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Abstract

Analytical offered-load and modified-offered-load (MOL) approximations are developed to deter-
mine staffing levels that stabilize performance at designated targets in a non-Markovian many-server
queueing model with time-varying arrival rates, customer abandonment from queue and random
feedback with additional feedback delay in an infinite-server or finite-server queue. To provide a
flexible model that can be readily fit to system data, the model has Bernoulli routing, where the
feedback probabilities, service-time, patience-time and feedback-delay distributions all are general
and may depend on the visit number. Simulation experiments confirm that the new MOL approxi-
mations are effective. A many-server heavy-traffic FWLLN shows that the performance targets are
achieved asymptotically as the scale increases.

(The figures have been removed from this version to create a PDF/A complient version of the paper
file. Please see the journal or the authors’ web pages for a full version of the paper.)
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1 Introduction

This paper is part of an ongoing effort to develop effective methods to set staffing levels (the time-
dependent number of servers) in service systems with time-varying arrival rates in order to stabilize
performance at designated targets; see Green et al. (2007) for a review and Stolletz (2008), Defraeye
and van Nieuwenhuyse (2013), Liu and Whitt (2014), Yom-Tov and Mandelbaum (2014) and He et al.
(2016) for recent related work. We continue to focus on service systems that can be modeled as many-
server queues with customer abandonment from queue and non-exponential distributions, but here in
addition we consider Bernoulli feedback with additional delay after completing service.
A queue with delayed feedback after completing service is a special queueing network, about which

there is an enormous literature, but our concern is with the time-dependent performance of a non-
stationary non-Markov model, which is well beyond exact analysis. We do assume that the arrival
process is a nonhomogeneous Poisson process (NHPP), but the service-time, patience-time and delay-
before-return distributions all can be non-exponential and can change upon successive feedbacks. At
first glance, it would seem that previous methods do not apply to the generalization with multiple
delayed feedbacks having changing parameters. Our main innovation is to propose an approximation
involving a series of infinite-server models. Instead of the natural two-queue model for a single delayed
feedback shown on the left in Figure ??, with an orbit queue for the customers experiencing extra delay
in addition to the usual queue, we propose the five-queue series model on the right, which also has
separate queues for the customers waiting and in service upon first visit and upon second visit, as well
as for those customers being delayed in between the two visits; we elaborate on the model below.
Previous work has shown that a time-varying arrival-rate function and a non-exponential service-time

distribution can have a significant impact on performance; see Eick et al. (1993) for discussion of the
basic Mt/GI/∞ infinite-server special case. Figures 1 and 2 of Jennings et al. (1996) dramatically show
the poor performance that can occur if we use stationary methods to set staffing levels, either using
the overall average arrival rate or using the pointwise-stationary approximation (PSA), which uses a
stationary model in a nonstationary way, letting the arrival rate in the stationary model at time t be
the actual arrival rate λ(t) at time t. As reviewed in Green et al. (2007), the PSA can be effective with
relative short service times, but tends to fail badly with longer service times. The additional delayed
feedback adds to the challenge because it can significantly alter the time-varying demand, not only
in magnitude but also in timing. For example, the delayed feedback can amplify or damp the peak
demand and shift it in time.
The literature exposes two common reasons for feedback after completing service: First, de Vericourt

and Zhou (2005) focus on call center customers that may return later because the initial service was
unsatisfactory. Second, Yom-Tov and Mandelbaum (2014) focus on the treatment of patients by a
doctor in a hospital that may naturally occur in stages, starting with an initial screening and continuing
later after tests have been ordered and completed. Our paper is closely related to Yom-Tov and
Mandelbaum (2014), where a modified-offered-load (MOL) approximation was proposed to help set
staffing levels at a queue with time-varying arrival rates and Markovian feedback after a delay in an
infinite-server (IS) queue. They showed that the MOL approximation has great potential for improved
performance analysis in healthcare, where the service times tend to be relatively long, so that PSA
does not apply.
Motivated by these applications, we consider a feedback model that has appealing flexibility. In

particular, instead of the Markovian routing with fixed feedback probability p and one fixed service-time
distribution considered in Yom-Tov and Mandelbaum (2014), we consider history-dependent Bernoulli
routing, where there may be any number of visits and the feedback probability p and the service-time
distribution and the subsequent delay distribution (before returning for a new service) all may vary
with the visit number. We focus on the common important case of at most one feedback, which seems
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to be a more realistic model than Markovian routing, which produces a geometric random number
of feedbacks. It is significant that the approach here also extends directly to any finite number of
feedbacks; we demonstrate by also considering examples with two feedback opportunities. Our methods
also extend directly to time-dependent feedback probabilities, but we do not examine that here. (The
justification is that a time-dependent independent thinning of an NHPP is again an NHPP; see §2.3
and §2.4 of Ross (1996).)
We also allow customer abandonment, which often tends to be more realistic for many service systems,

as observed by Garnett et al. (2002). The patience-time distributions are also allowed to be non-
exponential and depend on the visit number. Just as in Yom-Tov and Mandelbaum (2014), we use
the general offered-load (OL) method with the MOL refinement, as reviewed in Jennings et al. (1996),
Green et al. (2007), Liu and Whitt (2012c) and Whitt (2013). There are difference between the MOL
methods designed to stabilize the delay probability and the abandonment probability, as discussed in
Liu and Whitt (2012c), but the main contribution here beyond Yom-Tov and Mandelbaum (2014) is
the new method for computing the time-varying offered load. Because the offered load is the primary
determinant of performance, the performance impact from more faithfully representing the service and
feedback process in a time-varying setting can be great.
To analyze this new feedback model with customer abandonment, we draw on Liu and Whitt (2012c)

in which we developed a delayed-infinite-server (DIS) offered-load approximation and a new DIS-MOL
(DIS-modified-offered-load) algorithm to determine time-dependent staffing levels in order to stabilize
expected delays and abandonment probabilities at specified quality of service (QoS) targets in a many-
server queue with time-varying arrival rates. The model in Liu and Whitt (2012c) was Mt/GI/st +
GI model, having arrivals according to an NHPP with arrival rate function λ(t), independent and
identically distributed (i.i.d.) service times with a general distribution (the first GI), a time-varying
number of servers (the st, to be determined), i.i.d. patience times with a general distribution (times to
abandon from queue, the final +GI), unlimited waiting space and the first-come first-served (FCFS)
service discipline. We included non-exponential service and patience distributions as well as time-
varying arrivals because they commonly occur; e.g. see Armony et al. (2015) and Brown et al. (2005).
We refer to the base model with a single feedback considered here as (Mt/{GI,GI}/st+{GI,GI})+

