The UA<>CG Workflow: High Performance Molecular Dynamics
of Coarse-Grained Polymers

David Ozog*, Allen D. Malony** Marina Guenza®*
*Department of Computer and Information Sciences
tDepartment of Chemistry and Biochemistry
University of Oregon
Eugene, Oregon, USA
{0zog, mguenza, malony} @uoregon.edu

Abstract—Our analytically based technique for coarse-
graining (CG) polymer simulations dramatically improves
spatial and temporal scaling while preserving thermodynamic
quantities and bulk properties. The purpose of CG codes
is to run more efficient molecular dynamics simulations, yet
the research field generally lacks thorough analysis of how
such codes scale with respect to full-atom representations.
This paper conducts an in-depth performance study of highly
realistic polymer melts on modern supercomputing systems.
We also present a workflow that integrates our analytical
solution for calculating CG forces with new high-performance
techniques for mapping back and forth between the atomistic
and CG descriptions in LAMMPS. The workflow benefits from
the performance of CG, while maintaining full-atom accuracy.
Our results show speedups up to 12x faster than atomistic
simulations.
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I. INTRODUCTION

On the largest modern supercomputers, molecular dynam-
ics (MD) simulations of polymer systems contain billions
of atoms and span roughly a few nanoseconds of simula-
tion time per week of execution time. Unfortunately, most
macromolecular processes of interest contain many orders
of magnitude more particles and often bridge microsecond
or even millisecond timescales or longer. These include
phenomena like phase separation in polymer blends and
composite materials [1], polymer crystallization, and glass
formation and aging [2] to mention just a few. Despite our
pervasive access to massively parallel computers, full united-
atom (UA) simulations do not come close to representing
real-world polymer systems (see Figure 1), because they
are too computationally expensive and slow. This makes
direct comparison between experiments and simulations
impossible as the two systems are dynamically different. For
these reasons, scalability of MD simulations is paramount.

Simply put, we require new approximation methods that
capture the relevant physics and chemistry while requir-
ing fewer computational resources. The most promising
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approach is the coarse-graining (CG) method, in which
groups of atoms are represented as one collective unit.
CG has proven to be valuable for eliminating unnecessary
degrees of freedom and tackling the scaling complexity of
larger problems [3]. The key issue is how to simultaneously
maintain solution accuracy and high performance. With
the alternation of CG and atomistic simulations enabled
by the workflow presented in this paper, it is possible to
quickly equilibrate the system during the CG simulation,
then reintroduce local details into a UA simulation, taking
advantage of the performance of the CG simulation and the
realism of the UA representation.

The Integral Equation Coarse-Grained (IE-CG) model
by Guenza and coworkers [5], [6], [7], [8], [9] adopts
an analytically-derived potential and dramatically improves
spatial and temporal scaling of polymer simulations, while
accurately preserving thermodynamic quantities and bulk
properties [10], [11], [12]. Several numerical techniques
and force fields exist for performing coarse-grained simula-
tions [13], [14], [15]. However, these methods generally pre-
serve either structure or fully preserve thermodynamics, but
not both. As a result, only a small level of coarse-graining is
typically adopted to limit the errors in the simulated structure
and thermodynamics. In contrast, our work adopts the ana-
lytical approach offered by IE-CG theory, because it recovers
crucial structural and thermodynamic quantities such as the
equation of state, excess free energy, and pressure, while
enabling a much higher level of coarse-graining and the
corresponding gains in computational performance.
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Figure 1: A representation of the average polyethylene chain length

determined by chromatography experiments [4]. Most studies are

limited to very short chain lengths (< 1000) due to the prohibitive

cost of UA simulations, but this paper freely explores the realistic

systems with 10* to 10° monomers per chain.
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Although CG polymer physics is a mature field, little
has been done to analyze the performance benefits of CG
versus UA representations. While it is clear that CG will
exhibit computational gains, does it strong scale to as many
processors as the corresponding UA simulation? Likely not,
because CG tracks far fewer overall particles, sometimes
by orders of magnitude. Accordingly, the scalability of CG
simulations likely depends on the granularity factor, e.g, the
number of UA coordinates a CG unit represents.

