.

Of special note are the stochastic integrals with respect to N in (3.5),
(3.10), (3.15) and (3.19), and with respect to X¢(0,-) in (3.8), (3.13) and
(3.17). As explained in Remark 3.2 of [30], these all should be interpreted
as the form after the representation of integration by parts, as given on p.
336 of [2]. That is justified because the pre-limit processes of the integrator
process have sample paths of bounded variation. For example, the alterna-
tive representation for (3.8) is given there; see §4.3. Finally, the stochastic
integral with respect to K, should be understood in the mean-square sense,
as in §6.3 of [20].

REMARK 3.3 (Four independent stochastic effects). The expression for
the limit process X¢ in (3.4) as the sum of the four independent processes
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XY, X5Y, X¢° and X5° shows that the four sources of variability in the
model contribute to the total variability independently. The process Xle'/
captures the variability in the arrival process after time 0; the process X;’”
captures the variability in the service times after time 0; the process Xle ©
captures the variability in the remaining service times at time 0 given that
the initial age process is around nX€(0,); and the process Xzeo captures
the variability of the ages of initial customers at time 0. It is easy to see
that this separation of variability effects is not baked in, because this sep-
aration does not apply to the pre-limit processes. In the limits for these
terms, the impact from other model components become deterministic. We
remark that this kind of separation of variability has been observed in the
past. For instance, in [24], the FCLT limit of the waiting time process solves
a stochastic differential equation driven by three independent BMs that are
associated with the arrival process, abandonment times and service pro-
cess. ]

If we make an additional assumption for IV, we can exhibit covariance
and variance formulas.

~ COROLLARY 3.4 (Variance and covariance formulas for the ICP). If
N(t) = caBa(A(t)) and ¥5°(t) = Var(X¢(0,t)), then the covariances of
X¢ the covariances are

C%((t1, 1), (t2,2)) = Cov(X(t1, y1), X°(t2, y2))
= O ((t1,91), (t2, 42)) + C2°((t1, 91), (f2, 42))

where

t1At2

C((t1,41), (t2,92)) = / [(c2 = DGyt — 5)G(t2 — 5)

(ti—y1) TV (ta—y2)*
+ G5 ((t1 V t2) — s)| A(s)ds,

/(yl—151)+/\(y2—1t2)Jr

C°((t1,y1), (t2,12)) = H,(ty Nto)Hy(t V ta) dX (0, u)

0

(y1—t1) T A(y2—t2)™
+/ H;(tl)H,LCL(tQ) dZS’O(u).
0
so that the variances are

oz (t,y) = Var(X°(t,y)) =07, (t,y) + o0 o(t,y),
where o2, (t,y) =0, (((t —y)T,1),

PODFTECHNOLOGIES

Toals & Components for Senous Developers


http://www.pdf-technologies.com

110 A. K. ARAS, Y. LIU, AND W. WHITT

o2 (u,v) = /v [(c2 = 1)GS (v —5)* + G5 (v — s)] As)ds
(7" (y—)*

and o? ot y) = ; H,(t)H,(t)dX§(u)+ ; HE(1)?d85°(2).

COROLLARY 3.5 (Variance for X (t) and D(t)). Under the assumptions
of Corollary 3.4, the variances of the one-parameter processes X (t) and D(t)
are

(3.21) 0% (t) = Var(X (1)) = agy(t) + cr;o(t),

where

(3.22)
7 (0= 02 (1.00) = o2(0.0) = [ [(ed = DG =5 + Gt — )] A)ds

and
(3.23)
a;o(t) 2,(t,00) = / H, () HE(t) dXE(u / HE(t)? d25°(z),
(3.24) o2 (t) = Var(D(t)) = op., () + 0% (b),
where

U%,u(t) :/0 [(c2 = 1)GE(t — 5) + Gy (t — s)] M(s)ds
and 0123 / H,(H)HE(t) dX§(u / H,(t)? dx5° (z),

REMARK 3.4 (Additivity of the variance formulas). The first term of the
variance formula of X (¢) (D(t)) U?{ (0 (O‘% ,(t)) provides the variance when
the system is initially empty (which coincides with the variance formula

n [30]). The second term 03( (t) (G%O(t)) represents the variance of the

content that has been in the system since time 0.

4. Proof of Theorem 3.2. We start with the FCLT for all processes
related to new arrivals from [30], obtaining

(4.1)
(Np, Np, K, Ky, Ry, X2V, X DY) = (N, N, K, K, R, X" X" D"),
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in D3 x ID)]%). By Assumption 1, it remains to show the convergence
(4.2) (X,(0,-), X,(0,-), X&°, Xm°, DY) = (X(0,-), X(0,-), X*°, X", D°).

in D? x D. We will then have the joint convergence of (4.1) and (4.2) in
D7 x D§. (The joint convergence of X,, and D,, follows from continuous
mapping theorem for addition at continuous limits.) In §4.1 we show that
the main two-parameter process X&° can be decomposed into two other two-
parameter processes Xflﬁ (t,y) and ng(t, y), that can be treated separately
by conditioning on the ages at time 0. We establish convergence for those two
processes in §§4.2-4.3; In §4.4 we prove the convergence of other processes.

4.1. Decomposition of Xﬁo To prove (4.2), we use a convenient repre-
sentation of X5°(t,y). Let 7,4(t) = 1{ni(7n,s) > t} — HE (t). From (2.3),
(2.7) and (3.2), we can write

X5 (0,(y—t)h) (y—t)+
-€,0 1 c
Yoty = Vil > tnt >0 [ a@Hod
" i=1 0
1 X5(0,(y—)1)

= o= 2 (mn) >0 - H )

1=1

(y—t)t _ (y—t)t
v ( /0 HE(#)dXE(0,2) — /0 a(x)H;(t)dx>

1 X007 (y—t)+ )
- T (t +/ HE(t)dXE(0,
NG ; (t) ; (t)dX5(0,z)
(4.3) = X 1ty + X5t y),

where the second equality holds by adding and subtracting H, ,(t) in the
sum.

To prove the convergence of (4.3), we will show the joint convergence of
the two terms on the right-hand side of (4.3) and apply the continuous map-
ping theorem with addition. We know that joint convergence of two random
elements is equivalent to the individual convergence of both terms if they
are independent. Even though XZ‘; and Xﬁg in (4.3) are not independent,
because they both involve the age sequence {7, ; : 7 > 1} or equivalently the
counting process X¢(0, -), they are conditionally independent given X¢(0,-).
Hence, in order to treat the two terms separately we condition upon the age
sequence and then uncondition. In doing so, we apply the assumed conver-
gence in Assumption 1 together with the following lemma, which expresses
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the argument used in the proof of Theorem 7.6 of [29], which follows §5 of
[42]. In particular, a variant of the following lemma is uses in §7.3 of [29] to
extend FCLT’s for M /M /n/m,, queues to G/M/n/m, queues, allowing a
general arrival process that satisfies a FCLT. The spaces are different here,
but the argument is the same.

LEMMA 4.1. Let {Y, :n > 1} and Y be processes with sample paths in
Dp, and let {Z,, : n > 1} and Z be processes with sample paths in D. Let
Y,?n (Y?) denote Yy, (Y) conditioned on Z, (Z). If Z,, = Z in D and
(4.4)

YnZ" =Y? in Dp whenever Z,—Z in D as n—oo w.p.l,

then Y, =Y in Dp as n — oo.

We apply Lemma 4.1 with the initial age process Xﬁ(O, -) playing the role
of Z,. The required convergence in distribution holds by Assumption 1. We
will then condition on the ages and assume that

(4.5) Xe(0,-) = X¢(0,-) in D w.p.l.

In (4.5) we use the Skorohod representation theorem to replace convergence
in distribution by convergence w.p.1. It remains to establish the limit (4.4),
assuming (4.5).

