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Abstract. Coarse-grained models of complex liquids are becoming increasingly important
in simulations of complex fluids because they substantially reduce computational time while
bridging information between simulations performed with atomistic resolution and continuum
models. However, to be useful coarse-graining approaches need to provide physically consistent
representations of the system under study, independent of the degree of coarse-graining
resolution, i.e. they need to ensure consistency in both the thermodynamic and structural
properties.

Developing coarse-graining approaches that ensure consistency of thermodynamic and
structural properties across variable coarse-graining resolution is a challenge. The difficulty
is in properly mapping many-body interactions into effective pair interactions, which are input
to the fast mesoscale molecular dynamic simulations of the coarse-grained representations.

In this paper we review a Coarse-Grained approach, based on Integral Equation theory.
This model conserves thermodynamics while accurately reproducing the structure of polymer
liquids across variable levels of resolution. As it is solved analytically, it provides a formalism
to reconstruct a posteriori the correct dynamics from the accelerated dynamics of the coarse-
grained simulation. This approach has the advantage of being largely analytically solved and
it is useful to highlight some important and general points that need to be considered when
developing coarse-graining models.

1. Introduction

In recent years the field of coarse-graining (CG) has been in rapid expansion. The interest in
coarse-graining methods is motivated by the need of extending the range of time and length scales
that can be covered by simulations, for example molecular dynamics. Coarse-graining methods
help bridge the region in resolution between atomistic simulations and continuum models by
partitioning the intermediate region into subparts where the system is described at variable
levels of resolution. [1, 2, 3, 4, 5, 6, 7]

During a coarse-graining procedure a number of atoms are grouped together defining a new
“fictitious” coarse-grained unit that is centered in their center of mass. In doing this simple
process, the dimensionality of the configurational space is reduced, smoothing the probability
distribution. The new statistical unit represents now a number of microstates that have been
averaged out during coarse-graining. This modifies the entropy of the system as coarser
descriptions represent a larger number of “ghost” microstates, which are not present in the
final coarse-grained representation. The “shape” and size of the molecule are also modified as a
consequence of coarse-graining and so is its friction coefficient.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012009 doi:10.1088/1742-6596/640/1/012009

With increasing the level of coarse-graining an increasing number of fast processes are
eliminated in the reduced description in favor of random fluctuations for the dynamics of
the coarse-grained units. In this sense the process of coarse-graining is analogous to the
transformation by projection operator techniques, e.g. Mori-Zwanzig, of the Liouville equation
into a Langevin equation. The potential that in the Liouville equation is the Hamiltonian of the
system becomes a potential of mean-force, i.e. a free energy of the reduced variables. And while
the dynamics in the Liouville equation is deterministic it becomes dissipative in the Langevin
equation, where the fluctuations of the suppressed particles enter as random forces and their
correlation defines the memory function.|8]

With changes in the number of microstates that are sampled and in the “shape” of the
molecule, i.e. changing the extent of surface available to the random collisions of the “solvent”
and so its friction coefficient, the dynamics of the CG units accelerates. The coarser the CG
description adopted the faster the simulation, and the higher the computational gain.[9]

While a coarser description is computationally more useful, all the problems and uncontrolled
consequences of coarse-graining emerge more dramatically the higher the level of coarse-graining.
These can affect the mesoscale CG simulations leading to unwanted incorrect predictions of
structure, thermodynamics, and dynamics. Clearly it is quite important to develop coarse-
grained descriptions that are statistically well controlled, or alternatively to develop methods
to evaluate the extent of errors that emerge from the use of poorly controlled coarse-graining
method.

In this paper we review a coarse-grained method for macromolecular liquids that is solved
analytically, and in this way provides a mean to understand the consequences of coarse-graining
in relation to the consistency of structural and thermodynamic quantities, and to the dynamics.
The Integral Equation Coarse-Grained (IECG) model is solved for a variable level of coarse-
graining, representing the macromolecule in the liquid as a collection of soft blobs whose number
can be arbitrarily chosen.[10, 11] The theory ensures an analytical solution of the effective coarse-
grained potential, and structural and thermodynamic consistency at variable CG resolution.[12]
It provides also information about the general properties of coarse-graining and a method for
rescaling the dynamics obtained from mesoscale simulations.[9, 13, 14]

