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Abstract—Our analytically based technique for coarse-
graining (CG) polymer simulations dramatically improves
spatial and temporal scaling while preserving thermodynamic
quantities and bulk properties. The purpose of CG codes
is to run more efficient molecular dynamics simulations, yet
the research field generally lacks thorough analysis of how
such codes scale with respect to full-atom representations.
This paper conducts an in-depth performance study of highly
realistic polymer melts on modern supercomputing systems.
We also present a workflow that integrates our analytical
solution for calculating CG forces with new high-performance
techniques for mapping back and forth between the atomistic
and CG descriptions in LAMMPS. The workflow benefits from
the performance of CG, while maintaining full-atom accuracy.
Our results show speedups up to 12x faster than atomistic
simulations.
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I. INTRODUCTION

On the largest modern supercomputers, molecular dynam-

ics (MD) simulations of polymer systems contain billions

of atoms and span roughly a few nanoseconds of simula-

tion time per week of execution time. Unfortunately, most

macromolecular processes of interest contain many orders

of magnitude more particles and often bridge microsecond

or even millisecond timescales or longer. These include

phenomena like phase separation in polymer blends and

composite materials [1], polymer crystallization, and glass

formation and aging [2] to mention just a few. Despite our

pervasive access to massively parallel computers, full united-

atom (UA) simulations do not come close to representing

real-world polymer systems (see Figure 1), because they

are too computationally expensive and slow. This makes

direct comparison between experiments and simulations

impossible as the two systems are dynamically different. For

these reasons, scalability of MD simulations is paramount.

Simply put, we require new approximation methods that

capture the relevant physics and chemistry while requir-

ing fewer computational resources. The most promising
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approach is the coarse-graining (CG) method, in which

groups of atoms are represented as one collective unit.

CG has proven to be valuable for eliminating unnecessary

degrees of freedom and tackling the scaling complexity of

larger problems [3]. The key issue is how to simultaneously

maintain solution accuracy and high performance. With

the alternation of CG and atomistic simulations enabled

by the workflow presented in this paper, it is possible to

quickly equilibrate the system during the CG simulation,

then reintroduce local details into a UA simulation, taking

advantage of the performance of the CG simulation and the

realism of the UA representation.

The Integral Equation Coarse-Grained (IE-CG) model

by Guenza and coworkers [5], [6], [7], [8], [9] adopts

an analytically-derived potential and dramatically improves

spatial and temporal scaling of polymer simulations, while

accurately preserving thermodynamic quantities and bulk

properties [10], [11], [12]. Several numerical techniques

and force fields exist for performing coarse-grained simula-

tions [13], [14], [15]. However, these methods generally pre-

serve either structure or fully preserve thermodynamics, but

not both. As a result, only a small level of coarse-graining is

typically adopted to limit the errors in the simulated structure

and thermodynamics. In contrast, our work adopts the ana-

lytical approach offered by IE-CG theory, because it recovers

crucial structural and thermodynamic quantities such as the

equation of state, excess free energy, and pressure, while

enabling a much higher level of coarse-graining and the

corresponding gains in computational performance.

Figure 1: A representation of the average polyethylene chain length
determined by chromatography experiments [4]. Most studies are
limited to very short chain lengths (≤ 1000) due to the prohibitive
cost of UA simulations, but this paper freely explores the realistic
systems with 10

4 to 10
6 monomers per chain.



Although CG polymer physics is a mature field, little

has been done to analyze the performance benefits of CG

versus UA representations. While it is clear that CG will

exhibit computational gains, does it strong scale to as many

processors as the corresponding UA simulation? Likely not,

because CG tracks far fewer overall particles, sometimes

by orders of magnitude. Accordingly, the scalability of CG

simulations likely depends on the granularity factor, e.g, the

number of UA coordinates a CG unit represents.

