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The Integral Equation Coarse-Grained method is an approach that simplifies the representation of a
polymer melt into a liquid of coarse-grained chains, considerably speeding up the computation of the
melt properties, while reproducing with accuracy structure and thermodynamics of the corresponding
atomistic description. In a recent paper [Polymer 111, 103 (2017)], it was stated that the structure-based
Integral Equation Coarse-Grained approach does not give thermodynamic consistency. Here we present
new calculations that confirm the validity of this method in predicting consistent pressure and radial
distribution functions with atomistic simulations. Other details of the method are also discussed.
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In the recent paper by Wang and Yang, referred hereafter as
Paper I [1], the authors state that the thermodynamic consistency
of the atomistic and coarse grained (CG) descriptions of homopol-
ymer melts is not possible when our coarse-graining theory, the
Integral Equation Coarse-Graining (IECG) theory, is used. In this
paper we clarify the issue of thermodynamic consistency and also
address other points that are misinterpretations of our work, as
they appear in Paper I. Because it would be impossible to address all
the details in the incorrect interpretations of our work as they
appear in that paper, we refer the interested reader to our original
work, about which we will welcome any questions [2—7]. Many of
the criticisms in Paper I were already addressed in a previous paper
of ours [8], and will not be addressed again here. In a nutshell, when
our approach is used incorrectly and/or outside the limits in which
it applies, thermodynamic consistency is lost [8]. However, when
the approach is used correctly, thermodynamic consistency holds,
as we are going to discuss here.

The original IECG formalism is already described extensively in a
number of our publications, so it will be summarized only briefly
here. The IECG model is a coarse-graining theory based on the so-
lution of the Ornstein-Zernike integral equation [9], extended to
macromolecular liquids [11,12]. In the IECG model each polymer in
the melt is described as a chain of CG units, positioned at a distance
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along the chain comparable or larger than the persistence length
[13]. Each polymer is partitioned into a number, n;, of CG units or
blobs, with each CG unit representing a number of monomers, Np,
such that the total number of monomers in a chain is N = npN,. In
the case where n;, = 1, the polymer is described as a point particle
interacting with a soft potential, i.e. the soft sphere model. The
larger the level of coarse-graining, the more significant the speed
up in the Molecular Dynamics (MD) simulations that use the IECG
representation and potential. Note that Gaussian statistics, which is
used in the analytical solution of the IECG theory, is satisfied when
N, is roughly greater than 30 for a melt of polyethylene chains,
while different numbers fulfill this condition when polymers of
different chemical nature are studied. Also, the direct correlation
function, and so the potential, between blobs involves a nonzero
tail at relatively large distances, which is more pronounced as the
level of coarse-graining increases [3,4]. Structural properties, i.e.
the pair distribution function h(r) = g(r) — 1, and thermodynamic
properties, i.e. compressibility, pressure, internal energy, entropy,
Gibbs excess free energy, and Helmholtz excess free energy, were
calculated in our previous works for polyethylene melts at different
densities and degrees of polymerization [2—7]. Theoretical pre-
dictions and results from coarse-grained IECG simulations were
compared and tested against united atom (UA) simulations.
Structural and thermodynamic properties are consistent, with the
exception of the entropy and the internal energy, which depend on
the number of blobs in which a chain is partitioned.

We start by addressing with an example the question if it is



M. Dinpajooh, M.G. Guenza / Polymer 117 (2017) 282—286 283

possible for the CG simulations, which use the structurally-
consistent [ECG potential, to predict thermodynamic properties
consistent with the corresponding atomistic simulations. Reported
in Fig. 1 are the results of the pressure calculated in four different
MD simulations, performed with different levels of granularity: i) a
United Atom simulation (reported in red in the figure), ii) a simu-
lation where each polymer in the melt is represented as a soft
sphere (n, = 1, reported in blue), iii) a simulation in which each
polymer is represented as a chain of 4 blobs (n;, = 4, reported in
orange), and iv) one simulation in which each polymer is repre-
sented as a chain of 6 blobs (n, =6, reported in cyan). Each
simulation represents a melt of polyethylene chains, with a degree
of polymerization N = 192, at the temperature of 509 K and at a
monomer density of 0.733 gr/cm>. All the simulations are per-
formed in the canonical ensemble with the Nose’-Hoover ther-
mostat, using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) software program [14].

