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Lifetime data collected at product design and production stage or field operational stage often exhibit hetero-
geneity patterns, making the homogeneity assumption in conventional statistical lifetime models invalid. Mixture
models are important modeling approaches that account for data heterogeneity. However, existing mixture mod-
els are constrained by assuming an known number of sub-populations. This paper proposes a new Bayesian
statistical model to analyze heterogeneous lifetime data by assuming an unknown number of sub-populations.

Each sub-population is characterized by an accelerated failure time model to quantify the effects of possible reli-
ability impact factors. The proposed model allows simultaneous identification of the number of sub-populations
and the model parameters of sub-populations. Convenient sampling strategies are further proposed to address
the challenges of model estimation. Both numerical case study and real case study are provided to illustrate the
proposed approach and demonstrate its validity.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical modeling and analysis of lifetime data is an essential com-
ponent for reliability assessment and prediction. A typical assumption
of conventional statistical reliability models is to assume that product
population is homogeneous. However, in many reliability engineering
applications, such homogeneity assumption may not be valid. In the
modern semiconductor industry, due to the non-uniformity of oxide film
thickness resulting from poor wafer uniformity and oxide growth con-
trol, some Metal-Oxide-Semiconductor field effect transistor (MOSFET)
units with thinner films will tend to breakdown earlier than other units
with thicker films under the same voltage stress [1]. In the automobile
industry, due to the unknown change in raw material properties or sup-
plier quality and improperly unverified design changes, early failures
are often reported in the warranty databases from a large number of
standard products in the field [2]. As also reported in [3,4], the hetero-
geneity issue of product lifetime becomes even more obvious for many
immature manufacturing processes with evolving technologies, such as
new drilling products with evolving Micro-Electro-Mechanical System
(MEMS) technology developed by Baker Hughes Corporation. Neglect-
ing the product lifetime heterogeneity may greatly affect the perfor-
mance of various reliability assurance tasks, such as inaccurate relia-
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bility assessment, inappropriate testing designs and less cost-effective
maintenance planning.

To account for the heterogeneity issue of product reliability, mix-
ture models are important modeling approaches in analyzing the het-
erogeneous reliability data and have been investigated to address vari-
ous reliability engineering problems. For instance, Majeske [5] proposed
a Weibull-Uniform mixture distribution to characterize heterogeneous
lifetime data from the automobile warranty claims database by explicitly
taking into account a fraction of vehicles containing manufacturing or
assembly defects when leaving the assembly plant. Attardi et al. [6] con-
sidered a Weibull mixture model with two sub-populations to quantify
a heterogeneous population of vehicles based on field failure records. In
[71, a mixture model is adopted to evaluate reliability of space systems
operated in remote environments. Yuan and Ji [8] proposed a Bayesian
mixture model to characterize the heterogeneous degradation paths of
a laser device sample. In [9], a mixture model with two sub-populations
is formulated to investigate the heterogeneous remaining useful lifetime
of lead-acid batteries. Additional discussion and comparison of mixture
models can be also found in [10-12] and references therein.

Existing mixture models in analyzing heterogeneous lifetime data
have several limitations. For instance, many existing mixture models
assume a known number of sub-populations before model estimation
based on prior knowledge [5,6] or graphical visualization [13,14]. Such
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determination of the number of sub-populations is often subjective. To
objectively determine the number of sub-populations from data, several
model selection techniques, such as likelihood ratio tests [15,16] and
information criterion [17,18], are adopted. These methods involve a
two-step procedure (i.e., model estimation and model selection) and re-
quire estimating and comparing multiple models. It will be desirable to
objectively determine the number of sub-populations with a one-step
procedure and estimate only a single model. Another limitation of het-
erogeneity modeling under the mixture model framework is that mix-
ture of distributions (e.g., Weibull distributions [10,19], Gamma distri-
butions [20], etc.) are widely investigated without taking into account
the possible reliability impact factors, such as stress factors or environ-
mental factors. It will be beneficial to incorporate such reliability impact
factors and consider the mixture of regression models.

With the advancements in Bayesian nonparametric statistics, it be-
comes possible to develop advanced data-driven models with more flex-
ibility and less assumption through integration of statistical models and
stochastic processes [21]. Dirichlet process has been embedded into the
mixture models to address the aforementioned limitations of assuming
a known number of sub-populations in conventional mixture models
[22,23]. In [22], Dirichlet process is embedded into the normal distri-
bution and a marginal sampling approach is proposed for model estima-
tion. Motivated by the success in [22], Dirichlet process is further em-
bedded into lifetime distributions, such as Weibull distribution [24] and
lognormal distribution [25], to analyze heterogeneous lifetime data. To
further incorporate possible reliability impact factors in the context of
accelerated life tests, Weibull accelerated failure time (AFT) model is
further considered in [26]. Lognormal AFT model is another important
class of AFT model but has not been addressed yet.

Moreover, existing model estimation strategies in [24-26] consider
the marginal sampling approach. As pointed out by Ishwaran and James
[23] and Papaspiliopoulos and Roberts [27], the marginal sampling ap-
proach may cause slow mixing of Markov chain and involve numerical
integrations. To overcome such limitations, a conditional sampling ap-
proach is proposed in [23] and further extended by Papaspiliopoulos
and Roberts [27] and Walker [28]. But existing conditional sampling
approaches are mainly constrained to distribution-based formulation,
such as the normal distribution, and are developed in the context of den-
sity estimation [27,28]. In this paper, a Bayesian nonparametric mixture
of lognormal AFT model is proposed to analyze both the complete and
right-censored heterogeneous lifetime data. Moreover, a new Bayesian
estimation strategy based on the conditional sampling approach is pro-
posed. It allows convenient samplings from common distributions and
exhibits faster and higher quality of convergence than existing estima-
tion methods in [24-26], which will facilitate the practical implemen-
tations for practitioners.

