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The biological properties of proteins are uniquely determined by their structure and dynamics. A
protein in solution populates a structural ensemble of metastable configurations around the global
fold. From overall rotation to local fluctuations, the dynamics of proteins can cover several orders
of magnitude in time scales. We propose a simulation-free coarse-grained approach which utilizes
knowledge of the important metastable folded states of the protein to predict the protein dynamics.
This approach is based upon the Langevin Equation for Protein Dynamics (LE4PD), a Langevin
formalism in the coordinates of the protein backbone. The linear modes of this Langevin formalism
organize the fluctuations of the protein, so that more extended dynamical cooperativity relates to
increasing energy barriers to mode diffusion. The accuracy of the LE4PD is verified by analyzing
the predicted dynamics across a set of seven different proteins for which both relaxation data and
NMR solution structures are available. Using experimental NMR conformers as the input structural
ensembles, LE4PD predicts quantitatively accurate results, with correlation coefficient ρ = 0.93 to
NMR backbone relaxation measurements for the seven proteins. The NMR solution structure derived
ensemble and predicted dynamical relaxation is compared with molecular dynamics simulation-
derived structural ensembles and LE4PD predictions and is consistent in the time scale of the
simulations. The use of the experimental NMR conformers frees the approach from computationally
demanding simulations. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935575]

I. INTRODUCTION

The evolved amino acid sequence of a native protein
encodes its folded structure and inherent dynamical properties
in aqueous solution.1–3 The latter determines the dynamics
of specific residues in a protein primary sequence, which
are active participants in the pathways of the biological
function. Biologically active segments are often mobile and
adaptable to assume a proper configuration when binding
to a reaction partner. The multiple configurational states
that an active segment may populate are not randomly
selected: configurations with minimal energy are connected by
energy barriers, and as such are thermally activated, enabling
emerging regions of high mobility, which can behave like
“switches” along the binding pathway.3

Different experiments and computational models exist
to probe the dynamical processes of proteins, spanning the
femtosecond regime of bond and angle vibrational modes
to the millisecond and longer time regimes of folding and
enzymatic kinetics. Important information in the picosecond
to tens of nanosecond regime can be collected through
NMR relaxation experiments, such as T1, T2, and nuclear
Overhauser effect (NOE); however, their interpretation is
model dependent. Atomistic Molecular Dynamic (MD)
simulations can provide a realistic dynamical model, but
for most proteins of interest sufficient sampling to obtain

a)Author to whom correspondence should be addressed. Electronic mail:
mguenza@uoregon.edu

converged dynamical correlations is prohibitively costly, and
a theoretical approach is needed.

The theory we present here is the Langevin Equation for
Protein Dynamics (LE4PD), which provides a coarse-grained
but still physically realistic representation of biological
macromolecules at the lengthscale of a single amino acid
and larger. The LE4PD theory describes the amino acid
dynamics quantitatively, as the theory contains information
about the extent of the intramolecular energy barriers, specific
amino acid friction coefficient, semiflexibility, degree of
hydrophobicity, as well as hydrodynamics. The LE4PD
accurately predicts the sequence-dependent dynamics starting
from the ensemble of metastable structural configurations
around the folded state measured by NMR, or from MD
simulations.

The LE4PD model is unique in that it is a minimal
dynamical model which projects the local and global diffusive
dynamics of proteins from the protein structural ensemble
with no adjustable parameters. This is possible because it is
a coarse-grained, yet, microscopic model whose parameters
are set directly from the microscopic physical system. This
is in contrast to most methods constructed to model protein
dynamics which rely upon site-specific adjustable parameters,
such as the model-free formalism of Lipari and Szabo.4

Other methods attempt to define the internal diffusion of
proteins as fractional Brownian processes,5 which is a more
accurate description of the general nature of the internal
motion of proteins but is not predictive in nature. Diffusive
models following the Langevin mode approach of Lamm
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and Szabo,6 and applied to proteins,7 have been shown to
reproduce the whole residue contribution to the incoherent
intermediate scattering function when friction constants and
harmonic force constants are fit to molecular dynamics
simulation and atomistic force fields.8 This demonstrates the
value in developing effective harmonic descriptions of protein
motion. Nodet, Abergel, and Bodenhausen have modeled
the dynamics of proteins as a coupled network of rotators
under the assumption of the single conformational minima
and small displacements.9 This approach, which attempts
to predict fluctuations and dynamics from a single protein
structure, is not directly comparable to the LE4PD model
we present here, where we model the dynamics and take
the structural ensemble from experiment or by sampling an
underlying atomistic model via MD simulation. Like other
elastic network models,10–14 the coupled rotator model is
capable of capturing the local variation in flexibility along the
protein chain with no site-specific adjustable parameters, but
because it begins from an empirical network description, it
requires a large amount of parameterization and specification
of an overall rotational diffusion time τ0, a scaling factor k0, a
cutoff distance Rc, and a characteristic internal diffusion time
tD. The model is explicitly limited to small displacements
around the single conformational minima, and relaxation
times centered upon a short characteristic internal diffusion
time of ⇠300 ps. In contrast, the LE4PD model is capable
of simultaneously describing the global rotational diffusion,
as well as local motion spanning the picosecond to many
nanosecond and microsecond regimes. In particular, the long-
time, highly correlated, large-amplitude dynamical motion of
proteins is of great biological interest.

