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Abstract

We establish a limit theorem supporting a Poisson approximation for the
departure process from a multi-server queue that tends to have many busy
servers. This limit can support approximating a flow out of such a queue in
a complex queueing network by an independent Poisson source. The main
ideas are: (i) to scale time so that previous many-server heavy-traffic limits
can be applied and (ii) for time-varying arrival-rate functions, to scale (spread
out) time by a large factor about each fixed time.
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1. Introduction

Complex queueing systems are typically networks of queues, with arrival
processes at individual queues being composed of departures and overflows
from other queues, with the service-time cumulative distribution functions
(cdf’s) often being not nearly exponential. Thus an arrival process at an
internal queue usually can not be assumed to be exactly a Poisson process;
e.g., see [1]. Nevertheless, a Poisson approximation may be reasonable.

Example 1.1. final checkout in online shopping. Suppose that we want to
develop a stochastic arrival process model for the final checkout in a complex
online shopping system. Many separate people shop online until they are
ready for final checkout, To illustrate, we model the checkout as the second
queue in a two-queue G;/GI /oo — -/GI/1 network, in which the first queue
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is an infinite-server (IS) model with a general arrival process having a time-
varying arrival-rate function A(t¢), which is independent of service times that
are independent and identically distributed (iid) with a general cdf F having
a continuous probability density function (pdf) f with F(t) = fg f(s)ds,
t > 0. The output of the IS queue is the arrival process to a final single-
server (SS) checkout queue, with general service cdf, unlimited waiting room
and service in order of arrival. The exact form of the departure-rate function
from the IS queue is

5(t) = / Pt — ) ds, (1)

as given in Theorem 1 of [2]; it is the same for G; as for M;; see §5 of [3].
In this setting we provide support for approximating the final SS queue by
an M,;/G1/1 queue, where the arrival process is a nonhomogeneous Poisson
process (NHPP) with arrival-rate function 6(¢) in (1). An efficient algorithm
to calculate performance measures when A(t) is periodic is given in [4].

For a concrete simulation, consider the stationary GI/GI /oo — -/GI/1
model in which all service times are iid and the external arrival process is a
renewal process. To introduce extra variability, we assume that all three G1
components have the hyperexponential cdf (Hj, mixture of two exponentials)
with squared coefficient of variation (scv, variance divided by the square of
the mean) ¢* = 4 and balanced means as on p. 137 of [5]; that leaves only
the mean or its reciprocal, the rate, to be specified. We let the arrival rate be
A = 100 and the service rates at the two queues be py = 1 and py = 200. By
Little’s law, these rates make the mean steady-state number of busy servers
in the IS queue be 100, which we regard as moderately large scale. In actual
online checkout, the mean number of busy shoppers is likely to be much
larger, and the difference between the two service rates is likely to be even
greater.

In this context, we suggest that the performance at the final SS queue
can be approximated by the M/H5/1 model, for which the mean steady-
state waiting time before starting service has the Pollaczek-Khintchine (PK)
formula EW = puy ' (1 + ¢2)/2(1 — p) = 0.0125 for p = 0.50, py = 200 and
c? = 4. The intuition is that, with many busy servers, the departure process
from the IS queue is much like the superposition of iid renewal processes,
one for each server, for which the limit is Poisson, as discussed in §9.8 of
[6]. Of course, the servers do not remain busy all the time and the number
of busy servers is random, varying over time, so that that representation is



only approximate. Thus, there remains something to prove for departure
processes.

A simulation experiment was conducted for this example. It shows that
the interarrival-time cdf at the second queue is approximately exponential
with mean 0.01 and that the estimated mean wait EW is only 8% above the
PK formula for M arrivals; see the appendix for more details.