Given that we condition with respect to the ages and then uncondition,

in order to establish the joint convergence (X'e’o X©9,X¢(0,-), X£(0, )) =

n,1»“*n,2>
(Xf’O,XQE’O,Xg,X[?) in D3 x D?, it suffices to prove (X;:‘{,Xﬁ((), )) =
(Xfﬁ",xg) in Dp x D and (X;:g,)z;(o,-),)’(g(o,-)) - (X;",Xg,xg) in
Dp x D?; i.e., it suffices to treat the two terms separately. Aside from the
conditioning, we would be using Theorems 11.4.4 and 11.4.5 in [41], which
justify joint convergence. We next separately prove the convergence of two
terms in (4.3).

4.2. Convergence of the First Term in (4.3). In addition to the condi-
tioning discussed above, we use the compactness approach to prove (4.4) in
order to establish convergence of the first term in (4.3); i.e., we prove con-
vergence of the fidis in Dp in two steps and then we prove tightness in the
third step. In Step 1 (§4.2.1), we establish convergence of the four-parameter
covariance functions of XZ({, referred to as K, (t,y,t',y/), to those of X,

defined as K(t,y,t,y’) in (3.7) in Theorem 3.2. In Step 2 (§4.2.2), using
the convergence of the covariance functions, we establish the convergence
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of the fidis of X’;‘{ in Dp, which is equivalent to the joint convergence of
(Xg;‘;(tl,.),...,X;;‘l’(tk,-)) in Dk forall k > 1and 0 < t < --- < #.
We do this in two sub-steps: First, we show the convergence of the fidis of
the vector (Xfl({(tl, S ,XZ({ (tg, )) in the second argument, namely, the

joint convergence of the bigger vector (Xfl‘i(t“y]), 1<i<k,1<j5< m)
in R**™ for all m > 1and 0 < y; < -+ < Ym. Second, we establish the
tightness of (Xfl’f{(tl, Dy ,Xﬁﬁ(tk, )) in D¥. In Step 3 (§4.2.3) we prove
that X7 is tight in Dp.

4.2.1. Step 1: Convergence of covariance functions. As indicated above,
we start by conditioning on the ages. Let E™ denote the conditional expec-
tation operator, conditional on the ages or upon the process X£(0,-). Upon
conditioning, the first term in (4.3) is a non-random sum of the indepen-
dent mean-zero random variables 7, ;(t) defined at the beginning of §4.1.
Hence,

XE(0,(y=t) Ay —t')T)

T | v€o0 - €,0 1 7|~ ~
E [th(t,y)th(t/vy’)} = Z E [Un,i(t)ﬂn,i(t,)
=1
(4.6)
1 X5 (0,(y—t) A =t") )

(y—t) P A =)t _

= S H (WHE ()= / Ho (0 HE() dX5(0, u).

n ¢ 5 n,i 0
=1

Assuming (4.5), which corresponds to convergence of finite measures, from
(4.6) we have

BT [ X000 XS]
(y—t) " Ay =)t )
0

because the integrand is a continuous and bounded real-valued function (see
(2.1) of §3.2 in [41]).

That completes this part of the proof, but we also continue to directly
show convergence of the covariance functions. Since the random variables
in (4.7) are bounded by X, (0) < X' < oo (applying Assumption 3), we
also have convergence of the means associated with the convergence in
(4.7), yielding convergence of the covariance functions after unconditioning,
ie.,
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BB [X0 0 0) X0 ()|
(y—t)F A —t)T B
/ Hy(#)HE(t') dXE(0,u)
0

(y—t) Ay —t))
(48) 5 / H(O)HS(H) dXo(w) = K (t, .1 y).
0

K(t,y,t,y)

= E

As an immediate consequence of (4.8), we have an expression for the
variance functions and their convergence,

(4.9)  o2(t,y) = Ku(t,y,t,y) =E

(y—t)* _
/ H, (6 (1) dXﬁ(O,m]

t)+
e/ HE(t) dXo(u) = o2(t,y).

4.2.2. Step 2: Convergence of the fidis in Dp. We again apply Lemma 4.1
and start assuming (4.5). Hence, for each n, we condition upon the ages.
Step 2a: Joint convergence in R¥*™, Fix m>1land 0 <y < --- <

ym- The convergence of the fidis of the vector <X§‘{ (t1,+),... ,)A(Z’E(tk, ))
in the second argument is equivalent to the joint convergence of the bigger
vector (Xeo( i), 1 <i<k1<j< m) in R¥*™_ By the Cramér-Wold

device (see Theorem 4.3.3 of [41]), this is equivalent to showing that, for all
{aij}GR i=1,...,kand j=1,...,m, as n — o0,

(4.10) Zzamxe”tz,yﬂ éZZa,,leotz,y])gN(O,E) in R,

i=1 j=1 i=1j=1
where the variance of the limit is
kE m k m
(4.11) Y= Z Z Z Z a;jay j K (ti, y;,tir, yjr).
i=1 j=1i'=1j'=1

To establish (4.10), we define the random variables

k m
ﬁ (ti) and YV, =) ai i X0 11 < X (0, (y; — ) 1))

i=1 j=1

an

56,

sl

Since ffn,j, j > 1, are independent random variables, conditioned on X£(0, -),
we can rewrite the left-hand side of (4.10) as

X5(0,(y;—ti)™) X5(0,M)

kK m k m ~
ZZ nl tlayj ZZ Z Xn,l,i = Z Yn,la
i=1 j=1 i=1 j=1 =1 =1
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where M = max{(y; — ;)7 : 1 <i <k,1 <j <m}. By the final expression
above, S’n is a sum of independent r.v.’s. Of course, the summands }N/n,l
and the index X£(0, M) both depend on n, but they do so in a regular
way because, to apply Lemma 4.1, we are assuming that (4.5) holds. For
example, this means that n~1X¢(0, M) — X¢(0, M) < XT < oo.

Hence, we can now apply the Lindeberg-Feller CLT for a double sequence
(triangular array) of non-identically distributed independent random vari-
ables, e.g., Theorem 7.2.4 of [12]. The variance of S,, is

_ kK m k m
5,2 = Var(Sn)) = Z Z Z Z Qg 5 Q! 4 ’K t27yjati’a yj')
i=1 j=14¢=145'=1
k jm Zk: m
(4'12) — ZZZZ ,]a/l/j/K(tl?yj7 zayJ)EZ
i=1 j=14¢=145'=1

as n — oo where 3 is defined in (4.11) and the convergence follows from
(4.8). It remains to verify the Lindeberg conditions (see (2.1)-(2.2) on p.330
of [12]) or the Lyapounov condition (see (2.20) on p.339 of [12]). However,
since {X,,;;} take values in the interval [—1/y/n,1/y/n] and the variance
Sp, converges to X in (4.12) as n — oo, the Lindeberg condition is satisfied.
Therefore, by Theorem 7.2.4 of [12], if (4.5) holds, then

(4.13) Sn/3, = N(0,1) asn — oo,

which together with (4.12), imply the desired convergence in (4.10) under
the condition (4.5). Lemma 4.1 then provides the unconditional convergence.

Step 2b: Tightness in D*. We now establish the tightness of the vector
(thf(tl,),,f(?ii(tk,)) in D¥, again assuming (4.5). This tightness is
equivalent to the tightness of each component XZC{(tZ, )inD, forall 1 <i <
k, by Theorem 11.6.7. of [41].