One reason for the lack of performance analysis in CG

research is likely due to the inherent complexity and vari-

ability in executing useful CG simulations. For instance,

CG representations are generally based on a corresponding

(usually unequilibrated) UA geometry. A helper program,

which is usually independent of the MD simulation frame-

work, then maps the UA representation into the CG repre-

sentation. Furthermore, after the CG simulation equilibrates,

we usually desire a “backmapped” geometric description of

the equilibrated system in a UA representation to restore

properties at the local molecular scale. The amalgamation of

these processing steps encompass a scientific workflow for

conduction CG simulations, shown pictorially in Figure 2.

In order to benefit most from CG computational gains, the

coupled processing stages of this workflow must be high

performance, low overhead, and asynchronous whenever

possible.

In this paper, we present such a scientific workflow that

integrates the analytical IE-CG approach for calculating CG

forces with new high-performance techniques for mapping

back and forth between the UA and CG descriptions in

LAMMPS. This workflow benefits from the performance

of CG, while maintaining the accuracy of the full-atom

representation. Our workflow optimizations legitimize our

comparisons between UA and CG execution times. Scaling

results show speedups of up to 12x at 3,072 cores on the

Hopper system at NERSC. Furthermore, our workflow opens

possibilities for the validation of polymeric systems that have

never before been simulated at realistic chain lengths.

II. BACKGROUND

This sections provides background information and con-

text for understanding the motivation, design, and imple-

mentation of our scientific workflow that manages CG

simulations of polymer melts. Section II-A describes our

analytically based CG methods. Sections II-B and II-C ex-

amine the UA↔CG workflow and two crucial optimizations

for assuring efficient execution.

A. Integral Equation Coarse-Graining

This section briefly reviews the Integral Equation Coarse-

grained approach [5], [6], [7], [8], [9]. We simulate a

homopolymer fluid (in which all monomers are of the same

chemical type) with monomer number density, ρm, consist-

ing of n polymer chains at temperature T . Each polymer

Figure 2: The high-level progression of a UA↔CG workflow. The
CG representation is calculated from UA coordinates, and the UA
representation is recovered by solving a backmapping problem
(described in Sections II-C and III-B). CG spheres appear hard,
but are soft with long range effects.

contains N monomer sites. At the atomistic resolution,

MD simulations were performed with LAMMPS using the

UA model, where each site is either a CH, CH2 or CH3

group. In the coarse-grained representation, each polymer

is described as a chain of soft particles, or spheres, and

each sphere represents a number of Nb monomers. The

total number of spheres is given by nb = N/Nb. Lower

numbers of spheres in the CG representation present lower

computational resource requirements in the CG simulation.

The IECG is an integral equation formalism that builds on

the Ornstein-Zernike [16] equation and the PRISM atomistic

theory [17]. The IECG model gives a complete description

of the coarse-grained system as consisting of the effective

intermolecular potential between coarse-grained units on dif-

ferent chains, effective bond potentials, and angle potentials

designed to preserve Gaussian statistical distributions [18]

and by postulating that the effective intermolecular potential

must act between monomers farther apart on the same

chain [10], [11], [12]. The intermolecular pair potential

acting between CG units is fully represented as a function

of the physical and molecular parameters that define the

system, which are Nb, ρm, T and the liquid compressibility

through the direct correlation function c0.

In the specific regime of Nb ≥ 30 it is possible to

derive an analytical form of the potential. At that scale

the structure of the chain follows a random walk, and the

distribution of the CG units along the chain is Markovian.

This is a general property of the macromolecules [18] when

sampled at large enough lengthscales. It should be stressed

that in the IECG papers, the analytical potential serves as

an approximation, under reasonable assumptions, for the

numerical potential that is used in simulations. Having an

analytical potential allows one to understand the scaling

behavior of the potential with structural parameters, as well

as to estimate thermodynamic quantities of interest. The



relevant equations are quite sizeable and beyond the scope

of this paper, but the complete analytical forms can be found

in previous publications [11].

Using this potential we perform simulations of the CG

systems, and then compared thermodynamic quantities and

structural quantities of interest from these simulations with

UA simulation data. The agreement between CG and atom-

istic descriptions is quantitative, where the direct correlation

contribution at large distances, c(k → 0) = c0, is the only

non-trivial parameter. It is evaluated either from experiments

or from theory. Consistency for structural and thermody-

namic properties is observed in all comparisons between

numerical solutions of the IECG, analytical solutions, UA

simulations, and mesoscale simulations [11].