This paper proposes a new Bayesian modeling and estimation ap-
proach to analyze heterogeneous lifetime data with covariates. Com-
pared to existing literatures, the contributions of the proposed work in-
clude (i) analyzing heterogeneous lifetime data without predetermining
a fixed number of sub-populations; (ii) jointly identifying the number
of sub-populations and estimating model parameters within each sub-
population; (iii) incorporating possible reliability impact factors and
quantifying their effects on heterogeneous lifetime data; (iv) conve-
nient Bayesian sampling strategies for both complete and right-censored
lifetime data. The remainder of this paper is organized as follows:
Section 2.1 introduces the proposed model formulation; Section 2.2 ad-
dresses the corresponding model estimation challenges and the pro-
posed estimation strategies; Section 3 illustrates the proposed work and
demonstrates its validity through both a numerical case study and a real
case study. Section 4 draws the conclusions.

2. Methodology

This section first introduces the conventional mixture model frame-
work and describes its transition and connection to the proposed model

96

Reliability Engineering and System Safety 167 (2017) 95-104

formulation. Then, detailed estimation procedure are described to ad-
dress the model estimation challenges.

2.1. Model formulation

Consider a heterogeneous population made up of multiple homoge-
neous sub-populations and assume each homogeneous sub-population
can be modeled by a lognormal regression. When product unit i is known
to belong to sub-population k, its lifetime observation, t;, can be mod-
eled explicitly by an AFT model as

log(t‘-lﬁk,x[):ﬁ;fx‘-+e[,i: 1,...,n, [€)]

wherex; = [1,x;,..., x,»pk]T is a (p, + 1)-dimensional vector of covariates
representing the possible reliability impact factors for sub-population k,
such as stress factors, environmental factors, etc. S, =[Sy, ---» ﬂkpk]T is
the corresponding (p, + 1)-dimensional covariate coefficient vector to
quantify the influence of possible covariates. ¢; is a random error term.
Different specification of error term yields different AFT models. For in-
stance, if error term is specified as the extreme value distribution, Eq.
(1) becomes Weibull AFT model. Such model can characterize a variety
of failures, such as dielectric breakdown, ball bearing failures, damage
in laminated composites, etc., and has meaningful interpretation of fail-
ure mechanism based on the extreme value theory[10]. If error term
is specified as the normal distribution, Eq. (1) becomes lognormal AFT
model. Such model is applicable to characterizing other failures due
to a degradation process, such as corrosion, material diffusion, crack
growth propagation [29]. In this paper, lognormal AFT is considered

and assume ¢; iid. N(O, o,%), i=1,...,n,, where N(-) denotes the univari-
ate normal distribution, o': is the variance parameter and ny is the sam-
ple size of sub-population k.

The heterogeneous patterns of lifetime observations mainly result
from the influence of different covariates throughout the multi-stage
product lifecycle, such as different design settings in the product design
and development stage, different production settings in the manufac-
turing stage and different operating conditions in the field deployment
stage. In practice, it is difficult, if not impossible, to record and ob-
serve information of all covariates since product lifecycle tracking and
complete root cause analysis may be costly, time-consuming or unavail-
able due to limited resources and inadequate data collecting, storing
and integrating capabilities. In addition, much covariates information,
such as random manufacturing errors and defects, cannot be observed.
Therefore, after considering the influence of observed covariates, life-
time data heterogeneity may still exist and is defined as latent hetero-
geneity. The latent heterogeneity is caused by unobserved/unavailable
covariates and the mixture model formulation by assuming a heteroge-
neous population aims to quantify such latent heterogeneity.

Given the covariates, x, lifetime distribution of sub-population k can
be essentially characterized by a lognormal probability density function,
fi(t]x,0,), as

fi(tx,0,) =

(log() — Brx)?
_ (log(1) = B, ) o

2
20'k

! exp <
to,\/27m

where 6, represents a set of those unknown parameters, i.e., 6, =
{ ﬂk,oﬁ}. In reality, the sub-population to which t; belongs to is gen-
erally unknown and thus, the membership of t; becomes an unknown
latent variable. If assume the heterogeneous population is composed of
K homogeneous sub-populations, t; has a prior probability belief, de-
noted as wy, to be categorized into sub-population k and Zle wy = 1.
Therefore, the probability density function of the heterogeneous popu-
lation, f(t|x,®), can be given by

f(t1%,0) =I5 w, fi(11x.6,),

where O represents a collection of all unknown parameters in Eq. (3),
ie, ®={w,0]K .

3
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A major limitation of this formulation is that the total number of
sub-populations, K, needs to be assumed as a known and fixed quan-
tity before model estimation procedure can be performed. While the
total number of sub-populations can often be estimated based on do-
main expert knowledge or graphical visualization, such estimation of K
is relatively subjective. A more objective and justifiable alternative is
to determine K through a two-step procedures, namely model estima-
tion and model selection. Specifically, a series of candidate models with
different fixed and hypothetical values of K are first constructed and
estimated. Based on the estimation results, model selection techniques,
such as statistical tests (e.g., likelihood ratio test) and information crite-
rion (e.g., Akaike information criterion (AIC)), are employed to choose
the best model with the most appropriate K. From a practical point of
view, the two-step procedure of constructing and estimating a series of
models separately and then selecting the best model is cumbersome. It
will be desirable to develop the one-step procedure by jointly estimating
model parameters and selecting K.