We conclude this example by mentioning that part of the justification
for the M/H,/1 approximation with a Poisson arrival process for the SS
queue is the relatively low traffic intensity at the SS queue, because the
departure process from the Hy/Hs/00 IS queue with many busy servers is
only approximately Poisson over a short time scale. For example, the central
limit theorem for the departure process will not have the same variability
parameter as for a Poisson process. As discussed in §9.8 of [6], there is
different variability at different time scales. As p 1 1, the ratio of the actual
mean EW (p) to the mean with Poisson arrivals increases. We found that
the M/ H,/1 approximation for the mean EW was 27% low when the service
rate at the second queue was decreased so that ps = 0.90. See [7] for a related
superposition process example. =

In [8] we previously established a limit theorem supporting the Poisson ap-
proximation for the departure process in the simulated example; our purpose
here is to extend the result to a larger class of models. First, for infinite-
server models, we extend the result established for the GI/Ph/oo model in
9] to the G;/GI /oo model, having a general service-time distribution (the
GI) instead of Ph and from a renewal arrival process (GI) to general (allow-
ing non-renewal) arrival process with a time-varying rate (the G;). The proof
is similar, except now we apply the two-parameter MSHT FWLLN for the
G1/GI /oo model reviewed in [10] instead of the single-parameter FWLLN
for the GI/Ph/oo model in [9].

We are also interested in establishing a result that applies to models
with finitely many servers, perhaps including customer abandonment and
feedback. A concrete example of a closed network of two -/GI/s queues
which could be used in this way is contained in [11]. In that model there
is one SS station with state-dependent service rate and one IS station. In
the same spirit, our approach provides the basis for an alternate proof of a
Poisson limit for a queue with delayed feedback (which can be regarded as a
-/GI /o0 IS queue) in [12]; they established the Poisson limit using a coupling
technique.



The Poisson limit in [8] was established using martingale methods The
“martingale method” means that we focus on the stochastic departure rate
or intensity of the departure process and its integral, called the compensator,
which depends on a specification of the history or filtration; see [13] and [14]
for introductions and [15] and [16] for advanced accounts. We will estab-
lish the Poisson limit, independent of the history of the queueing system,
by showing that the compensators approach a deterministic limit; e.g., see
Theorem VIII.4.10 in [16] and Problem 1 on p. 360 of [15].

We have special interest in many-server queues with time-varying arrival-
rate functions. To obtain useful Poisson limits for those models, we will
introduce a new scaling method, spreading out time about a fixed reference
time. The Poisson limit then provides support for approximating the depar-
ture process by an NHPP. For the required MSHT FWLLN’s in G;/GI /o0
and G;/G1/s; + GI models with general nonstationary arrival processes, we
can apply [10, 17] and [18, 19], respectively. These limits exploit a random-
measure or two-parameter framework. We present our results with minimum
technicalities; we refer to those papers for the details.

In §2 we review the MSHT FWLLN in a G;/GI /oo model and establish
the required FWLLN for the departure rate process in Theorem 2.1. In §3
we establish the main result, Theorem 3.1, which provides general conditions
for the desired Poisson limit in terms of associated MSHT limits. We present
additional supplementary material on the simulation for Example 1.1 and a
direct NHPP approximation for the departure process in an appendix, which
is available from the author’s website.

2. Review of the MSHT FWLLN for G;/GI /oo Queues

We start by reviewing the MSHT FWLLN in Theorem 3.1 in [10], because
we will use established properties as conditions in our new theorem for other
models.

Let = denote convergence in distribution and let D = D(I,R) be the
usual Skorohod space of right-continuous real-valued functions with left limits
on a subinterval I of the entire real line R, possibly R itself [6, 15, 16]. In our
setting with a continuous limits, convergence in the Skorohod .J; topology is
equivalent to uniform convergence over bounded subintervals of I.

We consider a sequence of queueing models indexed by n. Let the arrival
process have a well-defined arrival rate for each n; i.e., let A,(t1,t2) be the



number of arrivals in model n in the time interval (¢, t5] and assume that

ElAy(t,t2)] = nA(t1, £2), where A(ty,t) = /tQ)\(s)ds @)

t1

for —oo < t; < ty < 400, with = denoting equality by definition. This can
be achieved by scaling (accelerating) time in a fixed arrival process. Thus,
the arrival rate in model n is

An(t) =nA(t), —oo <t < +o0. (3)

As a regularity condition, we also assume that 0 < A(t) < Ay < co. We
furthermore assume that the system starts empty at time —t, < 0. That
avoids having to carefully treat the initial conditions, but for a way to do so,
see [20]. Let A,(t1,t2) = n~ 1A, (t1,t2). We assume a FWLLN is valid for
the arrival processes; i.e.,

sup ‘An(tlu tg) — A(tl,t2)| =0 as n— o
tr<t1<to<ty

for all ¢, and ty with —oco < —tg < t; < ty < oo (weak convergence
uniformly over bounded intervals).

