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ABSTRACT

Reliability demonstration tests have important applications in reliability assurance activities to
demonstrate product quality over time and safeguard companies’market positions and competitive-
ness.With greatly increasing globalmarket competition, conventional binomial reliability demonstra-
tion tests based on binary test outcomes (success or failure) at a single time point become insuicient
for meeting consumers’ diverse requirements. This article proposes multi-state reliability demonstra-
tion tests (MSRDTs) for demonstrating reliability at multiple time periods or involving multiple failure
modes. The design strategy for MSRDTs employs a Bayesian approach to allow incorporation of prior
knowledge, which has the potential to reduce the test sample size. Simultaneous demonstration of
multiple objectives can be achieved and critical requirements speciied to avoid early/critical failures
can be explicitly demonstrated to ensure high customer satisfaction. Two case studies are explored to
demonstrate the proposed test plans for diferent objectives.

Introduction

Reliability of a product is the probability that the prod-

uct can perform its required function at a given time

point. As a time-dependent characteristic, reliability

is an important measure of the product quality and

safety over time, which has a great impact on the satis-

faction of customers and can inluence their purchase

decisions linked with the revenue of manufacturers. In

order to succeed in the market competition, manufac-

turers need to produce products with high reliability

over their expected lifetime. Reliability demonstration

tests (RDTs) are often conducted by manufacturers to

demonstrate the capability of their products tomeet the

requirements from customers for achieving good qual-

ity and performance over time. Given the budget and

time constraints, manufacturers need to determine the

number of test units, the time duration of the test, and

the maximum number of failures allowed to pass the

test. These choices are usually made to ensure the con-

sumer’s risk (CR) on having a product that has passed

the test but fails to meet the reliability requirement is

controlled. Controlling the CR at an acceptable level

can take the burden of the customers on bearing a high

risk of receiving inferior products which are claimed to
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havemet the requirements on reliability, and hence can

help improve customers’ satisfaction.

Diferent categories of RDTs have been studied in

the literature based on diferent types of reliability

data, such as failure counts data (Guo et al., 2011; Li

et al., 2016; Lu et al., 2016), failure time data (Guo

et al., 2012; McKane et al., 2005) and degradation data

(Yang, 2009). Failure counts data report the number of

failures that occur during a ixed test period. The RDTs

based on failure counts data (Wasserman, 2002, pp.

208–210) are also called binomial RDTs (BRDTs) since

failure counts aremodeled with binomial distributions.

In a BRDT, within a given testing period, if the num-

ber of failures does not exceed the maximum num-

ber of allowable failures, the test is passed. The maxi-

mum number of allowable failures c and the minimum

number of test units n are determined to ensure a cer-

tain minimum acceptable reliability requirement, R, is

met with the controlled CR at or below β by the end

of the test duration. The BRDTs are broadly applied

in reliability engineering practices because (i) they

require less monitoring eforts in the middle of the test

duration; and (ii) they are simple and straightforward

to be implemented and analyzed. However, with the
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increasing needs from customers, the BRDTs are no

longer able to meet all requirements in many applica-

tions. For example, customersmay have varied require-

ments on reliability performance over diferent time

periods. It is common that many customers have little

tolerance of early failures and hence require high relia-

bility during early lifetime and lower reliability for later

time. In this case, a BRDT for demonstrating reliabil-

ity within a single time period is inadequate to meet all

requirements.

Consider a scenario when two companies run

BRDTs with the same testing period of 5 years and use

the maximum number of allowable failures as c = 5.

Products from company I had 1 failure in the irst two

years and 3 failures in the last three years. Products

from company II had 3 failures in the irst two years

and 1 failure in the last three years. Even though the

products from both companies can pass the demon-

stration tests, their underlying reliability performance

indicated from the failure counts data can be diferent.

If a customer needs products with high reliability in

early lifetime (corresponding to allowing nomore than

2 failures during the irst two years), the risk of the

products from company II failing to meet the require-

ment can be much higher than that of the product

from company I. A typical BRDT with ive-year testing

period cannot demonstrate the performance over the

early two years, and hence raises the CR on accepting

an inferior product that fails to meet all requirements.

Another limitation of the BRDTs is that they are

often used for pass/failure testing of a product without

distinguishing the causes and consequences of difer-

ent failure modes. A product with a complex system

is often composed of multiple key components which

may have diferent failure modes associated with var-

ied consequences. Their failures can have diferent neg-

ative efects on the functionality of the entire product.

For instance, the failure of the central processing unit

(CPU) of a computer is much more crucial than the

failure of a video card. Customers may also have dif-

ferent expectations for diferent components accord-

ing to their values or costs of replacement. The cost of

replacing a CPU or amotherboard is much higher than

replacing a keyboard or amouse. As a result, customers

can have much higher expectation on the reliability of

the more valuable and critical parts than the reliability

of other parts or accessories. A typical BRDT cannot

demonstrate separate reliability requirements for mul-

tiple failure modes.

To meet the ever-increasing demands of customers,

more versatile RDTs with more tailored plans for test-

ing multiple reliability requirements can better serve

the customers with enriched information on product

reliability. This article proposes RDT strategies for two

categories of reliability demonstration tests over multi-

ple time periods and for multiple failure modes, both

of which are referred to as multi-state RDTs (MSRDTs)

throughout the rest of the article. Alternative test plans

within each category are also explored and compared

with the conventional BRDTs for demonstrating mul-

tiple reliability requirements. Bayesian analysis is used

for quantifying the CR associated with various test

plans. The Bayesian method ofers more lexibilities on

incorporating prior information of product reliability

from either subject matter expertise or historical data

(Pintar et al., 2012; Weaver et al., 2008; Wilson et al.,

2016). The impacts of diferent test strategies and dif-

ferent prior elicitations on the minimum test sample

size (i.e., the number of test units required)will be stud-

ied to provide more insights on guiding decisions on

demonstration test plans. If there exists historical data

which supports higher reliabilities compared to the

requirements, then using Bayesian method to incorpo-

rate prior information has the potential to reduce the

minimum test sample size required for the MSRDTs.