To overcome these limitations, a Bayesian nonparametric model for-
mulation is present in this paper to (i) assume an unknown number of
sub-populations before model estimation; (ii) objectively determine K
from data; and (iii) jointly estimate K and @ through a one-step proce-
dure. The proposed model formulation can be written in a hierarchical
structure as

41X, 04y ~ fCIX%,0)i=1,....n,

ii.d. .
9(,»)|P ~ Pji=1,...,n,

Ply, Py ~ DP(y, F), (C))

where n is the total number of product units, P is a random distribution
assigned by prior of a Dirichlet process (DP), denoted as DP( - ), with a
positive scalar y and a base distribution Py. f(-|x, ;) characterizes the
homogeneous sub-population associated with t; of product unit i and 6 ;
is a collection of corresponding unknown parameters. In this paper, log-
normal AFT model is considered for each sub-population due to its pop-
ularity in lifetime modeling as well as its elegant model structure which
allows convenient sampling strategies to be developed in Section 2.2.
6; can be the same or different among different product units. To il-
lustrate the connection and difference of the proposed formulation in
Eq. (4) compared to the conventional formulation in Eq. (3), denote 6;
as different values among 6; and further define discrete variable z; for
each t; as, z; = k when 6;, = 6,. A more constructive representation of
DP() [30] is employed, and the realization of DP(), namely P, can be
written as

[oo]
P = Z wySg, s
k=1

where S, 1s the Dirac delta measure with a point mass of 1 at 0. w, =
U, Wy = H’;,;ll(l — vp)vg, Yk > 2, where v, ~ beta(1, y), Vk, and beta( - )
denotes the beta distribution. ) can be drawn independently from the
base distribution of a Dirichlet process, P,. With the representation in
Egs. (5) and (4) can be rewritten as

11%,6;, ~ f(1x.0;),i=1,...n,

()

0, ~ X wibg.i=1,...n ()
k=1

Based on (6), the probability density function of the heterogeneous pop-

ulation, g(7|x, ®), can be given by

2(t1%,0) = Y w fi(t1x,0). )

k=1
Compared to Eq. (3), which is a finite mixture of lognormal AFT model,
the proposed model formulation can be viewed as an infinite mixture
of lognormal AFT model. With the proposed formulation, there is no
restriction on the number of sub-populations assumed before model es-
timation. The actual value of K will be learned objectively from data.
The estimation procedure will be elaborated in the next section.
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2.2. Model estimation

To estimate model parameters and identify the number of sub-
populations in Eq. (4), suppose n observations of lifetime data with co-
variates are available from either laboratory tests or field operations.
Denote the available data as, D = {t;, A, x; }, where A, is a right-censored
indicator for observation i. A; = 1 if the failure of unit i is observed and
A; = 0if it is censored. Let z(®) denote the prior density of a collection
of all unknown parameters, i.e., ® = {wy, By, az }f=l, where #( - ) repre-
sents an arbitrary probability density function. As shown in (5), w and
0, are generated independently to construct a realization of a Dirichlet
process, where w = {w}}? | and 6, = { ﬁk,a,%}. Thus, joint prior den-
sity can be further expressed as, 7(0) = =(w) - H,‘i L 7B ai). The joint
posterior density, therefore, can be given by

n o0 Ar
7(®|D) x L@OD)- z(® =[] ( wkfk<z,-|x,ﬂk,a,3>>
k:

i=1 =1

e 1=4;
2
< wi R (1%, ﬁk76k)>
k=1

where R, (1]X, ;. ai)) is the reliability function of sub-population k, i.e.,
R (t]%, B 02) =1 - /0’ Fi(sI%, By, oD)ds and L(®|D) is the joint likeli-
hood function.

Under the Bayesian framework, parameter estimation requires to
compute the marginal posteriors of each individual unknown param-
eter. Both conventional sampling techniques, such as inversion sam-
pling [31], and conventional numerical integration techniques, such
as Gaussian quadrature approximation [32], fail since computing the
marginal posterior requires high dimensional integration of the joint
posterior. For instance, the marginal posterior of w; can be expressed
as, 7(w,|D) = [gwy 7(OD)AO*V), where @) denotes a collection
of parameters by excluding wy, i.e., ®“1) = @\ {w, }. To overcome such
limitations, Markov Chain Monte Carlo (MCMC) sampling methods can
be employed. However, the joint likelihood function, L(®|D), is in com-
plex form, and this poses challenges for conventional MCMC sampling
methods. The first challenge is that all unknown parameters are highly
dependent among each other. Such high dependency will result in slow
or even failed convergence of the conventional MCMC. To further ex-
plain such high dependency, the full conditional posterior of (g, az) can
be expressed as

a@w) - [ 2B o) ®)

k=1

n
#(y.0210 P70 D) o [

[(Z wi fie@;1X, B, 0',%)>Ai
i=1 k=1

< o0
k=1

As shown in Eq. (9), (ﬁk,o-,%) depend on all the remaining unknown

wi Ry (1;1%, ﬂk,oi>>“Af] 7 (Brop). 9

parameters, i.e., QB = O\{ ﬂk,az}. The second challenge is that
there is an infinite number of unknown parameters to be estimated
in Eq. (8). It makes the model estimation procedure computationally
formidable.