B. The UA↔CG Workflow

The CG representation enables simulations to explore

larger chemical systems because it exposes far fewer degrees

of freedom than the UA representation. CG can also explore

longer timescales because it does not suffer from the geo-

metric constraints within UA systems, such as those caused

by entanglements that prohibit efficient dynamics. Unlike

bonded monomer chains, CG soft spheres may overlap,

which expedites the equilibration of the melt that would

have otherwise been entangled. Furthermore, previous work

has shown that fundamental thermodynamic properties are

fully captured by the CG representation when using our

analytically-derived potential [6], [10], [11].

However, after accomplishing equilibration in the CG

representation, we still require molecular information on

the local scale to account for all properties of interest.

By transforming the CG system to a UA representation,

we can potentially deliver an equilibrated system having

atomistic detail to material scientists at a fraction of the full-

atomistic execution time. Furthermore, if we can alternate

between the CG representation and the UA representation

in an automated manner, then we can simultaneously benefit

from the performance of CG and the accuracy of UA. Novel

approaches for adaptive resolution in molecular dynamics, in

which more interesting regions are coarse-grained at a finer

resolution than less interesting regions [19], also require

innovative methods for on-the-fly mapping back and forth

between UA and CG. Section III-A describes our UA↔CG

scientific workflow approach, which accomplishes this feat.

After a CG simulation has equilibrated to a minimal

energy configuration, a crucial question is then: which UA

system(s) are accurately represented by this arrangement?

This raises the notion of the backmapping problem which is

the subject of Sections II-C and III-B. Our initial workflow

implementation passed data through LAMMPS dump files,

which can become a performance bottleneck with large num-

bers of atoms, saving state often, or transforming between

representations often.

C. Backmapping

In homopolymer systems, transforming from the UA

representation to the CG representation is straightforward:

for each subchain having Nb monomers, the new soft sphere

coordinate is simply the center of mass of the subchain. On

the other hand, the reverse procedure of mapping from the

CG representation to the UA representation is not generally

well-defined. This transformation of a CG model into a UA

model is a popular research topic, commonly referred to as

the backmapping problem. For our homopolymer system,

the backmapping problem is simply stated as follows: given

a collection of CG soft sphere chains coordinates, insert

monomer chains in such a way that we would recover the

original CG configuration if we were to coarse-grain the

system again.

It is easy to see that solutions to backmapping problems

are not unique, because there are many different UA config-

urations that could map back to a given CG configuration.

Much backmapping work focuses on biomolecules [20], but

relatively little work has explored homopolymers. However,

efficient backmapping procedures in polymer simulations are

imperative for developing a full-fledged adaptively resolved

simulations [21].

In previous work [22], we used the Parallelizable Open

source Efficient Multibody Software (POEMS) library to

avoid backmapping. POEMS treats the internal subchains of

each CG soft sphere as a set of coupled rigid bodies. This

greatly reduces degrees of freedom in the simulation, and

has the additional benefit of eliminating the need for solv-

ing the backmapping problem. Unfortunately, this approach

suffers from poor computational performance, and our per-

formance profiles unequivocally suggest it is due to time

spent in POEMS’ Solve, initial integrate, and final integrate

functions. Also, an analysis of internal monomer distances

versus endpoint distances (e.g., the monomers that connect

adjacent CG spheres) shows that the endpoint bonds stretch

to unphysical distances. This issue motivates the need for

a backmapping procedure that leads to more physical bond

distances throughout the system. Section III-B presents the

design of our new backmapping procedure.

III. DESIGN

This section discusses the design of our scientific work-

flow environment for obtaining high-performance equilibra-

tion of polymer melts with atomistic accuracy. We hence-

forth refer to the overall process as the UA↔CG work-

flow. Section III-A briefly describes the UA↔CG workflow

implementation with the goal of providing context and

motivation for the backmapping procedure. Further details

regarding the workflow implementation can be found else-

where [22]. Section III-B answers why, when, and how

backmapping occurs within the workflow. We then describe

our backmapping algorithm, and discuss future directions

for possible improvements.