The remaining of the article is organized as fol-

lows. In the next section, the conventional BRDT plans

are reviewed with discussions of their beneits and

limitations. Then the new MSRDTs for demonstrat-

ing reliability requirements over multiple time peri-

ods are proposed. Two diferent design strategies are

proposed and compared under diferent prior elicita-

tion settings. In the following section, another category

of new MSRDT designs for demonstrating reliability

requirements involvingmultiple failure modes are pro-

posed and their performances are evaluated and com-

pared with the conventional BRDTs. Case studies on

two categories of MSRDTs for multiple time periods

and multiple failure modes are provided to illustrate

the proposed test plans and demonstrate their perfor-

mances. Conclusions and discussions are provided in

the end.

Binomial RDTs

For many single use or “one-shot” product units, the

test procedure can be destructive. In this case, bino-

mial RDTs (BRDTs) are the common choices to obtain
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the failure counts data at the end of a predetermined

test period (Kececioglu et al., 2002, pp. 759–768). Let

π denote the probability of failure over the test period,

and R denote the minimum acceptable reliability at the

end of the test duration. In Bayesian analysis, for a cho-

sen number of test units, n, and amaximum number of

allowable failures, c, the CR is measured by the poste-

rior probability of the product failing to meet the reli-

ability requirement given that the product has passed

the test, which can be calculated as

CRbinomial = P(Failure probability fails to meet the

reliability requirement|Test is passed)

= P(π > 1 − R|y ≤ c)

= 1 − P(π ≤ 1 − R|y ≤ c)

= 1 −

∫ 1−R

0

[

∑c
y=0

(

n
y

)

π y(1 − π)n−y
]

p(π )dπ

∫ 1

0
[
∑c

y=0

(

n
y

)

π y(1 − π)n−y]p(π )dπ
.

[1]

Note that in Eq. [1], p(π ) denotes the prior distribu-

tion of π which can be speciied based on subject mat-

ter expert knowledge or historical data and y denotes

the number of failures observed in the test period. Let

β denote the maximum acceptable value for the CR,

then a BRDT is determined by choosing the (n, c) com-

bination such that the corresponding CRbinomial ≤ β .

According to (Lu et al., 2016), for any ixed choice of c,

CRbinomial increases as the test sample size n increases.

We use nb to denote the minimum test sample size that

is required to control theCRwithin an acceptable range

CRbinomial ≤ β .

In Bayesian analysis, the CRbinomial in Eq. [1] can be

calculated usingMonte Carlo integration (Robert et al.,

2004, pp. 71–131), where samples of π with a large

sizeM = 15000 are generated from the speciied prior

distribution p(π ), and CRbinomial is calculated approx-

imately by

CRbinomial ≈ 1 −

∑M
j=1

[

∑c
y=0

(

n
y

)

(π ( j))y(1 − π ( j))n−y
]

I(π ( j) ≤ 1 − R)

∑M
j=1

[

∑c
y=0

(

n
y

)

(π ( j))y(1 − π ( j))n−y
] , [2]

where π ( j) is the jth generated sample of failure prob-

ability for the speciied prior distribution.

Table 1 shows an example of BRDTplans with difer-

ent choices of prior distributions of π . The mean and

standard deviation (i.e., the square of variance) values

are provided to give some intuitions about the center

Table . Minimum sample sizes required by BRDTs with different
choices on c and prior distributions of π .

π ∼ Beta (1, 1) (2, 18) (4, 16) (10, 15) (10, 10)

Mean(π ) . . . . .
SD(π ) . . . . .

c nb

     
     
     
     
     
     
     

Settings:M = 15000,R = 0.8, β = 0.05

and the spread of the prior distributions. For example,

π ∼ Beta(1, 1) is centered at 0.5 but has large stan-

dard deviation at 0.2893. While π ∼ Beta(2, 18) has

the mean failure probability of 0.1 but much smaller

standard deviation (0.0647) around its mean. The

minimum acceptable reliability from the consumers

requirement was set at R = 0.8 and the maximum tol-

erable CR is chosen to be β = 0.05. When no his-

torical data or prior information is available, a non-

informative prior π ∼ Beta(1, 1) can be used. For any

assumed prior distribution of π , manufacturers can

choose a test plan determined by (nb, c) using themin-

imum sample size nb for any chosenmaximumnumber

of allowable failures c. For instance, when c = 0 and a

non-informative prior π ∼ Beta(1, 1) is assumed, the

minimum sample size which can ensure the CR calcu-

lated in Eq. [2] to be no more than β = 0.05 is calcu-

lated as nb = 13. Hence, at least 13 units need to be

tested if the test can only be passed when no failure

is observed. However, as larger maximum number of

allowable failures being set for passing the test, the CR

increases as it becomes easier to pass the test for a given

sample size n. Hence, to control the CR at or below

β = 0.05, more units need to be tested as more failures

are allowed to pass the test.

When more informative priors are available from

historical data or expertise, they can afect the selec-

tion of test plans. Table 1 has explored the impacts of

diferent prior distributions p(π ) on the selected test

plan for diferent tolerances on the maximum number

of allowable failures, c. Figure 1 shows the ive prior



434 S. CHEN ET AL.

π

p
(π

)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Beta(1,1)

Beta(2,18)

Beta(4,16)

Beta(10,15)

Beta(10,10)

Figure . Density curves of different prior distributions explored in
Table .

distributions explored in Table 1. The lat density curve

corresponds to the non-informative prior Beta(1, 1)

which assumes that all possible values for π ∈ (0, 1)

have equal probability. Other prior distributions from

Beta(10, 10) to Beta(2, 18) become more informa-

tive with reduced spread (corresponding to smaller

standard deviation in Table 1) and provide stronger

support for smaller failure probability π . For any given

c, the minimum sample size required can be reduced if

the prior distribution from historical data supports the

reliability requirement. For example, when a prior dis-

tributionπ ∼ Beta(2, 18) is used, which supports high

reliability around 1 − 2/(2 + 18) = 0.9 > R = 0.8,

fewer units need to be tested to demonstrate the relia-

bility requirement (e.g., 4 < 13 when c = 0). However,

if the speciied prior distribution is not in favor of the

reliability requirement, as illustrated with prior distri-

butions Beta(4, 16), Beta(10, 15), and Beta(10, 10),

which favor incrementally lower reliability, more units

are required to be tested to demonstrate the same

reliability requirement.