The UA simulation results are based on the analysis of 8 ns
trajectories available from our previous work [3,6]. More details
about the UA simulations are reported there. The CG simulations
were performed using the IECG potential. The timestep for all was
set to 10 fs and the temperature in the Nose’-Hoover thermostat
was relaxed in a timespan of 200 fs. The CG particles were allowed
to equilibrate for 1 ns before production runs of 6 — 12 ns were
performed to obtain static properties and thermodynamic aver-
ages. The IECG potential depends on one non-trivial parameter, the
effective monomer-monomer direct correlation function in the
limit of zero wavevector k, Co = C™"(k—0) = 4r [3° r2C™" (r)dr,
which is directly related to the compressibility of the system. The
specific value of Cy can be determined by different procedures, as
described below. In the simulations presented here the value of
Co = —10.02 A3. Another important, but trivial, parameter is the
polymer squared radius of gyration, which is assumed to be
Ré = 541.0 A2 This value of the radius of gyration was selected
from data of Neutron Spin Echo experiments, performed by Richter
and coworkers at the given thermodynamic conditions of

temperature and density [15]. This value is consistent with a
straightforward theoretical estimate given by Rg = NI2/6, where l is
the effective segment length between the center-of-mass of two
monomers (4.37 A for polyethylene). When the theoretical value is
used, this results in a R§ value of 611.1 A? for N = 192. Simulations

performed with this value of R§ and the chains coarse-grained, for
example, with six blobs, n, = 6, gives a pressure of 356.15+0.03
atm, which is in excellent agreement with the results obtained
using Rg = 541.0 A%, i.e. a pressure of 356.12+0.03 atm, as reported
in Fig. 1.

The cutoff distance for the CG simulations was determined over
the range of r>0 from the location of the second extremum of
effective intermolecular potential, VbP(r), obtained from the
Hypernetted Chain closure (HNC), noting that a small attractive part
exists between the first and second extrema [4]. The cutoff values of
269.48 A,102.26 A, and 77.07 A were used for n, of one, four, and six,
respectively. The simulations with n, = 1 were performed in a box
size of 547.8 A consisting of 27000 blobs, while the simulations with
ny, of 4 and 6 were performed in a box size of 273.9 A, each con-
sisting of 13500 and 20250 blobs, respectively. For nj, of 4 and 6, the
effective bond potential between adjacent blobs was taken to be
Vbond () = 3n,kgTr?/(8RZ) + VPP (r) + kgTIn[1 + h®®(r)], which en-
forces the appropriate distributions between adjacent blobs, where
kg is the Boltzmann constant and T is the temperature. The angle
potential was calculated using V,nge(f) = —kgTIn[P(6)/sin(d)],
where Eq. (33) of McCarty et al. [6] was used to obtain P(6). All 1 — 2
and 1 — 3 pairs of bonded blobs were excluded from the non-
bonded interactions.

The top panel of Fig. 1 shows the evolution of the instantaneous
pressure, P; at step i, while the black line represents its instanta-

neous average: for example at step j, (P) = ﬁjzﬁ]ﬂ as N; is the
number of steps up to step j. The bottom panel of Fig. 1 shows in red

the probability distribution of the pressure, as obtained from the
UA simulation, with the average pressure in black, and the
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Fig. 1. Top panel: evolution of the instantaneous pressure over the production run of an atomistic simulation of polyethylene with N = 192, at 509 K and density 0.733 gr/cm? (red
curve). Average pressure for the same simulation (black curve). Bottom panel: pressure distribution for the atomistic simulation (red curve). The black line shows the average
pressure for atomistic simulations with the simulation error bars (99% confidence interval) obtained from block averages. The dash blue, dot orange, and dash-dot cyan lines show
the average pressure for coarse-grained (CG) simulations with one, four, and six CG units per chain, respectively. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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simulation error bar (99% confidence interval), where the Standard
Error of the Mean (SEM) was obtained from 12 block averages of the
simulation run and multiplied by 3.106 to obtain the 99% confi-
dence intervals. The inset shows the average pressure measured in
the MD simulations of the CG polyethylene melt, with the CG
polymers interacting through the IECG potential, when the chains
are represented by one (dash blue line), four (dot orange line), and
six (dash-dot cyan line) CG units. The error bar in the CG repre-
sentations is of the order of the line width. All the CG pressures fall
within the error of the UA simulation.

With regard to the issue of thermodynamic consistency, our key
point of disagreement with Paper I is the following: the authors of
Paper I argue that thermodynamic consistency can be claimed only
when A = B, given that A and B are the thermodynamic properties
of the atomistic and CG systems, respectively. They also ruled out
the use of molecular simulation results as a proof of thermody-
namic consistency of a coarse-grained model. We disagree with
them because thermodynamic consistency does not necessarily
mean a mathematical identity, i.e., A = B. In fact, we believe ther-
modynamic consistency is achieved when the simulations from
different levels of coarse-graining yield results that are within the
statistical uncertainties of the atomistic simulation itself, as shown
in Fig. 1.