(GI/∞). The main queue has the two service-time cdf’s Gi and patience cdf’s Fi, depending on the
visit number, while the orbit queue has a single service-time cdf H, with all waiting customers entering
service in a FCFS order. We develop approximations for the number of customers waiting before service
and in service upon each visit and the number of customers in orbit. When we refer to the number of
customers in the system or the waiting time, we do not include the orbit queue.
We also consider the associated (Mt/{GI,GI}/st + {GI,GI}) + (GI/st + GI) model in which the

orbit queue has finite capacity; in that case, it also has a staffing function and a patience distribution.
The goal is to stabilize expected potential waiting times (the virtual waiting time before starting service
on any visit of an arrival with infinite patience) at a fixed value w for all time and i = 1, 2. Since
these models are special kinds of two-class queueing models, we also consider the more elementary∑2

i=1(Mt/GI +GI)/st two-class queue, in which the two classes arrive according to two independent
NHPP’s with arrival rate functions λ(i)(t) and their own service-time cdf’s Gi and patience cdf’s Fi,
i = 1, 2, but there is a single service facility with a time-varying number of servers s(t), again to be
determined.
The approximating DIS model for the (Mt/{GI,GI}/st + {GI,GI}) + (GI/∞) feedback queue has

five IS queues in series, as shown in Figure ??. (If there are k possible feedbacks, then the DIS model
has 2 + 3k IS queues in series; see §6.1 for the case k = 2.) We show that the simple DIS algorithm
(staffing directly to the DIS offered load) is effective for all three models with low QoS targets. To
provide theoretical support, we prove a new functional weak law of large numbers (FWLLN) showing
that any positive waiting-time target w is achieved asymptotically as the scale (arrival rate and number
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of servers) increases.
However, as in Liu andWhitt (2012c), the DIS algorithm is ineffective for high-QoS (low waiting-time)

targets. We develop a new DIS-MOL approximation for that case and conduct simulation experiments
to show that it is effective. (The DIS-MOL approximation is also asymptotically correct as the scale
increases.) Given previous MOL approximations, ideally the MOL approximation for the main case
would involve a stationary (M/{GI,GI}/s + {GI,GI}) + (GI/∞) feedback queue to apply at each
time t. Since no steady-state performance results exist for such a complex stationary model, we develop
an aggregate single-class stationary M/GI/s+GI model. With this new aggregate approximating sta-
tionary model, we are able to apply the algorithm for the steady-state performance from Whitt (2005)
just as in Liu and Whitt (2012c). Fortunately, simulation experiments confirm that this aggregation
approach is effective.
Here is how the rest of this paper is organized: We start in §2 by giving explicit expressions

for all the key performance functions of the new (Mt/{GI,GI}/st + {GI,GI}) + (GI/∞) queue with
Bernoulli feedback and an IS orbit queue, with fixed delay target w. In the online appendix we also give
explicit formulas in structured special cases when the arrival-rate function is sinusoidal. In §3 we state
the supporting many-server heavy-traffic FWLLN showing that the DIS approximation asymptotically
stabilizes the expected delay as the scale increases. We defer the proof to the online appendix. In §4
we develop the new DIS-MOL approximation. In §5 we show the results of simulation experiments to
support the approximations. In §6 we show that the good results also hold for (i) the more elementary∑2

i=1(Mt/GI + GI)/st two-class queue, (ii) the more complicated (Mt/{GI,GI}/st + {GI,GI}) +
(GI/st + GI) queue with Bernoulli feedback and a (GI/st + GI) finite-capacity orbit queue and (iii)
the generalization of the base model allowing two feedback opportunities. Finally, in §7 we draw
conclusions. Additional supporting material appears in the online appendix Liu and Whitt (2015).

2 The Delayed-Infinite-Server (DIS) Approximation

We now develop the DIS approximation for the (Mt/{GI,GI}/st + {GI,GI}) + (GI/∞) model with
FCFS service, which has Bernoulli feedback with probability p for each new customer completing
service; otherwise the customer departs. Customers arrive according to an external NHPP arrival
process with arrival rate function λ. The original (feedback) arrivals have i.i.d. service times and
patience times distributed as generic random variables S1 with cdf G1 and A1 with cdf F1 (S2 with cdf
G2 and A2 with cdf F2), respectively. Customers that are fed back encounter i.i.d. delays distributed
as the generic random variable U with cdf H. The arrival-rate function of the fed-back customers is
λF . This feedback model is depicted on the left in Figure ??.

2.1 The Approximating Five-Queue DIS Model

The approximating DIS model, depicted on the right in Figure ??, has five IS queues in series, the
first two for the external arrivals, in queue and in service, the third for the IS orbit queue (which is
directly an IS queue) and the last two for the fed-back customers, in queue and in service. Since all
arrivals to a queue are forced to remain in the waiting room a constant time w unless they abandon in
this approximating model, the service times in the first and fourth IS queues (representing the waiting
room) are distributed as T1 ≡ A1 ∧ w and T2 ≡ A2 ∧ w, respectively. The service times in the second
and fifth IS queues (representing the service facility) are distributed as S1 and S2, and the service times
in the third IS queue (representing the orbit queue) are distributed as U . The performance functions
for the five IS queues are then calculated recursively using Eick et al. (1993). Theorem 1 of Eick et al.
(1993) implies that the departure process from the Mt/GI/∞ IS queue is itself an NHPP with an
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explicitly specified rate function. It is also well know that an independent thinning of an NHPP is
again an NHPP. Thus all five IS queues are Mt/GI/∞ models.
In the DIS approximation for the (Mt/{GI,GI}/st + {GI,GI}) + (GI/∞) model, we let Qi(t) and

Bi(t) be the number of customers in waiting room i and in service facility i at time t, i = 1, 2. We let
O(t) be the number of customers in the orbit room at time t. The approximating offered load (OL)
function, which of course is a function of the waiting time target w, is

m(t) ≡ m1(t) +m2(t) ≡ E[B1(t)] + E[B2(t)]. (2.1)

As before, all flows are Poisson processes, with rate functions as depicted in Figure ??. The aban-
donment rates from the two waiting rooms (IS queues 1 and 4) are ξi(t); The rates into service from the
waiting rooms (IS queues 2 and 5) are βi(t); the departure rate of original customers from the service
facility (both fed-back and not) is σ1(t); the departure rates from the system of original customers and
fed-back customers are (1 − p)σ1(t) and σ2(t); and the feedback rate (leaving the service facility and
entering the orbit IS queue) is pσ1(t).