On the other hand, Table 2 demonstrates the impact

of diferent requirements on reliability. For a given

choice on the prior distribution, as R decreases cor-

responding to reduced requirement on reliability, the

minimum sample size, nb, decreases for a ixed choice

on c. This matches our intuition that fewer units need

to be tested for demonstrating lower requirement on

reliability.

The BRDTs are useful for demonstrating reliability

requirements for binary tests. For example, a test plan

(nb = 81, c = 5) for a predetermined test period of

5 years can demonstrate no less than 0.9 reliability in

5 years with the CR controlled by 0.05. However, it

Table . Minimum sample sizes required by BRDTs with different
choices on c and reliability requirements.

nb

c R = 0.9 R = 0.8 R = 0.6

   
   
   
   
   
   
   

Settings:M = 15000, β = 0.05
π ∼ Beta(1, 1)

ofers no capability of demonstrating reliability at any

time before the end of the test period. For example,

if the customers are particularly concerned about

the reliability in the irst two years in addition to the

reliability by the end of the ive years, the conventional

BRDTs are unable to demonstrate all requirements

over multiple time periods. In addition, BRDTs are

unable to diferentiate and demonstrate reliability

requirements involving multiple failure modes asso-

ciated with diferent consequences. In the next two

sections, two categories of new MSRDTs are pro-

posed to demonstrate reliability requirements over

multiple time periods and for multiple failure modes,

respectively. Alternative designs are also proposed and

their performances are evaluated and compared under

diferent prior elicitations.

MSRDTs over multiple time periods

Conventional BRDTs often demonstrate the product

reliability within a single time period, such as dur-

ing the mission time or the service life, to meet with

the customers’ requirements. However, customers’ sat-

isfaction in diferent time periods may difer. For

instance, upon the purchase of products, customers

may expect higher reliability during the early lifetime.

The occurrence of early failuresmay have stronger neg-

ative impact on customers’ satisfaction and company’s

reputation than failures occurred in the later stage of

the service period. To explicitly demonstrate difer-

ent product reliability requirements over multiple time

periods rather than a single time period, the strategies

of MSRDTs, i.e., multi-state RDTs, are proposed in this

section to meet customers’ expectation on reliability

over multiple time periods.

Consider a inite testing period with the start

time at t0 and the end time at tK . The testing time

duration (t0, tK] is exclusively partitioned into K
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Period 1 Period 2

···
Period K Period K+1

t0 t1 t2 tK-1 tK

Figure . Illustration of the multiple time periods in a K-period
MSDRT between (t0, tK ].

non-overlapping time periods, (ti−1, ti], i = 1, . . . ,K,

as illustrated in Figure 2. Let πi and yi denote the

probability of failure and the number of observed

failures within the ith time period (ti−1, ti], respec-

tively. Then the number of units that survive the entire

test duration (right-censored at the end of the test

duration tK) can be expressed as n −
∑K

i=1 yi, where

n is the total number of test units. The probability of

surviving the test is given by πK+1 = 1 −
∑K

i=1 πi. The

objective of a MSRDT over multiple time periods is to

simultaneously demonstrate the product reliability at

multiple time points satisfying a set of lower reliability

requirements, Ri, i = 1, . . . ,K, with the assurance

level controlled at (1 − β). Here, Ri is the minimum

acceptable reliability in the irst i cumulative time peri-

ods, (t0, ti], β is the maximum acceptable consumer’s

risk and assurance level can be explained as the min-

imum probability that the reliability requirements are

notmet all given the test is passed (Hamada et al., 2008,

pp. 343–347). Two diferent scenarios of acceptance

criteria are proposed as follows.

Scenario I. The MSRDT will be passed if the cumu-

lative number of observed failures
∑i

k=1 yk at each

cumulative time period (t0, ti] is no more than

its corresponding cumulative maximum number of

allowable failures
∑i

k=1 ck for all cumulative time

periods (t0, ti], at i = 1, . . . ,K. For example, con-

sider a two-period MSRDT with tests conducted at

the end of the second and ifth year. For 100 test

units, the MSRDT will be passed if the number of

observed failures in irst two years do not exceed 1

and the number of observed failures at the end of the

ifth year do not exceed 5.

Scenario II. The MSRDT will be passed if the number

of observed failures yi at each non-overlapping time

period (ti−1, ti] is no greater than its corresponding

maximumnumber of allowable failures ci for all time

periods (ti−1, ti], at i = 1, . . . ,K. For the same two-

period test, theMSRDTwill be passed if the number

of observed failures in irst two years do not exceed

1 and the number of observed failures in the next

three years do not exceed 4. It is noticed that the

major diference between the two scenarios is that

Scenario II plans the tests for non-overlapping time

periods while Scenario I considers the cumulative

time-periods instead.

For each acceptance criterion, the design ofMSRDT

over multiple time periods aims to determine (i)

the minimum sample size, denoted by nI and nII for

Scenarios I and II, respectively, and (ii) the cumula-

tive maximum number of allowable failures at time

ti,
∑i

k=1 ck, for Scenario I and the maximum num-

ber of allowable failures within ith time period, ci,

i = 1, . . . ,K for Scenario II. For either scenario, the

MSRDT is selected by choosing the test plans which

control the CR at or below β . It is noticed that the

proposed MSRDT strategies are suitable for demon-

stration tests that generate failure counts data (Li et al.,

2016; Guo et al., 2011) over multiple time periods,

and do not make any assumptions on the failure time

distribution. The advantages of the proposed methods

are to fulill the reliability requirements of customers

over diferent testing periods (e.g., either cumulative

time periods from Scenario I or the non-overlapping

periods from Scenario II) simultaneously and provide

diferent testing strategies that require diferent min-

imum test sample sizes based on diferent maximum

numbers of allowable failures. Assuming a certain

failure time distribution over multiple time periods

or for multiple failure modes may limit the use of the

proposed strategies because the lifetime distribution

assumption has to be valid for thewhole test period and

only the expected number of failures can be obtained,

which is not commensurate with the objectives of

proposed strategies as mentioned above. Alternative

RDT designs such as Weibull testing which is more

suitable for failure time data, is out of the scope of this

article, but is of interest for future work.