One reason for the lack of performance analysis in CG
research is likely due to the inherent complexity and vari-
ability in executing useful CG simulations. For instance,
CG representations are generally based on a corresponding
(usually unequilibrated) UA geometry. A helper program,
which is usually independent of the MD simulation frame-
work, then maps the UA representation into the CG repre-
sentation. Furthermore, after the CG simulation equilibrates,
we usually desire a “backmapped” geometric description of
the equilibrated system in a UA representation to restore
properties at the local molecular scale. The amalgamation of
these processing steps encompass a scientific workflow for
conduction CG simulations, shown pictorially in Figure 2.
In order to benefit most from CG computational gains, the
coupled processing stages of this workflow must be high
performance, low overhead, and asynchronous whenever
possible.

In this paper, we present such a scientific workflow that
integrates the analytical IE-CG approach for calculating CG
forces with new high-performance techniques for mapping
back and forth between the UA and CG descriptions in
LAMMPS. This workflow benefits from the performance
of CG, while maintaining the accuracy of the full-atom
representation. Our workflow optimizations legitimize our
comparisons between UA and CG execution times. Scaling
results show speedups of up to 12x at 3,072 cores on the
Hopper system at NERSC. Furthermore, our workflow opens
possibilities for the validation of polymeric systems that have
never before been simulated at realistic chain lengths.

II. BACKGROUND

This sections provides background information and con-
text for understanding the motivation, design, and imple-
mentation of our scientific workflow that manages CG
simulations of polymer melts. Section II-A describes our
analytically based CG methods. Sections II-B and II-C ex-
amine the UA<>CG workflow and two crucial optimizations
for assuring efficient execution.

A. Integral Equation Coarse-Graining

This section briefly reviews the Integral Equation Coarse-
grained approach [5], [6], [7], [8], [9]. We simulate a
homopolymer fluid (in which all monomers are of the same
chemical type) with monomer number density, p,,, consist-
ing of n polymer chains at temperature 7. Each polymer
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Figure 2: The high-level progression of a UA<>CG workflow. The
CG representation is calculated from UA coordinates, and the UA
representation is recovered by solving a backmapping problem
(described in Sections II-C and III-B). CG spheres appear hard,
but are soft with long range effects.

contains N monomer sites. At the atomistic resolution,
MD simulations were performed with LAMMPS using the
UA model, where each site is either a CH, CH, or CHj,
group. In the coarse-grained representation, each polymer
is described as a chain of soft particles, or spheres, and
each sphere represents a number of N, monomers. The
total number of spheres is given by n, = N/N,. Lower
numbers of spheres in the CG representation present lower
computational resource requirements in the CG simulation.

The IECG is an integral equation formalism that builds on
the Ornstein-Zernike [16] equation and the PRISM atomistic
theory [17]. The IECG model gives a complete description
of the coarse-grained system as consisting of the effective
intermolecular potential between coarse-grained units on dif-
ferent chains, effective bond potentials, and angle potentials
designed to preserve Gaussian statistical distributions [18]
and by postulating that the effective intermolecular potential
must act between monomers farther apart on the same
chain [10], [11], [12]. The intermolecular pair potential
acting between CG units is fully represented as a function
of the physical and molecular parameters that define the
system, which are Ny, p,,, T' and the liquid compressibility
through the direct correlation function cy.

In the specific regime of N, > 30 it is possible to
derive an analytical form of the potential. At that scale
the structure of the chain follows a random walk, and the
distribution of the CG units along the chain is Markovian.
This is a general property of the macromolecules [18] when
sampled at large enough lengthscales. It should be stressed
that in the IECG papers, the analytical potential serves as
an approximation, under reasonable assumptions, for the
numerical potential that is used in simulations. Having an
analytical potential allows one to understand the scaling
behavior of the potential with structural parameters, as well
as to estimate thermodynamic quantities of interest. The



relevant equations are quite sizeable and beyond the scope
of this paper, but the complete analytical forms can be found
in previous publications [11].