Input to the LE4PD is an ensemble of structural config-
urations, which has to be representative of the distribution of
folded states of the protein. While proteins sample a very large
3N-dimensional configurational space, with N the number of
independent sites comprising the protein, at the bottom of the
funnel-like energy landscape, the conformational diversity is
much smaller.15–17 A common paradigm is that the important
internal fluctuations of a folded protein span a limited num-
ber of specific structures,18,19 and these can be well sampled
experimentally by NMR.20 If that is the case, NMR conformer
ensembles should provide a structural ensemble consistent
with well-sampled MD simulations, and the LE4PD coupled
with structural NMR should provide predictions of the pro-
tein dynamics without need of performing lengthy computer
simulations. In practice, NMR solution structures encode a
structural diversity that is due to a combination of thermal fluc-
tuations and a possible lack of complete experimental infor-
mation. The LE4PD method provides the ability to test the
capability of an input structural ensemble to produce exper-
imentally determined dynamical measurements such as site-
specific NMR relaxation.

The diffusive mode solution of the LE4PD organizes
the configurational landscape, defining fluctuations on a set
of well-defined length and time scales encompassing the
relative motion between neighboring α-carbon and the global
rotations of the structure as a whole.21,22 In the diffusive
mode description, the LE4PD identifies the regions of local
flexibility and cooperative motion of the residues inside a

protein. As an example, we project the MD trajectory onto the
diffusive modes of the human immunodeficiency virus (HIV)
protease monomer and obtain a free energy landscape barrier
height distribution which scales with mode cooperativity.
Using the scaling form for this barrier height distribution,
which appears to be a general feature of protein dynamics,
leads to accurate dynamical time scales in the simulation-free
conformer-based LE4PD model.

Mode-based descriptions are extremely useful in compu-
tational approaches to protein dynamics.23,24 Analysis of the
free energy landscape in covariance modes has been used to
describe the folding of small proteins.25 The covariance matrix
of the spatial functions of the nuclear spin interactions from
MD simulation has been used to calculate NMR relaxation,
as fit to the trajectory correlation times and experimental
values.26 The characteristic difference between the LE4PD
approach and these other approaches is that we study the
modes of an appropriate equation of motion, and as such are
associated directly with the time scale and pathway of a quasi-
independent structural relaxation process. Other mode-based
approaches are based upon studying the abstract covariance
modes of a set of variables, and as such any time-dependence
in these modes comes purely from a fit to the simulation
trajectory.

The dynamical predictions of the LE4PD model starting
from an ensemble of structures generated from experimentally
determined NMR conformers are compared with a second
ensemble of structures generated in the course of a
MD simulation in the time scale of 50–150 ns. To
validate the accuracy of the theoretical predictions of the
dynamics using the LE4PD approach, we test its predictions
against experimental data of NMR relaxation for seven
different proteins and 1876 site-specific NMR relaxation
measurements. Using either the MD generated or NMR
solution structure ensembles, we obtain quantitatively self-
consistent predictions, with similar overall correlation of
ρMD = 0.95 and ρNMR = 0.93. We find that, in general, the
MD-generated ensembles provide through the LE4PD a closer
agreement with experimental data than the LE4PD informed
by NMR ensembles, with 17% lower relative error.

II. THEORETICAL APPROACH: THE LANGEVIN
EQUATION FOR PROTEIN DYNAMICS

In the LE4PD equation, the dynamics of the protein is
described as a diffusive motion across the configurational
landscape,21,22,27 consistent with an optimized Rouse-Zimm
theory of the dynamics of macromolecules in solution.28,29

Proteins are anisotropic in shape and have a hydrophobic
core which is only partially exposed to solvent, with this
effect depending on the position of each amino acid in the
protein. The LE4PD includes both rotational anisotropy and
the hydrophobic core, which are features characteristic of
biological macromolecules but are uncommon in synthetic
polymers in solution. Local energy barriers in the interior of
the protein are important to properly define its dynamics and
are explicitly taken into account in the LE4PD method.

The Langevin equation formalism is derived starting from
the Liouville equation for the conservation of probability
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density in the phase space of the full atomistic system
of the protein and solvent, and using projection operators
to obtain an equation of motion for the chosen sites.30

Here, the chosen coarse-grained sites are the α-carbon
of each amino acid in the protein primary sequence. To
obtain a linear Langevin equation,6 we take the coordinates
tracing the backbone configuration of the protein to be
complete of the relevant slow configurational degrees of
freedom and neglect system memory. Inertial terms may be
discarded as a protein in aqueous solution is safe in the
overdamped limit. The intramolecular distribution around the
folded state is assumed to be Gaussian, and the parameters
in the distribution are directly obtained from the starting
configurational ensemble.21,31 The coarse-grained LE4PD
represents the balance of viscous dissipation with the entropic
restoring force and a random Brownian force due to the
random collisions of the coarse-grained protein with the fast-
moving projected atoms belonging to solvent, ions, and the
protein. The time evolution of the coordinate of the coarse-
grained site i is well-described by the following equation:

ζ
∂ ~Ri(t)

∂t
= −

3kBT

l2

XN

j,k=1
Hi jAjk

~Rk(t) + ~Fi(t), (1)

where kB is the Boltzmann constant, T is the temperature,
l2 is the squared bond distance, and ζ is the average
monomer friction coefficient, defined as ζ = N−1PN

i=1 ζi,
with ζi the friction of the monomer i. ~Fi(t) is a delta-
correlated random force due to projecting the system dynamics
onto the coarse-grained sites, where fluctuation-dissipation
requires hFi↵(t)Fjβ(t

0)i = 2kBTζiδ(t − t 0)δi, jδ↵,β, where α, β

are Cartesian indices. Eq. (1) is the well-known Rouse-Zimm
equation for the dynamics of polymers in solution.28,32

To obtain an effective linear description, we assume a
well-folded state where site-site correlations are Gaussian
in nature. The structural force matrix A defines the effective
mean-force potential, V ({ ~R}) =

3kBT
2l2

PN
i, j=1 Ai j

~Ri · ~Rj, which
has been successfully adopted in theories of protein folding to
describe the final state of the folding process.33 The A matrix
is calculated as

A =MT *,
0 0

0 U
+-M, (2)

where M is the matrix that defines the center of gyration and
the connectivity between sites,

P
j Mi j

~Rj = ~li. In a protein, the
α-carbons are connected linearly, so that for i > 1 the matrix is
defined as Mi, i−1 = −1 and Mi, i = 1, with i = 2, . . . ,N , while
M1, i = 1/N for the first row, and Mi, j = 0 otherwise. The U

matrix is the bond correlation matrix with (U−1)i j =
h~li ·~l ji

h|~li |ih|~l j |i
.