To illustrate the proposed MSRDTs over multi-

ple time periods and further investigate the difer-

ence between two scenarios of acceptance criteria, the

MSRDTs over two timeperiods (i.e.,K = 2) are consid-

eredwithout loss of generality. LetR1 andR2 denote the

minimum acceptable reliabilities over the time peri-

ods (t0, t1] and (t0, t2] with R2 < R1. The probabili-

ties of failure for each cumulative time period meet

the requirements if π1 ≤ 1 − R1 and π1 + π2 ≤ 1 −

R2. For acceptance criterion in Scenario I, the test

of MSRDT is to determine {nI, c1, c1 + c2}, and the

probability of accepting the test for any given (π1, π2),
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denoted by HI(n, c1, c2), can be explicitly written

as

HI(n, c1, c2) =

c1
∑

y1=0

c1+c2−y1
∑

y2=0

[(

n!

y1!y2!(n − y1 − y2)!

)

× π
y1
1 π

y2
2 (1 − π1 − π2)

n−y1−y2

]

and the corresponding CRI is controlled at or below β

by

CRI = 1 −

∫ 1−R1

0

∫ 1−R2−π1

0
HI(n, c1, c2)p(π1, π2)dπ2dπ1

∫ 1

0

∫ 1

0
HI(n, c1, c2)p(π1, π2)dπ2dπ1

≤ β,

[3]

where p(π1, π2) denotes the joint prior distribution of

(π1, π2, 1 − π1 − π2).

For the acceptance criterion in Scenario II, the

MSRDT plan can be determined by specifying

{nII, c1, c2}, and the probability of accepting the test for

any combination of (π1, π2), denoted by HII(n, c1, c2)

is given by

HII(n, c1, c2) =

c1
∑

y1=0

c2
∑

y2=0

[ (

n!

y1!y2!(n − y1 − y2)!

)

× π
y1
1 π

y2
2 (1 − π1 − π2)

n−y1−y2

]

,

and the corresponding CRII is controlled by

CRII

= 1 −

∫ 1−R1

0

∫ 1−R2−π1

0
HII(n, c1, c2)p(π1, π2)dπ2dπ1

∫ 1

0

∫ 1

0
HII(n, c1, c2)p(π1, π2)dπ2dπ1

≤ β.

[4]

A case study is shown below for illustrating the pro-

posed MSRDT strategies for a two-period test. The

reliability requirements are set as R1 = 0.8 and R2 =

0.6 over the time periods (t0, t1] and (t0, t2] with

t2 < 2t1 , which indicates longer time interval of (t0,

t1] than (t1, t2]. A higher reliability requirement R1

is desired for the early cumulative time period (t0,

t1] because the customers are averse to early failures.

The CR is controlled at β = 0.05, indicating that the

probability of accepting the test when the actual reli-

ability requirements are not met is controlled at or

below 0.05. To evaluate the complex integration in

either Eq. [3] or Eq. [4], Monte Carlo sampling is

performed with the sample size of M = 15,000 to

maintain the evaluation accuracy. The Dirichlet dis-

tribution, denoted by Dirichlet (α1, α2, α3), is used as

Table . Comparison between Scenarios I and II and BRDT, with
non-informative prior.

Scenario I Scenario II BRDT

c1 c1 + c2 nI c1 c2 nII c nb

       
       
     
       
     
     
       
     
     
     
     
     
       
     
     
     
     
     
     

Settings: p(π1, π2) ∼ Dirichlet(1, 1, 1)
R1 = 0.8,R2 = 0.6,M = 15000, β = 0.05

the prior distribution for (π1, π2, 1 − π1 − π2), where

α1, α2, α3 are hyper-parameters to be elicited based

on the prior knowledge. The Dirichlet distribution is

a family of continuous multivariate probability distri-

bution parametrized by the vector of positive hyper-

parameters αi, i = 1, . . . ,K for K categories of out-

comes. The advantage of using Dirichlet distribution

is two folded. First of all, it is the conjugate prior for

the multinomial distribution, and hence allows an easy

update of knowledge as new data are observed because

the posterior distribution of the failure probabilities

also follow a Dirichlet distribution. Second, the hyper-

parameters in the Dirichlet distribution are associated

with more intuitive practical implications as they are

directly connected with the failure probabilities for

each outcome category based on the prior knowledge

in the form of αi/
∑K

i=1 αi. A few diferent settings of

hyper-parameters will be explored later to investigate

the impact of prior knowledge on the performance of

the proposed test plan.

When no prior information is available, a non-

informative prior distribution, given by (π1, π2, 1 −

π1 − π2) ∼ Dirichlet(1, 1, 1) can be used for indicat-

ing the lack of prior knowledge. The selected test plans

under the acceptance criteria of two scenarios with

diferent choices on the maximum number of allow-

able failures are illustrated in Table 3. The test plans are

grouped based on the total number of failures allowed

during the entire test duration. Several features are
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Figure. ComparisonbetweenScenarios I and II basedon themin-
imum sample size as c2 increases for some fixed c1 values.

observed. First of all, under both Scenarios I and II,

given a ixed choice of c2, the minimum sample size

nI or nII increases as c1 increases. Similarly, given a

ixed c1, nI and nII also increase with c2. As for a given

ixed number of test units, allowing more failures (i.e.,

increasing c) canmake it easier to pass the test and thus

increase the CR. Hence, it requires to test more units to

control the CR at a predetermined maximum accept-

able level. The patterns of minimum sample sizes can

be observed more clearly in Figures 3 and 4.

Figure 3 shows the change in the minimum sam-

ple size as c2 increases for a few selected c1 values

under both scenarios. Solid lines are used for showing

Scenario I and dash lines are used for Scenario II.

Diferent symbols are used for displaying diferent

c1 values. For a ixed c1 value, the minimum sample

sizes under both Scenarios I and II increase as c2
increases. For example, when c1 = 0, two scenarios are

essentially the same in terms of the acceptance criteria.

Hence, the same minimum sample size is required
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Figure . Comparison between Scenarios I and II based on the
minimum sample size as c1 increases for some fixed c2 values.

for both scenarios, which is shown with the solid

line with the triangles and increases as c2 increases.