To address the first challenge of high dependency among unknown
parameters, the key is to reduce the complexity of L(®|D). Augment
Z={z;}]_| into the likelihood function, L(®|D), where z; are discrete
variables introduced in Section 2.1. z; can be interpreted as the latent
membership of ;. When z; = k, it indicates the t; of product unit i belongs
to sub-population k. With augmented Z, the joint likelihood function,
L(®|Z,D), is given by

LO|Z, D) = [] [J(fattil% B o)™ - R(t; 1%, B, o) =20z, = k), (10)

i=1 k=1

where I(-) is an indicator function. To demonstrate that such augmen-
tation will reduce complexity of the high dependency structure, the full
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Fig. 1. Descriptive diagram of dependency structure and its simplification.

conditional posterior of (ﬁk,ai), conditioned on augmented Z, can be
expressed as

n

— 2 . —A; =

7(By, 0|0 P, 7, D) o« [ [ (fulti 1%, B, o)™ Ry (1,1, By, o) ~21) =0
i=1

~n(ﬁk,ai).

an
It can be observed from Eq. (11) that (B, az) no longer depend on the

remaining unknown parameters, i.e., @ o) = ¢@. Fig. 1 gives further
illustration that augmented variables Z simplify the parameters’ depen-
dency structure. Nodes represent parameters and arcs represent exist-
ing dependency relationships. Conditioned on Z, (8, o‘,%) become condi-
tional independent among each other with all arcs disconnected.

To further compute Eq. (11), the prior density, n(ﬁk,ai), needs to
be explicitly specified. A popular prior specification is to assume mul-
tivariate normal prior for g, and inverse gamma prior for o7, i.e.,
B ~ MVN,,,(u;. ;) and 67 ~ IG(ay, by). Thus, 7(B;.02) can be explic-
itly written as

[}

1 b
7(Bi o) & 2] 2 exp(=3 By — ) "EL By — w)) - ()™ exp <——§>.

k
12)

The prior parameters in Eq. (12) can be elicited based on the available
prior knowledge. For instance, u; quantifies the average prior belief of
B and diagonal values of X; control the confidence of such prior belief.
Larger values of X; correspond to lower levels of confidence and vice
versa. a; and b, can be also elicited based on the average prior belief
and the prior variance using moment matching methods. When the prior
knowledge is not available, less informative/non-informative priors can
be specified. In this paper, less informative priors are considered.

When the available data is complete lifetime data, i.e., A; =1,Vi =
1,..., n, the full conditional posterior distribution of g, can be written as
(see the Appendix A for proof)

By IQ(_ﬂk)’ Z,D ~ MVN,, | () news Zk new)> (13)

1 —1\— 1
where X ., = (?x',{xk +EZ)7" and gy pen = Ek,new(g—ZX{Yk +
k k

). X =[x;li €8, j=1,....(p+ 1) and Y, = [y,l.i €S, where
vio =logt;) and S, is an index set defined as S, ={i: z; =k, Vi=
1,...,n}. The full conditional posterior distribution of 0',% can be written
as (see the Appendix A for proof)

62|®(_6z) Z,D ~ IG(a b ) (14)
k s by k.new> Yk.new/>
where g ey = % + g by new = %(Yk =X B (Y = XiBi) + by and |- |
is the cardinality measure of a set.

When the available data includes right-censored observations, i.e.,
i, A; = 0, denote index sets S, and Sy, as Sy, = {i : z; =k, A; = 1,Vi=
1,...n} and Sy ={i:z;=k,A; =0,Vi=1,...,n}, respectively. Aug-
ment latent variables &;’s, i € S, to represent the true but unob-
served lifetime observations for right-censored data. Based on such aug-
mentation, f; and "1% can be generated similarly using Egs. (13) and
(14) with different Y; [y’.*o],i €S, where y’.*o = log(t;),Vi € S;;, and
Vi = log(&), Vi € Sy Each latent variable &; can be further generated
by a truncated lognormal distribution as

&1Z,D ~ LN, o\ (B{X;,07), Vi € Sy 15)
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Based on the inverse transform sampling method (see the Appendix? for
=B X
6—:)],
where q ~ Unif(0, 1), ®( - ) and ®~!(-) are cumulative distribution func-
tion (cdf) and inverse cdf of standard normal distribution.

To address the second challenge of an infinite number of parame-
ters, a slice sampling technique introduced by Walker [28] is employed.
Compared to the distribution-based formulation for improving density
estimation in [28], this paper considers a regression-based formulation
to analyze heterogeneous complete and right-censored lifetime data for
product reliability modeling. The regression-based formulation allows
quantifying the effects of covariates, such as stress factors and envi-
ronmental factors, on product lifetime. It also allows differentiating
whether the lifetime heterogeneity can be captured by the observed co-
variates, the unobserved covariates, or both. The issue of an infinite
number of parameters is caused by an infinite number of choices of k,
i.e., k =1,..., 0. For instance, the conditional posterior density of z; = k
is given by

proof), & can be sampled as & = exp[{x; + 6, @7 (g + (1 — 9)&(

o0
(z; = k10, D) o [ [ £ulti1% By 07)% - Re(t; 1%, By o) =21 (16)

k=1
To perform sampling for z;|®, D, there is an infinite number of possible
k values. To address this issue, the slice sampling technique employed
allows a finite number of k to be generated in actual implementation.
The rationale is to further introduce augmented variables U = {w; ),
where u;|2;, w ~ Unif(0, w;) and Unif( - ) denotes the uniform distribu-
tion. Recall Pr(z; = k) = wy, then #(u;, z; = k|w) is given by

w(u;, z; = klw) = I(k € A(y;)), a7

where A(y;) is a set defined as A(y;) = {k : w; > u;}. With augmented
U, the joint likelihood function, L(®|Z, U, D), is given by

L©IZ,U,D) = [[ [ ]k € Aw) - £it;1%, By o)™

i=1 k=1

Ry (1%, By o) TR NEED, (18)