The matrix H is the hydrodynamic interaction (HI) matrix,
which describes the interaction between protein sites occurring
through the liquid, represented as a continuum medium. While
it is standard to utilize hydrodynamical models to obtain
the translational and rotational dynamics of proteins,34 the
contribution of hydrodynamical effects to protein internal
motion is generally neglected. While this may be justified for
very localized motion, in general, the non-local hydrodynamic
coupling alters the time scale and nature of the large-amplitude
highly correlated internal motion and cannot be neglected.22,35

To maintain an effective linear description, the hydrodynamic
interaction must be preaveraged. While the derivation of the HI
utilizes the Oseen tensor following the general Rouse-Zimm
treatment of polymer chains in dilute solution,28 other methods
such as the Rotne-Prager interaction tensor reduce to the same
form upon preaveraging over the equilibrium ensemble.36 The
elements in the matrix of the hydrodynamic interaction are
defined as

Hi j =
ζ

ζi
δi j + (1 − δi j)r

wh
1

ri j
i, (3)

where r
w
= N−1PN

i=1 rw
i

is the average hydrodynamic radius
which is defined below. This is a perturbative hydrodynamic
interaction accounting for the nature of the amino acid primary
structure as a heteropolymer made up of building blocks of
different chemical types, propagating through the aqueous
solvent but screened in the dense hydrophobic core. The site-
specific friction parameters, ζi, are obtained by calculating the
solvent-exposed surface area and calculating the total friction
of the ith site via a simple extension of Stoke’s law as

ζi = 6π(ηwrwi + ηpr
p

i
). (4)

Here, ηw and rw denote, respectively, the viscosity of water and
the radius of a spherical bead of identical surface area as the
solvent-exposed surface area of the residue, the hydrodynamic
radius,21 while r p denotes the hydrodynamic radius related
to the surface not exposed to the solvent. The internal
viscosity is ηp, which we approximated in our previous
work to be related to the water viscosity rescaled by the
local energy-barrier scale ⇠kBT .22,37 A slightly simpler model
may be obtained by taking the site average of Equation (3)
and obtaining a homopolymeric description, and avoiding
Equation (4) by taking the average site friction as a single
adjustable parameter. Since protein fluctuations are dominated
by collective excitations involving many protein residues
moving together, this simpler model is capable of obtaining
similar agreement with NMR relaxation experiments at the
cost of adding a global adjustable parameter. However, such
a model provides no new insight into the microscopic sources
of dissipation in proteins. Equation (4) predicts that as the
solvent viscosity is varied towards zero, a finite relaxation time
which is a substantial fraction of the relaxation time at full
solvent viscosity persists, in agreement with experiments.38–40

In addition, a homopolymeric description would neglect
systematic variations in the dynamics between hydrophobic
and surface-exposed regions of the protein. We utilize a
site-specific friction calculated from Equation (4) because it
captures the physical nature of the protein chain, and there
is no extra computational cost associated with keeping a
heteropolymeric description (both involve the diagonalization
of an N ⇥ N matrix). The largest possible value of r

w

that maintains a positive definite solution of the matrix
diagonalization is adopted to avoid the well-known issue
with the preaveraging of the hydrodynamic interaction in
dense systems.41 For example, in the application of the model
to HIV protease, the calculated r

w
= 2.28 Å is very close

to the adopted value of r
w
= 2.23 Å, which avoids negative

eigenvalues.
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Because we focus only on the bond orientational
dynamics and not translation, in the interest of a simpler
notation, we separate out the zeroth order translational mode
from the internal dynamics. Following the same notation
introduced for the orientational dynamics of star polymers,42

we define a as the M matrix after suppressing the first row
used to define the center of mass and define L = aHaT . The
orientational Langevin equation governing the bond dynamics
is

∂~li(t)

∂t
= −σ

XN−1

j,k=1
Li jUjk

~lk(t) + ~vi(t), (5)

with i, j = 1, . . . ,N − 1, and where σ = 3kBT/(l2ζ), and ~vi(t)

is the random delta-correlated bond velocity.
Eq. (5) represents a set of N − 1 first-order coupled

differential equations, which are solved by finding the matrix
of eigenvectors Q which diagonalizes the product of matrices
LU. In these diffusive modes, we have N − 1 uncoupled linear
equations where each mode is just a sum over the original
bond vector basis ~ξa(t) =

P
i Q−1

ai
~li(t). We define λa to be

the eigenvalues of LU with
P

i, j,k Q−1
ai

Li jUjkQkb = δabλa,
ordered from smallest to largest λ. Like the set of bond vectors
~li(t), the set of coordinates ~ξa(t) defines the instantaneous
conformation of the macromolecule. While the L and
U matrices are individually symmetric, the LU matrix
is not necessarily symmetric, making the U matrix only
approximately diagonal in the LU eigenvector basis. The
mean squared mode length is then hξ2

ai ⌘
l2

µa
with µa not

exactly the eigenvalues of the bond correlation matrix alone,
but defined by the sum

P
i, j Q−1

ai
U−1

i j
Q−1

a j
⌘ 1

µa
. The diffusive

mode basis spans the same space as the bond vector basis with
near linearity: h~ξa · ~ξbi ! δabl2/µa.