We prove tightness of the components by proving a stronger result. Par-
alleling §7 of [23], we show that, for each fixed ¢, as n — oo,

(4.14) Xoity)=—= D fnilt) = Bloi(y)) in D,

where B is a standard BM. To prove this, we observe that, under the con-
ditioning on the ages, the process {X©9(t,y) : y > 0} with fixed ¢ is a
martingale with respect to its natural filtration augmented by the age se-
quence {7,;} since the function y — X¢(0,y — t) is strictly increasing for
each n > 1. Then we can apply the martingale FCLT in Theorem 7.1.4 of
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[6], exploiting the fact that the summands are independent [—1, 1]-valued
zero-mean random variables. The first variance function in (4.9) with ¢ fixed
is the quadratic variation of {XZ? (t,y) : y > 0} and converges to the second
variance formula in (4.9). Hence the function o2(y) in (4.14) for each fixed ¢.

Note that the weak convergence of the components implies their tightness.

4.2.3. Step 3: Proof of C-tightness of {X©} in Dp. To complete the
proof of the convergence of the first term of (43) under condition (4.5), we
next show that the sequence {X©9} is C-tight in Dp. To do so, we verify
the usual two conditions: (i) stochastic boundedness and (ii) asymptotically
negligible oscillations, as in Theorem 6.2 of [30]. The specific conditions we
establish are (4.15) and (4.26) below.

Verifying condition (i): Stochastic Boundedness. Let P and E™ be
the conditional probability and expectation given the ages {7, ;}. It suffices
to show, under condition (4.5), that for all € > 0, there exists ¢ > 0 such
that

(4.15) P (| X5 Ny > ) <e forall n>1,

where HXr?,Cl,HT,yT = SUD(t,4)€[0,T]x[0,y™] |X2’,? (t,y)l-
To bound the probability in (4.15), we apply Chernoft’s inequality (e.g.,
see Lemma 3.1.1. of [12]), obtaining, for r > 0,

(416) IP)T(HXZ:({”T,yT = C) < e~ TC T |:6THXZ:({”T,1JT] ,

To bound the right side of (4.16), we follow the symmetrization argument
used in the proof of inequality 3 on p.820 of [36] (which in turn follows
Lemma 1.1 of [27]). Let the sequence {n/(7,;)} be an independent copy of
{ni(7n4)} conditional on {7,;} and let & be i.i.d. random variables, inde-
pendent of {n;(7,:)}, with P(& = 1) = P(&§ = —1) = 1/2. Also let X' be
Xf;‘i with {n;(7n:)} replaced by {n(7s)}. Let ETEJ.Ef denote the expec-
tation with respect to {£;} conditioned on {7}, {n;} and {n;}; let EJE7.
denote the expectation with respect to {n;, ;} conditioned on {7} and {n;};
and so on.
The next two lemmas will be used in the proof.

LEMMA 4.2. Let X and X™* be two i.i.d. elements in space Dp. Suppose
a function ¢ is conver and nondecreasing with domain [0,00). Then

(4.17) E [¢(1X = E[X][l7y1)] < E[o(IX = X7||7,0)] -
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We omit the proof because it is similar to that of Lemma (A.14.15) in
[36], but we do give the proof in the appendix of the longer online version.

LEMMA 4.3. Let (; and w; be real-valued numbers with w; > 0 for 1 <

i < N and let {w(i), 1 <i < N} be the order statistics of {w;,1 <1i < N}
with wy < w(yyy for 1 <i <N —1. For T >0,

Z G

Proof. We partition the interval [0,7] into disjoint intervals with end
points 0 = w) Sw )y AT < -+ <wyy AT < wiyyr) =71 We have

(4.18) max , 0<t<T.

1<j<N

ZQ W(N—-i+1) > t)

N

ZCZ]'( W(N—- z+1)>t

i=1

We now continue to bound the right side of (4.16). For that purpose,

define
1 X5 00,(y=t)%)
(4.19) Lnit,y) = —= & - 1(ni(Tn) >t) and
v i=1
1 Xs(i %)
Iity) = — §i - 1(n (Tni) > 1)
v i=1
Let Nyi(y,t) = X5(0,(y — t)*) and {7, ;5,1 < i < Nji(y,t)} be the order
statistics of {ni(7n:),1 < i < N;(y,t)} so that 7, (nx(y)—it1) IS the ith

largest one.
With that preparation, we can write (explanation given afterwards)

B [oxp (1 1X550y )| < B [exp (v 155 = X5l )|
=E" |exp |7 ||n~!/? Ng%t) (L (mi(7n) > 1) = 117 () > 1))

=1 Tyt
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=E" |exp | r |[n /2 Z §i - (L(ni(Tni) > t) — 1(n; (Tni) > 1))
Ty"

<E" [exp( |10, (t, y)HTyT +r HPM t.y) HT,yT)]

= EJELEL |exp (r [Tai(t, )l + 7 [Thslt. 0)]l 7,0 )]

1/2
<E} [Bf e (20 ITnilt )l )| B (B exp (2 I8 0) )

= E78Z [exp (20 [Tni(t:9)lry: )|
Ny (y,t)
:E;Eg exp | 2r ||n —1/2 Z & -1 Un(N*yt z+1)>t)

1/2

Tyt

3]}

< Eg [exp | 2r sup max
I (ty)€0,T)x[0,y1] | L<ISNG (y:t)

n_l/gzj:&: )] ;
=1

where the first inequality holds by Lemma 4.2; the first equality holds be-
cause the centering terms cancel out; the second equality holds because
& - (Ami(rg) > 1) = 10 (7)) > 1) 2 Lmi(raa) > 1) = 10} (ra) > 1);
the second inequality follows by (4.19) and the triangle inequality; the third
equality holds by conditioning on the 1 and n*; the third inequality holds by
applying the Cauchy-Schwarz inequality on the expectation EE; the fourth
equality holds because {n;(7,,)} and {n}(7,,)} are two i.i.d. copies; the fifth
equality holds because the two sequences {;} and {7;(7,,;)} are independent;
the fourth inequality holds by Lemma 4.3; and the last inequality holds be-
cause t and y appear only in the upper limit of the inner maximum N;(y, ),
which itself is bounded above by X,,(0).

To bound (4.20), we apply integration by parts as on p. 150 of [7] to write
the moment generating function of a non-negative random variable Y as

(4.20)

< Eg [exp (27" max
1<5<Xn(0)

(4.21) E [eey} =1 +/ 0e’*P (Y > z) da.
0

Therefore we next provide an upper bound on the tail probability using
Lévy’s inequality .(e.g., Theorem 3.7.1 on p.138 of [12] (also Theorem B.1
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in the appendix of the longer online version); in particular

(4.22)

PT ( max
1<5<Xn(0)

where the second inequality follows from Hoeffding’s inequality (e.g., Theo-
rem 3.1.3 on p.120 of [12]; also Theorem B.2 in the appendix).

Combining (4.20)(4.22) with 6 = 2r and ¥ = 1 &
ombining (4.20)—(4.22) wi r an 1§jngl%(}i(0) VDD AR

1 Xn(0)

Vi

z2
§i| > x| <de 2O,

1 J
%Z& > $> < 2P7
=1

yields that

2

oo xT
E [eXp (THXS’EHT,W)] <1+ 4/0 2reX T THn®) dy

(93727*)_(”(0))2

= 14 8ry/21X,,(0)e? () / (27X, (0) e @ da
0
(4.23)
=1+8r 27r)_(n(0)62T2X"(0)(I> <27" Xn(0)> <1+8r QWXH(O)62T2X"(O),

where @ is the cdf of the standard normal distribution. Here we assume with-
out loss of generality that X,,(0) > 0 because (4.20) becomes 0 if X,,(0) = 0.

Now recall that we are assuming (4.5), so that we have X,(0) — X(0)
w.p.1 as n — oco. Moreover, this convergence implies that there exists a
constant K such that

(4.24) X,(0)<2X(0)+K=X" forall n>1,

where X1 depends on the particular age sequence associated with our con-
ditioning. _
Letting r = 1/4/X,,(0) in (4.23) and applying (4.16), we have

Tyt > c) < (1 + 8\/%62> E™ [exp <_X;(O)>]

< (1 + 8@8) exp (—\/%) :

P (|| X5

which converges to 0 as ¢ — oo.