Using this potential we perform simulations of the CG
systems, and then compared thermodynamic quantities and
structural quantities of interest from these simulations with
UA simulation data. The agreement between CG and atom-
istic descriptions is quantitative, where the direct correlation
contribution at large distances, c¢(k — 0) = c¢o, is the only
non-trivial parameter. It is evaluated either from experiments
or from theory. Consistency for structural and thermody-
namic properties is observed in all comparisons between
numerical solutions of the IECG, analytical solutions, UA
simulations, and mesoscale simulations [11].

B. The UACG Workflow

The CG representation enables simulations to explore
larger chemical systems because it exposes far fewer degrees
of freedom than the UA representation. CG can also explore
longer timescales because it does not suffer from the geo-
metric constraints within UA systems, such as those caused
by entanglements that prohibit efficient dynamics. Unlike
bonded monomer chains, CG soft spheres may overlap,
which expedites the equilibration of the melt that would
have otherwise been entangled. Furthermore, previous work
has shown that fundamental thermodynamic properties are
fully captured by the CG representation when using our
analytically-derived potential [6], [10], [11].

However, after accomplishing equilibration in the CG
representation, we still require molecular information on
the local scale to account for all properties of interest.
By transforming the CG system to a UA representation,
we can potentially deliver an equilibrated system having
atomistic detail to material scientists at a fraction of the full-
atomistic execution time. Furthermore, if we can alternate
between the CG representation and the UA representation
in an automated manner, then we can simultaneously benefit
from the performance of CG and the accuracy of UA. Novel
approaches for adaptive resolution in molecular dynamics, in
which more interesting regions are coarse-grained at a finer
resolution than less interesting regions [19], also require
innovative methods for on-the-fly mapping back and forth
between UA and CG. Section III-A describes our UA<>CG
scientific workflow approach, which accomplishes this feat.

After a CG simulation has equilibrated to a minimal
energy configuration, a crucial question is then: which UA
system(s) are accurately represented by this arrangement?
This raises the notion of the backmapping problem which is
the subject of Sections II-C and III-B. Our initial workflow
implementation passed data through LAMMPS dump files,
which can become a performance bottleneck with large num-
bers of atoms, saving state often, or transforming between
representations often.

C. Backmapping

In homopolymer systems, transforming from the UA
representation to the CG representation is straightforward:
for each subchain having N, monomers, the new soft sphere
coordinate is simply the center of mass of the subchain. On
the other hand, the reverse procedure of mapping from the
CG representation to the UA representation is not generally
well-defined. This transformation of a CG model into a UA
model is a popular research topic, commonly referred to as
the backmapping problem. For our homopolymer system,
the backmapping problem is simply stated as follows: given
a collection of CG soft sphere chains coordinates, insert
monomer chains in such a way that we would recover the
original CG configuration if we were to coarse-grain the
system again.

It is easy to see that solutions to backmapping problems
are not unique, because there are many different UA config-
urations that could map back to a given CG configuration.
Much backmapping work focuses on biomolecules [20], but
relatively little work has explored homopolymers. However,
efficient backmapping procedures in polymer simulations are
imperative for developing a full-fledged adaptively resolved
simulations [21].

In previous work [22], we used the Parallelizable Open
source Efficient Multibody Software (POEMS) library to
avoid backmapping. POEMS treats the internal subchains of
each CG soft sphere as a set of coupled rigid bodies. This
greatly reduces degrees of freedom in the simulation, and
has the additional benefit of eliminating the need for solv-
ing the backmapping problem. Unfortunately, this approach
suffers from poor computational performance, and our per-
formance profiles unequivocally suggest it is due to time
spent in POEMS’ Solve, initial_integrate, and final_integrate
functions. Also, an analysis of internal monomer distances
versus endpoint distances (e.g., the monomers that connect
adjacent CG spheres) shows that the endpoint bonds stretch
to unphysical distances. This issue motivates the need for
a backmapping procedure that leads to more physical bond
distances throughout the system. Section III-B presents the
design of our new backmapping procedure.