The first three global modes of the LE4PD describe the
rotations of the folded structure as the rotational diffusion
tensor. For proteins which have an arbitrary folded structure,
the full rotational diffusion equation of an anisotropic
3-dimensional body must be solved. This alters the relaxation
of the three global modes describing the rotational relaxation
in the inertial lab frame.22,43

To account for the affect of the local energy barriers on the
internal dynamics, the friction becomes mode dependent by
assuming thermal activation over the mode-dependent energy
barrier hE†ai,

ζ ! ζ exp[hE†ai/(kBT)], (6)

leading to the slowing of the mode time scale τa =
l2⇣

3kBT λa
by

τa ! τa exp[hE†ai/(kBT)]. The energy barriers in the modes
hE†ai can be calculated directly from a MD simulation
trajectory when available and are found to be related to
the mode cooperativity, as discussed in Section IV.

This simple dynamical renormalization provides an
average correction to the dynamics of the Langevin equation,
which approximately accounts for the local barrier crossing,
and is in agreement with free energy landscape theories
suggesting activated dynamics.15,16 As a first approximation,
the depth of the minimum free-energy well in the mode serves
as the relevant barrier to transport.

A. Local dynamics

To provide a further assessment of the accuracy of the
LE4PD for the local dynamics, we compare its theoretical
predictions with experimental data of NMR T1, T2, and NOE
relaxation. The physical quantities of interest for this test
are the bond autocorrelation function and the second order
Legendre polynomial of the time dependent bond orientation.

For each bond i along the backbone of the protein, the
bond autocorrelation function is defined in the formalism of
the Langevin equation as

M1, i(t) =
h~li(t) · ~li(0)i

hl2
i
i

=
XN−1

a=1
Aia exp[−t/τa], (7)

with Aia =
Q2

ia

µa
and τa the correlation time for the ath mode.

Another quantity of interest is the second order Legendre
polynomial of the time dependent bond orientation function
P2(t) =

3
2 hcos2[θ(t)]i − 1

2 which can be related to the first order
bond autocorrelation by

P2, i(t) = 1 − 3[x2
−

2
π

x3(1 −
2
π

arctan x)], (8)

which is a function of M1, i(t) as x =
[1−M1, i(t)

2]
1
2

M1, i(t)
.

This expression relies on assuming a Gaussian form
for the joint probabilities in normal mode coordinates.29 For
dipolar relaxation, the Fourier transform of P2, i(t) defines the
spectral density from which spin-lattice (T1) and spin-spin (T2)
relaxation times and NOE can be calculated and compared
with NMR measurements.22

III. STRUCTURAL ENSEMBLES OF PROTEINS

The LE4PD model predicts the dynamics of the protein
using the structural ensemble as input. By generating a
structural ensemble through relatively short time (⇠10 ns) MD
simulations, the needed input for the LE4PD was evaluated
leading to accurate predictions for the global and site-specific
dynamics of ubiquitin22 and the signal transduction protein
CheY.21 The accuracy of the simulations, however, depends
upon the accuracy of the force-field used, and sampling the full
configurational space can become computationally expensive
depending upon the size of the protein and the extent of
configurational rearrangements.

A. Building statistical ensembles
from metastable configurations

We take as an ansatz that the configurational space
of a folded protein is spanned by a limited number of
conformational states, and that these conformational states are
known a priori. As an alternative procedure to performing MD
simulations, we assume as starting configurational ensembles
the conformers that were measured experimentally by NMR.
The extent to which NMR solution structure conformers
represent important metastable states of the protein, as opposed
to uncertainty due to incomplete experimental information, is
controversial and varies between different NMR structures.44

It is certainly clear that NMR structural ensembles do
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encode some measure of the conformational variability of the
protein, as NMR structural ensembles have been shown to
correlate highly with structural ensembles generated by MD
simulation,45 and have been used to gain valuable insight into
protein flexibility in computational studies of ligand binding.46

In our model, we investigate the assumption that all conformers
represent metastable protein configurations which contribute
equally to the full ensemble and use the resulting dynamical
predictions to evaluate the ability of the input structural
ensemble to span the experimentally observed dynamics.

Fluctuations around the local conformational states are
imposed by applying a Gaussian Network Model (GNM).11

While many elastic network models of varying complexity are
in routine use, the differences in the predicted local flexibilities
are usually small and affect only the short-time dynamics in
the picosecond regime. The GNM builds a harmonic network
of interactions around each residue based on the distance
cutoff criteria, and solves the resulting site-site fluctuations
as a linear matrix equation. GNM models have been shown
to reproduce well crystalline state fluctuations measured as
Debye-Waller temperature factors (B-factors) and thus are a
good representation of the short-time fluctuations while they
require minimal computational effort. Once combined with the
LE4PD, the theory provides a realistic and computationally
inexpensive prediction of the dynamics of proteins on a wide
range of time scales, from the local fluctuations to the large,
concerted, conformational transitions.

From the GNM, we define the bond correlation matrix
locally around the αth conformer U↵, i j. The GNM defines
the pairwise fluctuations h ~∆Ri · ~∆R ji =

3kBT
γ
Γ
−1
i j

, where Γ is
the Kirchoff adjacency matrix defined using a cutoff radius of
7.0 Å11,12 and γ is the harmonic interaction strength. We found

that in general a value of γ = 0.06 kcal/mol Å
2

is needed to
match the short-time 1–10 ps orientational fluctuations of the
protein from the MD simulation.