Verifying condition (ii): asymptotically negligible oscillations.
We show that the oscillations are asymptotically negligible, again assuming
(4.5). For that purpose, consider an arbitrary sequence of uniformly bounded
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stopping times {r,} with respect to the natural filtration F,, = {F,,(t),t €
[0,00)} VN where

Falt,y) = o{l(ni(1ni) > ) : 1 <i < X5(0,y),2 >t,0< s <y}
Vo{X5(0,(y —2)7), x> 1,0 < s <y},

(4.25) Folt) = \/ Fult,y),
y>0

and N being all the null sets. We will show that, for any § > 0 and € > 0,
and for any such sequence of stopping times {x,},

2

(4.26) lim limsup sup E” (Sup X (kin + 6,y) — X (K, y)‘) =0,
00 nooo  kn y>0 ’ ’

which is a sufficient condition for condition (77) in Theorem 6.2 of [30].

To establish (4.26), we condition on the sequence {x,} as well as the se-
quence {7, ;}. As in Step 2b, conditional on the sequences {x,} and {7, ;},
the process {Xﬁl (t,y) : y > 0} with ¢ fixed is an adapted martingale with re-
spect to Ft = V>0 FL(y)V{kn}V{Tni}, where F!(y) denotes the o-algebra
Fn(t,y) in (4.25) with ¢ being fixed. Consequently, with the conditioning,
the process (XZ‘{(/% +4,y) — X’Z"i(nn, y), y > 0) is an ]?‘;fb"*‘s—adapted mar-
tingale. Let E™* denote that the expectation is computed by conditioning
on {7} and {k,}, let Var™" be the conditional variance. Then, by Doob’s
maximal inequality,

2
E™® (sg}g Xﬁ’ff(ﬁn +0,y) — X’fﬁ(mn, Z/)D
y>

. . 2
< 4 sup E™" <X2’E(fin +0,y) — X9 (Kn, y))

y=>0
4 X're;(o’(yflinfé)-‘—) Xf}(O,(y*Hn)"')
= sup Var™® ST 1) >k +0) = > 10i(Tag) > k)
y= i=1 i=1
4 XE(0,(y—rn)™)
< —sup Var™" Z 1(kn < 0i(Tni) < Ky +0)
" y=0 i=1
4 X5 (0,(y—rn)™)

=—sup Y H] (k)1 - H] (k)

n
y=0 i=1

4 [T En)(1 = H5) X500
0
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) B oo 4gT5 B

<4 HO(M) dX¢(0, </ S a—r ()
<4 [T mon axiom < [ 00 i)
(4.27)

4935 %.,(0) 4985
G(T+yh)" "~ G(T +y")

XT -0,

as 0 — 0. Therefore, the condition in (4.26) is satisified. In the steps above,
HO(t) = Hy(t+6) — Hy(t), M = sup,,~, |kn| and X1 is the bound in (4.24).
The first equality holds since the sums are zero-mean random variables con-
ditioned on {7,;}, {kn} for all t > 0, y > 0, whereas the second equality
holds due to (conditional) independence. Starting from the third equality,
{7n,i} and {k,} are necessarily treated as deterministic sequences. Assump-
tion 2 implies that we are not dividing by 0 in the final step.

4.3. Convergence of the Second Term in (4.3). In this section, we es-
tablish convergence of the second term in (4.3), i.e., XZ; = X5, again
conditioning on the ages and assuming that (4.5) holds, so that we can
apply Lemma 4.1. Since XS(O, -) is of bounded variation, the second term
in (4.3) can be expressed as a Stieltjes integral. Therefore, we can use the
integration by parts formula given on p.336 of [2] to obtain an equivalent
representation

(y—t)*t

(4.28) Xo5(ty) = - /0 HE(H)dXE (0, u)

. (="
= iy e (OX5(0. =) = [ Xr0um)an .

Since we are conditioning on the ages, everything in (4.28) is deterministic.
Hence, we will show that the convergence follows by continuity (convergence
preservation of mappings). The mapping is a measurable mapping that is
continuous almost surely with respect to continuous limits. Measurability
in this setting holds because the Borel o-field induced by the usual topol-
ogy on Dp coincides with the usual Kolmogorov o-field generated by the
coordinate projections; see §11.5.3 of [41] and references cited there. (Hence
standard measurability arguments can be used.) If we uncondition, then
we would be applying the continuous mapping theorem in Theorem 3.4.3
of [41].

The next two lemmas allow us to establish the desired convergence. We
first show that the function HS(t) has finite variation in x over a bounded
interval, by virtue of the Assumption 2 on the service-time cdf G.
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LEMMA 4.4 (Finite total variation in = for HS(¢) in bounded intervals).
In an interval [0, T7], fOT |dHS(t)| < oo, fort > 0.

Proof. Taking the derivative of HS(t) with respect to z yields

T* T* el _ c
[y - [ nCE —swe ),
0 0 (G4(x))
(4.29) < 90 9 > T* = K(T)
) < = < 00,
GA(T*) ~ (Ge(T*))?
where we have used Assumption 2. O

We next establish continuity in the uniform metric over compact subsets
of the domain. Let dy (1, 22) = supscjo 1] [71(t) — 22(t)| for 21,22 € D and

du(y1,y2) = sup ly1(t,uw) — yo(t,u)| for wyi,y2 € Dp.
(t,u)€[0,T7%[0,00)

LEMMA 4.5.  The mapping ¢ : (D,d,) — (Dp,d,) defined by

(y—t)t
@30)  o@)(t.s) = Hy-grOally=0) = [ als)an )
for 0 <t <y is continuous in Dp.

Proof. Let {z,,} be a sequence such that d(zn,z) = ||z, — x|y, = 0 as
n — oo. Then

() (t,y) — D)t y)| < HE, e (1) |onl((y — 0)F) —2((y — 1))

(y—t)t
+ /0 (xn(s—) —x(s—))dHS(t)

(y=t)t

< H, e (t)ln — zllyo + ll2n — 2]y, /0 dHE(D)
< (14 K(o))llen — lyo,

where the finite constant K (yg) is defined in (4.29). Therefore, as n — oo,

(431) du(é(wn) @)= swp  [o(ea)(ty) — 6(2)(t,y)] = 0. O
(t,9)€[0,T] x[0,00)

Finally, we observe that Lemma 4.5 establishes the desired result, because

(i) it suffices to consider continuous limits = by virtue of the continuity

assumption included in Assumption 1 and (ii) convergence in D reduces

to uniform convergence over bounded intervals when the limit function is

continuous.
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4.4. Proof of convergence of other processes. The proof of convergence of
the other processes is elementary. First, we can apply flow conservation and
continuous mapping theorem to treat the departure process. In particular,
as n — 0o,

~

Du(t) = Nu(t) + X(0) — Xnlt) = N (1) + X(0) — X(2),

which coincides with (3.14).

To treat the remaining-service-time processes X};(O, x) and X]; (t,z), note
that X (0,z) = X2(z) = X(x,00) which is the number of initially existing
customers that are still in service at time x. Hence, as n — o0, Xﬁ (0,z) =
X9(z) = X°(z) in D, which is proved earlier in this section. Next, just as for
the ICP X¢(t, ), we split X7 (¢,z) into two independent terms associated
with new content and old content,

Xr(t,x) = X0V (t,x) + X0O(t, x),

where the convergence of X, (¢, ) is proved in [30] and the convergence of
the second term holds because

Xro(t, o) = X"(0,t+2) = Xo(t+2) = X°(t+x), as n—oo, in D.