2. Numerical versus analytical coarse-grained methods

Most coarse-grained methods are solved numerically. Numerically solved CG models assume
a trial function as the starting potential, and rely on data from high resolution atomistic
simulations or from experiments to optimize self-consistently the parameters of the potential
until the test function is reproduced.[1, 2, 3, 4, 5, 15]

As mentioned befoere, because through the coarse-graining procedure the interaction
potential becomes a free energy of the system, it depends on all the parameters that define the
system including thermodynamic as well as molecular parameters.[16] In this way a numerically
optimized potential is specific of the system for which it has been optimized, i.e. the molecular
structure of the system and thermodynamic parameters, and of the physical quantities that have
been used to optimize the model. Furthermore, because the free energy potential depends on so
many parameters, a “brutal” optimization of all the quantites of interest is not a viable strategy.

In principle, a numerically optimized potential does not apply to any other system in different
thermodynamic conditions or for different molecular parameters than the ones for which the
potential has been optimized. Even if the calculations are performed at the correct state
conditions numerical potentials optimized to reproduce one quantity, e.g. the correct pair
distribution function, do not necessarily reproduce any other physical quantity, such as the
pressure or energy. Furthermore, an effective pair potential optimized at one set of conditions
(molecular structure and thermodynamic) will not generally be transferable to another set
of conditions. These are commonly referred to as the “representability problem” and the



XXVITUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012009 doi:10.1088/1742-6596/640/1/012009

“transferability problem” respectively. Finally, numerically optimized potentials are precise
to the level of the physical quantity used to optimize them, and if the data are truncated
or contain some experimental errors, the CG potential will carry this “hidden error” in any
following application.

The hope for numerically optimized potential is that they are applicable in a region of
the phase diagram close to the one for which they have been optimized, and for systems
that are similar from a molecular point of view. We see that this is an acceptable way
to proceed for CG models that group together a small number of atoms. These Numerical
High Resolution CG models (NHRCG), once parameterized to reproduce the total correlation
function, predict increasingly incorrect thermodynamic quantities with decreasing coarse-
graining resolution.[7, 10, 11] This is the reason behind the success of fine-graining models
like the united atom model. If the model is very coarse-grained the potential is specific, and it
is convenient to have an analytical form of the potential because all the parameters entering the
potential are explicit.

The ultimate purpose of developing coarse-graining methods is to have a mesoscale potential
that can be directly applied in molecular dynamics simulations without the need of performing
initial atomistic simulations to parameterize them. In this way, analytical coarse-graining
methods when they can be derived appear to be a quite promising strategy to model complex
systems on a low resolution scale.

3. An analytical and transferable coarse-graining method for polymer liquids
Starting from integral equation theory, we developed a coarse-graining method called the Integral
Equation Coarse-Graining (IECG) approach, which allows for variable coarse-graining resolution
in the molecular representation while conserving thermodynamics and structure. The IECG
potential is fully transferable and the method is predictive in the sense that it is not necessary
to perform atomistic simulations to parameterize the potential. The IECG formalism has
been solved analytically for systems where the distribution of CG sites is Markovian and the
distribution of monomers in the coarse-grained unit is Gaussian. These requirements are fulfilled
in polymer liquids when the CG length scale is chosen to be larger than a number of persistence
lengths. This is the length scale where the local molecular structure of the polymer in the form
of localized conformational barrier and rigidity is averaged out and the central limit theorem
applies to the intrablob site distribution.

The IECG method is not particularly tied to any of the approximations just described. It
can be applied to a large number of systems, for example where the structure of the molecule is
characterized by non-Gaussian statistics, by adopting a numerical solutions of the equation. It is
important to point out that the numerical solution of the coarse-graining equation is not related
at all to the numerical optimization of a parametric potential, which is typical of numerically
optimized CG models. In the IECG formalism, even when the equations are solved numerically,
the parameter dependence is clearly defined.