III. DESIGN

This section discusses the design of our scientific work-
flow environment for obtaining high-performance equilibra-
tion of polymer melts with atomistic accuracy. We hence-
forth refer to the overall process as the UA<CG work-
flow. Section III-A briefly describes the UA<>CG workflow
implementation with the goal of providing context and
motivation for the backmapping procedure. Further details
regarding the workflow implementation can be found else-
where [22]. Section III-B answers why, when, and how
backmapping occurs within the workflow. We then describe
our backmapping algorithm, and discuss future directions
for possible improvements.
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Figure 3: The UA<>CG Workflow. Blue circles (1,3,5,7) represent
stages of custom programs that either generate coordinates and
potentials, transform data for input into LAMMPS, or conduct con-
vergence analysis. Red squares (2,4,6) represent parallel LAMMPS
MD simulations executing via MPI. Our workflow system auto-
mates this process for a given set of input parameters.
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A. The UA<>CG Workflow

The UA+CG workflow consists of a series of compu-
tational programs and analyses that comprise an overall
application for quickly stabilizing a randomly generated
polymer melt of n chains, each with N monomers per chain.
Subsequently, the workflow may be used to do production
simulations of the equilibrated polymeric liquid. Figure 3
shows the 7 high-level stages involved in the equilibration
workflow, each of which may involve multiple processing
steps. Each step is accomplished by one or more programs,
applications, or simulations. Before this work, these steps
each required manual intervention by a researcher, but now
they are automated by our workflow.

The workflow consists of a set of standardized Python
wrappers of each Fortran, C, or C++ program that encap-
sulates Stages 1, 3, 5, and 7 from Figure 3. Some of these
programs are actually our own custom versions of LAMMPS
tools (such as chain. f, which generates random polymer
chain systems) that are optimized to run large-scale polymer
systems. We use the standard Python argument parsing
system, argparse, to define all simulation parameters at
launch time. We subsequently pass the parameter bundle as
a Python object throughout the entire workflow application.

In order for the workflow to be useful, Steps 3, 5, and
7 must have low overhead when compared to the full UA
simulation itself. Furthermore, Step 4, which comprises the
CG component of the equilibration, must exhibit better per-
formance than UA and must converge towards a physically
correct configuration. In our original implementation, the
performance of Step 4 was unsatisfactory, especially when
considering the vastly fewer degrees of freedom in the CG
representation. The next section on backmapping discusses
the source of this performance obstacle and our solution.
In short, Step 4 executes most efficiently when completely
discarding the internal UA coordinates tracked in steps 1-3.

Unfortunately, this raises the additional concern of needing
to recover those coordinates. This issue is considered in
detail in Section III-B.

Much of the data transfer between the workflow steps
occurs by processing LAMMPS dump files to create new
LAMMPS input files. In most cases, the time spent reading
files is negligible compared to the MD simulations, par-
ticularly when we configure LAMMPS to write to disk at
relatively large timestep intervals. However, the larger the
interval, the less information can be included in conver-
gence analysis. In our studies, convergence is detected by
examining the percent error change of the radial distribution
function [22] within the UA representation. If the average
percent error is below a user-defined threshold, then the
workflow completes.

B. Backmapping

The database approach for backmapping, in which sub-
chain fragments are stored to a separate repository for
insertion into the soft spheres is one alternative. However,
this make little sense for polymeric systems, because the
necessary size of the database quickly becomes prohibitive.
Firstly, we need a separate database of fragments for every
value of V. Secondly, we need a large number of databases
for different monomer types (e.g., different bond distances
and masses). Finally, in order to obtain good statistics,
many different suitable configurations are required for each
possible Ny, and monomer type.

The approximate reconstruction approach for backmap-
ping is far more suitable for homopolymer systems. We do
not require a perfect solution, because a quick UA simulation
can remove any geometric strain leaving us with an equili-
brated system (Step 6 of the workflow from Figure 3). In our
first implementation, we take advantage of this technique by
generating a very simple configuration of chains on a regular
Cartesian grid. The steps for constructing a polymer melt on
such a grid are as follows:

1) Store the center of mass coordinates for each soft

sphere along the polymers.

2) Calculate the midpoints between the center of mass

coordinates of each pair of adjacent spheres.

3) Initialize a regular grid across the simulation box with

grid point distances equal to the desired bond length.

4) Redefine the above midpoints as the desired endpoints

of each subchain and place onto the nearest grid point.