Based on (18), the full conditional posterior of z; = k can be expressed
as

m(z; = klu;, ©,D) < I(k € A@)) - fi(t:|%, Br, 61)™ - Re(t;1%, By, 00)' ™4
19

As compared to Egs. (16) and (19) shows that conditioned on u;, ; can
only take possible values from the set A(y;). It can be shown that the
cardinality of this set is always nonempty and finite, i.e., 0 < |A(y)| <
oo (see the Appendix C for proof). Thus, with help of augmented variable
u;, 2; only needs to be sampled from a finite number of possible values.
Furthermore, the maximum number of k values required, denoted as
K*, is also finite since K* [ UL, A(u))]. K* can be further explicitly
computed as [28]

K
K* =min{K : Y w; > 1 —min{u;}"_ }.
k=1

(20)

Based on Eq (20), only a finite number wy|Z are required to be generated
during the model estimation. As shown in Eq. (5), w;|Z can be obtained
from v, |Z, where v, |Z is given by Li et al. [33]

Dz =),
i=1

I=1i

n k
velZ ~beta(l + Y Uz, =k)n+y— Y,
i=1

2N

where beta(") represents the beta distribution. Notice that sampling v, in
Eq. (21) is different from that in [28], where v, vy, ..., v,_;, u; is sampled
sequentially from the truncated beta distribution. It is more straightfor-
ward to sample v;’s directly from the beta distribution in this paper.

In summary, the proposed estimation procedure can be described in
the Appendix D. Notice that for the marginal sampling approach con-
sidered in [24-26], Dirichlet process will be marginalized out and the
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Table 1
Simulation settings.
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Prior settings

No. Ground-truth values

k Wy Box P op

1 0.4 9 -0.5 0.04
2 0.6 12 -1 0.16

”(ﬁok, ﬁlk)
MVN, ((0, 0)", diag(100, 100))

>
n(a;)
1G(0.01,0.01)

Note: MVN‘7 (): p-dimensional multivariate normal distribution; IG(- ): inverse gamma distribu-

tion

numerical integration needs to be performed to calculate /f(t)dP, (if
8; = 1) or fR(t))dP, (if 5; = 0) for each observation ¢;,i = 1, ..., n, where
f(-) and R( -) are the probability density function and reliability func-
tion, respectively, and P is the base distribution of the Dirichlet pro-
cess. Based on the proposed estimation procedures described above, all
samples can be drawn from the common distributions and no numeri-
cal integration is required. Most computer programs and packages have
routines to generate random numbers from such common distributions,
which significantly improve the convenience in actual implementation
for practitioners.

3. Case studies
3.1. Numerical case study

To demonstrate the effectiveness of the proposed methodology, a
mixture of two lognormal AFT model is assumed without losing gener-
ality. Simulation study is considered since ground-truth quantities, such
as model parameters, the number of sub-populations and the reliability
curve, can be pre-specified. They will serve as benchmark quantities to
comprehensively and rigorously evaluate the performance of the pro-
posed work and compare its performance with alternative methods. It
is also noticed that in the numerical case study, both scenarios of the
complete and right-censored lifetime data with covariates are illustrated
and investigated. For simplicity, univariate covariate is considered to
represent a single stress factor. Table 1 summarizes the predetermined
ground-truth values for model parameters and describes the assumed
prior settings. Less-informative priors are considered to mimic the sce-
nario when prior knowledge is limited or even absent.

Based on ground-truth settings in Table 1, a complete lifetime dataset
with a sample size of 100 is simulated. Univariate covariate x is gen-
erated from uniform distribution, e.g., x ~ Unif(0, 3). The positive
scalar in the Dirichlet process is set as y = 5. Given the simulated com-
plete lifetime observations {t,,6; = 1, x; }}2?, the proposed sampling al-
gorithm is implemented according to Appendix D. In step 0, all ob-
servations are assigned to a single sub-population, i.e., {z; = 1},.'20 and
w; = v; ~ Beta(101, 5). In step 1, the augmented variable v; for each ob-
servation is sampled as u; ~ Unif(0, w,),i = 1, ...,100. In step 2, accord-
ing to Eq. (20), the maximum number of sub-populations required, K*,
is calculated based on {u;}/%. When K* > 1, follow stick-breaking pro-
cedures to generate v ~ Beta(1, 5), compute w, = H:,_:ll(l — v )v, and
generate (B o, Bx, 1) and o7 from (B o, By, 1) and x(c?), respectively,
Vk > 1. In step 3, update membership values z,’s by Eq. (19). Since life-
time data is complete, step 4a is carried out to update (S, f1x) and 0',%
using Eqgs. (13) and (14). In step 5, based on the updated z;’s, (Box, B1x)’s
and aﬁ’s, v’s are updated using Eq. (21). The above steps 1-5 will be
repeated until the maximum number of iteration is achieved.

Fig. 2 shows the trace-plot of the number of sub-populations gener-
ated against MCMC iterations and the corresponding histogram. Typi-
cally, posterior mode is selected as the most appropriate number of sub-
populations [27,28]. In Fig. 2, it is observed that the posterior of m is
highly concentrated on m = 2 and thus, 2 sub-populations are identified.
The identified number of sub-populations is identical to the ground-
truth number of sub-populations assumed in Table 1. To make infer-
ence of sub-population specific parameters, sampling iterations with
K =2 are first extracted. Since the posterior density is invariant to the
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Table 2
Estimation results of complete lifetime data.