Assumption 1 of [10] allows a general sequence of arrival processes, but
they are required to satisfy a functional central limit theorem (FCLT) be-
cause the primary concern was establishing the MSHT FCLT. That FCLT
condition can be weakened to having only a FWLLN, because Theorem 3.1
only requires the MSHT FWLLN conclusion. The proof of the FWLLN for
the number of busy servers under the weaker FWLLN condition is not dis-
cussed in [10], but it is discussed in [14]; see Theorem 3.6 and §§3.4, 4.3, 5.2,
6.1 and 6.2.

Assumption 2 of [10] stipulates that the service times come from a single
i.i.d. sequence, independent of n and the arrival processes, distributed as a
random variable S having a general cdf F'. In addition, we require that the cdf
F have a continuous pdf f in terms of which we can write F'(t) = f(f f(s)ds,
t >0, for F¢(t) = 1 — F(t), and a failure-rate function h(t) = f(t)/F(t)
that is bounded over finite intervals. In [10] the system starts empty at time
0. Without loss of generality, we assume that the system starts empty at
time —tg < 0. We then can let {5 — oo to obtain the simple approximation
formula in (1).



Let N;(t,y) be the number of customers in service at time ¢ in model n
that have been so for at most time y. Let N be the FWLLN-scaled version
NE(t,y) = n~ NE(t,y). A variant of (3.5) and (3.7) of Theorem 3.1 of [10]
then implies that

s NE(Ly)— N(Ly)l =0 as n— oo (4)
tp <t<ty,yr<y<yu
for all t; and ty with —oco < —ty < t;, < ty < oo and for all y;, and yy
with —0o < y; < yy < oo (again weak convergence uniformly over bounded
intervals), where

N%uwzéAyF%@A@—sﬁk. (5)

Let D,(t) = An(t) — Nj(t,t +to) be the associated departure counting
process in model n and let D,(t) = n~'D,(t) be the fluid-scaled version.
Along with (4), we also have the limit

D,= D in D(|~ty,00) as n — oo, (6)

where
t+to
D(t) = A(t) — N°(t,t +to) = / F(s)A(t — s)ds, t > —to. (7)

For the new part, let A, (¢) be the stochastic departure rate at time ¢ in
model n. The departure rate can be expressed as a stochastic integral (which
is just a random sum) via

t+to
An(t) = / W) AN () dy, £ > —to. (®)

As in (2.1) of [8], we use the left limit ¢— in (8) to make A, (t) be the
predictable stochastic intensity with respect to the appropriate history that
includes the ages of all the customers in service and the history of the arrival
process at each time ¢; see §1.3 of [13] and [14]. That can be understood
and justified by a discretization argument, dividing the interval [—ty, ] into
k subintervals, doing a discrete-time analysis and then letting £k — oco. A
detailed proof is given in §5.2 of [17]; see Lemma 5.4.

To elaborate, A, (t) being a stochastic intensity means that the centered
process D, (t) — Cy,(t) is a martingale with compensator

@@:/¢A@M&t2—m 9)



again with respect to the full system history at time ¢.
Let A, =n~'A, for in (8) be the FWLLN-scaled departure rate process.
We first establish a bound on the expectations.

Lemma 2.1. (ezpectation bound) Under the assumptions above for the se-

quence of Gy/GI /oo models,

E[A, ()] < Kmax{l,t+ty} sup {h(s)} < oo (10)

0<s<t+to
for alln and t.