An interaction strength of ⇠1 kcal/mol Å
2

is typically
used with the GNM to predict crystallographic B-factors;
this order of magnitude difference in interaction strength
may be due to the local anharmonic softening of the
orientational potential energy surface due to the aqueous
solvent.47 The boundary water layer of hydrated proteins in
aqueous solution is highly mobile in the picosecond regime;48

the constant shifting of the protein-water hydrogen bonds
may lead to enhanced orientational fluctuations which are
completely local in nature. This effect is absent in the

TABLE I. Systems and structural ensembles.

Protein

MD
simulation

(ns)
Starting
structure

Temperature
(K) NMR + GNM

Protease 20 ⇥ 50 1Q9P (1-20) 293 1Q9P (1-20)
1GF2R 160 2M6 T (1) 273 2M6 T (1-20)
N-TIMP-1 50 1D2B (1) 293 1D2B (1-30)
S836 50 2JUA (1) 298 2JUA (1-20)
CPB1 50 1MX7 (1) 298 1MX7 (1-22)
KAPP 50 1MZK (1) 298 1MZK (1-30)
Ubiquitin 10 ⇥ 10 1UBQ (1) 300 1XQQ (1-128)

crystalline state, where the hydration water is much more
static.

Recognizing that in the body-fixed reference frame ~li(t)

− h~lii = [~Ri+1(t) − ~Ri(t)] − [h~Ri+1i − h~Rii], we can determine
the local bond correlation matrix around each conformer as

(U)−1
↵, i j =

1

h|~li |ih|~l j |i


h~lii · h~l ji +

3kBT

γ

⇥ (Γ−1
i j + Γ

−1
i+1, j+1 − Γ

−1
i, j+1 − Γ

−1
i+1, j)

]
. (9)

The total U matrix is then simply the average Ujk

= 1
Nc

PNc

↵=1 U↵, jk with Nc the number of conformers in
the NMR structural ensemble. Similarly, the hydrodynamic
matrix H, the site friction coefficient ζi, and all other input
quantities to the LE4PD are calculated separately for each
conformer and then the statistical average is taken over all
the conformers. This is an extremely simplistic picture of
the structural ensemble of a protein; however, the dynamics
predicted by this structural ensemble generated by the set of
NMR conformers is consistent in many ways with the much
more detailed ensemble generated through the sophisticated
process of explicit solvent MD simulation. The set of NMR
conformers provides us an ensemble of important metastable
structural minima in the free energy landscape, and the
GNM provides fluctuations around these minima. Molecular
anisotropy, rotational diffusion, hydrodynamic interactions,
and local energy barriers are included through the LE4PD.

B. Building statistical ensembles from molecular
dynamics simulations

Because both the determination of NMR conformers
and the experimental measurements of NMR relaxation are
affected by errors, we performed as a further test MD
simulations of the same systems to evaluate the quality of
agreement of the LE4PD starting from the NMR and the
MD conformers. Simulations were performed in explicit
solvent using the spc/e water model. We utilized the
AMBER99SB-ILDN49 atomic force field for proteins and
the GROMACS50–53 molecular dynamics engine was utilized
on the COMET supercomputer at San Diego.54 All system
conditions, e.g., temperature and salt concentration, were
set to reproduce the experimental conditions. The systems
were solvated and energy minimized, and then underwent a

FIG. 1. Average configuration from the MD simulation ensemble (red) and
from the NMR structural ensemble (blue), with the thickness of the ribbon
accurate to the local orientational distribution.
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FIG. 2. P2, i(t) time correlation func-
tion for 3 different sites along the
protein sequence of the HIV pro-
tease monomer PR95, calculated di-
rectly from the conformer simulations
(solid line), from the LE4PD theory
with the conformer simulations as input
(dashed line), and from the LE4PD with
the NMR conformer ensemble as input
(dashed-dotted line).

FIG. 3. Internal mode a = 11 free en-
ergy surface of the HIV protease (a
= 4 is the first internal mode) on the
left. Projections of the NMR conformer
structures, labeled by conformer in-
dex, are plotted with red stars, and the
simulation minima from which struc-
tures were calculated are marked on the
free energy surface with green trian-
gles. Structural minima from simulation
modes a = 4–20 are on the bottom right,
and the set of NMR conformers on the
top right.

500 ps tempering and equilibration routine including pressure
coupling. The production simulations were performed in the
canonical ensemble, using a velocity rescaling thermostat.55

For the PR95 protease monomer, simulations were
performed starting from each of the twenty conformers in
the NMR structure, resulting in a set of twenty production
ensembles used as input to the LE4PD, with averages taken

over all twenty results. The same set of production trajectories
for ubiquitin was used from our previous work.22 For the
remaining five proteins, the first conformer was chosen as the
starting structure, and only one simulation was performed for
each protein. Each simulation had 50 ns of production. For
each trajectory, the root mean square deviation (RMSD) was
calculated and statistics were only collected in the equilibrated

FIG. 4. The free energy barrier to diffusion in the modes E
†
a calculated directly from the set of 20 simulations of the HIV protease at T = 293 K, indexed by

letter A-T, with standard deviations around the average as black bars. The black line is the fit to the scaling form E
†
a / (a−3)−0.50.
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sections of the trajectory. The trajectories were also required to
contain only reversible transitions, as monitored by the RMSD.
The simulation time effectively used in the LE4PD for each
trajectory ranged from 10 to 30 ns. The simulations performed
and the protein databank structures used are summarized in
Table I.