5) Generate paths connecting each pair of endpoints with

the “Manhattan distance” length between endpoints.

6) Randomly extend each the path to the desired number

of edges, Ny, by inserting extensions.
Figure 4 illustrates a simple example of the random exten-
sion in step 6. The leftmost graph is the result of steps 1-5
for a single subchain. By removing edge e; and inserting
the ext; extender in its place, we extend the length of
the chain’s path by 2. Next, edge e, is randomly selected



and the path is extended by another 2 bond lengths. If
we desire 10 monomers per sphere, then the algorithm is
complete. Figure 5 shows a full example with roughly 30
monomers per soft sphere. For brevity, we omit certain
implementation details in this algorithm description. The
fully commented source code can be found in the UA<>CG
Workflow repository, freely available online [23].

This backmapping approach has the advantage of being
straightforward to implement, lightweight, relatively general,
and potentially parallel. For polyethylene, however, this
approach has the disadvantage of producing chains with
unphysical bond angles along the carbon backbone, which
means that a longer simulation is required to equilibrate the
newly generated UA system. An extension to the regular
grid approach is to instead construct a fetrahedral grid, in
which angles between grid points are forced to be 109.5°
instead of 90°. We leave the tetrahedral implementation and
comparing its equilibration requirements as future work.

IV. EXPERIMENTAL

Stages 1, 3, and 5 of the workflow only transform a single
simulation snapshot. The algorithms are O(m) (m is the
total number of monomers), involve no communication, and
typically comprise far less than 1% of the total workflow
execution time. Stages 2, 4, and 6 potentially involve mil-
lions or billions of snapshots with much communication as
particles advance. Stage 4 alone may consume over 90%
of the workflow execution time (depending on how many
time steps are assigned to each stage), making it the clear
performance bottleneck. Therefore, this section focuses on
strong and weak scaling experiments of Stage 4 in the
workflow, emphasizing the benefit of using our analytically-
derived multiblock potential in the CG representation.

A. Experimental Setup and Evaluation

Experiments were conducted on the ACISS cluster located
at the University of Oregon. We use the 128 generic compute
nodes, each an HP ProLiant SL390 G7 with 12 processor
cores per node (2x Intel X5650 2.67 GHz 6-core CPUs)
and 72 GB of memory per node. ACISS employs a 10
gigabit HP Voltaire 8500 Ethernet switch that connects all
compute nodes and storage fabric. The operating system is
RedHat Enterprise Linux 6.2, and we used Intel version

Figure 4: Simple example of regular grid backmapping.
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Figure 5: A randomly generated path with fixed endpoints on a
regular grid. This is the UA configuration backmapped from a
CG representation with ~30 monomers per sphere. Each color
corresponds to a different subchain, and units are in angstroms.

14.0 compilers with OpenMPI 1.7. The latest version of
LAMMPS (version 10-Feb-2015) was used with a slight
modification to the chain generation tool to enable massive
particle scaling.

We also include scaling experiments conducted on the
Hopper system at NERSC. Hopper is a Cray XE6 cluster,
where each compute node has 2 AMD 12-core MagnyCours
(24 cores total) running at 2.1 GHz. There are 32 GB
of DDR3 RAM per node. We use the default LAMMPS
20140628 module, and the default PGI Cray compiler,
version 14.2-0.

B. UA versus CG Performance

Figures 6 and 7 show the strong and weak scaling
of the UA versus CG components of the workflow on
ACISS. These timings measure 500 femtoseconds of sim-
ulation time, then extrapolate to hours of execution time
per nanosecond of simulation time, since we know that
several nanoseconds are typically required to reach equili-
bration. The auxiliary workflow programs (CGgen, UAlnit,
and BMinit) never take more than a few seconds, which
constitutes far less than 0.1% of the overall runtime for
full simulations, so we do not include those times in these
measurements.