2.2 The DIS Performance Functions

In this section we display the performance functions for the DIS approximation of the (Mt/{GI,GI}/st+
{GI,GI}) + (GI/∞) model. All these performance functions are crucial in providing time-varying
staffing functions and predicting system performance under these staffing policies. The next theorem
generalizes Theorem 1 in Liu and Whitt (2012c) and follows directly from Eick et al. (1993). (Also see
Massey and Whitt (1993).)
For a non-negative random variable X with finite mean E[X] and cdf FX , let Xe denote a random

variable with the associated stationary-excess cdf (or residual-lifetime cdf) F e
X , defined by

F e
X(x) ≡ P (Xe ≤ x) ≡ 1

E[X]

∫ x

0
F̄X(y)dy, x ≥ 0,

where F̄X(y) ≡ 1− FX(y). The moments of Xe can be easily expressed in terms of the moments of X
via

E[Xk
e ] =

E[Xk+1]

(k + 1)E[X]
, k ≥ 1.

Let 1C be the indicator variable, which is equal to 1 if event C occurs and is equal to 0 otherwise.

Theorem 2.1 (performance functions starting from the infinite past) Consider the DIS approximation
for the (Mt/{GI,GI}/st+{GI,GI})+(GI/∞) model specified in §2, starting empty in the distant past
with specified delay target (parameter) w ≥ 0. The total numbers of customers in the waiting rooms,
service facilities, and in the orbit at time t, Qi(t), Bi(t) and O(t) are independent Poisson random
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variables with means

E[Q1(t)] = E

[∫ t

t−T1

λ(x) dx

]
= E[λ(t− T1,e)]E[T1],

E[B1(t)] = F̄1(w)E

[∫ t−w

t−w−S1

λ(x) dx

]
= F̄1(w)E[λ(t − w − S1,e)]E[S1],

E[O(t)] = pE

[∫ t

t−U
σ1(x) dx

]
= pE[σ1(t− Ue)]E[U ],

E[Q2(t)] = E

[∫ t

t−T2

λF (x) dx

]
= E[λF (t− T2,e)]E[T2],

E[B2(t)] = F̄2(w)E

[∫ t−w

t−w−S2

λF (x) dx

]
= F̄2(w)E[λF (t− w − S2,e)]E[S2],

where Ti ≡ Ai ∧ w. Thus, X(t), the total number of customers in the system at time t is a Poisson
random variable with a mean E[Q1(t)] + E[Q2(t)] + E[B1(t)] + E[B2(t)]. The processes counting the
numbers of customers abandoning from waiting room 1 and 2 are independent Poisson processes with
rate functions ξi(t), where

ξ1(t) =

∫ w

0
λ(t− x) dF1(x) = E[λ(t− T1)1{T1<w}],

ξ2(t) =

∫ w

0
λF (t− x) dF2(x) = E[λF (t− T2)1{T2<w}].

The processes counting the numbers of customers entering service facility 1 and 2 are independent
Poisson processes with rate functions β1(t) and β2(t), where

β1(t) = λ(t− w)F̄1(w) and β2(t) = λF (t− w)F̄2(w).

The departure processes (counting the number of customers completing service) from service facility 1
and 2 are independent Poisson processes with rate (1− p)σ1(t) and σ2(t), where

σ1(t) = F̄1(w)

∫ ∞

0
λ(t− w − x) dG1(x) = F̄1(w)E[λ(t − w − S1)],

σ2(t) = F̄2(w)

∫ ∞

0
λF (t− w − x) dG2(x) = F̄2(w)E[λF (t−w − S2)].

The process counting the numbers of customers entering the second waiting room is a Poisson process
with rate function λF , where

λF (t) = p

∫ ∞

0
σ1(t− x) dH(x) = (1− p)E[σ1(t− U)].

When the arrival rate is constant, i.e., λ(t) = λ, the steady-state performance functions can be easily
obtained using simple calculations for a five-queue IS network, which in particular simplifies to five IS
queues in series; see the online appendix Liu and Whitt (2015). As discussed in Eick et al. (1993),
Massey and Whitt (1993), Liu and Whitt (2012c), simple linear and quadratic approximations derived
from Taylor series for general arrival-rate functions can be convenient. These approximations show
simple time lags and space shifts; see the online appendix.
In applications, a typical objective is to design a staffing function for a specified planning period

[0, T ] (e.g., T = 24 for a day). To treat that case, we let λ(t) = 0 for t < 0 into Theorem 2.1 and obtain
the following concrete formulas for the performance measures. We let x+ ≡ max(x, 0).
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Corollary 2.1 (performance functions of the initially empty DIS model) Consider the initially empty
DIS approximation for the (Mt/{GI,GI}/st+{GI,GI})+(GI/∞) model with delay target w > 0. All
results in Theorem 2.1 hold with rate functions

ξ1(t) =

∫ t∧w

0
λ(t− x)dF1(x), β1(t) = λ(t− w) · F̄1(w) · 1{t≥w},

σ1(t) = F̄1(w)

∫ (t−w)+

0
λ(t− w − x)dG1(x),

λF (t) =

∫ (t−w)+

0
pσ1(t− y)dH(y)

= pF̄1(w)

∫ (t−w)+

0

∫ t−w−y

0
λ(t− w − x− y)dG1(x)dH(y),

ξ2(t) =

∫ (t−w)+∧w

0
λF (t− z)dF2(z)

= (1− p)F̄1(w)

∫ (t−w)+∧w

0

∫ t−w−z

0

∫ t−w−y−z

0
λ(t− w − x− y − w)dG1(x)dH(y)dF2(z),

β2(t) = λF1(t− w)F̄2(w) · 1{t≥2w}

= pF̄1(w)F̄2(w)