The analytical IECG model has been developed so far for homopolymer and block-copolymer
liquids, and for polymer mixtures.[6, 7, 10, 17, 18, 19] The analytical solution pertains
to isotropic liquids of polymers, and when simulating system undergoing phase separation
it does not describe the strong segregation regime where the liquid is strongly anisotropic
and macromolecules are stretched. For sake of simplicity we summarize in this paper the
IECG approach for a homogeneous liquid of homopolymer chains because for this system the
mathematical formalism is the simplest and a number of essential aspects of the procedure of
coarse-graining already clearly emerges.

The approach has several steps. Starting from the Ornstein-Zernike integral equation we
derived the pair distribution function of the coarse-grained model and the effective potential
acting between units. Using the potential we performed simulations of the coarse-grained
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systems, and then compared thermodynamic quantities and structural quantities of interest from
these coarse-grained simulations with united atom simulation data. The agreement of structural
and thermodynamic properties between CG and atomistic descriptions is quantitative, while the
analytical expressions depend on one non-trivial parameter, the direct correlation function at
large distances, c¢(k — 0) = ¢o. This function is evaluated either from experiments or from
theory. Other parameters are the themodynamic properties of temperature, T', density, p, as
well as the structural parameters of the number of monomers in a chain, N, and the effective
segment length, . The molecular specificity enters the theory through the effective segment
length, which depends on the stiffness of the polymer, and the direct correlation function at
large separation distances, which is also specific of the macromolecule that is simulated.

The formalism is then used to calculate the analytical correction factors that are needed to
rescale the dynamics measured from the fast molecular dynamics simulations of the coarse-
grained system and obtain the correct dynamical quantities for the atomistic scale. For
example, the reconstructed diffusion coefficients show quantitative agreement with united atom
simulations and with experiments performed using a number of different techniques. The one
parameter needed to be adjusted in the dynamic reconstruction procedure is the effective hard-
sphere diameter in the Lennard-Jones mapping of the molecule from atomistic simulation into
a chain of hard-spheres.[9, 13, 14]

The model applies to any type of polymer, because the length scale of coarse-graining has only
to be assumed to be larger than its local persistence length. By selecting a length scale larger
than the persistence length, which is specific of the polymer considered, the coarse-grained units
are statistically uncorrelated and follow a random walk in space. The chain of blobs can then
be modeled as freely jointed. This model has unique characteristics because being analytical is
fully transferable: it applies to different points in the phase diagram, and represents well any
type of homopolymer liquid, independent of the molecular structure of the monomer. In this
model atomic-scale simulations are used only as a test and not to optimize the numerical form
of the CG potential.

4. The Integral Equation Coarse-Graining Approach for a liquid of homopolymers
In developping a coarse-grained model it is common to start from an atomistic simulation and
to build the new coarse-grained description in a reduced representation by matching physical
quantities in the atomistic and reduced descriptions. These numerically optimized models,
however, suffer from several problems, as discussed earlier on in this paper, including the lack of
transferability. To overcome this problem, we developped a coarse-graining model that approach
the problem from a different perspective.

It is well known that for each system a pair distribution function is uniquely defined[20] and
that when this pair distribution function is known it is possible to calculate from this function
all the thermodynamic quantities of interest using the statistical mechanics of liquids.[21] A
method to calculate the pair distribution function of a molecular liquid is to use integral equation
theory. Specifically we start from the Ornstein-Zernike integral equation theory for the coarse-
grained description and for the monomer-level description. The latter is the Polymer Reference
Interaction Site Model (PRISM) approach.[22] The coarse-grained sites are represented as
fictitious sites and the monomer/atomistic sites are represented as real sites. This roughly
corresponds to assuming strongly repulsive or Lennard-Jones interactions between atomistic
sites and bound soft potentials of much smaller amplitude than the atomistic one between
fictitious and real sites, and between fictitious sites. In a low resolution coarse-grained model
where the number of atomic sites represented by the coarse-grained unit is high, each CG unit
represents the center-of-mass of a polymer subchain. Because two center-of-mass have some
probability of superimposing their interaction potential is bound and soft.[10]

The solution of the pair distribution function from the Integral Equation theory does not
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require performing atomistic simulations. Instead the atomistic pair distribution function is
defined starting from the molecular and the thermodynamic parameters of the system. Once
the pair distribution function is derived, then the effective pair potential between the coarse-
grained units is calculated using the appropriate closure, which for soft bound potentials is the
HyperNetted Chain (HNC) approximation.[16] The closure approximation has the function of
mapping three-body and higher-order many-body contributions, which are important in dense
liquids, into the effective pair interaction potential.