Parameter Ground-truth MLE? Posterior ~ Posterior 99% Credible
value mean median interval
wy 0.4 0.48 0.45 0.45 [0.33,0.58]
B1,0 9 9.03 9.04 9.03 [8.93,9.19]
P11 -0.5 -0.55 -0.55 —-0.55 [-0.66,—0.48]
0'12 0.04 0.04 0.04 0.04 [0.02,0.07]
wy 0.6 0.52 0.50 0.50 [0.38,0.62]
Pa 0 12 11.96 11.98 11.96 [11.72,12.38]
b1 -1 -1.01 -1.02 -1.01 [-1.34,-0.83]
0'72 0.16 0.15 0.16 0.16 [0.10,0.28]

a Maximum likelihood estimates assuming known number of sub-populations and
known membership for each observation.

permutation in the labeling of sub-population parameters, ordering con-
straint of fq) ¢ < fi(2), o is then considered to address the label-switching
issue [34], where f, o represents the k™ smallest intercept coeffi-
cient among fy o’s. The ordering constraint of intercept coefficient is
considered under the assumption that different sub-populations can
be uniquely identified based on their corresponding Buwok=1,....K.
As fy, o represents the central location of lifetime distribution of sub-
population k in the absence of influence of covariates, it is often true
in practice that different sub-populations with different failure mecha-
nisms, e.g., infant mortality failure and wear-out failure, will inherently
have different expected lifetime spans and their f o’s can be uniquely
ordered. For cases when ordering based on f, ( cannot yield unique
identification, ordering constraints with multiple parameters or relabel-
ing algorithms can be further considered [35]. Table 2 summarizes the
estimation results of the corresponding model parameters.

As shown in Table 2, Bayesian point estimates (e.g., posterior mean,
posterior median) are close to the predefined ground-truth values. Fur-
thermore, Bayesian interval estimates (e.g., 99% credible intervals) fully
cover the ground-truth values. It is worth noting that Bayesian param-
eter estimation results shown above are obtained by assuming both an
unknown number of sub-populations and an unknown sub-population
membership for each observation. If assuming the true number of sub-
populations and true sub-population membership for each observation,
maximum likelihood estimation (MLE) is carried out. There is slight dis-
crepancy between MLE estimation results and ground-truth values. It is
because of the variability of the finite samples. Bayesian estimation re-
sults are also close to MLE estimation results since non-informative pri-
ors are considered. Figs. 3 and 4 show the posterior samples of f}; ( and
0'; Left figures show that the mixing of MCMC performs well. It indicates
the convergence of MCMC method. Right figures show the correspond-
ing posterior densities. Posterior samples of other estimated parameters
exhibit similar results and thus are omitted here.

Another aspect is to investigate the influence of hyper-parameter, y,
in the DP process. Fig. 5 shows scenarios of decreasing and increasing
y to 1 and 10, respectively. It can be shown in Fig. 5a that when y in-
creases, it is more likely to explore a larger number of sub-populations
and thus, requires less burn-in iterations to identify the correct num-
ber of sub-populations. It can be explained by the y’s influence on DP.
When y is large, DP is more likely to generate different values of g and
o2. It allows the estimation method to explore a larger space of the pos-
sible number of sub-populations. On the contrary, when y is small, DP
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Fig. 6. Computation efficiency and mixing quality comparisons between the existing method (top in Fig. 6b) and the propose method (bottom in Fig. 6b).

is more likely to generate the same values of f and o2. The estimation
method will be less likely to explore a larger number of subpopulations
and requires more burn-in iterations to identify the correct number of
sub-populations. However, more iterations do not indicate more compu-
tational time. In fact, although larger y requires less burn-in iterations,
computational time per iteration is higher than that given by smaller y.
It is because at each iteration, the dimensionality of parameter space in-
creases and sampling additional parameters will require additional com-
putation time. As shown in Fig. 5b, sampling 10,000 iterations under
settings of y = 1 (dashed line) and y = 10 (solid line) require about 36
and 107 s, respectively. The corresponding burn-in iterations 4700 and
300 require approximately 8 and 3 s, respectively. Therefore, although
the number of burn-in iterations required has significant difference with
the order of magnitude 1, the computation time has no significant dif-
ference in the order of magnitude and both settings can be considered
in the actual implementation with the similar computation efficiency.

The proposed estimation method is based on the stick-breaking rep-
resentation of DP. It will be also desirable to compare its performance
with the estimation method based on the Polya urn representation in
[22,24,25,36]. Fig. 6 shows the comparison results. In Fig. 6a, deviance
measure is considered to represent the goodness-of-fit and monitor the
convergence of both estimation algorithms [28,37]. When both methods
converge, they exhibit similar goodness-of-fit. However, the proposed
method converges after about 3 s while the existing method converges
after about 45 s. The proposed work has significant computational effi-
ciency and is faster than the existing work in the order of magnitude 1.
All computation is carried out in a computer with 64 bit Intel dual-core
processor @ 2.60 GHz and 16GB of RAM. Fig. 6b shows the comparison
of mixing performance between two methods. A good sampling algo-
rithm is expected to have a low auto-correlation function (ACF) value,
which can further demonstrate the quality of convergence [38]. The
proposed work generates less correlated samples and has much better
mixing of Markov chains than the existing method. As shown in Fig. 6,
both estimation methods exhibit similar modeling accuracy, but the ex-
isting method requires more computation time and has slower mixing
performance than the proposed method. It is mainly because the exist-
ing method based on Polya urn representation has less efficient one-
coordinate-at-a-time sampling strategy and often requires numerical in-
tegrals due to its nature of marginalization [23,27].

To evaluate the accuracy of predicted reliability functions, an in-
dependent test sample of additional 50 lifetime observations at x = 0.5
is simulated and the corresponding Kaplan-Meier curve is established.
Fig. 7 compare the ground-truth reliability function, K-M curve and pre-
dicted reliability functions at x = 0.5 based on the proposed model con-
sidering the heterogeneous population as well as conventional models
(e.g., lognormal AFT and Weibull AFT) assuming the homogeneous pop-
ulation. The proposed heterogeneous model has the satisfactory predic-
tion accuracy of reliability function and is closer to both K-M curve and
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ground-truth reliability function than the conventional homogeneous
models.