∫ (t−2w)+

0

∫ t−2w−y

0
λ(t− 2w − x− y)dG1(x)dH(y),

σ2(t) =

∫ (t−2w)+

0
β2(t− z)dG2(z)

= pF̄1(w)F̄2(w)

∫ (t−2w)+

0

∫ t−2w−z

0

∫ t−2w−y−z

0
λ(t− 2w − x− y − z)dG1(x)dH(y)dG2(z),

and mean number of customers in these five IS queues

E[Q1(t)] =

∫ t∧w

0
λ(t− x)F̄1(x)dx, E[B1(t)] = F̄1(w)

∫ (t−w)+

0
λ(t− w − x)Ḡ1(x)dx,

E[O(t)] =

∫ (t−w)+

0
pσ1(t− x)H̄(x)dx

= pF̄1(w)

∫ (t−w)+

0

∫ t−w−y

0
λ(t− w − x− y)dG1(x)H̄(y)dy,

E[Q2(t)] =

∫ (t−w)+∧w

0
λF (t− z)F̄2(z)dz,

= pF̄1(w)

∫ (t−w)+∧w

0

∫ t−w−z

0

∫ t−w−y−z

0
λ(t− w − x− y − z)dG1(x)dH(y)F̄2(z)dz,

E[B2(t)] = F̄2(w)

∫ (t−2w)+

0
λF (t− w − z)Ḡ2(z)dz

= pF̄1(w)F̄2(w)

∫ (t−2w)+

0

∫ t−2w−z

0

∫ t−2w−y−z

0
λ(t− 2w − x− y − z)dG1(x)dH(y)Ḡ2(z)dz.

The total number of busy servers (or number of customers in service) at time t is B(t) ≡ B1(t)+B2(t).
As in Liu and Whitt (2012c), we let m(t) ≡ E[B(t)] = E[B1(t)] +E[B2(t)] be the DIS OL function.
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In the appendix we give explicit formulas for the case of sinusoidal arrival rate functions, which
are often used to create stylized models. In the longer online appendix we also consider a slightly
generalized scheme. Suppose the system is not empty at the beginning of the day (at time 0) and the
initial number of waiting customers in the system along with their elapsed waiting times are observed
(not random). For instance, there are n customers waiting in a single line at time 0 and their elapsed
waiting times are 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn. The goal is to design an appropriate staffing function s(t)
for 0 ≤ t ≤ T such that the average customer waiting times can be stabilized during [0, T ] (e.g., T = 8
or T = 24). A typical example is the Manhattan DMV office. On a regular morning, by the opening
of the office (8:00 am), which may have a line of waiting customers outside the door. This variant is
also analyzed in the appendix.

3 Asymptotic Effectiveness as the Scale Increases

In this section we state the many-server heavy-traffic FWLLN for the (Gt/{GI,GI}/st + {GI,GI}) +
(GI/∞) model with Bernoulli feedback after a random delay in an IS orbit queue, implying that the
DIS staffing algorithm is effective in stabilizing the expected waiting times for all customers at a fixed
positive value w asymptotically as the scale increases. (In the rest of this paper we restrict attention to
Mt arrivals. The greater generality provides a basis for extensions. See He et al. (2016) for a discussion
of Gt arrivals.) The associated abandonment probability targets αi = Fi(w) for i = 1, 2, where i = 1
corresponds to external arrivals and i = 2 corresponds to feedback after completing service, are then
achieved asymptotically as well.
Paralleling Liu andWhitt (2012b,c), the FWLLN involves a sequence of (Gt/{GI,GI}/st+{GI,GI})+

(GI/∞) models indexed by n and the limit corresponds to the associated fluid model studied directly
in Liu and Whitt (2012a). As before, we let the service and patience distributions Gi, Fi,H be indepen-
dent of n. The cdf’s Gi, Fi and H are differentiable, with positive finite probability density functions
(pdf’s) gi, fi and h.
In Liu and Whitt (2012c) we assumed that the arrival processNn(t) was NHPP, but greater generality

is allowed by Liu and Whitt (2012b,a). In order to simplify the proof, we make the DIS staffing simply
be proportional to the scale parameter n. We achieve that by letting the arrival rate in model n be
a scaled version of a fixed arrival rate function. As in Liu and Whitt (2012c), that works directly if
we assume that the external arrival process is an NHPP, but to allow greater generality we assume a
specific process representation.
We now assume that the queue has a base external arrival counting process that can be expressed as

N (e)(t) = N (b)(Λ(t)), t ≥ 0, (3.1)

where Λ(t) is a differentiable cumulative rate function with

Λ(t) ≡
∫ t

0
λ(s) ds (3.2)

where λ(t) is specified as part of the model data. and N (b) ≡ {N (b)(t) : t ≥ 0} is a rate-1 stationary
point process satisfying a FWLLN, i.e.,

n−1N (b)(nt) ⇒ t in D as n → ∞, (3.3)

where ⇒ denotes convergence in distribution in the function space D with the topology of uniform
convergence over bounded subintervals of the domain [0,∞) as in Whitt (2002).
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In that framework, we then define the external arrival process in model n by letting

N (e)
n (t) ≡ N (b)(nΛ(t)), t ≥ 0, (3.4)

which gives it cumulative arrival rate function Λn(t) = nΛ(t), a simple multiple of the base arrival rate

function. On account of this construction and assumption (3.3), we deduce that N
(e)
n also obeys the

FWLLN
N̄ (e)

n (t) ≡ n−1N (e)(nt) ⇒ Λ(t) in D as n → ∞. (3.5)

We remark that the limit is the cumulative external arrival rate function of the fluid model in Liu and
Whitt (2012a).
Since the external arrival rate has been constructed by simple scaling, the associated DIS staffing

can be constructed by simple scaling as well; see §4 of Liu and Whitt (2012a). Hence, in model n, we
can use a time-varying number of servers sn(t) ≡ 	n s(t)
 (the least integer above ns(t)), which we
assume is set by the DIS staffing algorithm, which is a scaled version of the staffing in the associated
fluid model with cumulative arrival rate Λ, already specified in Theorem 2.1, in particular,

s(t) = m(t) = m1(t) = m2(t) = E[B1(t)] + E[B2(t)]. (3.6)