Figure 3: The UA↔CG Workflow. Blue circles (1,3,5,7) represent
stages of custom programs that either generate coordinates and
potentials, transform data for input into LAMMPS, or conduct con-
vergence analysis. Red squares (2,4,6) represent parallel LAMMPS
MD simulations executing via MPI. Our workflow system auto-
mates this process for a given set of input parameters.

A. The UA↔CG Workflow

The UA↔CG workflow consists of a series of compu-

tational programs and analyses that comprise an overall

application for quickly stabilizing a randomly generated

polymer melt of n chains, each with N monomers per chain.

Subsequently, the workflow may be used to do production

simulations of the equilibrated polymeric liquid. Figure 3

shows the 7 high-level stages involved in the equilibration

workflow, each of which may involve multiple processing

steps. Each step is accomplished by one or more programs,

applications, or simulations. Before this work, these steps

each required manual intervention by a researcher, but now

they are automated by our workflow.

The workflow consists of a set of standardized Python

wrappers of each Fortran, C, or C++ program that encap-

sulates Stages 1, 3, 5, and 7 from Figure 3. Some of these

programs are actually our own custom versions of LAMMPS

tools (such as chain.f, which generates random polymer

chain systems) that are optimized to run large-scale polymer

systems. We use the standard Python argument parsing

system, argparse, to define all simulation parameters at

launch time. We subsequently pass the parameter bundle as

a Python object throughout the entire workflow application.

In order for the workflow to be useful, Steps 3, 5, and

7 must have low overhead when compared to the full UA

simulation itself. Furthermore, Step 4, which comprises the

CG component of the equilibration, must exhibit better per-

formance than UA and must converge towards a physically

correct configuration. In our original implementation, the

performance of Step 4 was unsatisfactory, especially when

considering the vastly fewer degrees of freedom in the CG

representation. The next section on backmapping discusses

the source of this performance obstacle and our solution.

In short, Step 4 executes most efficiently when completely

discarding the internal UA coordinates tracked in steps 1-3.

Unfortunately, this raises the additional concern of needing

to recover those coordinates. This issue is considered in

detail in Section III-B.

Much of the data transfer between the workflow steps

occurs by processing LAMMPS dump files to create new

LAMMPS input files. In most cases, the time spent reading

files is negligible compared to the MD simulations, par-

ticularly when we configure LAMMPS to write to disk at

relatively large timestep intervals. However, the larger the

interval, the less information can be included in conver-

gence analysis. In our studies, convergence is detected by

examining the percent error change of the radial distribution

function [22] within the UA representation. If the average

percent error is below a user-defined threshold, then the

workflow completes.

B. Backmapping

The database approach for backmapping, in which sub-

chain fragments are stored to a separate repository for

insertion into the soft spheres is one alternative. However,

this make little sense for polymeric systems, because the

necessary size of the database quickly becomes prohibitive.

Firstly, we need a separate database of fragments for every

value of Nb. Secondly, we need a large number of databases

for different monomer types (e.g., different bond distances

and masses). Finally, in order to obtain good statistics,

many different suitable configurations are required for each

possible Nb, and monomer type.

The approximate reconstruction approach for backmap-

ping is far more suitable for homopolymer systems. We do

not require a perfect solution, because a quick UA simulation

can remove any geometric strain leaving us with an equili-

brated system (Step 6 of the workflow from Figure 3). In our

first implementation, we take advantage of this technique by

generating a very simple configuration of chains on a regular

Cartesian grid. The steps for constructing a polymer melt on

such a grid are as follows:

1) Store the center of mass coordinates for each soft

sphere along the polymers.

2) Calculate the midpoints between the center of mass

coordinates of each pair of adjacent spheres.

3) Initialize a regular grid across the simulation box with

grid point distances equal to the desired bond length.

4) Redefine the above midpoints as the desired endpoints

of each subchain and place onto the nearest grid point.