The derived pair potential is an input to mesoscale simulations of the coarse-grained system,
which once they are performed provide all the molecular and thermodynamic quantities of
interest. Those are, for example, the pair distribution function of the coarse-grained description,
the pressure, the excess free energy, as well as the internal energy and the entropy.[12] The
structural and thermodynamic quantities show quantitative agreement with the ones measured
in atomistic simulations for the system under study, but atomistic simulations are not used to
optimize the potential. Only one non-trivial parameter, which is related to the compressibility
of the liquid, needs to be adjusted as discussed later on in this paper.

The homopolymer liquid is composed of n molecules in a volume V', with each chain including
a total number of monomer N. The density of chains is p., = n/V and is related to the liquid
monomer density p = p.N. Every chain in the liquid is partitioned in a variable number of
coarse-grained units or blobs, n;, each containing a number N, = N/n; of monomers, with the
blob density pp = p/Np. Given N monomers with a chain density p., and an effective segment
length o = \/6/N R, with R, being the polymer radius of gyration and Ry, = Ry/+/np the blob
radius of gyration.

We derived specific expressions for the potential for the single soft sphere representation,
where each chain is represented as one sphere, as well as for the three blob and the five blob
representations. For the three-blob and five-blob representations the blobs are not all equivalent,
as the blobs at the end of the chains are different than the one(s) in the internal part of the
chain. For chains with a number of blobs larger than five end effects become negligible and it is
possible to use a blob-averaged description.[11].

The intramolecular distributions in the blob-averaged limit are normalized as Q(k) = w(k)/N,
for the blob-blob (bb), blob-monomer (bm), and monomer-monomer (mm) distributions. The
normalized blob-monomer and the blob-blob distributions are given respectively as

2p2 —n k2 R? _k2R2
Qv () = — VT g (kR9b> e ek Rl . Bt 0 W S N

?71, kRgb 2 kQRgbnb(ekaRgb — 1)

and 2 p2 2 P2
be B 1 —npk Rgb _ nb€_k Rgb + (nb — 1) —2k2R2b/3
(k) =—+ 2 9 _k2R2 e g . (2)
1 ny(e " e —1)2

The monomer distribution Q™™ (k) is normalized as

2

Q" (k) = & (k) /N = —gr

(R R2ymy — 1+ e ") (3)

Given the Ornstein-Zernike relation for the coarse-grained blob representation
B (k) = QP (k)™ (k) [ Q% (k) + puh™ ()] (4)
the bob-blob direct correlation function is given as
ilbb(k)

(k) = :
“ QP (k) [0 (k) + pyhte (k)] ®)
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The effective pair potential between blob CG units is calculated from the Fourier transform
of Eq. 4 and Eq. 5 and the Hyper Netted Chain closure equation

v?(r) bb bb bb
=—In[h”(r)+1]+h"() —c"(r) . (6)
kgT
The solution of Eq.6 can be obtained analytically when the intramolecular distributions are
represented by simple formal equations, or numerically in the other cases.
When |h(r)| << 1, which always holds at large separations (r >> 1 in units of Ry) and
at any separation for representations with large N, and high densities, the potential further
simplifies to

VO (r) = =k T (r) . (7)

This formula is referred to as the mean spherical approximation (MSA) in the literature, and
applies to low compressible polymer liquids.[23] If this formalism is improperly used to treat
low density liquids, where the mean spherical approximation does not hold, this approximation
would lead to unphysical behavior. For low density liquids the full closure approximation has
to be used.

We now focus on the effective direct correlation function, c**(r), and the related MSA
potential. In the limit of large separations in real space, where 7 >> 1 (in Ry, units), the inverse
transform integral is sufficiently dominated by ¢“(k) (in the small wave vector limit) that the
large wave vector contribution can be entirely neglected. Furthermore, since the expansion for
small wave vectors is bounded at large k, the error incurred in using the small k& form with the
integral bounds extended to infinity is small. This approximation leads, for » >> 1 (in Ry,
units), to

A (r)

Q

—Npl'y : 5k2 130, k*—3780
202 p R3,T I (k sin(kr) [45+rbk4 + (T k3+45)2 dk

_ o (et N sin@n) e [ VBN, 30 _ /
= | <8m/§€/5megb Qr ¢ + 672ﬂme1/4R3 [(13Q°(Q'r — 4))cos(Q'r)

4 s
+ (8459 rsin(@7) + Wicos( @]
b

(8)
where Q' = 5/4 \/ﬁF;M and Q = QT;M. This is the main result of our theory as it provides
an anlytical, albeit approximated, expression for the effective pair potential between CG units
in a liquid of homopolymers. Some relevant points emerge from the analysis of this equation.