We define the following performance functions for the nth model: Let Nn(t) be the total number of

(external plus internal) arrivals in the interval [0, t]; let Q
(i)
n (t) be the number of customers of type i

waiting in queue at time t; let W
(i)
n (t) be the corresponding potential waiting time, i.e., the virtual

waiting time at time t if there were an arrival at time t of type i, assuming that arrival had unlimited

patience; let A
(i)
n (t) be the number of type i customers that have abandoned from queue in the interval

[0, t]; let A
(i)
n (t, u) be the number of type-i customers among arrivals to the queue in [0, t] that have

abandoned in the interval [0, t + u]; let D
(i)
n (t) be the number of type-i customers to complete service

in the interval [0, t]; let D
(1,2)
n (t) be the number of type-1 customers to complete service that have been

fed back in the interval [0, t]; let D
(2)
n (t) be the number of type-2 customers to arrive back at the queue

in the interval [0, t]. Define associated FWLLN-scaled processes: by letting N̄n(t) ≡ n−1Nn(t), and

similarly for the other processes except the process W
(i)
n (t) is not scaled.

Theorem 3.1 (asymptotic effectiveness) Consider a sequence of (Gt/{GI,GI}/st+{GI,GI})+(GI/∞)
models indexed by n with the external arrival processes in (3.4) and the many-server heavy-traffic scal-
ing specified above. Suppose that these systems start empty at time 0, the regularity conditions in
Liu and Whitt (2012b,a) are satisfied (including the finite positive densities) and E[S2

i ] < ∞ for all
i. Then, with any expected waiting time target w > 0 and associated abandonment-probability targets
αi = Fi(w) > 0, i = 1, 2, use the DIS staffing sn(t) ≡ 	n s(t)
, where

s(t) = m(t) = m1(t) +m2(t) = E[B1(t)] + E[B2(t)], (3.7)

as given in Theorem 2.1. Then the expected delays and abandonment probabilities are stabilized at their
targets w and αi for i = 1, 2 asymptotically as n → ∞. Moreover, for any time b with w < b < ∞,

sup
0≤t≤b

{|Q̄(i)
n (t)− E[Q(i)(t)]|} ⇒ 0, sup

0≤t≤b
{|W (i)

n (t)− w|} ⇒ 0,

sup
0≤t≤b

{|Ā(i)
n (t)−A(i)(t)|} ⇒ 0, E[W (i)

n (t)] → w, and

sup
0≤t≤bi, wi<u<bi

{|Ā(i)
n (t, t+ u)−A(i)(t, u)|} ⇒ 0, t ≥ 0, (3.8)
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as n → ∞, where (with λ1 = λ and λ2 = λF )

E[Q(i)(t)] = E[Q(i)(t, 0)] ≡
∫ wi

0
λi(t− x)F̄i(x) dx, A(i)(t) ≡

∫ t

0
ξi(s) ds

ξi(t) ≡
∫ wi

0
λi(t− x)fi(x) dx and A(i)(t, u) ≡ Λi(t)αi, u > wi. (3.9)

We give the proof in the appendix. Essentially the same argument yields corresponding FWLLN’s
for the

∑2
i=1(Mt/GI +GI)/st two-class queue and the (Mt/{GI,GI}/st + {GI,GI}) + (GI/st +GI)

model when the orbit queue has finite capacity.
We remark that the DIS-MOL algorithm also can be shown to be asymptotically correct as the scale

increases in the setting of Theorem 3.1, but that result is misleading, because the FWLLN in Theorem
3.1 expresses a MSHT limit in the ED regime, where the waiting-time target w and abandonment
probabilities αi are held fixed while the scale increases. It remains to establish a MSHT limit in the
QED regime where instead the probability of delay is held fixed as the scale increases.

4 The Refined DIS-MOL Approximation

Just as in Liu and Whitt (2012c), simulation experiments to be discussed in §5 show that the DIS
approximation is effective under low-QoS (high-waiting-time) targets, but is ineffective under the com-
mon high-QoS (low-waiting-time) targets. Thus, we develop a refined DIS-MOL staffing algorithm
here. Paralleling the DIS-MOL approximation in Liu and Whitt (2012c), we let the DIS-MOL staffing
be the time-varying number of servers needed in the stationary M/GI/s+GI model with time-varying
total arrival rate λmol(t), regarded as constant at each time t, depending on the offered loads mi(t),
and associated parameters according to

λmol(t) ≡
2∑

i=1

λmol,i(t) and λmol,i(t) ≡ mi(t)

(1− αi)E[Si]
, (4.1)

where mi(t) = E[Bi(t)] for each i. We enforce the additivity in (4.1) and the additivity m(t) =
m1(t) +m2(t).
We now elaborate on our reasoning. As in Liu and Whitt (2012c), the idea behind (4.1) is to exploit

the basic offered load relation for the stationary model, which corresponds to Little’s law applied to
the service facility, i.e., m = λE[S]. However, the arrival rate should be adjusted for abandonment.
Hence, if λ is the external arrival rate, not adjusted for abandonment, then m = λ(1 − α)E[S] and
λ = m/(1 − α)E[S]. However, now we have two classes of customers with different parameters, so we
have mi = λi(1−αi)E[Si] for each i, which leads to λi = mi/(1−αi)E[Si] for each i. The total arrival
rate is the sum of these two arrival rates. When we substitute mi(t) for mi, we obtain our DIS-MOL
arrival rates (4.1) to use in the stationary M/GI/s +GI model.
The MOL arrival rate in (4.1) generalizes the relatively simple formula λMOL(t) = mα(t)/(1−α)E[S]

for a single queue in Liu and Whitt (2012c). Formula (4.1) reduces to that when Fi = F for all i, so
that αi = α, and Gi = G for all i, so that E[Si] = E[S] for all i. Given the MOL arrival rate function
in (4.1), we apply the approximations for the performance in the stationary M/GI/s+GI model from
Whitt (2005), just as in Liu and Whitt (2012c), except we use w as the target for the expected waiting
time.