4.5. Proof of alternative representations in (3.11) and (3.16). We only
prove (3.11) because (3.16) is similar. We obtain the right-hand representa-
tion in (3.11) using the fact that {U(¢,30)/v/y0(1 — yo);t > 0} is a standard
BM motion for a fixed 0 < yg < 1 (§A of the appendix of [30]). We have

/Ot/oool(x>t—s)dky(/\(8)7$)
:/Ot/oool(ac>t—s)dU(A(s),Gu($))

4 /t /°°1<$ >t —5)d (B AV ()1~ Gu()))
0 JO

t
= [ (VEIG50) — VLT = )Gt =) dB.(AGs).
which coincides with the right-hand expression in (3.11). To show that the
two expressions in (3.11) are indeed equal in distribution for each ¢, it suf-
fices to show that they have the same variances because both processes are
zero-mean Gaussian processes. Because the Kiefer process U(A(s), G, (z)) =
W (A(s), Gy () — Gy ()W (A(s), 1) where W is a standard Brownian sheet
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[30], the variance of the first expression in (3.11) is

</0 | 16> 1= 54 (WA, Gula) = Gl (AG) 1)))2]

</ | / U > b 5) AW (A(),Gulw) — / Gt — ) (A, 1))1
// 1(z >t —s)dA(s)dG,( /Gc dA(s)

— 2/0 /0 Gy (t—s)1(z >t —s)dA(s)dGy(x)

t
= / Gy (t — )Gy (t — s) dA(s),
0
which simply coincides with the variance of the second expression in (3.11).

5. The G¢/GI°, GI” /oo model starting in the past. We now show
that Theorem 3.2 applies to the G;/GI° GI" /oo model starting at some
time in the past, provided we impose an extra condition. We assume that
the system starts at time —ty < 0, satisfying the assumptions in §2 with
service-time cdf G. We let the service-time cdf change to G, after time
0. It suffices to show that Assumption 1 holds at time 0, which requires
an additional independent-increments assumption on the arrival process to
obtain the assumed independence of the processes. In particular, we assume
that the limit process in the assumed FCLT for the arrival process is a
time-transformed BM.

COROLLARY 5.1 (FCLT for the G;/GI° GI” /oo model starting in the
past). Consider the sequence of Gy/GI°,GI" /oo models starting at time
—tg < 0 with all the assumptions in §2 at time —tg. Let the service-time cdf
change from G to G, at time 0. If in addition N(t) = coBa(A(t)), where

= ffto A(s)ds, t > —tg, then Assumption 1 also holds at time 0, so
that Theorem 3.2 holds for t > 0, with

(5.1) “(0,y) / G(s s)ds-1(0 <y <tp)

y—to
+/ H;(to-i-y) dXe(—to,J})-]_(y>t0),
0
(5.2) X¢(0,y) = X5(0,9) - 1(0 < y < to)
+ (X510.9) + X5,(0.)) - 1y > to),
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where, with Ba, Bs and B denoting three independent standard BM’s,

Ko(A(s),z) = Uy(A(s),G(x)) and U, denoting a Kiefer process that is in-
dependent with B,

Xe(oy_cA/ Ge(— // (@ > —s5) dK,(A(s), z)

4,0 60 a5 - / VG367 (~5) dB.(A(S)

:y / \/(ci — 1)G¢(—s2) + G¢(—s)A(s) dB(s), for 0<y <tp,
-y

X51(0,y) is a zero-mean Gaussian process with covariance

N . Yy1A\y2—to
Cov (X510, X5a0m)) = [ Hulto) o) dX“ (10,1,
0
. y—to .
and XliZ(O’y): H;(tO) dXe(_thu)v fO?” Y, Y1, Y2 > to.
0

If the system starts empty at time —tg, then the variance formula for the
FCLT limit of the number in service X (t) fort > —tq is

0
a?((t) = / (e — DG (t — 5)* + G°(t — s)| A(s) ds

+/ (X = DGt — )% + Go(t — 5)] A(s) ds.
0

If in addition G = G,,, we have

t
(5.4) O'?e(t) = 0%(—tg,t) = / [(ci — DGt — s)* + G(t — )| A(s) ds.
—to

REMARK 5.1 (Verifying consistency with [30]). Corollary 5.1 provides an
important consistency check by allowing us to compare with the previous

results in [30]. In particular, we see that we get strong verification through
(5.4).

We illustrate Corollary 5.1 with the following example.

EXAMPLE 5.1 (Simulation comparison). We consider an M;/LN(1,4)/c0
model over the time interval [—tg,T] = [—5, 20], having a nonhomogeneous
Poisson arrival process (M) with the sinusoidal arrival rate function

(5.5) An(t) =n(a+bsin(ct + ), to<t<T,
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Arrival rate

140 T T T T T T T T T —— EIX, (0] sim

120 -1 EIXY ()]

100l 4 X(O): sim

80— - E[X:(l)]: sim
X - = =nX(): num

40— 1 n X¥(t): num
20 ) - n X°(t): num

Mean # in service
®
3

2 4 6 8 10 12 14 16 18 0
T — Var(X (1): sim

Var(X(1)): sim
Var(X(t): sim
=-==n rxi(t). num

2 .
n 6%(t): num

Variance of # in service
T 7 ? o
&
3,
/
£
¢
8
Y
"\
//
|
\\‘

o ) I \ | | | | | n 6Z(t): num

3 3

3

_Var(Xn(O,y)): sim

2N w s e g
s 8

: n Var(X(0,y)): num

s 3

Variance of the
initial age process

o

Fic 1. Ezample 1: Simulation comparisons of the mean and variance for the number of
customers in service in an M/LN (1,4)/oc model starting empty at a finite negative time
—to = —b, with the sinusoidal arrival rate (5.5) having parameters a = ¢ = 1, b = 0.6,
¢ =0 and n = 100.

with a = ¢ = 1, b = 0.6 and ¢ = 0. This example has a lognormal
(LN) service distribution with mean 1/u = 1 and ¢ = 4. We set n =
100.

We let the system start empty at time —ty and use the arrivals in the
negative time interval [—tg, 0] to generate the initial number of customers
in service and the age process at time 0. We expect our FWLLN and FCLT
limits to provide effective engineering approximations for the mean and vari-
ance of the performance functions. For instance, Theorems 3.1 and 3.2 im-
ply that X,(t) ~ nX(t) + v/nX(t) when n is large. Therefore, we expect
E[X,(t)] ~ nX(t) and Var(X,(t)) ~ nVar(X(t)). We next provide simula-
tion comparison results. Each simulation experiment in this paper is based
on performing 2000 independent replications of the system.

Figure 1 shows close approximations of the fluid and variance formulas
provided by Theorem 3.1 and Corollaries 3.5 and 5.1. In particular, the
arrival rate after time 0 is shown in the top plot. Then the expected number
in system of the old customers and the new customers are shown together
with the total expected number in the second plot; while the variances of the
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number in system of the old customers and the new customers are shown
together with the total variances in the third plot. In both cases, we see
the additivity. As expected, the old content dissipates by about time ¢ = 6.
The bottom plot shows the variance of the initial age process at time 0,
with age 0 < y <ty = 5 (because no customer has an age greater than t).
As expected the right endpoint in the bottom plot coincides with the left
endpoint in the third plot.

APPENDIX A: TIGHTNESS IN Dy

We now review a necessary and sufficient condition for tightness of a
stochastic process {X,, : » > 1} in space Dp. Also see [30] for details.