The configurational ensembles that emerge from the
NMR ensembles and from the MD simulations are reported
in Figure 1. For all but the ubiquitin protein, the starting
configuration was from the NMR structure; yet, the
equilibrated simulation conformations do not exactly resemble
this initial structure. Overall, however, the global fold is fully
preserved, and the conformational differences are specific
in nature. This indicates that the NMR structures were not
necessarily in an exact free energy minimum of the AMBER
force-field model, though this does not indicate whether
the MD equilibrated protein structures are necessarily more
accurate. For all but the s836 protein, the structural variation in
the NMR ensembles is slightly larger than the MD simulation.
This is primarily true in the intrinsically disordered regions
of the protein, such as the C-terminal and N-terminal tails.
This may be because the limited simulation times do not fully
sample the configurational space. A study over a test set of
140 proteins found high correlation between the fluctuations
of NMR ensembles and MD simulations, and found that the
increased sampling allowed by using a coarse-grained protein
model led to even higher correlation between simulations and
NMR ensembles.45 What does agree quite remarkably are the
locations of enhanced flexibility and the time scales of the
motion, which can be seen in Figures 5 and 6, showing the
calculated NMR relaxation times from the ensembles.

To evaluate the consistency between the dynamics
generated using the MD ensembles as input and the NMR
conformer ensembles, we compare the full decay of the
P2, i correlation function of the ith C↵–C↵ segment in the
HIV protease protein, with the data from simulations (see
Figure 2). While there are many differences between the
analytical predictions from the NMR ensemble and the MD
ensemble, and differences especially at short times, overall
Figure 2 shows that the agreement is quite good as the
LE4PD, from both ensembles, can model quite accurately the
site-specific internal and rotational dynamics of the protein.

IV. DYNAMICAL BARRIERS AND COOPERATIVITY

Analysis of the collective fluctuations obtained from
simulations of proteins56 has shown that the dynamics around
the minima of energy is well described by small fluctuations
inside metastable states at low local energy and by the
crossings between them. By reverting the LE4PD equation to
its mode form, the structural representations of these important
metastable minima can be identified as a function of mode
number. We investigate the nature of the free energy surface
of a protein around its folded ground state.

Each diffusive mode obtained from the diagonalization
of Eq. (5) is a vector defined by the linear combination of the
bond vectors weighted by the eigenvectors of the product of
matrices LU, as ~ξa(t) =

PN−1
i=1 Q−1

ai
~li(t). In polar coordinates,

the vector is represented as ~ξa(t) = {|~ξa(t)|, θa(t), φa(t)}. The
most relevant changes in the diffusive mode free energy
occur as the angles, expressed in the spherical coordinates,

FIG. 5. T1, T2, and NOE relaxation times (see Table I) for seven different proteins. Comparison between experimental (black) and theoretical values from
LE4PD theory from MD generated ensembles (red).
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FIG. 6. T1, T2, and NOE relaxation times (see Table I) for seven different proteins. Comparison between experimental (black) and theoretical values from
LE4PD theory from ensembles generated from NMR conformers (blue).

span the configurational space. For any diffusive mode
a, the free energy surface is defined as a function of
the spherical coordinate angles θa and φa as F(θa, φa)

= −kBT log {P(θa, φa)},with P(θa, φa) the probability of
finding the diffusive mode vector having the given value
of the solid angle. Given that we are interested in the explicit
representation of the structure at the minima of interest, all
structures from the simulation ensemble which pertain to a
particular θ,φ orientation, which is the relatively deep minima
in the mode free energy, are extracted and averaged.

By calculating the average structure at each minimum, we
obtain the structural ensemble of metastable states spanning
each internal mode of fluctuation for the protein. As a
representative example, the free energy landscape in the
LE4PD modes from the MD simulation of the HIV protease
monomeric construct is presented in Figure 3. The ensemble of
structural minima on the mode free energy surfaces generated
from MD simulations, and the structural ensembles directly
measured by NMR experiments, is compared as well. The
full configurational landscape for each mode is generated
from the combination of twenty well-equilibrated independent
simulation trajectories. Each trajectory starts from a different
experimental NMR conformer and runs to 50 ns of simulation
time. Superimposed to the full configurational landscape
from simulations, the twenty starting configurations measured
experimentally by NMR are reported as red stars. The
combination of the trajectories creates a complex free energy
landscape, which is only partially spanned by the NMR
conformers. The starting NMR configurations are often close
to energy minima (reported as green triangles), but they do not
exactly correspond to them. They do not exactly correspond

to the set of minima that define the configurational landscape
obtained from the simulation trajectories.

The fluctuations in each mode appear to be spanned
by a handful of metastable minima. As the mode index
increases, the fluctuations progress from collective in
nature to more local. The typical energy barrier in each
mode, a, is evaluated from the simulation as the median
absolute deviation57 from the global minimum Egs, that
is, E

†
a = median(✓,φ)(Ea(θ,φ) − Egs,a). The depth of these

minima, or the barriers between them, is largest for the
low mode numbers corresponding to the most collective,
large-amplitude fluctuations. Figure 4 shows that the energy
barriers E

†
a as observed in the simulation trajectory can be

well described as scaling with the mode index, a measure
of the mode cooperativity, over a large range of the protein
fluctuations. The observed scaling with mode number follows
E
†
a / (a − 3)−0.5, where the first three rotational modes have

been separated out. At a local enough length scale, where the
specific chemical nature of the amino acid is most important,
the energy barriers are no longer described by this expression.

The observed scaling law is consistent with the
hierarchical nature of the protein free energy landscape. Each
mode describes dynamics involving a number of bonds in
the protein, which need to move collectively in a cooperative
fashion. At short times, the bonds fluctuate independently,
while large-amplitude correlated fluctuations occur when all
the bonds transition collectively.58 The equilibrium probability
for the Z gating bonds to independently transition away
from the “correct” orientation with energy preference E is
P(Z) / exp(− ZE

kBT
). In a transition state perspective, this

can be interpreted as a free energy barrier which scales
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proportionally with the number of bonds cooperatively
rearranging. This model is similar to the Adam-Gibbs theory
of the glass transition,59,60 relating the complex hierarchical
nature of the free energy landscape of the protein in solution
to a structured glassy fluid.16,61 The observed scaling form
is included in the simulation-free LE4PD approach, which
adopts the set of NMR conformers as the input structural
ensemble.