Figure 6 shows a strong scaling experiment on ACISS,
where each data point corresponds to a simulation that
represents 200,000 UA monomer sites. In the UA case, we
run 20 chains, each with 10,000 monomers. The number
of sites in the CG representation, however, depends on
the granularity of the decomposition. For instance, with 10
sites per chain, each soft sphere contains 1,000 monomers,
and only 200 total soft spheres are simulated. Therefore, it
comes at no great surprise that the CG component of the
workflow stops strong scaling after 8 nodes on ACISS (or
96 processes). At 8 nodes, only about 2 spheres reside in
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Figure 6: Strong scaling on ACISS for 20 chains each with 10,000
monomers. As expected, CG does not strong scale to as many
processes as UA because it simulates fewer particles. However,
absolute performance is usually far better for CG than UA, even
at scale. Including more sites per chain is faster per timestep, but
this ignores the rate of convergence of thermodynamic quantities.

each process, and at 16 nodes, there are more processes
than spheres, which is highly undesirable for an application
like LAMMPS where communication between neighboring
atoms plays a large role. At 250 sites per chain, there are
a total of 5,000 soft spheres, which is still far too small to
exhibit good strong scaling at large numbers of processes. It
may be unexpected that the absolute performance is better
for larger numbers of sites per chain, and is best at 250.
While this may seem counter-intuitive, the phenomenon
is due to the fact that lower numbers of sites per chain
require longer-ranged interactions. The larger cutoff results
in more neighbor particles per process, and the application
becomes communication bound. Also, these measurements
do not take into consideration the rate of convergence of
thermodynamic quantities, which we expect to be faster for
coarser models.

Figure 7 shows the corresponding weak scaling experi-
ment on ACISS, in which the number of chains per compute
node is held constant at 20 chains for each execution. For
instance, at 32 nodes, UA simulates 640 chains for a total
of 6.4 million particles. CG also simulates 640 chains at 32
nodes, but at 200 sites per chain 32,000 spheres are tracked.
The plot clearly shows that tracking 32,000 soft spheres
exhibits far better weak scaling than simulating 6.4 million
atoms. This may not be so surprising, but the important thing
to note is that using our potential in the CG simulation can
accurately produce an equilibrated system with the same
thermodynamic properties as the UA simulation. Previous
work has demonstrated almost perfect recovery of pressure,
free energy, and structural correlations at several different
granularities of up to 1,000 soft spheres per chain [11]. Until
this work, simulating 10,000 to 1 million soft spheres per
chain was impractical.

To provide evidence that the above results are independent
of the cluster architecture, we ran a comparable experiment
on the Hopper system at NERSC. Figure 8 shows a strong
scaling experiment with 20 chains and 10,000 monomers
per chain for UA versus CG with 200 sites per chain. As
before, the CG simulation stops strong scaling before UA,
likely due to the vastly smaller number of particles tracked
(1,000 versus 200,000). On the other hand, Figure 9 confirms
that the CG simulation weak scales far better than UA, up
to 3072 processes.

We also ran equivalent weak scaling experiments with
2 chains per node and 100,000 monomers per chain with
almost identical performance results. To avoid redundancy,
we omit those results here, but the fact that this is possible is
exciting for future validation work and our ability to simulate
systems that reflect real-world polyethylene melts.

While it is possible to achieve speedups on the order
of 10x for CG simulations based on IECG theory, it is
important to converge to a useful configuration in UA space.
Measurements of our backmapping procedure are on the
order of a few seconds, even for systems containing millions
of particles. Compared to the several hours required to
complete a full equilibration, this time is negligible, and
gives more significance to our CG versus UA comparisons.

V. RELATED WORK

Most related CG models (such as within the MARTINI
force field [15]) use numerically optimized potentials, with
the problem that numerical errors in the optimization of
the potential can propagate to other physical quantities,
such as thermodynamic properties. In general, numerically
optimized CG potentials have problems with transferabil-
ity and correct representability. It has been observed that
numerical CG potentials that are optimized to reproduce
some physical quantity correctly, such as the structure,
may not correctly reproduce other quantities, such as the
pressure or the free energy of the system. This problem
is not present in our analytically-based CG simulations,
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Figure 7: Weak scaling on ACISS for 20 chains per compute node,
each chain containing 10,000 monomers



v
o

=-n UA
l\ +—e 200 CG sites/chain

N
<)

w
=}

N
o

¥
i

‘‘‘‘‘‘‘

—
o

Hours spent each ns of simulation

=)

Figure 8: Strong scaling on Hopper for 20 chains each with 10,000
monomers.

because the formal solution of the potential, as well as of the
structural and thermodynamic quantities of interest, ensures
their consistency across variable levels of resolution if the
CG description.