5) Generate paths connecting each pair of endpoints with

the “Manhattan distance” length between endpoints.

6) Randomly extend each the path to the desired number

of edges, Nb, by inserting extensions.

Figure 4 illustrates a simple example of the random exten-

sion in step 6. The leftmost graph is the result of steps 1-5

for a single subchain. By removing edge e1 and inserting

the ext1 extender in its place, we extend the length of

the chain’s path by 2. Next, edge e2 is randomly selected



and the path is extended by another 2 bond lengths. If

we desire 10 monomers per sphere, then the algorithm is

complete. Figure 5 shows a full example with roughly 30

monomers per soft sphere. For brevity, we omit certain

implementation details in this algorithm description. The

fully commented source code can be found in the UA↔CG

Workflow repository, freely available online [23].

This backmapping approach has the advantage of being

straightforward to implement, lightweight, relatively general,

and potentially parallel. For polyethylene, however, this

approach has the disadvantage of producing chains with

unphysical bond angles along the carbon backbone, which

means that a longer simulation is required to equilibrate the

newly generated UA system. An extension to the regular

grid approach is to instead construct a tetrahedral grid, in

which angles between grid points are forced to be 109.5◦

instead of 90◦. We leave the tetrahedral implementation and

comparing its equilibration requirements as future work.

IV. EXPERIMENTAL

Stages 1, 3, and 5 of the workflow only transform a single

simulation snapshot. The algorithms are O(m) (m is the

total number of monomers), involve no communication, and

typically comprise far less than 1% of the total workflow

execution time. Stages 2, 4, and 6 potentially involve mil-

lions or billions of snapshots with much communication as

particles advance. Stage 4 alone may consume over 90%

of the workflow execution time (depending on how many

time steps are assigned to each stage), making it the clear

performance bottleneck. Therefore, this section focuses on

strong and weak scaling experiments of Stage 4 in the

workflow, emphasizing the benefit of using our analytically-

derived multiblock potential in the CG representation.

A. Experimental Setup and Evaluation

Experiments were conducted on the ACISS cluster located

at the University of Oregon. We use the 128 generic compute

nodes, each an HP ProLiant SL390 G7 with 12 processor

cores per node (2x Intel X5650 2.67 GHz 6-core CPUs)

and 72 GB of memory per node. ACISS employs a 10

gigabit HP Voltaire 8500 Ethernet switch that connects all

compute nodes and storage fabric. The operating system is

RedHat Enterprise Linux 6.2, and we used Intel version

Figure 4: Simple example of regular grid backmapping.

Figure 5: A randomly generated path with fixed endpoints on a
regular grid. This is the UA configuration backmapped from a
CG representation with ∼30 monomers per sphere. Each color
corresponds to a different subchain, and units are in angstroms.

14.0 compilers with OpenMPI 1.7. The latest version of

LAMMPS (version 10-Feb-2015) was used with a slight

modification to the chain generation tool to enable massive

particle scaling.

We also include scaling experiments conducted on the

Hopper system at NERSC. Hopper is a Cray XE6 cluster,

where each compute node has 2 AMD 12-core MagnyCours

(24 cores total) running at 2.1 GHz. There are 32 GB

of DDR3 RAM per node. We use the default LAMMPS

20140628 module, and the default PGI Cray compiler,

version 14.2-0.

B. UA versus CG Performance

Figures 6 and 7 show the strong and weak scaling

of the UA versus CG components of the workflow on

ACISS. These timings measure 500 femtoseconds of sim-

ulation time, then extrapolate to hours of execution time

per nanosecond of simulation time, since we know that

several nanoseconds are typically required to reach equili-

bration. The auxiliary workflow programs (CGgen, UAInit,

and BMinit) never take more than a few seconds, which

constitutes far less than 0.1% of the overall runtime for

full simulations, so we do not include those times in these

measurements.