Proof. Since N, (t) = N5(t,00) < Ap(—to,t) we can apply (2). Since the
failure rate function h is bounded over bounded intervals, we can replace it
by a constant outside the integral. m

Theorem 2.1. (MSHT limit for the departure rate) For the G;/GI /oo model
under the assumptions above,

A,=n"'A, =08 in D(~ty,),R) as n— oo, (11)

where o
5(t) = / hy)d,N(ty). > —to, (12)
0

so that
t

t+to

o) = / fAt—y)dy and D(t) = / d(s)ds, t>—tg. (13)

0 —to

Proof. We first apply Lemma 2.1 to get bounded expectations. Then we
apply the Skorohod representation theorem, Theorem 3.2.2 of [6], to reduce
the argument to a deterministic one, but use the same notation. We establish
the desired uniform convergence over bounded intervals by showing, for any
t in a bounded an interval and any sequence {t,} with ¢, — t as n — o0,
that n='A,(¢,) — d(t) as n — oo. To do that, we exploit the fact that the
convergence in (4) corresponds to the weak convergence of finite measures,
where we regard N¢(t,y) as a function of y as a cdf. Hence, we can show, for
each t > —t, that we have the associated convergence of the integrals

tn+to _
W) = [ ) Vi)
0
t+to
— / h(y)FC (YAt —y)dy as n — oo.
0
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We use the fact that h is continuous and bounded on the interval [0, + to].
The limiting integral simplifies, yielding

t+to t+to
/0 h(y)F(y)A( —y) dy :/0 FAE —y)dy

by the simple relation h(y)F“(y) = f(y). That convergence implies that
A, — § in D(R,R) as n — oo, which implies the weak convergence for the
original processes. =

Remark 2.1. (starting empty in the distant past) In many papers on IS
queues, the system is assumed to start empty in the distant past (at —oo).
That is tantamount to letting ty — oco. As ty — o0, d(t) in Theorem 2.1
approaches (1), the departure rate E[A(t — S)] in the M;/GI/oo model in
equation (4) of Theorem 1 in [2] and in the associated G;/GI /oo fluid model;
see §4 of [21].

3. The Supporting Limit for a Poisson Approximation

We now establish the Poisson limit for the departure process from a gen-
eral G;/GI /oo model. At the same time, we provide a framework for treating
many other models. To do so, we assume some of the conclusions deduced
for the G;/GI /oo model is §2 rather than specify the detailed model. Thus,
we now consider a more general multi-server queue. As before, we assume
that the servers work independently in parallel having an individual remain-
ing service-time failure rate function h. However, the queue may be in the
middle of a complex network and there may be customer abandonment and
feedback.

As in §2, we consider a sequence of models indexed by n in a MSHT
framework. That typically means that the arrival rate is allowed to grow
without bound as in (2) and if the there are finitely many servers, then that
number is allowed to grow as well. We directly assume that the processes
NE(t,y), Di(t), Cn(t) and A, (t) are well defined with the same meaning as in
§2, but we do not fully specify the system; e.g., we do not specify the arrival
process. We directly assume that the stochastic departure rate can be defined
by the stochastic integral in (8) and that D, (t) — C,(t) is a martingale with
respect to the system history up to time ¢, where C,,(¢) is the compensator
and is the integral of A, (¢) as in (9). We also assume that the limits in (4)
and (8) hold, but without assuming the explicit form of the limits N¢(¢,y)

8



and D(t) in (5) and (7). Finally, we assume that the bound in (10) holds.
Under these assumptions, we also have the conclusions of Theorem 2.1 with
the limit in (12), but without the explicit limit in (13), because the same
proof applies. For example, these assumptions apply to the Gy/GI/s + GI
model with finitely many servers and customer abandonment, for which a
FWLLN was established in [21, 22].

Paralleling [8], we will do an additional slow-time scaling in order to
establish the supporting Poisson limit. However, in order to capture the
time-varying arrival rate appropriately, instead of simply undoing the MSHT
scaling in (2), we do the time scaling about an arbitrary time ¢, which we
regard as fixed.