The key quantity of interest here is the universal parameter I', = Nyp|co|, which is defined
once we decide the level of coarse-graining, Ny, as well as the molecular and thermodynamic
parameters of our system. This quantity also depends on the direct correlation function at
k = 0, cg, which is in principle not known. This function is however related to the potential
between atomistic units and to the isothermal compressibility of the liquid. It can be determined
numerically or from experiments as we discuss later in this paper.

The range of the potential, in units of the radius of gyration of the blob, scales as F;/ * Nb1 /4,
This scaling behavior describes how the interaction between effective units propagates through
the liquid. By increasing the density of the liquid or decreasing the resolution in the coarse-
grained description, i.e. increasing the number of monomeric units in the blob, the potential
becomes increasingly longer ranged. The characteristic scaling with the number of monomers
in the blob emerges from the many-body interaction pathway following a random walk (Nb1 / 2)
in the space defined by the lengthscale of the blob-blob interpenetration, which also scales with
the degree of polymerization as Nb1 2,

Interestingly, the range of the potential increases with the number of monomers comprised
in the coarse-grained unit, i.e. blob or soft sphere, while the potential at contact decreases.
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However the interblob potential does not vanish even when the length of the polymer chain
becomes infinity, indicating that intermolecular interactions between polymers are important
even for infinitely long chains. This result disagrees with the conventional assumption in polymer
physics that intramolecular interactions are dominant over intermolecular contributions, and a
polymer melt can simply be described by mean-field approaches of the single chain.[24]

The potential becomes longer-ranged with increasing the lengthscale of coarse-graining. For
highly coarse-grained models the gain in computational time is maximized. However the presence
of long-ranged forces in the molecular dynamic simulations makes the use of a large box necessary,
given that the simulation box is usually chosen to be at least twice the range of the effective
potential. Then the simulation is slowed down by the need of simulating a larger number of CG
units. In practice the two effects tend to compensate and their balance will dictate the choice
of the level of coarse-graining. Finally, the inconvenience of having long-range interactions and
large boxes can be alleviated by the use of simulations in reciprocal space, as it is conveniently
done in the case of electrostatic interactions using the Ewald summation.[16]

The potential has a long-range, slowly decaying repulsive component and a second attractive
part that is smaller in comparison with the repulsive part. This attractive contribution is
important when one evaluates the thermodynamic properties of the system and cannot be
discarded. Higher order terms, which are present in the equation of the potential, tend to give
increasingly more negligible contributions. The potential in our simulations is often truncated
after the first attractive well, or more rarely the second repulsive contribution, depending on
error minimization.

It is interesting to note that the attractive contribution is present in the effective potential
even when the intermolecular atomistic potential, from which the coarse-grained potential is
derived, is purely repulsive. This indicates that the attractive contribution to the intermolecular
potential is, at least partially, a consequence of coarse-graining and of the propagation of the
interactions through the liquid. Being the resultant of the projection of many-body interactions
onto the pair of coarse-grained units, the attractive component of the potential contains
contributions that are of entropic origin.

When already at the atomistic-scale the interaction potential includes an attractive part, i.e.
for example it is a Lennard-Jones potential, the attractive part of the atomistic potential also
provides a contribution to the total attractive component of the CG potential. In that case
the attractive CG component is enhanced with respect to purely entropic one arising from the
hard-sphere monomer-monomer interaction.