We also confirm that the mathematical identity between
atomistic and coarse-grained thermodynamic properties is in fact
obtained by the analytical solution of the IECG theory under certain
conditions. In this respect, it is important to notice that integral
equation theories, as any theory that addresses the physics of
complex molecular fluids, are not exact and that approximations
are always implicit in the analytical solution of coarse-grained
models. Specifically in our approach, the mathematical identity of
coarse-grained and atomistic properties is obtained from the so-
lution of the Ornstein-Zernike equation in the conditions where a
mean-field equation between the direct correlation function, C(r),
and the potential, V(r), applies, i.e. C(r) = —V(r) with § = (kgT)™!
[9]. This is the so-called “Mean Spherical Approximation” (IMSA)
closure, which can be derived formally from the HNC closure, i.e.
from the equation used in the numerical calculation of the poten-
tial, by assuming that the pair distribution function is equal to one.
When the polymer is coarse-grained, the potential is bound, and is
represented by a soft, long-ranged, and a smoothly-varying func-
tion: for example, for a liquid of soft spheres (n, = 1) of chain
density p,, let us define the range of the potential as ¢. Then we have

p.03 > 1, while the average interparticle distance is a = p; 13 from
which follows that ¢>>a. In these conditions, each CG site is
interacting with a very large number of surrounding CG particles
and a mean-field description applies. The excess free energy of the
system can be well approximated by the mean-field equation
Fex[pc(r)]=1/2 [[drdr’ Ve (|r — r'|)p.(r)p.(r'), where V(r) is the
potential and p.(r) is the position-dependent density profile.
Because the potential is a slowly decaying function and the liquid is
homogeneous, in the range of the potential ¢ the density can be
considered constant. Given its definition, this implies that the
direct correlation function becomes independent of the density

B0%Fex|pc(r)]

C(r—r'|;p.) = — lim
( libc) pe(t)=p, 0pc(T)0pc (1)

(1)

recovering the MSA, C“(r) = —fV(r) [10]. It follows that the po-
tential, solved in the MSA, and the equation of state derived from it,
are not in contradiction with the structural consistency of the pair
distribution function.

Furthermore, it is evident that the use of the MSA is well justi-
fied when the potential is a long-ranged, slowly-varying function,

for which the mean-field approximation of the excess free energy
becomes correct. Long-ranged, slowly-varying potentials are ob-
tained for highly coarse-grained models and for almost incom-
pressible liquids where the density of CG particles is high. In these
conditions, the IECG potential and thermodynamic properties are
solved analytically, demonstrating the consistency in structure,
compressibility, pressure, and excess free energy (see for example
Eq. (3)). On the other hand, the analytical solutions of the internal
energy and of the entropy show a dependence on the number of CG
sites that model the polymer. This dependence is expected, given
that the process of coarse-graining averages out a number of local
degrees of freedom, modifying the entropy of the system.

The analytical solution of the pressure is calculated using the
virial expression

X aVCC
T3gCC(T) o

P 2mp
kaBT a 3kBT
0

dr, (2)

where P is the pressure and p.N = p,,, where p,, is the monomer
density. From direct inspection of the integral, one can see that the
tail of the pair distribution function and the tail of the force are
dominating the integral due to the r3 factor. Because the potential
of a coarse-grained description has a range, ¢, that is much larger
than the distance of the first solvation shell, given by the inter-
particle separation gq, it is a valid approximation to assume in the
calculation of the virial pressure that g(r)=1 for liquids of coarse-
grained polymers. Applying this approximation together with the
MSA closure leads to the equation of state

P puNGo
kaBT =1 2 ’ (3)

Eq. (3) does not depend on the number of blobs a chain is par-
titioned, n,, or on the number of monomers in one blob, Ny; thus,
the pressure calculated from Eq. (3) is independent of the level of
granularity adopted in the coarse-grained model.

Next, we check the validity of Eq. (3) by straightforward nu-
merical calculations. We show here that the relative error intro-
duced by the assumption g =1 (n, = 1) is indeed about 0.2%
when the pressure obtained by this route is compared to the one
that does not use the approximation. The calculation is performed
for the sample studied in this paper (N = 192) in the soft sphere
model, n;, = 1. Integration by parts of the second term on the right
hand side in Eq. (2) gives

r ( (r)+rag;;( ))V“(r)dn (4)

which, using the HNC closure reduces to

b
N3

N_7T/°o ( (r+r Cc(r))ﬁ Viinc (r)dr :—7pmN20HNC7
0

(5)

where, BVi§c(r) = In the MSA, one

obtains

In(g*(r)) — h<(r) + C(r).
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_ pmN 4w /°° 2 [ ycc 38« (1) rec __ PmNAomsa
N2 rel g (r)+r—3ar C“(r)dr = R R
0

(6)

where, C(r) is the blob direct correlation function. Both Eq. (5) and
Eq. (6) reduce to the following when g = 1 is assumed