Figure 6 shows a strong scaling experiment on ACISS,

where each data point corresponds to a simulation that

represents 200,000 UA monomer sites. In the UA case, we

run 20 chains, each with 10,000 monomers. The number

of sites in the CG representation, however, depends on

the granularity of the decomposition. For instance, with 10

sites per chain, each soft sphere contains 1,000 monomers,

and only 200 total soft spheres are simulated. Therefore, it

comes at no great surprise that the CG component of the

workflow stops strong scaling after 8 nodes on ACISS (or

96 processes). At 8 nodes, only about 2 spheres reside in



Figure 6: Strong scaling on ACISS for 20 chains each with 10,000
monomers. As expected, CG does not strong scale to as many
processes as UA because it simulates fewer particles. However,
absolute performance is usually far better for CG than UA, even
at scale. Including more sites per chain is faster per timestep, but
this ignores the rate of convergence of thermodynamic quantities.

each process, and at 16 nodes, there are more processes

than spheres, which is highly undesirable for an application

like LAMMPS where communication between neighboring

atoms plays a large role. At 250 sites per chain, there are

a total of 5,000 soft spheres, which is still far too small to

exhibit good strong scaling at large numbers of processes. It

may be unexpected that the absolute performance is better

for larger numbers of sites per chain, and is best at 250.

While this may seem counter-intuitive, the phenomenon

is due to the fact that lower numbers of sites per chain

require longer-ranged interactions. The larger cutoff results

in more neighbor particles per process, and the application

becomes communication bound. Also, these measurements

do not take into consideration the rate of convergence of

thermodynamic quantities, which we expect to be faster for

coarser models.

Figure 7 shows the corresponding weak scaling experi-

ment on ACISS, in which the number of chains per compute

node is held constant at 20 chains for each execution. For

instance, at 32 nodes, UA simulates 640 chains for a total

of 6.4 million particles. CG also simulates 640 chains at 32

nodes, but at 200 sites per chain 32,000 spheres are tracked.

The plot clearly shows that tracking 32,000 soft spheres

exhibits far better weak scaling than simulating 6.4 million

atoms. This may not be so surprising, but the important thing

to note is that using our potential in the CG simulation can

accurately produce an equilibrated system with the same

thermodynamic properties as the UA simulation. Previous

work has demonstrated almost perfect recovery of pressure,

free energy, and structural correlations at several different

granularities of up to 1,000 soft spheres per chain [11]. Until

this work, simulating 10,000 to 1 million soft spheres per

chain was impractical.

To provide evidence that the above results are independent

of the cluster architecture, we ran a comparable experiment

on the Hopper system at NERSC. Figure 8 shows a strong

scaling experiment with 20 chains and 10,000 monomers

per chain for UA versus CG with 200 sites per chain. As

before, the CG simulation stops strong scaling before UA,

likely due to the vastly smaller number of particles tracked

(1,000 versus 200,000). On the other hand, Figure 9 confirms

that the CG simulation weak scales far better than UA, up

to 3072 processes.

We also ran equivalent weak scaling experiments with

2 chains per node and 100,000 monomers per chain with

almost identical performance results. To avoid redundancy,

we omit those results here, but the fact that this is possible is

exciting for future validation work and our ability to simulate

systems that reflect real-world polyethylene melts.

While it is possible to achieve speedups on the order

of 10x for CG simulations based on IECG theory, it is

important to converge to a useful configuration in UA space.

Measurements of our backmapping procedure are on the

order of a few seconds, even for systems containing millions

of particles. Compared to the several hours required to

complete a full equilibration, this time is negligible, and

gives more significance to our CG versus UA comparisons.

V. RELATED WORK

Most related CG models (such as within the MARTINI

force field [15]) use numerically optimized potentials, with

the problem that numerical errors in the optimization of

the potential can propagate to other physical quantities,

such as thermodynamic properties. In general, numerically

optimized CG potentials have problems with transferabil-

ity and correct representability. It has been observed that

numerical CG potentials that are optimized to reproduce

some physical quantity correctly, such as the structure,

may not correctly reproduce other quantities, such as the

pressure or the free energy of the system. This problem

is not present in our analytically-based CG simulations,

Figure 7: Weak scaling on ACISS for 20 chains per compute node,
each chain containing 10,000 monomers



Figure 8: Strong scaling on Hopper for 20 chains each with 10,000
monomers.

because the formal solution of the potential, as well as of the

structural and thermodynamic quantities of interest, ensures

their consistency across variable levels of resolution if the

CG description.