5. Thermodynamics: equation of state, compressibility, and Helmholtz free energy
Given the analytical form of the potential for the multiblob coarse-grained description we
formally derived the thermodynamic quantities of interest, starting form the equation of
state.[12] The normalized pressure is derived using the virial expression of a fluid under the
assumption of pairwise additivity as

P 2mpy [0 AV (r) b g Npco
1 dr~1—
penksT SkpT Jy a9 2 )

with pp the number blob density.[25] The equation of state Eq.9 is independent of the level of
coarse-graining adopted in the multiblob description, as it is expected given that the pressure is
a macroscopic thermodynamic property of the liquid. All the non-ideal contributions that arise
from system-specific interactions are contained in the non-trivial parameter ¢, which is specific
of the system under consideration, depends on the density of the system, and is independent of
the resolution of the coarse-grained model.

The isothermal compressibility is derived from the equations for the blob and monomer total
correlation functions. For the different CG models, which have variable level of resolution, the
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isothermal compressibility is independent of the level of coarse-graining and is given by

N

kpThy = ———— .
pPrBL KT 1— pNeg

(10)
The excess Helmholtz free energy per monomer, calculated relatively to the energy of the system
in its gas phase, is simply given by

F—F _ m
nkgT 2kgT

Negp
2 )

oo
/ Vbb(r)gbb(r)47rr2dr =— (11)
0
with p, the number density of blobs. Both the isothermal compressibility and the excess free
energy are depending on the density and number of monomer in the polymer, as well as on the
non-universal parameter cg, however they are independent of the level of coarse-graining, as it
is reasonable to expect for macroscopic liquid properties.

It is important to note that these equations are derived from the approximated analytical
solution of the effective potential, which is accurate in the mean-field limit of a nearly
incompressible liquid. The potential so derived should not be used to describe systems that
are highly compressible, for example system at low density. In that case the equation would
correctly predict an instability of the liquid, but the predictions will be qualitative.

Because in the range of thermodynamic parameters, temperature and density, of a regular
polymeric liquid the theory predicts thermodynamic properties that are in quantitative
agreement with the atomistic simulations, this result is indicative that many-body interactions,
which are typical of liquids, are well accounted for in the two-body effective potential. While
intergal equation theories are expressed as expansions in density of the many-body interactions,
the closure approximation projects onto effective pair interactions the many-body terms. In this
case the HNC closure equation, which is appropriate for bound soft potentials, is shown to be a
valid approximation.

Mostly because of the need of a closure equation an integral equation theory inspired coarse-
grained model like the one we developed is by its nature approximated. However, the corrections
to the closure approximation are contained in the effective parameter of the direct correlation
function at £ — 0. Once the ¢y parameter is defined for the system under study, we see that
the thermodynamic quantities are found to be fully consistent across different levels of coarse-
graining, and with the atomistic description. The equation of state was tested against united
atom simulations of polyethylene liquids at variable chain length and different state points. The
consistency between atomistic and coarse-grained descriptions both at the formal level and when
compared with simulation data support the approximations adopted in the analytical solution
of the potential.

From the equation of state of the pressure, all the thermodynamic quantities can be
calculated.[16] However to do so it is necessary to know the dependence of the non-trivial
parameter ¢y on the thermodynamic parameters for the given system that is simulated. To
do so, we derived an equation for ¢y as a function of the liquid packing fraction, as described in
the following section.

6. Determination of the monomer direct correlation function c(k — 0) = ¢.

6.1. Soft-sphere Equation of State

As mentioned earlier the only non-trivial parameter in our theory is the direct correlation
function c¢p, which is related through the Ornstein-Zernike equation to the compressibility of
the liquid and to the equation of state. The direct correlation function is a parameter specific
of the system that is simulated and has a non-trivial dependence on the liquid density, while it
is independent of the level of coarse-graining.
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Because in the IECG fromalism the equation of states and the compressiblity and the excess
free energy do not depend on the number of coarse-grained units in which the molecule is
partitioned, it is convenient to fromally derived an equation of state for the polymer liquid in
the most coarse-grained, and easiest to model, representation, i.e. the soft sphere model. This
is the simplest, most reduced, representation where the whole macromolecule is described as
a point particle interacting through an effective long-ranged potential. Effectively a liquid of
soft spheres is a simple liquid, and expressions for the thermodynamic properties of this liquid
can be easily derived following and further implementing the existing literature of hard-sphere
fluids.