4.1 Constructing the Aggregate Stationary Model

We have just constructed the aggregate DIS-MOL arrival rate in (4.1). In order to produce a stationary
M/GI/s +GI model for each time t, it now remains to define appropriate aggregate service-time and
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patience cdf’s Gmol and Fmol to be used in the stationary model at time t. We let these be defined as
appropriate averages. In particular, we let

Fmol(t) =
λmol,1(t)F1 + λmol,2(t)F2

λmol(t)
(4.2)

so that

1− αmol(t) =
λmol,1(t)(1− α1) + λmol,2(t)(1− α2)

λmol(t)
(4.3)

and Gmol(t) =
(1− α1)λmol,1(t)G1 + (1− α2)λmol,2(t)G2

(1− αmol(t))λmol(t)
. (4.4)

Let Smol(t) and Amol(t) be generic random variables with the cdf’s Gmol and Fmol at time t. From
(4.4), we have

E[Smol(t)] =
(1 − α1)λmol,1(t)E[S1] + (1 − α2)λmol,2(t)E[S2]

(1− αmol(t))λmol(t)
(4.5)

Since these definitions are averages, we meet the obvious consistency condition that Gmol(t) = G if
G1 = G2 = G and Fmol(t) = F if F1 = F2 = F .

Proposition 4.1 (additivity) With these definitions, we maintain the important MOL additivity as-
suming that

mmol(t) ≡ (1− αmol(t))λmol(t)E[Smol(t)]. (4.6)

Then mmol(t) ≡ (1− αmol(t))λmol(t)E[Smol(t)]

= (1− α1)λmol,1(t)E[S1] + (1− α2)λmol,2(t)E[S2] = m(t). (4.7)

Proof We start with (4.6) and then apply the definition of E[Smol(t)] in (4.5) to get the second line.
We then apply (4.1).

4.2 Computing the DIS-MOL Staffing Function

For each time t, we apply the constant arrival rate in (4.1), abandonment cdf in (4.2) and service-time
cdf in (4.4) in order to obtain a stationary M/GI/s + GI model, which of course depends on t. We
numerically select the staffing level smol(t) to be the smallest value for which the expected steady-state
potential waiting time (virtual waiting time for a customer, if that customer had unlimited patience)
is less than the target w.
To do so, we exploit the approximating state-dependent Markovian M/M/s +M(n) model for the

stationary M/GI/s + GI queue, developed in Whitt (2005). With that model, we first compute the
steady-state distribution πi ≡ P (Q(∞) = i), i ≥ 0, for the M/M/s +M(n) queue, as indicated in §7
of Whitt (2005). We next compute the expected steady-state potential waiting time by conditioning
on the total number of customers in the queue. As a function of the number of servers s, we write

E[Ws(∞)] =
∞∑
i=s

E[Ws(∞)|Q(∞) = i] · πi =
∞∑
i=s

s−i∑
k=0

1

sμ+ δk
· πi, (4.8)

where μ is the reciprocal of the mean service time in (4.5) and δk is the state-dependent abandonment
rate in (3.4) of Whitt (2005). The goal here is to find an smol(t) such that smol(t) = min{s >
0, E[Ws(∞)] < w} for each stationary (M/GI/s +GI)t model.
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In closing this section, we also remark that we could also be staffing at time t to satisfy the new
abandonment target αmol(t) given in (4.3), i.e., we could choose the minimum number of servers so that
the steady-state probability of abandonment is below αmol(t). This is so because if the potential waiting
time is indeed w for an arrival, then the probability that this arrival will abandon is approximately
Fmol(t, w) = αmol(t).

5 Comparison with Simulations

We now use simulation experiments to show the effectiveness of the approximations.

5.1 The Base Model

Our base model is the (Mt/{GI,GI}/st + {GI,GI}) + (GI/∞) model with Bernoulli feedback after
a random delay in an IS orbit queue. (We consider other models in §6 and the appendix.) Just as in
Feldman et al. (2008), Liu and Whitt (2012c), for our base case we let the system start empty and we
use a sinusoidal arrival rate function with average offered load for new arrivals of approximately 100,
so that the staffing would fluctuate around 100 for the external arrivals alone. (We also consider cases
with smaller arrival rates in the appendix.) In particular, we use the arrival rate function

λ(t) = λ̄(1 + r sin(t)) = 100(1 + r sin(t)), t ≥ 0, (5.1)

for relative amplitudes r, denoted by Mt(r); here we let r = 0.2. We let the feedback probability be
p = 0.2, but we let the mean service times for the original and fed-back customers be μ−1

1 ≡ E[S1] = 1
and μ−1

2 ≡ E[S2] = 5, respectively, so that the offered loads of the two kinds of customers are roughly
equal. In the appendix we obtain similar results for the corresponding model with p = 0.5 and
μ−1
2 ≡ E[S2] = 2, which has more similar mean service times.
We let the three service-time distributions be hyperexponential (H2) with squared coefficient of

variation (scv, variance divided by the square of the mean) c2 = 4, with balanced means, as on p. 137
of Whitt (1982); we thus writeH2(m, 4) with specified meanm. We let the patience times of the original
and fed-back customers be exponential, but with different means, denoted by M(m). In particular, we
consider the (Mt(r)/H2(1, 4),H2(5, 4)/st+M(2),M(1))+ (p,H2(1, 4)/∞) model with r = p = 0.2. All
service-time distributions are H2, while all patience distributions are M , but the means vary, so that
the complex refined DIS-MOL formulas in §4 associated with the aggregate model are needed, and
are tested in these experiments. We also consider corresponding models with non-exponential patience
cdf’s in the and larger values of r in the appendix. The same stable performance is seen for r = 0.5,
but some degradation in performance is seen where the staffing decreases for r = 0.8.

5.2 Results from the Simulation Experiment

We simulated the model above starting empty over the time interval [0, 20]. We estimated the perfor-
mance functions by taking averages from 2000 independent replications. (Additional details are given
in the online appendix.)
Figures 1 and 2 show the results of the simulation experiment for high and low waiting-time targets.

In Figure 1 the waiting-time targets are w = 0.10, 0.20, 0.30, 0.40, so that the simple DIS staffing is
used, while in Figure 2 the waiting-time targets are w = 0.01, 0.02, 0.03, 0.04, ten times smaller, so
that the refined DIS-MOL staffing is used. The performance functions are averages based on 2000
independent replications.
Consistent with Liu and Whitt (2012c) and the FWLLN in §3, with the higher waiting-time targets

in Figure 1 we see very smooth and accurate plots of the expected waiting times and abandonment
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Figure 1: Performance functions in the (Mt(0.2)/H2(1, 4),H2(5, 4)/st+M(2),M(1))+(0.2,H2(1, 4)/∞)
model with the sinusoidal arrival rate in (5.1) for λ̄ = 100 and r = 0.2, Bernoulli feedback with
probability p = 0.2 and an IS orbit queue: four cases of high waiting-time (low QoS) targets (w = 0.10,
0.20, 0.30 and 0.40) and simple DIS staffing.