When c1 > 0, the minimum sample size still generally

increases as c2 increases. However, the trend is slightly

diferent between the two scenarios. The nI increases

monotonically with c2, while the nII starts of with sim-

ilar sample sizes for small c2 values to a certain point

and then starts to increase more quickly as c2 increases.

For example, when c1 = 4, the minimum sample size

for Scenario II (shown with a dotted line with the open

circles) is relatively lat for c2 ≤ 4 and then increases

for c2 > 4. This is because under Scenario II, the max-

imum number of allowable failures for the two non-

overlapping periods determines their corresponding

minimum required test units, which then jointly deter-

mine the overall minimum sample size for the entire

test. Therefore, the overall sample size can be domi-

nated by the maximum number of allowable failures

for one of the test periods if one of the ci is considerably

larger compared to its failure probability under the reli-

ability requirements to be demonstrated. Thus, when

c2 is small, c1 plays an dominating role in determining

the overall sample size for the entire test, which corre-

sponds to the lat portion of the minimum sample size

curve for c1 = 4. However, as c2 becomes larger than

c1, the overall minimum sample size is dominated by

the requirement from period 2 and hence resumes an

increasing pattern as c2 increases. To compare the two

scenarios, it appears that nI is usually larger than nII for

small c2 values, but becomes smaller than nII when c2
becomes larger than a certain value. This is because for

the same required ci values, the test plans in Scenario I

generally can allow larger maximum number of allow-

able failures for period 2 (when the maximum number

of allowable failure is not reached during period 1) and

hence request to test more units when c2 has dominat-

ing impact on the overall minimum sample size.

Figure 4 shows how the minimum sample size

changes with c1 for ixed c2 values under both scenar-

ios. Generally, for any ixed c2, the minimum sample

size increases as c1 increases under Scenario I. Also,

a larger c2 value requires to test more units and the

diference in nI among diferent c2 values are simi-

lar across diferent c1 values, which is evidenced by

the almost parallel lines observed for Scenario I in

Figure 4. However, for Scenario II, even though nII
increases monotonically with c1, there are diminishing

diferences in nII at diferent c2 values as c1 increases.

This is because under Scenario II, increasing c1 will

afect nII by increasing the minimum sample size
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Figure. ComparisonbetweenScenarios I and II basedon themin-
imum sample size for fixed c1 + c2 values.

needed to demonstrate the reliability requirement in

period 1 and hence leads to a dominating efect on the

size of nII (which is equivalent to a diminishing impact

of the diference in c2 values). While under Scenario I,

increasing c1 will result in increases in the minimum

sample sizes needed for demonstrating both reliability

requirements at the end of the two non-overlapping

time periods, and hence has a consistent impact on the

overall minimum sample size nI.

It is also interesting to compare the two scenarios

given the same total maximum number of allowable

failures c1 + c2 in the entire test duration. Figure 5

compares the minimum sample sizes for both scenar-

ios given a ixed total maximum number of allowable

failures c1 + c2. Two cases with c1 + c2 = 15 and

c1 + c2 = 20 are investigated, which are shown in

Figure 5 with the solid and dotted lines, respectively.

The bottom and the top axes display all combinations

of c1 and c2 values. A few patterns can be observed.

First, both nI and nII increase as c1 + c2 increases.

This matches with the pattern for the conventional

BRDTs in that it generally requires to test more units to

ensure the same assurance level if a more relaxed crite-

rion has been used for passing the test by allowingmore

failures to be observed during the entire test duration.

Second, increasing c1 (at the same time reducing c2)

will consistently increasenI but reduce nII irst for small

c2 values and then increase nII after c2 reaches a certain

value. Third, in terms of the relative performance of

the two strategies, Scenario II is associated with smaller

overall minimum sample size for large c1 and small c2
values. As c2 increasing to about the same size as c1,

Scenario I starts to have a smaller minimum sample

size and the diference becomes larger as c1 continues

to increase. This can be evidenced by the crossing pat-

tern between the monotonically increasing line with

the squares for Scenario I and the U-shaped curve with

the open circles for Scenario II. Brief analytical expla-

nations can also be found in the Appendix to improve

the understanding of the observed diferences between

two scenarios.

Under the samemaximumnumber of allowable fail-

ures c1 + c2 for the entire test duration, Scenario II

is expected to have more strict requirements (y1 ≤

c1, y2 ≤ c2) than Scenario I (y1 ≤ c1, y1 + y2 ≤ c1 +

c2), meaning that any tests that pass in Scenario II will

also pass in Scenario I. Intuitively, Scenario II will be

preferred if minimizing the CR is the only criterion of

interest, which on the other hand generally requires

larger minimum sample size. However, smaller test

sample is also generally preferred in RDT plan from

the manufacturer’s point of view. Hence, the tests with

minimum sample size after controlling the CR are gen-

erally preferred. As illustrated in Figure 5, the two test

scenarios may have varied performance in the required

minimum sample size for diferent settings and Sce-

nario II does not consistently outperform Scenario I

based on the minimum sample size. It is also noticed

in Table 3 that the diference between the two scenar-

ios when c1 is small becomes smaller for small c1 + c2
values, and is almost negligible for c1 + c2 ≤ 6. On

the other hand, Scenario I can be preferred for rela-

tively large c1 values when c1 + c2 is large or when only

small c1 + c2 is allowed. It is also noticed that for tests

using more strict passing conditions, they are gener-

ally associated with smaller probabilities of passing the

test (i.e., low acceptance probability) and often higher

probabilities for manufacturers to reject the products

that actually have met the reliability requirements (Lu

et al., 2016). Hence, a decision on the selection of

scenarios should be catered for a particular applica-

tion to meet the objectives of a speciic demonstration

test.