Many others have studied the backmapping problem, and

due to the non-unique nature of the solutions, many differ-

ent methods have been proposed such as fragment-based

libraries [24] and optimization procedures with gradually

relaxing harmonic constraints between the UA and CG sys-

tems [25]. Furthermore, particular backmapping procedures

tend to be specific to the problem under consideration, often

by necessity. For example, backmapping polymer models

have been applied to nonequilibrium shear flows by Chen et

al. [26]. For CG models of polymers with rigid side groups,

Ghanbari et al. use simple geometric properties of the

molecular fragments to reconstruct the atomic system [27].

Our implementation in Section III-B supports homopolymers

with a relatively constant bond distance (although, it would

certainly be possible to generalize to heteropolymers or

block copolymers in future implementations). The general

sentiment in the CG research community is that backmap-

ping procedures are important for supporting adaptive res-

olution capabilities, but we desire a general approach for

backmapping. We believe that online construction of realistic

configurations offers the most promising approach for a

general and high performance backmapping procedure.

A plethora of related research and development focuses

on optimizing the performance and productivity of scien-

tific workflows. One of the most popular frameworks is

Kepler, which has recently presented full-fledged work-

flows for drug design, and developments towards supporting

popular distributed data-parallel patterns, such as MapRe-

duce [28]. Other scientific workflow environments include

Pegasus [29], and Taverna [30]. Instead of committing to

a full-blown workflow framework up-front, we tap into the

advantages of using a considerably lightweight system for

managing input parameters while benefiting from simple

data provenance and template processing. For instance, our

workflow is trivial to setup on any Linux based machine

with Python and LAMMPS installed.

Figure 9: Weak scaling on Hopper. Each UA simulation runs
20 chains per node with 10,000 monomers per chain. The CG
simulations have a granularity of 200 soft sphere sites per chain,
so each sphere contains 50 monomers. Our CG simulations weak
scales nicely, and offer a speedup of about 12x at 3,072 cores.

VI. CONCLUSION

Coarse-graining methods benefit from reduced computa-

tional requirements, allowing us to simulate systems with a

realistic number of atoms relative to laboratory bulk experi-

ments. Few polymer simulation studies have explored long-

chain configurations, despite their importance for studying

real-world systems. This paper has presented a customized

set of software tools for running such large systems with

LAMMPS as the primary molecular dynamics framework.

We use the analytically based IE-CG potential, which has

been shown to preserve both thermodynamic quantities and

bulk properties, unlike other numerically based potentials.

In addition to our collection of individual software tools,

we have implemented a full-fledged scientific workflow

that enables automatic transformation between UA and CG

representations. The CG to UA backmapping problem is

handled by randomly generating a polymer onto a regular

Cartesian grid followed by a short UA equilibration.

The UA↔CG workflow enables 4 noteworthy features for

conducting large-scale polymer studies:

1) the automated setup of CG systems based on a corre-

sponding UA configuration

2) excellent parallel performance when applying IECG

theory

3) a backmapping procedure from the CG to the UA

representation, restoring local molecular information

4) the potential to iterate through several cycles of the

workflow loop

By having low-overhead tools between workflow phases,

we can focus on the performance comparison of CG versus

UA. Not only do our scaling experiment results show a gen-

eral benefit of using our CG potential over straightforward

UA, they also suggest the effectiveness of our new workflow

for transforming between UA and CG. We have quantified

what performance improvements to expect when in the CG

component of the workflow, and we better understand how

to choose the granularity factor to best exploit this benefit.



Now that simulation of long-chain polymer systems is

possible, efficient, and dynamically transformable into either

UA or CG representation, future work will formally validate

the thermodynamic quantities similarly to what has been

done for ≤1000 monomers per chain. By quickly switching

back and forth from UA to CG, we open doors to new studies

of polymeric systems while maintaining simulation accuracy

and efficiency.
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