Figure 2: Performance functions in the (Mt(0.2)/H2(1, 4),H2(5, 4)/st+M(2),M(1))+(0.2,H2(1, 4)/∞)
model with the sinusoidal arrival rate in (5.1) for λ̄ = 100 and r = 0.2, Bernoulli feedback with
probability p = 0.2 and an IS orbit queue: four cases of low waiting-time (high QoS) targets (w = 0.01,
0.02, 0.03 and 0.04) and DIS-MOL staffing.

probabilities, which are the performance functions to be stabilized, but strongly fluctuating expected
queue lengths and delay probabilities, which agree closely with the formulas in §2. With the higher
waiting-time targets, there is higher abandonment probability, so that the maximum staffing is about
160 instead of about 100 + 100 = 200 in Figure 2 with the lower waiting-time targets. There is greater
variability with the lower waiting-time targets.
Figure 2 shows that, consistent with experience in Feldman et al. (2008) and Liu and Whitt (2012c),

all performance functions tend to be stabilized simultaneously with the lower waiting-time targets, after
an initial startup effect due to starting empty. The delay probability starts at 1 because the stabilizing
staffing algorithm does not start staffing until time w > 0. That feature ensures that all arrivals wait
exactly w in the limiting fluid model (see §10 of Liu and Whitt (2012a)), but it would probably not be
used in applications.

5.3 Square Root Staffing

We emphasize that the DIS OL m(t) given explicitly in §2 is the key quantity being computed. The
DIS OL quantifies the essential demand, combining the impact of the random service times with the
time-varying arrival rate, both of which are complicated by the feedback. The relatively complicated
DIS-MOL staffing, which requires an algorithm for computing an approximation for the steady-state
performance in the stationary M/GI/s+GI model, is of course also important in identifying the exact
staffing level required to stabilize the expected potential waiting times at the target w. However, except
for the specific QoS parameter β, the same goal could be achieved by applying the simple square root
staffing (SRS) formula

s(t) ≡ m(t) + β
√

m(t), (5.2)

with this DIS OL m(t). Without the DIS-MOL step, we could just search for the appropriate constant
β to use in the SRS formula. The DIS OL already succeeds in eliminating the dependence on time.
As in Feldman et al. (2008), we demonstrate the importance of the DIS OL in the present context

by plotting the implied empirical QoS,

βDIS−MOL(t) =
sDISMOL(t)−m(t)√

m(t)
(5.3)

for the example considered in Figure 2. Figure 3 shows that the DIS-MOL staffing is indeed equivalent
to SRS staffing for an appropriate QoS parameter β, which is given on the y axis on the left, as a
function of the target w on the right. We present similar empirical QoS plots for other examples in the
online appendix.
The DIS OL is appropriate for smaller models as well, but then the actual staffing and the resulting

performance are complicated because the discretization becomes very important. However, the DIS
OL remains an important first step to identify the effective time-dependent demand.
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Figure 3: The empirical Quality of Service (QoS) provided by the DIS-MOL staffing in the
(Mt(0.2)/H2(1, 4),H2(5, 4)/st + M(2),M(1)) + (0.2,H2(1, 4)/∞) example of Figure 2 as a function
of the waiting-time target w.

6 Other Models

In this section we discuss the other two models mentioned in the introduction. We first discuss the∑2
i=1(Mt/GI +GI)/st two-class queue, in which the two classes arrive according to two independent

NHPP’s. We then discuss the (Mt/{GI,GI}/st + {GI,GI}) + (GI/st +GI) feedback model in which
the orbit queue has finite capacity. Afterwards, we discuss the model with two feedback opportunities.
More examples are discussed in the online appendix.

6.1 Two-Class Queue

In this section we consider the associated
∑2

i=1(Mt/GI + GI)/st two-class queue, in particular, the∑2
i=1(Mt/H2(mi, 4)+M(mi)/st model with H2(m, 4) service-time cdf’s for both classes with m1 = 1.0

and m2 = 0.6 and M(m) patience cdf’s for both classes with m1 = 2.0 and m2 = 1.0. We let the arrival
processes be independent NHPP’s, but with different sinusoidal arrival-rate functions, in particular,

λ1(t) = 100(1 + 0.2 sin(t)), and λ2(t) = 60(1 + 0.2 sin(0.8t + 2)). (6.1)

The analysis of this model is more elementary. First, there is no orbit queue. We get the DIS OL by
simply applying the DIS approximation to the two classes separately. That yields the per-class OL’s
mi(t) = E[Bi(t)] for i = 1, 2 and then we add to get the total OL: m(t) = m1(t) +m2(t). Given this
overall DIS OL, we apply the same refined DIS-MOL approximation in §4. The results of simulation
experiments for high and low waiting-time targets,based on 2000 independent replications, are shown
in Figures 4 and 5. The results are good, just as in §5.
Figure 4: Performance functions in the

∑2
i=1(Mt/H2(mi, 4) +M(mi)/st two-class model with the two

sinusoidal arrival-rate functions in (6.1), service-time means m1 = 1.0 and m2 = 0.6 and patience
means m1 = 2.0 and m2 = 1.0: four cases of identical high waiting-time (low QoS) targets (w = 0.10,
0.20, 0.30 and 0.40) and simple DIS staffing at both queues.

Figure 5: Performance functions in the
∑2

i=1(Mt/H2(mi, 4) +M(mi)/st two-class model with the two
sinusoidal arrival-rate functions in (6.1), service-time means m1 = 1.0 and m2 = 0.6 and patience
means m1 = 2.0 and m2 = 1.0: four cases of identical low waiting-time (high QoS) targets (w = 0.01,
0.02, 0.03 and 0.04) and DIS-MOL staffing at both queues.