We derived for the soft-sphere liquid an equation of state in of the form of a Carnahan-
Starling expression in analogy with the equation for the hard-sphere liquid. The equation of
state is expressed as a function of an effective soft-sphere packing fraction

T
Neff = gpd3 ; (12)
where d the effective soft sphere diameter, as

P Almeps +eimpp+canlyy)
pkpT (1= neyp)?

The equation of state includes three numerical parameters (d, c¢i, and c2), which reflect the
specificity of the macromolecular structure, e.g. the chain connectivity, and the fact that the
real potential is not of the simple hard-sphere form.

As an example, the numerical values of these parameters ci, ¢z, and d have been calculated
for liquids of polyethylene chains. Specifically we displayed data of normalized pressure as
a function of an effective packing fraction. We used data for polyethylene from simulations
performed at 7" = 400 K and increasing degree of polymerization (N = 44, 66, 78, 100, and
200) and variable density, as well as simulations for polyethylene samples at 7" = 509 K, density
p = 0.03153 sites/A3, and degree of polymerization N = 36, 44, 66, 78, 100, 192, 224, and
270. All the data fall onto an universal curve, which is well represented by the equation of state
for soft spheres, Eq.13 when the parameters are defined as following: the optimized effective
sphere diameter is d = 2.5 A, while the other two parameters are ¢; = —11.9 and ¢y = 31.11.
It is interesting to see that the soft sphere effective diameter is actually of the order of the
Lennard-Jones sigma parameter, indicating that polymer chains can highly interpenetrate and
the centers-of-mass of a pair of polymers can superimpose in space.

Following the same procedure the direct correlation function at k& — 0 is also defined as a
function of the same parameters that enter the virial equation of state

. (13)

_47Td3 L+ cineps + 0277§ff
3 (1 = 7nepp)? '

Once the parameters of the equation of state are defined, the non-trivial parameter ¢q is also
defined. Eq.14 shows how the density dependence of ¢y, through the effective packing fraction,
is not simply linear. When thermodynamic properties are calculated as a function of a variable
liquid density, the dependence of ¢y on the thermodynamic and structural parameters ensures
the prediction of the correct thermodynamic quantities of interest.

It is worth noticing that a number of simulations had to be perfomed to calibrate the curve
of the equation of state as a function of the effective packing fraction, and to define in this way
the parameters in the equation of state. However once this procedure is completed for a given
macromolecular liquid in a range of temperatures and densities, the parameters are defined and
can be used to calculate cg for any other liquid of the macromolecule of interest and in the range

(14)

Co —
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of temperatures and densities where the optimized parameters apply. In this limits the theory,
once it is calibrated, is quantitative and fully predictive.

The direct correlation function, ¢y, appears to be a function of the density and is specific of
the monomeric structure of the polymer, but it does not depend on the degree of coarse-graining
selected, i.e. it is not a function of the number of blobs or the number of monomers in a blob.
In this way the formalism ensures full structural and thermodynamic consistency across the
different coarse-graining resolution.

6.2. Other methods to evaluate cgy

While the definition of the equation of state for soft spheres is a way to calculate ¢y, this is by
no means the only possible way to do so. For example we have shown how to calculate ¢g from
the numerical solution of the PRISM equation starting from a realistic representation of the
polymer chain. The solution of the PRISM equation provides results that are consistent with
the equation of state method described above.[12]

A third method to evaluate the direct correlation function at & = 0 is to directly use the
experimental isothermal compressibility of the liquid under study. Using this method the theory
directly connects the coarse-graining method with the experimental data, without the need of
performing atomistic simulations.

The isothermal compressibility, 7, which is also preserved during coarse-graining, is related
to the static structure factor S(k = 0) as

~

pkpTry = S(k = 0) = [N + ph™™(0)] , (15)

with S(k = 0) the k — 0 limit of S(k) = [@"™™(K) + ph™™(K)]. The isothermal compressibility
in the blob description is formally identical to the isothermal compressibility in the monomer
description. The value of ¢j is then determined, for example in the monomer description, as

ﬁmm
0= —0 0 (16)
pNhmm(0) + N2

with ﬁmm(O) related to the isothermal compressibility through Eq. 15.