LEMMA A.l. A sequence of stochastic process {X,, : n > 1} in Dp is
tight if and only if

(1) The sequence {X,, : n > 1} is stochastically bounded in Dy, i.e., for
all € > 0, there exists a compact subset K C R such that

P(|| Xnllr € K) > 1 —¢, forall n>1,

where || Xpllr = 30,1 SUPiefo,1] [ Xn(s,1)|; and any one of the fol-
lowing

(73) For all 6 > 0, and all uniformly bounded sequences {1, : n > 1} where
for each n, 7, is a stopping time with respect to the natural filtration
F,, = {F.(t),t € [0,T]} where Fp(t) = 0{X,(s,-) : 0 < s < t}, there
exists a constant B > 0 such that

léiinlimsup sup F [(1 Ad g (X0 (T + 0,0), Xp (70, )P | = 0;

0 n—ooo 7,

or
(2") For all § > 0, there exists a constant B and random variables v,(§) > 0
such that for each n, w.p.1.,

E[u Ad gy (Xn(s+u,-), Xn(8,))P 1 Fn (1A dg, (Xn(s —v,-), Xn(s,)))°
< Eyn(6)|Fn],

forall0 <s<t,0<u<dand0<u<sAJ, where F, = {F,(1) :
t € [0, T)} with Fp(t) = 0{X,(s,-) : 0 < s <t} and

lélin limsup E [y,(0)] = 0.

0 n—oo
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APPENDIX B: USEFUL INEQUALITTES

In this section we review two useful inequalities. Both are used to prove
(4.22) in §4.

THEOREM B.1 (Lévy’s inequality (symmetric case), Theorem 3.7.1 of Gut
[12]). Let X1, Xa,..., X, be independent real-valued symmetric random
variables (satisfying —X; 4 X; for all1 < i <mn) andlet Sp, =Y p_y Xk,
n > 1 be the partial sums. Then, for any x > 0,

<
(B.1) P <1gl/?§n |Sk| > CL’) < 2P(|Sy,| > x).

THEOREM B.2 (Hoeffding’s inequality, Theorem 3.1.3 of Gut [12]). Let
X1, X9, ..., X, beindependent real-valued random variables such that P(aj <
X <bg) =1 forapb, € R, k=1,...,n, and let Sp, = > }_| Xp, n > 1,
denote the partial sums. Then

1,2
(B.2) P(Sn — ElSu]l > 2) < 2exp <_ ZZ—l(Qbk - ak)2> '

APPENDIX C: ADDITIONAL PROOFS

We now provide proofs of Corollaries 3.4 and 5.1, and Lemma 4.2, which
were omitted in the main paper.

Proof of Corollary 3.4. This follows from parts (ii) and (iii) of Theo-
rem 3.2. We present the proof of the four-parameter covariance formulas in
(1); the variance formulas in (i) and (ii) easily follow.

First, the covariances of X { and XQO are

Cov(XT" (t1,31), X7 (t2,92))

t1 to
=" / GS(t1 — s) AN (s) x / G (ty — 5) dN(s)]
(t1—y1)* (ta—y2)*
t1/A\t2
= c?\/ Gy (t1 — s)G (t1 — s) dA(s),
(ti—y1) T V(ta—y2)*

and

COV(XQe’O(tl, yl), X;’O(tg, yg))
(y1—ta1)* ) (y2—t2)* )
=K / H;(tl) dX()(.CC) X / H;(tg) dX()(x)
0 0

/(Z/l—ltl)Jr/\(yz—tz)+

H (t1) Hy (t2) d¥5°(z).

0
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Second, the covariance of XJ

Cov(X5" (t1, 41), X5 (ta, y2))
( L e 4 (F009. Gule) - Gl (4G 1)))

(t . <x+s>t2>d(W<A<s>,Gu<x>>—Gy<x>W<A(s>,1>)>]

=E

=E

/1 y1)+/ Lassst) AW (A(s), Gu (@) X

/ / L seney AW (A(s), Gy (2))
(ta—y2)*t JO

to

i / oy O x | Gi(tz—smW(A(s)’”]

to—y2)T

—E /t1 " /Ooi<x+s>t1>dW(A(s>,Gu(m))>< 2 Gi(ta—s)drfv(/\(s),n]

(ta—y2)*
“E| [ ct-saia / / Lot s AW (A(5), Gy (2)
BRGS0 (t2—y2)TJ0
t1/N\to t1/A\t2
- / G2 (81 V by — $)dA(s) + / GE (ty — 8)GE (s — s) dA(s)
(t1—y1) TV (ta—y2)™ (t1—y1) TV (ta—y2)™

t1Ats
- 2/ G (t1 — s)G5 (ta — s) dA(s)
(t1—y1) T V(ta—y2)t
t1 At
- / GE (11 V by — )Co(ty Aty — 5)dA(s). [
(tr—y1) TV (ta—y2)*t
Proof of Corollary 5.1. First, (5.1) and (5.2) easily follow Theorems
3.1 and 3.2 of [30] by considering the performance of a system at the end of
interval [0, to] (that is, at time ¢¢) with the system being initially empty (at
time 0). Then, it suffices to apply a time shift, that is, shifting the interval
to the left by to so that the interval becomes [—tg, 0].
When the system starts empty at —tg, following (5.2) and Theorem 4.2
of [30], the variance function of X¢(0,y) is

(C.1)
Var(X¢(0,9)) = /Oy [(3 —1)G(5)? + G°(s)] M(—s) ds, for 0<y <t
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Now plugging (5.1) and (C.1) into (3.23) yields that
to
O'?Z L) = H,(t)H,(t)G(u)A(—u) du
’ 0
to
[ ) [ = 16 P + 6] M) du

" )G+ WA () du

0
+ v HE(H)G(t+u) [(e3 — )G (u) + 1] A(—u) du
0
= v Ge(t+u) [(c3 — DG (t + u) + 1] A(—u) du
0
0
= gy G(t — s) [(ci — 1)G(t —s) + 1] A(s) ds,

where the last equality holds by a change of variable. Summing the above
equation with U?Z L(t) in (3.22) yields (5.4). O

Proof of Lemma 4.2. We mimic the proof of (A.14.15) in [36]. First for
a deterministic g € Dp, we have, for t € [0,T], y € [0, %]

Ellg = Xll7,r > Elg(t,y) — X(¢,y)| = |g(t,y) — E[X (£, 9)]l;
where the second inequality holds by Jensen’s inequality. Hence, we have

(C.2)

Ellg — Xz, > sup lg(t,y) — E[X(t,9)]| = llg — E[X]||1,-
(t,9)€[0,T]x[0,y7]

By conditioning on X, we have

E [ (I1X - X"lir)|
=Ex [Ex- [¢ (1X — X*|l71)| X]] > Ex [¢ (Ex+ [[|1X — X*|1,1] X])]
>Ex [¢ (IX —E[Xl7y1)] =E[¢ (IX —E[X]l7y0)]

where the first inequality holds by Jensen’s inequality and the second in-
equality holds by (C.2). O

APPENDIX D: A CHALLENGING TEST CASE

In order to more fully substantiate the theoretical results, we consider
a G¢/GI/oo IS model with non-Markov arrival process, non-exponential
service-time distribution and unconventional initial conditions. We let the
(artificial) initial conditions be generated by a time changed renewal process.

PODFTECHNOLOGIES

Toals & Components for Senous Developers


http://www.pdf-technologies.com

INITTAL CONTENT PROCESS 131

COROLLARY D.1 (Initial customers generated from a renewal process with
a time change). In the n'™ G;/GI/oo system, if the initial age process
XE(0,y) = N*(nX*(0,y)) where N* is a rate-1 renewal process with inter-
renewal SCV E% and the deterministic function

y
(D.1) xw)= (v <o,
then Assumption 2 is satisfied with X (0,y) = X*(y), X(O, y) = coBo(X*(y)),
fory >0, where By is a standard BM. In addition, the variance of the ICP
(that is (3.29)), is

aﬁ( /H YHE(t) dX*( +co/ HE()? dX*(u)
:/Ooo[( 1) HE(E) + 1] HE(6F (u) du.