6.2 A Finite-Capacity Orbit Queue

In this section we consider the associated (Mt/{GI,GI}/st + {GI,GI}) + (GI/st + GI) model with
Bernoulli feedback after a random delay in a finite-capacity orbit queue. We use the same waiting-time
targets to set the staffing levels in the orbit queue and the main queue. In particular, we consider
the (Mt(r)/H2(1, 4),H2(10/6, 4)/st +M(2),M(1)) + (p,H2(1, 4)/st +M(1)) model with r = 0.2 and
p = 0.6. Just as in §5, all service-time distributions are H2, while all patience distributions are M , but
the means vary, so that the complex refined DIS-MOL formulas in §4 associated with the aggregate
model are needed. Figures 6 and 7 show the results of the simulation experiment for high and low
waiting-time targets, respectively, again based on 2000 independent replications, each starting empty.
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Figure 6: Performance functions in the (Mt(0.2)/H2(1, 4),H2(10/6, 4)/st + M(2),M(1)) +
(0.6,H2(1, 4)/st + M(1)) model with the sinusoidal arrival rate in (5.1) for λ̄ = 100 and r = 0.2,
Bernoulli feedback with probability p = 0.6 and a finite-capacity orbit queue: four cases of identical
high waiting-time (low QoS) targets (w = 0.10, 0.20, 0.30 and 0.40) and simple DIS staffing at both
queues.

Figure 7: Performance functions in the (Mt(0.2)/H2(1, 4),H2(10/6, 4)/st + M(2),M(1)) +
(0.6,H2(1, 4)/st + M(1)) model with the sinusoidal arrival rate in (5.1) for λ̄ = 100 and r = 0.2,
Bernoulli feedback with probability p = 0.6 and an IS orbit queue: four cases of low waiting-time (high
QoS) targets (w = 0.01, 0.02, 0.03 and 0.04) and DIS-MOL staffing.

6.3 Two Feedback Opportunities

In this section we consider a modification of the base model in which there are two feedback oppor-
tunities. Each customer that has been fed back once returns again with probability p2 after another
delay in an IS orbit queue with cdf H2. Upon return, these customers have service cdf G3 and patience
cdf F3. The new DIS model has eight IS queues in series, as depicted in Figure ??.
Since there are now three customer classes, characterized by their class-dependent service-time and

patience-time distributions, we easily generalize results in Theorem 2.1 to include the formulas for class
3. We have

E[O2(t)] = p2E

[∫ t

t−U2

σ2(x) dx

]
= p2 E[σ2(t− U2,e)]E[U2],

E[Q3(t)] = E

[∫ t

t−T3

λF,2(x) dx

]
= E[λF,2(t− T3,e)]E[T3],

m3(t) ≡ E[B3(t)] = F̄3(w)E

[∫ t−w

t−w−S3

λF,2(x) dx

]
= F̄3(w)E[λF,2(t− w − S3,e)]E[S3],

λF,2(t) = p

∫ ∞

0
σ2(t− x) dH2(x) = (1− p2)E[σ2(t− U2)],

where T3 ≡ A3 ∧ w, and A3, S3 and U2 follow cdfs F3, G3 and H3.
Regarding the DIS-MOL approximation, we generalize (4.1)–(4.4) to

λMOL(t) ≡
3∑

i=1

λmol,i(t), where λmol,i(t) ≡ mi(t)

(1− αi)E[Si]
, i = 1, 2, 3,

Fmol(t) =

∑3
k=1 λmol,k(t)Fk

λmol(t)
, (1− αmol(t)) =

∑3
k=1 λmol,k(t)(1− αk)

λmol(t)
,

Gmol(t) =

∑3
k=1(1− α2)λmol,2(t)G2

(1− αmol(t))λmol(t)
.

Figures of simulation experiments in the online appendix verify the effectiveness of our DIS and DIS-
MOL approaches just as in Figures 1 and 2. We remark that this analysis can generalize to the case
of any finite number of feedbacks.

7 Conclusions

In this paper we have extended the two-queue approximating Delayed-Infinite-Server (DIS) model for
the Mt/GI/st + GI model in Liu and Whitt (2012c) to the corresponding five-queue approximating
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DIS model depicted in Figure ?? for the (Mt/{GI,GI}/st+{GI,GI})+(GI/∞) model with Bernoulli
feedback after a random delay in an infinite-server orbit queue and a corresponding six-queue approxi-
mating DIS model for the corresponding model with a (GI/st+GI) finite-capacity orbit queue. These
models present attractive alternatives to the Erlang-R model in Yom-Tov and Mandelbaum (2014)
because the fed-back customers can have different service-time and patience cdf’s. The same approach
extends to any finite number of feedbacks; the case of two feedbacks is discussed in §6.3 and the online
appendix. The approach applies to systems with or without customer abandonment. Without cus-
tomer abandonment, the offered load is mα(t) for α = 0; then we would use a delay-probability target,
as in Feldman et al. (2008), Jennings et al. (1996) and Yom-Tov and Mandelbaum (2014).
Theorem 2.1 here and Theorem 1 of the online appendix give explicit expressions for all DIS per-

formance functions in general and with sinusoidal arrival rate functions. Moreover, we have presented
results of simulation experiments showing that the DIS offered load (OL) itself provides staffing that
successfully stabilizes abandonment probabilities and expected waiting times with low QoS targets.
Theorem 3.1 establishes a FWLLN showing that the DIS staffing achieves its performance goals asymp-
totically as the scale increases.
In §4 we have also developed a new aggregate approximating single-class Delayed-Infinite-Server

Modified-Offered-Load (DIS-MOL) approximation to set staffing levels with low waiting-time (high
QoS) targets. We showed that we can use either the aggregate abandonment probability target or the
waiting-time target, but the waiting-time target tends to produce a faster algorithm, in part because
the abandonment probability target Fmol(w; t) is a time-dependent function. We have presented results
of simulation experiments in §5 and §6 showing that the new DIS and DIS-MOL staffing algorithms
are effective across a wide range of QoS targets.
The queue with Bernoulli feedback after an additional delay in a finite-capacity orbit queue is a special

case of a network of many-server queues with feedback. Our excellent results in this case indicate that
the methods should apply to more general networks of queues, including multiple queues and customer
classes, with various forms of routing, including models with retrials from blocked arrivals as in the
large literature reported in Artalejo (2010), but such more general models remain to be examined
carefully.
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