To further demonstrate the estimation results of heterogeneous life-
time data with right-censored observations, two scenarios of 5% and
30% right-censored data are created from the previous simulated 100
complete lifetime data observations. Lifetime observations which ex-
ceed the termination time are treated as right-censored observations.
Similar estimation procedures in Appendix D are implemented except
that in step 4, step 4a is replaced with step 4b. Specifically, for each
right-censored observation i with §; = 0, generate latent variable &; ac-
cording to Eq (15). Based on the updated &;’s, (Box, B1x) and oi are then
updated using Eqgs. (13) and (14). Table 3 summarizes the estimation re-
sults. When the proportion of right-censored observations is small (e.g.,
5%), the estimation results are similar to the complete data estimation
results in Table 2. When the proportion of right-censored observations
is moderate (e.g., 30%), the estimation results of sub-population 2 be-
come inaccurate but those of sub-population 1 are still similar to the
previous estimation results. It is because sub-population 2 consists of
lifetime observations with larger values. As the right-censored propor-
tion increases, more complete data observations from sub-population 2
become right-censored observations and there is less data available for
accurate estimation of sub-population 2.

3.2. Real case study

To further demonstrate the applicability of the proposed methodol-
ogy in real practice, a real case study of assembly data collected from
an automatic robotic assembly process is provided. Assembly time for
each assembly product unit is recorded and can serve as an important
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Table 3
Estimation results of right-censored lifetime data.
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5% right-censored observations

30% right-censored observations

Para- Posterior Posterior 99% Credible Posterior Posterior 99% Credible
meter mean median interval mean median interval
wy 0.45 0.45 [0.30,0.57] 0.40 0.40 [0.27,0.54]
P10 9.04 9.03 [8.93,9.20] 9.03 9.03 [8.92,9.17]
B1,1 —0.56 -0.55 [-0.69,—-0.47] —0.55 -0.55 [-0.67,—0.45]
o2 0.04 0.04 [0.02,0.07] 0.03 0.03 [0.02,0.06]
Wy 0.51 0.50 [0.38,0.65] 0.55 0.55 [0.42,0.68]
Pao 12.17 12.10 [11.66,13.69] 14.71 14.57 [12.63,18.21]
2% -1.18 -1.12 [-2.24,-0.83] —2.48 —2.42 [-4.41,-1.33]
ol 0.43 0.19 [0.11,5.76] 2.01 1.46 [0.30,9.76]
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Fig. 8. Comparisons of Ryy(f), Ryomo(®) and Rygeee(t). Ryqy(): the benchmark reliability function based on K-M (dashed curve); Ryomo(1): the estimated reliability function assuming the
homogeneous assumption (dot curve); Ry (?): the estimated reliability function of the proposed model assuming the heterogeneous assumption (solid curve).

productivity measure for the assembly process. Such data are essentially
lifetime data and “lifetime” can be interpreted as the “time duration” of
a product unit in the assembly process. Due to the product quality vari-
ability (e.g., material quality, dimension variation), assembly time data
exhibit heterogeneity. There is also a controllable robotic variable, de-
noted as x, may affect the assembly time. It consists of two settings,
namely low-level and high-level robotics settings, denoted as x;, and xy.
To take into account the heterogeneity and quantify the influence of
robotic settings on assembly time, the proposed model is employed to
analyze such assembly time data. The same less-informative prior set-
tings in Table 1 are assumed since no prior knowledge is available. Fig. 8
shows the comparison results of estimated reliability curves, R(t|x), at
a specific robotic setting, x. R(t|x) can be interpreted as the probability
of not having finished the assembly task till time t and a lower value
indicates a better productivity.

Unlike the simulation study, there is no ground-truth reliability func-
tion in real data. As shown in Fig. 7 of the simulation study, K-M curve
can serve as a good surrogate of the ground-truth reliability function.
Since K-M curve is calculated from lifetime data rather than lifetime
data with covariates, real data is first stratified into two subsets with
covariate values x; and xy, respectively. Within each subset data, the
corresponding K-M curve is then calculated and denoted as Ry (f|x.)
or Ryy(t|xy). Notice that K-M curves (i.e., dashed curves in Fig. 8) are
step functions with discontinuities at observed time observations t;’s.

To compare the performance between the proposed model with con-
sidering heterogeneity and the convectional model without consider-
ing heterogeneity at x;, (or xH), their corresponding estimated reliabil-
ity functions, denoted as Ryeq(?|xy) (or RHete(’|xH)) and Rygomo(t1x1)
(or Ryomo(t1xp)), will be compared with Ryy(r]xy) (or Ryp(tlxy)). A
model whose estimated reliability function is closer to K-M curve has
better performance. Let d(R, Riy|x) = ¥, |R(#;]x) — Riqyi(#;1%)| quantify
the distance between the estimated reliability function and K-M curve
at x. When x = x;, d(RHomo,RKMle) =8.23 and d(RHete,RKM|xL)
4.72; when x = xy, d(Ryomo» Rini|Xy) = 4.61 and d(Ryege> Riy|Xn) =
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3.56. Thus, the proposed model gives smaller distance values and shows
better performance. Fig. 8 also graphically confirms such results. At both
x = x, and x = xy, the estimated reliability functions based on the pro-
posed method considering heterogeneity (i.e., solid curves) are closer to
K-M curves and better capture their trends than those neglecting such
heterogeneity (i.e., dot curves). It can be also seen that high-level robotic
setting gives a lower R(t|x) value at fixed time ¢, indicating a better pro-
ductivity. It is also noticed that the estimated reliability functions based
on the proposed model or the conventional model are smooth and con-
tinuous functions of t.