ExAMPLE D.1 (Simulation comparison for an example of Corollary D.1).
In addition to the initial conditions specified above, we let the new input
come from an H%(1,4)/LN(1,4)/cc model in [0,7], having a G arrival
process N,(t) = N©(nA(t)), where N(© is a rate-1 equilibrium renewal
process having an H2 mterrenewal distribution with balanced means and
c3 =4, while A(t fo u)du, where \(t) is the sinusoidal arrival rate with
in (5.5) having parameters a=c=1,b=0.6, p =0 and n = 100. This
example has an LN service distribution with mean 1/u = 1 and ¢ = 4. For
the initial conditions, let N* be a rate-1 Poisson process (so that ¢3 = 1) in
Corollary D.1 and consider two density functions in (D.1)

, Lo
(D.2) b7(u) = ulp<y<a)+(2d—u) Ly<u<aqy and b3(u) = §U2 1(0<u<2d)
with d = 1.5, as shown in Figure 2.

by"(y) b;"(y)

0 d 2d Agey 0 d 2d  Agey

F1G 2. Two choices of the initial-condition density b*(u) in (D.1).
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-8 100 N 2
g ;t = === Giv(l)l num
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0 L | T L I |
0 2 6 8 10 12 14 16
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n
= Var(xf‘-°(t,2)): sim
< >150 ) :
%<8 ¢ A VarOE¥ (11): sim
:,O_, o100\ / Var(X?¥(t,2)): sim
8 .g 1 - ==no? (t,1): num
(S e,0
E % SUY \ - —ncio(tz):num
> e
0 \ L L ! L ! | | = = =no (t1):num
0 2 6 8 10 12 14 16 2 .
. no. (t2):num
Time t on(b2)
250 ‘ : )
> 200
= ©
% E150
338
Q %100
S=
L c
§ Z 50
0

Fi1c 3. Ezample 8 with b] in (D.2): Simulation comparisons of the mean and variance for
the number of customers in service of an H5(1,4)/LN(1,4)/cc model, with the sinusoidal
arrival rate (5.5) having parameters a = c =1, b = 0.6, ¢ = 0 and n = 100 and general
initial conditions.

Comparisons with simulations are shown in Figure 3. The first three plots
in Figure 3 are analogs of those in Figure 1. In the fourth and fifth plots we
give simulation comparisons for the variances of the two-parameter process
X (t,y). We provide the simulations for the case of b3 in the appendix.

APPENDIX E: AN ADDITIONAL EXAMPLE

ExaMmpLE E.1 (Simulation comparison for another example of Corol-
lary D.1). We now supplement Example 3 by considering that same
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H(1,4)/LN(1,4) /00 model with all parameters specified in Example 3, but
with b* = b3 specified in (D.2). Comparisons with simulations are shown in
Figure 4.

o
3

Arrival rate
g

50 |
0 2 4 6 8 10 12 14 16 18 20

200 T T T T T T T T Ly — E[Xn(t)]: sim
250 — E[X:(t)]: sim
EDX(D)]: sim

- - -n E[X(t)]: num
== =n EX"(t)]: num
n E[X°(t)]: num

Mean # in service
g
T

50— —

20

_Var‘(Xn(t)): sim

8 — Var(X'(t): sim
>

g Var()(';(t)): sim
i< 2.

® ---n ox(t). num
5 20

o ---n va(t). num
2 2

© n Gxn(t)Z num
&

>

0 2 4 6 8 10 12 14 16 18 20
Time

Fic 4. Example 4 with b5 in (D.2): Simulation comparisons of the mean and variance for
the number of customers in service of an H5(1,4)/LN(1,4)/cc model, with the sinusoidal
arrival rate (5.5) having parameters a = c =1, b = 0.6, ¢ = 0 and n = 100 and general
initial conditions.

APPENDIX F: STEADY-STATE APPROXIMATIONS

An important application of the results in this paper is generating useful
approximations for the steady-state behavior of general stationary G/GI /oo
IS models. Since we can apply Little’s law to conclude that the steady-state
mean number in system is p = AE[S], where S is a service time, we assume
that E[S] < oo in this section.

Finding general conditions for the existence of such steady-state distribu-
tions is complicated, even for the special case of the number in system with
renewal (GI) arrival processes, as can be seen from Remark 2 of [40]. How-
ever, assuming that steady state for the process {X"(t,-) : t > 0} in Dp
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for system n is well defined, it is natural to approximate by the steady-state
stationary process associated with the limit process {X®¥(t,-) : t > 0} in
Dp, which is itself an element of D.

As observed by Glynn and Whitt [9], pp.193-195, the steady-state be-
havior of the limit process is relatively easy to analyze. For example, they
observed, for service-time distributions with finite support in an interval
[0,y*], that the number in system is in steady state after time y*. We estab-
lish a generalization of that result, which holds because the driving processes
B.(s) and K(s,-) have stationary increments in s.

COROLLARY F.1 (Stationary version of the limiting IS age process). If
N() = ca\/XBa(-) and the system starts empty at time —tg < 0, then the
limit processes (as n — 00) of the new input in the G/GI /oo model can be
represented as

(F.1) (X7 (t.y), X3 (t,y)

_ (@/(jgf(t—s)dzsa(s),/(: /tdK (s, )

(F.2) (XT"(t,y), XT’”(t Y))

(\/)\C Gct—l—y—s dB,( / / dKAs:v)
to J+

(a) If G(y*) = 0, then the distribution of (X{"(t,-), X5 (t,-)) as a pro-
cess in D? is independent of t for t +to > y* and thus reaches steady state
at time y* if to = 0 (or is in steady state at time 0 if ty > y*);

(b) As —tg | —oo, corresponding to the system starting empty in the
distant past, the processes in (F.1) and (F.2) converge w.p.1 to the associated
stationary processes (as functions of t)

(F.3) (X7 (ty), Xe’”(t y))

<\//\c G(t — s) dB,( / / dK Asm)
t—y t—y Jt

(F.4) (X7 (t,y), X537 (t,y))

(W/G%er—sdrs / /erK)\sx)

whose marginal distribution as a function of y (as a process in D) can be
seen by setting t = 0, yielding the steady-state processes
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(F.5)

(X5 (), X5 (v) z(w—/ Ge(- <>/0/°° dms,m),
(F.6)

(X7 (), X5 ( (w—/ Ge(y — 5) dBals), /;/wdmm)

fory > 0, with covariance formulas given by
R . 9 Y1/\y2 5
Cov (X" (), X0 ) = Ak [ 6ol s,
0
N A Y1/\Y2
Cov (X5 () X5 ) =X [ G ()G9,
0

Cov (X2 (41), X5 (12)) = A2 /0 TG+ 8)G (s + 5) ds,
(F.7)
Cov(X5* (y1), X57° (y2)) = A /0 (G((y1 Vya) +5) — G(y1 + 5)G (ya + 5)) ds.