Many others have studied the backmapping problem, and
due to the non-unique nature of the solutions, many differ-
ent methods have been proposed such as fragment-based
libraries [24] and optimization procedures with gradually
relaxing harmonic constraints between the UA and CG sys-
tems [25]. Furthermore, particular backmapping procedures
tend to be specific to the problem under consideration, often
by necessity. For example, backmapping polymer models
have been applied to nonequilibrium shear flows by Chen et
al. [26]. For CG models of polymers with rigid side groups,
Ghanbari et al. use simple geometric properties of the
molecular fragments to reconstruct the atomic system [27].
Our implementation in Section III-B supports homopolymers
with a relatively constant bond distance (although, it would
certainly be possible to generalize to heteropolymers or
block copolymers in future implementations). The general
sentiment in the CG research community is that backmap-
ping procedures are important for supporting adaptive res-
olution capabilities, but we desire a general approach for
backmapping. We believe that online construction of realistic
configurations offers the most promising approach for a
general and high performance backmapping procedure.

A plethora of related research and development focuses
on optimizing the performance and productivity of scien-
tific workflows. One of the most popular frameworks is
Kepler, which has recently presented full-fledged work-
flows for drug design, and developments towards supporting
popular distributed data-parallel patterns, such as MapRe-
duce [28]. Other scientific workflow environments include
Pegasus [29], and Taverna [30]. Instead of committing to
a full-blown workflow framework up-front, we tap into the
advantages of using a considerably lightweight system for
managing input parameters while benefiting from simple
data provenance and template processing. For instance, our
workflow is trivial to setup on any Linux based machine
with Python and LAMMPS installed.
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Figure 9: Weak scaling on Hopper. Each UA simulation runs
20 chains per node with 10,000 monomers per chain. The CG
simulations have a granularity of 200 soft sphere sites per chain,
so each sphere contains 50 monomers. Our CG simulations weak
scales nicely, and offer a speedup of about 12x at 3,072 cores.

VI. CONCLUSION

Coarse-graining methods benefit from reduced computa-
tional requirements, allowing us to simulate systems with a
realistic number of atoms relative to laboratory bulk experi-
ments. Few polymer simulation studies have explored long-
chain configurations, despite their importance for studying
real-world systems. This paper has presented a customized
set of software tools for running such large systems with
LAMMPS as the primary molecular dynamics framework.
We use the analytically based IE-CG potential, which has
been shown to preserve both thermodynamic quantities and
bulk properties, unlike other numerically based potentials.
In addition to our collection of individual software tools,
we have implemented a full-fledged scientific workflow
that enables automatic transformation between UA and CG
representations. The CG to UA backmapping problem is
handled by randomly generating a polymer onto a regular
Cartesian grid followed by a short UA equilibration.

The UA<+CG workflow enables 4 noteworthy features for
conducting large-scale polymer studies:

1) the automated setup of CG systems based on a corre-
sponding UA configuration

2) excellent parallel performance when applying IECG
theory

3) a backmapping procedure from the CG to the UA
representation, restoring local molecular information

4) the potential to iterate through several cycles of the
workflow loop

By having low-overhead tools between workflow phases,
we can focus on the performance comparison of CG versus
UA. Not only do our scaling experiment results show a gen-
eral benefit of using our CG potential over straightforward
UA, they also suggest the effectiveness of our new workflow
for transforming between UA and CG. We have quantified
what performance improvements to expect when in the CG
component of the workflow, and we better understand how
to choose the granularity factor to best exploit this benefit.



Now that simulation of long-chain polymer systems is
possible, efficient, and dynamically transformable into either
UA or CG representation, future work will formally validate
the thermodynamic quantities similarly to what has been
done for <1000 monomers per chain. By quickly switching
back and forth from UA to CG, we open doors to new studies
of polymeric systems while maintaining simulation accuracy
and efficiency.
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