4. Conclusion

A Bayesian nonparametric model for heterogeneous lifetime data
modeling and quantification is proposed in this paper. It releases the
assumption of per-sepecifying the number of sub-populations and quan-
tify the effects of possible covariates on product lifetime. Specifically,
the Dirichlet process is embedded into lognormal AFT model to ac-
count for lifetime latent heterogeneity and incorporate possible covari-
ates. This novel formulation allows the number of sub-populations to
be identified objectively from data. Moreover, such identification is re-
alized jointly with estimating model parameters for all sub-populations
in a single step. The resulting model estimation challenges are further
addressed and resolved by employing a series of sampling techniques
into the MCMC. In particular, when lifetime data is complete, this paper
analytically shows that conjugate priors are available for model estima-
tion and it provides great convenience in practical implementation for
practitioners.

In this paper, normal-disturbed error term is assumed for modeling
lifetime data of each sub-population. Other error terms structures can
be further investigated in the future, such as the extreme value distribu-
tion and the logistic distribution. The mixing proportion of the proposed
model is assumed to be independent of covariates. For future works, the
proposed sampling approach can be extended to estimate models with
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the Dirichlet process variants, such as the dependent Dirichlet process
[36,39], where covariates could have both effects on the mixing propor-
tion and the model parameters of each sub-population.
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Appendix A. Proofs of Eqgs. (13) and (14)

When A; = 1,Vi, ”(ﬂk"f;%) is specified in (12) and let S, = {i : z; =
k,Vi = 1,...,n}, the full conditional posteriors for gy, z(8,|0-#x),Z,D),
is given by

7B 10 P4, Z,D) o« exp (~3 (B, — w ¢ (B - ) )

T At oD & exp (=3B - w0 "= B — )

i€Sy
s, (log(t) — Brx)?
_ Zies,(og 2 Px > (22)
26k

Denote X, = [x;;l.i €S;,j=1,....(p+1) and Y, = [yyl.i €S,, where
yio = log(t;), Ziesk (log(t;) — ﬁ']fx)zin (22) can be written as (Y, —
X BT (Y, — X, By)- Thus, (22) can be further simplified as

- 1 - 1
#(B|O P, 2.D) o exp  —3 (B — w)"E By — ) + 5 (Y~ XiB)"
(o}
k

1 -
(Y = Xkﬁk)) o exp <—§ﬁ;£(fzx;£xk +Z.DB,
k

1 _
HSX Y+ 2 )" By
(o2
k

o exp (=2 (Bt = Hinew) T how B — Heaew))  (23)

1 e 1
where X ., = (EXIX" +E D7 and  pypew = Zk,new(a_iszk +
Z;' - Therefore, based (23), B.10CED Z D ~
MVNp+1 (”k,new’ 2“k,new)'
2
Similarly, the full conditional posteriors for oz, 77:(0'13 |0 7. D), is
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fore, based on (24), az|®(’("i», Z,D ~ IG(ay new» b new)-
Appendix B. Sampling of ¢&;

Given a random variable g ~ Unif(0, 1), sampling ¢; is equivalently
to solve g = /f" gGs1Byx; 00)ds/ [, g(s|Bix; op)ds, where g(-|f;x;. 07)
is the probability density function of normal distribution with mean
ﬁ;fxl- and variance o‘,%. Thus, based on normalization, there is g =

_pTx, _fTx, —pTx;
[q)(f’:%) - (I)(t’:%)]/[l - d>(t':%)]. It can be further simplified as
& = explBIx, + 0,07 (g + (1 - (L)
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Appendix C. Proof of 0 < |A(y;)| < o

Recall that the augmented variable u; is generated through y;|z;, w
~ Unif(0, wy), there is u; < wy. Since A(y;) is defined as A(y;) = {k’ :
wp > u;}, k € A(y) or equivalently |A(y;)| > 1 > 0. Suppose |A(y)| —
00, Yireaw) Wi > [AW)|u; — co. However, ¥y, W < Xp2, Wy =
1. Based on such contradiction, |A(y;)| < co. Thus, A(y;) is a finite and
nonempty set, i.e., 0 < |A(y;)| < 0.

Appendix D. Summary of the sampling algorithm

Step 0: Initialize K© =1, and zj,o) =1,Vi=1,...,n. Generate
(ﬁ;o), 0_:(0)) from z(B., o,%) in Eq. (12) and let w(lo) = u(lo) ~ Beta(n + 1, 7).
For iteration 7 = 1, ..., 7,4, repeat Steps 1-5;

Step 1: 4”27 = k, w1 ~ Unif(0, wg(;‘jl));

Step 2: Determine K* by Eq. (20). If K* > K1 set K(® = K*; oth-
erwise, K™ = K=1. Generate v ~ Beta(l, v), (B;.02) ~ (B, c7) and
compute w;, = [[5,(1 = v)vy, Yk > KD,

Step 3: Update zl(.T) = kluﬁr), 0,D by Eq. (19);

Step 4: Update (87, alf(r))lD, Z based on the following two cases:

Step 4-a: If lifetime data is complete without right-censored obser-
vations, update B, ai(”)lD, Z by Egs. (13) and (14);

Step 4-b: If lifetime data is right-censored, generate latent variables
£s by Eq (15) and then update (87, ai(r))lD, Z by Egs. (13) and (14) with
&s;

Step 5: Update u;’>|z by Eq. (21) and compute w(l’

o= o vk > 2.

(7)

) _ () _
=v,", =

Wy
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