V. PREDICTIONS OF NMR RELAXATION
ARE COMPARED TO EXPERIMENTS

Theoretical predictions for P2, i(t) =
1
2 h3 cos2 θi(t) − 1i

are obtained from M1, i(t) using Eq. (8) and are used to
calculate T1 and T2 relaxation times, and NOE, which are
measured experimentally. 15N NMR backbone relaxation
experiments are very sensitive to the site-specific dynamics
in the picosecond to the nanosecond regimes.62 To test
the LE4PD approach using the NMR solution structures to
generate the structural ensemble, we constructed dynamical
models for seven proteins for which NMR relaxation
data and NMR solution structures were available. These
proteins were N-TIMP-1 (1D2B),63 a de Novo α-helix
bundle protein s836 (2JUA),64 cellular retinol-binding protein
I CPB1 (1MX7),65 Kinase-associated protein phosphatase
KAPP (1MZK),66,67 insulin growth factor 2 receptor IFG2R
domain 11 (2M6T),68 ubiquitin (1UBQ),69,70 and HIV protease
monomer (1Q9P).71,72

The input parameters to the LE4PD equation change
from protein to protein: the structural parameters such as
bond length, monomer friction, hydrodynamic radius, and
the pairwise bond correlations are determined from the
structural ensemble, while the thermodynamic parameters
such as solvent viscosity, and temperature, are defined by the
experimental conditions. The viscosity was set to account for
temperature dependence and content of deuterated water.73

Parameters such as the protein internal viscosity ηp, the
proportionality constant between cooperativity and energy
barriers, and the characteristic parameters needed to calculate
the NMR relaxation times, such as the chemical shift or
h1/r3

NH
i, were assumed to be identical for all proteins in this

study and identical to those used in our previous work.22

Figures 5 and 6 displays the calculations of T1, T2, and
NOE relaxation times as they are directly predicted by the
LE4PD approach and the NMR experimental data. NMR
experimental data of relaxation times are not used at all in
any point to optimize the theoretical calculations, so these are
independent theoretical predictions. The comparison between
theory and experiments is performed for each amino acid in
the protein and reported as a function of the protein primary
sequence. Also reported are the experimental uncertainties for
the NMR data of each protein.

The correlation and errors of the model, using both the
MD and NMR solution structures as ensembles, are shown
in Table II. Over this set of 1876 measurements, the overall
correlation to the experimental values was similar for both
the dynamical models constructed from NMR conformer
ensembles or the MD ensembles, but with 17% lower relative
error for the MD derived ensembles than the NMR conformer

TABLE II. Correlation of the LE4PD with experimental data of NMR
relaxation.

Protein ⇢total ⇢T1 ⇢T2 ⇢NOE

Relative
error (%)

Combined (MD) 0.95 0.88 0.73 0.70 20.8
Combined w/o HI (MD) 0.55 0.77 0.82 0.13 131.2
Combined (NMR) 0.93 0.83 0.58 0.69 24.9
HIV protease (MD) 0.92 0.73 0.91 0.91 32.9
HIV protease (NMR) 0.83 0.65 0.90 0.77 42.6
Ubiquitin (MD) 0.98 0.96 0.94 0.97 7.0
Ubiquitin (NMR) 0.97 0.96 0.94 0.99 7.2
N-TIMP-1 (MD) 0.92 −0.10 0.50 0.82 20.1
N-TIMP-1 (NMR) 0.96 −0.18 0.57 0.62 22.2
s836 (MD) 0.97 0.03 0.48 0.57 20.6
s836 (NMR) 0.93 0.18 0.13 0.33 34.2
KAPP (MD) 0.96 0.02 0.60 0.60 20.1
KAPP (NMR) 0.91 −0.12 0.59 0.46 24.6
CPB1 (MD) 0.98 0.03 0.06 0.16 9.5
CPB1 (NMR) 0.96 0.03 0.14 0.28 10.0
IGF2R (MD) 0.97 −0.06 0.84 0.80 24.6
IGF2R (NMR) 0.95 0.34 0.15 0.67 25.7

ensembles. Figures 5 and 6, and Table II, in general, show that
MD simulations have the most detailed agreement along the
primary sequence. The correlation to NOE and T1 is similar,
but higher T2 correlation for the MD ensembles. Over the
seven proteins, the quality of the experimental measurements
varies greatly; for example, in the measured relaxation for
the s836 protein, the experimental values themselves come
with ⇠30% error, so that the low correlation of the theory
with the experimental data is expected. For the CPB1
protein, the experimental measurements in most loop and
termini regions were unavailable; this is where the largest
variability in the dynamics occurs and where it is possible to
develop strong correlation. In general, the NOE measurements
display the largest site-specific variability along the protein
sequence and the highest correlation between theory and
experiment for each individual protein. A scatter plot of
the calculated and experimental data is shown in Figure 7.
The agreement between theoretical predictions and measured
NMR is supporting the quality of the predictions of the
LE4PD approach. Most models of protein dynamics neglect
hydrodynamic interactions. In the LE4PD model, the inclusion
of the HI is essential; to evaluate the benefit of including the
hydrodynamic interaction, in Table II we show the result
of calculating the NMR relaxation without the inclusion of
hydrodynamic coupling.