For this purpose, we introduce two-parameter processes

D, (t,ug) — Dyp(t,u1) = Dy(t+ug/n) — Dyp(t 4+ uy/n),
Cr(tiug) — Cp(t,uy) = Cu(t+uz/n) — Cp(t +uy/n),
A, (t,u) A, (t+u/n)/n, —oo <u; <uy <+oo.(14)

Note that the definitions for C,(¢,u) and A, (¢, u) follow from the definition
for D, (t,u). With these definitions and the assumptions above,

Colts ) — Cin(ts 1) — / An(t,v)dv, —o0 <wp < us < 400,  (15)
ul

{Dy(t,s) — Cp(t,s) : s > uy} is a martingale and A, (¢,u) is a predictable
stochastic intensity with respect to the system history.

With this preparation, we are able to establish our desired result. In
our setting, weak convergence of the processes with nondecreasing sample
paths to a Poisson process in D(I,R) is equivalent to convergence of all
finite-dimensional distributions; see VI1.3.37 of [16].

Theorem 3.1. (Poisson limit) Under the assumptions in this section above,
Dy(t,-) = () in DR,R) as n— oo, (16)

where I1. is a homogeneous Poisson process with constant rate ¢ and §(t) is

the limit in (12); i.e., for any integer k, any k-tuple of disjoint subintervals

((win,uin) - 1 <i < k) and any k-tuple of nonnegative integers (j; : 1 < i <
k),

‘ k e—ui(t)lu.(t)ji

P (Dy(t,uin) — Dy(tu) =ji: 1<i <k) = [[ —F—

’ |
i=1 Ji:



as n — 0o, where u;(t) = §(t) (w2 — uin).

Proof. The proof is similar to the proof of Theorem 2 in [8]. The limit in
(11) implies that

sup  |n AL (t+ (u/n)) —d(t)] =0 as n— oo

ur, <u<uy

for all uy, and uy with —oo < up < uy < +o00. Then, paralleling the proof
of Theorem 2 in [8], we write

uz/n
Colt + (uafm) = Cut + (/) = [ At
= /uz nt ALt +v/n) do
N / S(t)dv = 6(t)(us — u1) as n — oo (17)

Combining (17) with (14), we have the analog of Corollary 2 of [8], i.e.,
Co(t,ug) — Cp(t,uy) = 6(t)(ug —uy) as n — oo.

That implies that the limit (16) holds, as claimed, by Theorem VIII.4.10 of
[16]. =

Remark 3.1. (supporting an NHPP approzimation) The statement of The-
orem 3.1 may seem a bit paradoxical, because it states that the departure
process is asymptotically a homogeneous Poisson process but with the time-
varying rate §(t) in (12). That dichotomy arises because of our scaling about
the fixed time ¢. For applications, we interpret the limit as supporting an
NHPP approximation with time-varying rate (¢).

Remark 3.2. (the stationary case) For a stable stationary model without
abandonment, the rate out equals the rate in, so that the departure rate must
equal the constant arrival rate. Consistent with that basic property, we see
that §(t) = A for all ¢ if the arrival process has a constant arrival rate .

Remark 3.3. (models with finitely many servers) For the stationary GI/M /s
and the M/M /s + M models, the papers [23] and [24] can be applied to es-
tablish analogs of Theorem 2.1. For the quality-and-efficiency-driven (QED)
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and efficiency-driven (ED) MSHT regimes, §(t) = us for all ¢. The FWLLN
follows immediately from the MSHT FCLTs established in those papers.
These result can be extended to general arrival processes using §7.3 of [14].
Extensions to the G/G/s and G/GI/s + GI follow from [17, 18].

We can also apply [19] to obtain the analog of Theorem 2.1 for the
Gi/M/si+GI Model with customer abandonment, which alternates between
overloaded intervals and underloaded intervals. With exponential service
times, it suffices to look at N (), the number of customers in service at each
time, instead of the more complicated two-parameter process N¢(¢,y). The
departure rate at time ¢ is simply pmin{X(¢),s(t)}, where u is the fixed
service rate, X (t) is the number of customers in the system and s(t) is the
number of servers at time ¢. The FWLLN is given for overloaded intervals in
(4.2) of Theorem 4.1 and §3 of [19]; then §(¢) = s(¢)u. The FWLLN is given
for underloaded intervals in (5.1) and (5.2) of Theorem 5.1 of [19]; except for
the initial conditions, §(¢) is the same as in an IS system. Extensions to GI
service follow from [22].
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