7. Potential energy and entropy
In the multiblob description the potential energy has both inter- and intra-molecular
contributions. The intermolecular part is calculated as an extension of the formula for the
soft sphere
E _ 2mpy [° pNcg
nkBT N kBT 0 2 ’

and gives a contribution that even in the multiblob description is a constant. The potential
energy, however, contains in this case also contributions from the intramolecular structure.

Since the bond energy is a harmonic potential with a Gaussian probability distribution, the
average bond energy is simply the equipartition result,

(b=

o (r)g? (r)rdr ~ —

(17)

For the angular contribution to the energy we add an additional Eg,g. ~ (ny — 2)/2kgT
contribution per chain. In this way the potential energy depends on the level of coarse-graining.
Tests of the equation for the potential energy as measured from the united atom simulations
show that the theory and the simulations are quantitatively in agreement.[12]
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The basic procedure of any coarse-graining formalism is the averaging of the microscopic
states that are then represented by effective units, with the consequence that the entropy of
the system in a given coarse grained representation is different with respect to the atomistic
description. The extent of the change in entropy depends on the level of detail maintained in
the coarse-grained representation, which determines the number of atomistic configurations that
can be mapped into a single coarse-grained configuration. It can be quite large when the level of
coarse-graining is extreme and the underlying chain is flexible. This is commonly called as the
“mapping entropy,” and is simply the difference in entropy of the atomistic model when viewed
from the atomistic configurations and the coarse-grained configurations.|26]

If the chain is assumed to have a statistical distribution of monomers in space that follows a
Gaussian form, the entropy associated with increasing the number of blobs in the coarse-graining
procedure is given as

Sbb 3 3 3 3nb Ve
Y o St Sy —1) — 2y — D)In | —% | +In [ —— ). 1
xSt (= 1) = S >n<87ng +in (55 (19)

The first two terms in Eq. 19 arise from the kinetic energy and bond potential energy, while the
final two terms are the ideal translational and vibrational free energy.

Importantly, there is no contribution in Eq. 19, or in the intramolecular contribution to the
potential energy, from the potential or ¢y. In both cases the increasing entropy and potential
energy with the number of blobs n; is due solely to the increasing configurational degrees of
freedom and not the interaction potential itself.

Another type of entropy of interest is the relative entropy.[5] This function is based on the
“information” that is lost during corse-graining, which has to be minimized to optimize the
coarse-grained model. Our coarse-grained formalism, based on liquid state theory, is devised
to reproduce the correct distribution function, so that the relative entropy between the coarse-
grained sites and monomer sites is minimized, and the potential is optimized, without need for
any variational approach. This is equivalently to say that the relative entropy, whch is based
on the information function that discriminates between coarse-grained configurations sampled
in the two levels of representation, is zero.

8. Concluding remarks

We have presented a brief overview of the thermodynamic properties in the Integral Equation
Coarse-Graining theory (IECG) for macromolecular systems. The Hyper-Netted Chain closure
equation has been adopted to account for the projection of many-body interactions, typical of
liquids, into effective pair interactions between coarse-grained sites. Pair distribution functions
and effective potentials for the coarse-grained units have been calculated for models that have
variable levels of coarse-graining resolution. For isotropic macromolecular liquids the TECG
approach can be solved analytically and provides the analytical coarse-grained pair potential
input to mesoscale simulations.

From the potential structural and thermodynamic properties of the coarse-grained description
can be calculated as a function of the resolution of the model, or level of coarse-graining.
Structural and thermodynamc properties, such as pressure and excess free energy, are
consistently described across variable levels of coarse-graining. Internal energy and entropy
are instead depending on the degree of resolution of the coarse-grained model.

All the quantities are functions of one non-trivial parameter, i.e. the total correlation function
at k — 0, ¢g, which can be directly determined from the experimental isothermal compressibility
of the liquid. This parameter is system specific, depends on the thermodynamic conditions, but
does not depend on the resolution of the selected coarse-grained description.

The IECG theory differs from most alternative coarse-graining approches because it does not
require performing high-resolution simulations to numerically parametrize the coarse-grained
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model. Atomistic simulations are used only a posteriori as a test of the consistency of the
coarse-grained description. In this way the IECG approach is fully predictive of the structural
and thermodynamic properties of the system simulated on the length scale of the coarse-graining
description and larger.
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