Because the accuracy of a given NMR solution structure
ensemble to represent the conformational diversity of the
protein is unknown, the dynamical model built using the
LE4PD approach may be useful to evaluate the quality of
an available structural ensemble. We apply the method to 9
different NMR structural ensembles of the ubiquitin protein,
PDB codes 1XQQ,74 2KOX,75 2LJ5,76 2NR2,77 1D3Z,78

1G6J,79 2KLG,80 2MJB,81 and 2K39.20 The comparison to
the calculated NMR backbone relaxation in Table III shows
that all the ensembles capture the primary T1, T2, and NOE

baselines and the enhanced flexibility of the tail region.
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FIG. 7. Correlation between experimental and calculated values from MD ensembles and NMR ensembles for a set of 7 different proteins. T1 measurements
in black, T2 measurements in red, and NOE measurements in green, for ubiquitin (circles), N-TIMP-1 (squares), s386 (diamonds), CPB1 (downward triangles),
KAPP (upward triangles), IGFR2 (crosses), and HIV protease monomer (star).

Ensembles 1XQQ and 2NR2 have the highest correlation
and lowest relative error; when the unstructured C-tail is not
considered in the calculation of the correlation coefficients, it
can be seen that the 1XQQ, 2NR2, 2KOX, 2LJ5, and 2K39
ensembles separate as capturing the structural variability of
both the C-tail and the more structured portion of the protein,
see column 2 of Table III. The primary contribution to this
correlation comes from the structural variability at the loop
containing lysine 6 and 11, important poly-ubiquitination
linkage sites involved in cell-cycle control and DNA repair.82

The structural ensemble generated by molecular dynamics
simulation starting from the 1UBQ69 crystal structure, with
results reported in our previous paper,22 is perhaps slightly
more accurate overall, but only by a very small amount due
to considering the correlation without contributions from the
C-tail.

In generating the 1XQQ ensemble, the NMR-derived
S2 order parameters from the model-free analysis of Lipari
and Szabo4 were used as an additional set of restraints in

TABLE III. Correlation of the LE4PD with experimental data of NMR
relaxation for ubiquitin.

NMR conformer ⇢NOE (1-71) ⇢NOE (all res.) ⇢T2 ⇢T1

Relative
error (%)

MD simulation 0.71 0.96 0.94 0.97 7.0
1XQQ 0.66 0.99 0.94 0.96 7.2
2NR2 0.52 0.98 0.94 0.95 7.3
2LJ5 0.56 0.93 −0.33 0.97 7.7
2K0X 0.61 0.94 0.80 0.88 8.2
1D3Z 0.02 0.88 0.80 0.94 8.2
2K39 0.70 0.88 −0.63 0.93 11.0
2MJB −0.01 0.96 0.96 0.92 11.2
1G6J 0.02 0.92 0.94 0.92 11.5
2KLG −0.05 0.86 0.92 0.73 14.9

the generation of the ensemble. It is not surprising then
that this leads to an accurate dynamical model. We have
shown previously that the site-specific variability in model-
free derived S2 order parameters correlates strongly with our
results,21 despite differences in the nature of the predicted
internal dynamics. This illustrates the complementary utility
of the LE4PD approach, which provides a highly detailed
model and additional insight beyond that available when
performing only a model-free analysis of NMR backbone
relaxation.

The ubiquitin ensemble 2K39 was constructed to
represent the protein fluctuations in only the long-time regime
beyond the global correlation time. As such this ensemble
is not as accurate overall, and the dynamical model leads
to high error and in particular a poor representation of the
C-tail dynamics. However, we do see a separation in the mode
time scales, with a slow internal process emerging on the
order of ⇠400 ns and with ρNOE,(res1−71) = 0.71, suggesting
that this ensemble has captured fluctuations in the difficult
to access time regime between the global correlation time
and the millisecond time regime of conformational exchange.
The authors showed that this ensemble spanned the set of
known bound ubiquitin conformations, suggesting that there
are configurational fluctuations of the ubiquitin protein in the
many nanosecond regime beyond the global correlation time
which are relevant for the recognition of binding partners.20

VI. CONCLUSIONS

The LE4PD approach was tested across a set of seven
different proteins with overall consistent results for both
the MD generated ensembles and the NMR conformer
ensembles, with an overall correlation to the 1876 relaxation
measurements of ρ > 0.93. Calculations using 9 different
available NMR structural ensembles for the ubiquitin protein
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show that results are strongly dependent upon the quality
of the input structural ensemble and experimental data and
suggest that this approach may be used as a tool to evaluate
the quality of a structural ensemble to represent the important
protein fluctuations around the ground folded state.

The consistent results between the MD generated
ensembles and the NMR ensembles suggest that protein
configurational space around the folded state can be defined
by a small set of important metastable minima. However,
when determining the dynamics of transitions between
these minima, the hierarchical nature of the protein free
energy landscape needs to be taken into account. The mode
approach of the LE4PD allows one to conveniently separate
contributions to the dynamics depending on the time scales
involved. The LE4PD prediction of the existence of a barrier
height distribution for the dynamics of folded proteins is
consistent with the physics of glass-forming systems.

Building a dynamical model from NMR conformer
structures using the LE4PD requires only a few seconds
to a few minutes on a single processor with a standard
desktop computer, with the computational time depending on
the size of the protein and on the number of conformers in
the NMR solution structure. While explicit solvent atomistic
classical MD simulations are well-developed and can be
quite accurate, achieving MD simulations with converged
dynamics on the same time scale would require on the order
of 10 000–100 000 h of processor time or more. The LE4PD
is not a replacement for MD simulation as a computational
method to predict the fluctuations and dynamics of proteins,
but it is a useful tool to quickly provide a prediction of the
dynamics given an input structural ensemble.

Even though the simulation-free LE4PD requires minimal
computation, it is site-specific, informed of intramolecular
energy barriers, hydrodynamics, and long-range correlated
motion. It is a sophisticated model of protein dynamics and
because of its accuracy in predicting the dynamics, with
no input from the dynamical data, LE4PD is a valuable
and computationally convenient model to investigate barrier-
crossing processes on the suite of time scales defining the
fluctuations of proteins.
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