In addition, Table 3 also shows the comparison

between the MSRDT strategies over two time periods

with the conventional BRDTs when non-informative

prior is used. The last two columns in Table 3 give

the maximum number of allowable failures and the

minimum sample size for demonstrating the reliability

requirement at the end of test duration (i.e., the end

of period 2). For any given total maximum number of
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allowable failures over the entire test duration, c = c1 +

c2, the conventional BRDTs require to test fewer units

for demonstrating only a single reliability at the end

of the test. The MSRDTs, on the other hand, gain the

capability of demonstratingmultiple reliability require-

ments at diferent time points at the expense of testing

a few more units. However, as c = c1 + c2 increases,

fewer extra units are required to be tested for demon-

strating more reliability requirements at multiple time

points. For example, for c = 5, the conventional BRDT

requires to test 18 units to demonstrate reliability at the

end of the two-year period as 0.6. To demonstrate an

additional higher reliability at the end of the irst year

at 0.8, both MSRDT strategies require to test at least

20 units with no failure allowed to be observed during

the irst year. More units need to be tested if more

failures are allowed to be observed during the irst

year.

It is well known that incorporating diferent prior

information may have large impacts on the results

in Bayesian analysis. Next, we explore the impact of

diferent prior elicitations on the selected MSRDT

plans under both scenarios. Tables 4 and 5 summarize

the required minimum sample sizes for the MSRDT

plans over two test periods with diferent choices of

prior distributions for Scenarios I and II, respectively.

Seven diferent prior distributions including the non-

informative prior, Dirichlet(1, 1, 1), are explored.

The patterns are rather consistent across Tables 4 and

5. Under both scenarios, when the prior distribu-

tion supports higher reliabilities than the minimum

requirements, such as Dirichlet(3, 3, 24) shown in the

fourth column in both tables, theminimumsample size

can be substantially reduced for any given combina-

tion of c1 and c2 values than using the non-informative

prior (shown in the third column in both tables).

On the other hand, if the prior distribution supports

reliabilities at or below the requirements, more units

need to be tested to demonstrate the requirements

than using the non-informative prior. This can be

observed in Figures 6 and 7 which show the mini-

mum sample size for ixed c1 + c2 under Scenario I

and II, respectively. In both igures, the solid lines

with triangles represent the sample sizes for diferent

(c1, c2) combinations using a non-informative prior.

The dash lines with squares show the sample sizes for

a prior distribution Dirichlet(3, 3, 24) that supports

higher reliabilities than the requirements, which are

consistently below the line of non-informative prior.

All other prior distributions support reliabilities at

or below the requirements, and hence all require to

test more units with the corresponding lines located

above the line of non-informative prior. The farther

the speciied prior distribution is to the reliability

requirements, the more test units are needed in the

MSRDTs over multiple time periods. One special

case is the dash line with open circles observed in

Figure 7 for a prior distribution Dirichlet(3, 12, 15),

Table . Minimum sample sizes required by the two-period MSRDT using the acceptance criterion in Scenario I for different prior
distributions.

Dirichlet (1, 1, 1) (3, 3, 24) (6, 6, 18) (12, 3, 15) (3, 12, 15) (6, 12, 12) (12, 6, 12)

c1 c1 + c2 nI

        

        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        

Settings:M = 15000,R1 = 0.8,R2 = 0.6, β = 0.05
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Table . Minimum sample sizes required by the two-period MSRDT using the acceptance criterion in Scenario II for different prior
distributions.

Dirichlet (1, 1, 1) (3, 3, 24) (6, 6, 18) (12, 3, 15) (3, 12, 15) (6, 12, 12) (12, 6, 12)

c1 c2 nII

        

        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        

Settings:M = 15000,R1 = 0.8,R2 = 0.6, β = 0.05

which is consistently below the non-informative line

indicating smaller minimum sample sizes are required

for all (c1, c2) combinations. Since the prior distribu-

tion regarding period 1 supports higher reliabilities

than the requirements, while the prior distribution

regarding period 2 supports reliabilities below the

requirements, the efects of sample size reduction from

period 1 and sample size increase from period 2 may

jointly determine the overall minimum sample size,

and hence lead to slightly diferent pattern than what

has been observed for other prior distributions.
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Figure . Minimum sample sizes required in Scenario I with fixed
c1 + c2 = 6 for different prior distributions.

MSRDTs for multiple failure modes

In the previous section, the MSRDT strategies con-

sider each time period as an individual state for demon-

strating speciic reliability requirement within the time

period. This section proposes a diferent category of

MSRDTs which considers diferent failure modes as

individual states that are often associated with diferent

consequences of failures and diferent costs of replace-

ment. The conventional BRDTs report dichotomous

outcomes (i.e., success and failure) for each test unit,
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Figure . Minimum sample sizes required in Scenario II with fixed
c1 + c2 = 6 for different prior distributions.
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in which case diferent failure modes of the product

are not diferentiated and the severity levels of diferent

consequences associated with diferent failures modes

are overlooked. In real applications, a product often

has multiple failure modes in varied levels of sever-

ity, which can lead to diferent impacts on customers’

dissatisfaction.

For instance, the failure of a CPU or a hard drive of

a computer system is much more critical than the fail-

ures of some accessory parts such as a keyboard or a

microphone, since the former can lead to a complete

break down of the system, a loss of valuable informa-

tion and/or a high repair/replacement cost while the

latter usually only results in systemunder-performance

and a low repair/replacement cost. Consequently, the

failures of critical or valuable parts will lead to stronger

dissatisfaction of customers, and hence result in higher

expectation on reliability for these components. It is

desirable to develop test strategies that allow demon-

strating separate reliability requirements for multiple

failure modes.

The product with J independent failure modes

is considered. For each test unit, it will either have

failed in mode j, j = 1, . . . , J or remain working by

the end of the testing period. Let π j and y j denote

the probability of failure and the number of observed

failures in failure mode j within the test period (or an

equivalent mission time period), respectively. Then,

πJ+1 = 1 −
∑J

j=1 π j and n −
∑J

j=1 y j denote the

probability of success and the number of survived

units by the end of the test. The MSRDTs for multiple

failure modes aim to demonstrate at an assurance level

at (1 − β) that the product reliability will meet multi-

ple minimum reliability requirements for each of the

diferent failure modes, denoted by R j, j = 1, . . . , J.

Here, β is the CR on having a product that has passed

the demonstration test but fails to meet all reliability

requirements for diferent failure modes. Note that

all failure modes are deined in the same test period.

For any speciied reliability requirements R j’s and the

maximum acceptable CR controlled at or below β , the

MSRDTs for multiple failure modes are designed to

determine the minimum sample size nm as well as the

maximum number of allowable failures c j in the jth

failure mode for j = 1, . . . , J.