Proof. We have already established (F.1) and (F.2). The other representa-
tions hold because both B,(s) and K (\s, -) have stationary increments in s.
The limit as —ty | —oo is relatively easy because the processes B,(s) and
K(\s,-) do not change over the interval [—tg,#] if we expand the interval
on the left and consider the process over (—oo,t]. The new contribution
over the interval (—oo, —tg] decreases as —tg | —oo. This can be quantified
through the variance of the zero-mean Gaussian random variable, which is
asymptotically negligible. It thus remains to derive the covariance formulas
n (F.7). We only prove the first two because the proofs of the others are
similar. First, by the isometry of Brownian integrals,

(F.8)
. Y1A\Y2
Cov(XT*(y1), X (y2)) )\/ 2ds = )\/ G°(s)? ds.
1/\y2 0

Next, exploiting the representation of the Kiefer process in terms of the
Brownian sheet, i.e., K(x,y) = W(z,y) — yW(x,1) (see the appendix of
[30]), we have

Cov(X5* (1), X5°(2))

_E[/yl /_ W(\s, G(z)) — G(z)W(\s, 1))
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/ / W(\s, G(z)) — G(x)W()\s,l))]
(F.9) :

0 0 0
= )\/ G(—s)ds + )\/ G¢(—s)?ds — 2/\/ G¢(—s)%ds,
—Y1/\y2 —Y1/\y2 —Y1/\y2
which coincides with the second covariance formula in (F.7). O
Corollary F.1 adds to the insight about the stationary model provided
by Corollaries 3.1, 4.1 and 4.2 of [30]. As indicated in Corollary 4.1 of [30],
we see that the approximating stationary distribution depends on the ar-
rival process beyond its constant arrival rate A and the assumed FCLT
only through the asymptotic variability parameter ¢2. Thus th1s distribu-
tion is the same as for the M/GI/oco model if and only if 2 = 1.1t is
thus instructive to also consider what can be established for the M/GI/co
model directly by exploiting its special structure. So now we consider the
M/GI/oo model. It is well known that the steady-state number of cus-
tomers X, (0) = Xe(() 00) is a Poisson random variable with E[X,(0)] =
Var(X,(0)) = nAE[S] = nA fo G°(u)du and, conditioned on that number,
the ages (and the re81dual service tlmes) are i.i.d. with the stationary-excess
cdf G.(t) = (1/E[S fo G(u) du, t > 0 and ccdf GS(t) = 1 — G.(t); e.g., see
[5, 10]. Thus we have the followmg corollary.

CoOROLLARY F.2 (FCLT for the M/GI /oo model in steady state). Con-
sider a sequence of M /GI /oo models in steady state at time 0, with service-
time cdf G and constant arrival rate n\. Then Assumption 1 holds with the
FWLLN and FCLT limits for the initial age processes (and all t > 0) given

by

(F.10) X%%(0,y) = pGe(y) = /Oy a(y)dy = /Oy AGC(u)du and

€,8 d re,s* e,8%
X7(07y):X1 ()+X2 ()7

where p = AE[S] = X¢(0,00) = X(0), and XO** and X7** are independent
processes with

X7 (y) =U*(p, G ()) VP B (Ge(y))
(F.11) X5 (y) = Ge(y) X (0) £ \/pGely) Zo,

where U* is a standard Kiefer process associated with old customers, B} is
a standard Brownian bridge, Zy is a standard Gaussian random variable,

PODFTECHNOLOGIES

Toals & Components for Senous Developers


http://www.pdf-technologies.com

INITTAL CONTENT PROCESS 137

independent of U*. The steady-state version of the remaining-service-time
process

(F.12)

7,5 c > c 1,8 d orsx -1, S

X0, =pGe) = [ AG ) du and X7(0.9) L X7 )+ X5 (),
Y

N N . .
fort >0, where X{"*" and XJ*" are independent zero-mean Gaussian pro-
cesses, with

Cov (X7 (1), X7 (22)) = /O T Hy (o1 A o) HE (21 V 29) dX (0, ),
(F13)  and XP7@0) L 5 /0 " HE () dB3(Ge(w)) + VAGE(Y) Zo.
The variance of X% (1) is
(F.14) Var(X®**(y)) = / ’ AGS(u) du, y > 0.

0

As a consequence, the variance of the total content, as the sum of variances
of the new content (that is (3.22)) and old content (that is (3.23)), is

t 0
(F.15) 0% =0%  +0%, = /\/0 GC(u)du + )\/0 HE ()G (u)du

= )\/ G(u)du = p.
0

Proof. Let Aj, Ag,... be the ages (e.g., elapsed time in service) of the
customers in service at time 0. To prove the FWLLN in (F.10), we have

nXn(0)

- 1
X0,9) == Y LAi<y)= X(0)Ge(y) = pGely) inD, asn— o,

n

i=1

where the convergence holds because the age A; follows the equilibrium
distribution G, (see Theorem 1 of [5]). To prove the FCLT in (F.10), we
have

nX, (0)
(F.16) X(0,y) = 7 D 1(Ai <y) — nX(0) Gely)
=1
1 nX,, (0) A
= % Z (1(Az < y) - Ge(y)) + Xn(0> Ge(y)
=1
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— Ky, (X,(0), Ge(y)) + X0n(0) Ge(y)
= U* (X(0), Ge(y)) + X(0) Ge(y)

L /X 0)B: (Ge(y)) + vVX(0) Ge(y) 20 in D,

as n — 0o, where the second equality holds by adding and subtracting G (y)
in the sum, and the convergence holds by (i) the marginal convergence of
each of the two terms in (F.16) (due to the Gaussian CLT limit for a Poisson
random variable) and by (ii) Lemma 4.1 and the conditional independence
of these two terms conditioning on X,,(0) (with arguments similar to §4.1).
The variance formulas (F.14) and (F.15) immediately follow from (F.12)
and (3.23) with G, = G. The proof of the FWLLN limit in (F.12) follows
from (F.10) and Theorem 3.1, and the proof of (F.13) follows from (F.12),
Theorem 3.2 and Corollary 3.3. O

COROLLARY F.3 (Two equivalent decompositions). For the M/GI /oo
model (with c2 = 1), the two representations (F.5) and (F.10) ((F.6) and
(F.12)) are equivalent independent decompositions, i.e.,

(FA7) Xp7 4 X5 L X094 X5° and X7 4+ X3 L X7° + X7,

Proof.  We only prove the first equality in (F.17) since the second equality
follows similarly. Because all four terms in the first equality of (F.17) are
zero-mean Gaussian processes, with Xf’s* independent of X;’s* and Xf’s
independent of X;s, it suffices to show that

~

2 2
(F.18) ) Cov(Xp™ (), Xp™(12)) = Y _ Cov(Xp* (1), X (32)),
k=1 k=1

By (F.11), we have

Cov(X7™ (y1), X7 (y2)) = p[Ge(y1) A Ge(y2) — Ge(y1)Ge(y2)]
Cov(X5™ (y1), X5 (42)) = pGe(y1)Ge(y2).

so that the left-hand side of (F.18) is pGe(y1) A Ge(y2) = A foyl/\yQ G(u) du,
which coincides with the right-hand side of (F.18), according to (F.7) with
cqe = 1. O

The corollaries above show that the evolution of new and old content
after some time is somewhat complicated for this basic M/GI/oco model,
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Fic 5. Ezample 2: Simulation comparisons of the mean and variance for the number of new
and old customers in service of an M/H2(1,4)/c0 model in steady state, with a constant
arrival rate n\ = 100.

even though the steady-state distribution at one time is remarkably simple.
We now illustrate with an example.

ExaMPLE F.1 (Simulation comparison for an M/GI /o in steady state).
We consider an M/Hy(1,4)/00 model in [0, T'], having a Poisson arrival pro-
cess with constant arrival rate \,, = nA for A = 1, an H» service distribution
with balanced means,i.e., a mixture of two exponential r.v.’s with rates
and pg with probability p. We set uy = 2pp, po = 2(1 — p)u, p = 1 and
p = 0.5(1 — v/0.6) so that the mean 1/ =1 and ¢ = 4. We set n = 100.

Since the model is in steady state at time 0, we use a Poisson distribution
with mean nA/u to generate the number of customers at time 0. To generate
the elapsed times in service (e.g., ages) and the residual service times for
these customers, we use the equilibrium version of the service distribution,
which again follows an Ho distribution, but with altered parameters, specif-
ically with p* = pus/(ppo + (1 — p)p1), ui = w1 and pd = p. See Theorem
1 of [5]. See Figure 5 for the simulation comparison, which is an analog of
Figure 1.
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