Without loss of generality, considering two failure

modes with J = 2 for illustrating the proposedMSRDT

strategy. Let R1 and R2 denote the minimum accept-

able reliabilities for failure modes 1 and 2, respectively.

The test is passed if the number of observed failures y j
is less or equal to the maximum number of allowable

failures c j for both failure modes, and the test plan is to

determine the choice on {nm, c1, c2}. For independent

failure modes, the acceptance probabilityHm(n, c1, c2)

for certain (π1, π2) values can be written as

Hm(n, c1, c2) =

c1
∑

y1=0

[(

n!

y1!(n − y1)!

)

π
y1
1 (1 − π1)

n−y1

]

×

c2
∑

y2=0

[(

n!

y2!(n − y2)!

)

π
y2
2 (1 − π2)

n−y2

]

and the corresponding CR, denoted by CRm, is calcu-

lated by

CRm = 1 −

∫ (1−R1 )

0

∫ (1−R2 )

0
Hm(n, c1, c2)p(π1, π2)dπ2dπ1

∫ 1

0

∫ 1

0
Hm(n, c1, c2)p(π1, π2)dπ2dπ1

,

[5]

where p(π1, π2) is the joint prior distribution of

(π1, π2). For independent failure modes, there is

p(π1, π2) = p(π1)p(π2). The minimum sample size is

determined by controlling the CRm obtained in Eq. [5]

to be at or below β . Simulation case studies are con-

ducted for exploring diferent reliability requirements,

maximum numbers of allowable failures for diferent

failure modes, as well as diferent prior elicitations and

their impacts on the required minimum sample size

for the MSRDTs for two failure modes. The results are

summarized in Tables 6 and 7 for two cases with simi-

lar or diferent reliability requirements for the two fail-

ure modes. In Table 6, identical minimum reliability

requirements are assumed for the two failure modes,

whereR1 = R2 = 0.8 indicates that the customers have

the same expectation on reliability for both failure

modes. Table 7 assumes diferent reliability require-

ments with R1 = 0.8 and R2 = 0.6. Here, failure mode

1 is considered more critical and/or have more severe

consequences associated with its failure, and hence is

required for a higher reliability. The CRm is still con-

trolled at β = 0.05 and the sample size forMonte Carlo

sampling is chosen asM = 15000 to maintain the sim-

ulation accuracy. Beta distributions are used for speci-

fying the prior distributions for both π1 and π2 for the

two failure modes.

When two failure modes have the same reliability

requirements at R1 = R2 = 0.8, Table 6 summarizes

the minimum sample size with diferent choices of the

maximum number of allowable failures and diferent

prior settings. When no prior information is available,
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Table . Multiple failure modes with the same reliability require-
ments for different prior distributions.

π1 (1, 1) (2, 18) (4, 16) (10, 15) (2, 18) (2, 18) (4, 16)

Beta π2 (1, 1) (2, 18) (4, 16) (10, 15) (4, 16) (10, 15) (10, 15)

c1 c2 nm

        

        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        

Settings:M = 15000,R1 = 0.8,R2 = 0.8, β = 0.05

a non-informative prior distribution of Beta(1, 1) is

assigned for both π1 and π2. Similar patterns can be

observed as for the MSRDTs over multiple time peri-

ods. When c1 is ixed, the minimum sample size nm
increases as c2 increases; when c2 is ixed, nm increases

with c1. This is intuitive as having more allowable fail-

ures makes it easier to pass the test and thus increases

Table . Multiple failure modes with different reliability require-
ments for different prior distributions.

π1 (1, 1) (2, 18) (10, 10) (4, 16) (2, 18) (10, 10)

Beta π2 (1, 1) (2, 18) (10, 10) (10, 15) (10, 10) (2, 18)

c1 c2 nm

       

       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

Settings:M = 15000,R1 = 0.8,R2 = 0.6, β = 0.05

the CR. To control a reasonable CR, a larger number

of units need to be tested by allowing more failures

to be observed during the test. When c1 + c2 is ixed,

the minimum sample size nm exhibits a symmetric

pattern under the non-informative prior setting due to

the identical reliability requirements for both failure

modes. For example, when c1 + c2 = 6, the minimum

sample sizes for c1 = 0, c2 = 6, and c1 = 6, c2 = 0

are identical. In addition, when c1 and c2 become

more similar in size (e.g., c1 = 2, c2 = 4 compared to

c1 = 0, c2 = 6), it requires smaller minimum sample

size to remain the same assurance level for demon-

strating the requirements on both failure modes. This

makes sense as when the maximum number of allow-

able failures is considerably larger for one failure mode

given the same reliability requirement, it requires to test

more units for demonstrating the requirement for this

failure mode, which then inlates the overall minimum

sample size needed in the MSRDT for demonstrating

reliability requirements for both failure modes.

Diferent prior elicitations also have large impacts

on the selected test plan, as shown in Table 6. When

prior knowledge supports higher reliabilities than the

requirements to be demonstrated, fewer units need to

be tested and vice versa. For instance, the prior dis-

tributions of π1 ∼ Beta(2, 18) and π2 ∼ Beta(2, 18)

indicate that there is a strong belief of lower fail-

ure probabilities than the requirements within the test

period for both failuremodes. Thus, the corresponding

minimum sample size is smaller than what is needed

for using the non-informative prior. On the other hand,

when the prior distributions of π1 ∼ Beta(10, 15) and

π2 ∼ Beta(10, 15) are used, which indicates a moder-

ately strong belief in larger failure probabilities than

the requirements for both failure modes, more units

need to be tested to demonstrate the higher reliabil-

ity requirements compared to what is needed when no

prior information is available.

When c1 + c2 is ixed, the required minimum sam-

ple size is also sensitive to the speciied prior distri-

bution. Figure 8 illustrates the change in the nm for

diferent (c1, c2) combinations given ixed c1 + c2 =

6. When the non-informative priors are assumed, the

curve for nm (the solid line with the triangles) shows

a symmetric pattern with the minimum sample size

achieved at c1 = c2 = 3.When informative priors indi-

cating lower failure probabilities than requirements for

both failure modes (such as π1 ∼ Beta(2, 18), π2 ∼
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Figure . Multiple failure modes with the same reliability require-
ments for fixed c1 + c2 and different prior distributions.

Beta(2, 18) corresponding to the dash line with the

open circles) are assumed, the minimum sample size

curve is below the non-informative curve. As the prior

belief indicates higher failure probability for at least one

of the failure modes (such as π1 ∼ Beta(2, 18), π2 ∼

Beta(10, 15) corresponding to the dotted line with the

solid circles or π1 ∼ Beta(10, 15), π2 ∼ Beta(10, 15)

corresponding to the dash-dotted line with the open

circles), the correspondingminimumsample size curve

shifts upwards on at least one side of tails or on both

sides.

Table 7 shows the test plans when diferent reliability

requirements are used for the two failure modes with

R1 = 0.8 and R2 = 0.6. When the non-informative

priors are used, the symmetric pattern is no longer

observed due to diferent requirements on reliability for

the two failure modes. Particularly, nm is larger when

c1 is large since more units need to be tested to demon-

strate higher reliability requirement for failure model 1

while allowing more failures to be observed during the

test period. Also, for the same c1 and c2 settings, the

minimum sample size for demonstrating R1 = R2 =

0.8 is smaller than what is required for demonstrat-

ing R1 = 0.8 and R2 = 0.6 since fewer units can be

tested to demonstrate a lower reliability requirement

for failure mode 2. When more informative priors are

used, similar patterns are observed from both Table 7

and Figure 9. A potential sample size reduction can be

achieved when the prior knowledge supports higher

reliability than what is required to be demonstrated by

the MSRDT.
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Figure . Multiple failure modes with different reliability require-
ments for fixed c1 + c2 and different prior distributions.

Conclusions

Conventional binomial RDTs, which focus on demon-

strating a single reliability requirement within a single

test period, have limited use when multiple reliability

requirements need to be met. This article proposes

two types of RDTs for demonstrating reliabilities over

multiple time periods and for multiple failure modes.

These RDTs with multiple reliability requirements are

all referred to as multi-state RDTs (MSRDTs).

In the MSRDTs over multiple time periods, every

time period of interest is treated as a state, and the joint

distribution of failure counts over the non-overlapping

time periods can be modeled by a multinomial distri-

bution. Two diferent test strategies are proposed for

demonstrating multiple requirements over diferent

time periods. One strategy uses the cumulative failure

counts at the end of each cumulative time period peri-

ods as the criteria for passing the test; while the other

uses separate failure counts over non-overlapping time

intervals as the criteria for passing the test. Simula-

tion studies were conducted for comparing the two

strategies by considering two-period MSRDTs. It was

founded that the strategy based on cumulative failure

counts (Scenario I) is generally preferred for cases that

allow fewer total failure counts over all time periods or

when a larger maximum number of allowable failures

is allowed for the early cumulative time period. The

strategy using separate failure counts (Scenario II) is

only preferred for requiring smaller minimum sample

size when a smaller maximum number of allowable

failures is allowed for the early separate time period.
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In the MSRDTs for multiple failure modes, each

failure mode is treated as a state and all reliability

requirements for the multiple failure modes that may

be associatedwith diferent consequences in varied lev-

els of severity and/or costs of repair/replacement can be

simultaneously demonstrated. The required minimum

sample size is usually determined mainly by the fail-

ure mode that has the highest reliability requirement

and/or least stringent criterion for passing the test (i.e.,

allowing a larger maximum number of allowable fail-

ures for a particular failure mode).

The impacts of incorporating diferent prior dis-

tributions are also explored for both categories of

MSRDTs. The patterns are consistent regardless of

which test strategy is considered. When the prior

knowledge supports higher reliabilities than the

requirements to be demonstrated, fewer units can be

tested compared to using the non-informative priors

for demonstrating the same reliability requirements.

However, if the historical data supports lower relia-

bilities than what are required to be demonstrated,

then more units need to be tested to override the

efects of the prior distribution for demonstrating

higher reliabilities than what has been indicated from

existing data. For future work, it is expected to develop

thorough mathematical justiications with theoritical

formulations and derivations to validate the discussed

patterns using both non-informative and informative

prior distributions.
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Appendix

To analytically show the diference between Scenar-

ios I and II in the proposed MSRDTs over multiple

time periods when c1 + c2 is ixed, let �H(n, c1, c2) =

HI(n, c1, c2) − HII(n, c1, c2), which can be explicitly

written as

�H(n, c1, c2) =

c1
∑

y1=0

c1−y1
∑

y2=c2+1

[ (

n!

y1!y2!(n − y1 − y2)!

)

×π
y1
1 π

y2
2 (1 − π1 − π2)

n−y1−y2

]

.

When c1 = 0, �H(n, c1, c2) = 0 and both scenarios

become equivalent, as shown in Tables 3–5.When c1 >

0, �H(n, c1, c2) > 0, which indicates that the proba-

bility of accepting test plan under Scenario II is always

smaller than the probability calculated under Scenario

I. However, this inding does not imply that for a

ixed n, one scenario will always give a consistently

higher/lower CR than the other. To justify this, let A =

∫ 1−R1

0

∫ 1−R2−π1

0
HII(n, c1, c2)p(π1, π2)dπ2dπ1 and B =

∫ 1

0

∫ 1

0
HII(n, c1, c2)p(π1, π2)dπ2dπ1, CRII and CRI can

be written as

CRII = 1 −
A

B
,

CRI = 1 −
A + �A

B + �B
,

where �A =
∫ 1−R1

0

∫ 1−R2−π1

0
�H(n, c1, c2)p(π1, π2)

dπ2dπ1 and �B =
∫ 1

0

∫ 1

0
�H(n, c1, c2)p(π1, π2)

dπ2dπ1. Then CRII − CRI is given by

CRII − CRI =
B�A − A�B

B(B + �B)
.

Although B > A, as n, c1 and c2 vary, �A can be

larger/smaller than�B. Thus, for a ixed sample size n,

neither CRII > CRI nor CRII < CRI will hold consis-

tently. It also explains results in Figure 5, and Tables 4

and 5 that when controlling CR, one scenario cannot

give a consistently larger/smallerminimum sample size

than the other scenario.
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