_pmNﬂ T 2 cc _ _pmNCO
e N2/r C“(rydr = 5 (7)
0

where Cy = N2C*(k—0). Here we numerically compare the
values of Agync, Aogmsa, and Gy in Egs. (5)—(7), respectively, for the
soft sphere model (n, = 1), noting that C®(r) is more long-ranged
than g“(r). We obtain values of Agusa= —9.995,
Apune = —10.003, and Cy = —10.016 A3, which result in the pres-
sure values of 355.78, 356.08, and 356.52 atm, respectively.
Therefore, the relative error in predicting the pressure is about 0.2%
and 0.1% for MSA and HNC, respectively, when approximation g« =
1 is used for the soft sphere model in this work.

The thermodynamic consistency shown in Fig. 1 is not limited to
the example that we report above, but is a general property of the
IECG approach in the conditions in which the present theory ap-
plies. As we discussed earlier, those conditions are, roughly
speaking, melt density, and temperatures comparable to the ones
reported in the example of Fig. 1. If our theory is erroneously used in
conditions in which the IECG approach does not apply, e.g. for
polymers in solution or low densities, the IECG approach in its
present version cannot ensure thermodynamic consistency [8].

Some other points worth reporting are:

i) In this work, the structural consistency is also shown for the
blob-blob radial distribution function, when the polymer is
represented by one or four blobs (see Fig. 2). As can be seen,
the difference between the atomistic and CG simulations

results lies within the statistical uncertainties of the atom-
istic simulations. In addition, both are in excellent agreement
with the theoretical prediction of the IECG. This indicates
that in the IECG method, the closure, together with the
Ornstein-Zernike equation from the liquid state theory,
implicitly capture with accuracy many-body effects. Without
correctly capturing the many-body contributions to the po-
tential, the excellent agreement that is observed would not
be possible.

ii) The IECG approach is structurally and thermodynamically

consistent in pressure and excess free energy. This consis-
tency is important because a CG model, to be useful, needs
not only to speed up the computational time, but also to be
consistent in its predictions of structural and thermody-
namic quantities: fast CG simulations that predict incorrect
thermodynamics are of limited use.

iii) The IECG formalism is analytical in the sense that thermo-

dynamic and molecular parameters explicitly enter the po-
tential. In this way the IECG potential is transferable, as it
applies to other sets of conditions, within the range of pa-
rameters discussed above, and to polymers with different
chemical structures, while it predicts structural and ther-
modynamic properties consistent with the related atomistic
simulations [2—6].

iv) While the IECG potential depends on one non-trivial

parameter, Cy, which is directly related to the compress-
ibility of the system, this should not be a source of concern.
Note that the potentials commonly used in atomistic simu-
lations depend on more than one non-trivial parameter (for
example, the Lennard-Jones potential depends on two pa-
rameters). The value of Cy can be obtained in a number of
different ways that give numerically consistent values. For
example, the value of Cy used in this work (—10.02 A%>) may
be obtained from the derived equation of state, Eq. (3). To
derive Cy from the equation of state, the pressure has to be
known for a small number of samples, and not necessarily for
the one for which the coarse-grained simulation is
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Fig. 2. Theoretical and simulated radial distribution functions when the polymer is represented by one (left panel) and four (right panel) coarse-grained sites. Atomistic simulations
(black triangle) are compared with coarse-grained simulations (blue square) and with the analytical function (magenta line). The analytical expression and the data from the coarse-
grained simulation are both within the error of the atomistic simulation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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performed. In this way, it is not necessary to first perform
atomistic simulations of the sample of interest to derive the
coarse-grained potential, which sets this method apart from
all the other coarse-grained methods. We also note that the
Cop value obtained by the above route from the equation of
state is in close agreement with the one reported in Figure 5
in Ref. [6].

iv) Often potentials that are optimized numerically to reproduce
the structure of a liquid are not able to reproduce the pres-
sure or the compressibility of the same. This is a well-known
result, consistent with the predictions of Statistical Me-
chanics [9]. These results, however, do not apply to our
approach, where many-body interactions are accounted for
by the Ornstein-Zernike equation. Because coarse-graining
reduces the number of degrees of freedom, thermodynamic
consistency in the IECG approach applies only to quantities
that do not depend on the number of degrees of freedom.
Thus, the IECG reproduces with accuracy pressure and free
energy, while entropy and internal energy are modified
[3,4,6]. The fact that entropy and internal energy are not
conserved between the atomistic and the coarse-grained
multiblob description is, in fact, not a limitation of our
method but a result supported by the analytical solution of
the IECG model. The analytical solution of the IECG approach
shows that both entropy and internal energy formally
depend on the number of blobs in which the chain is parti-
tioned, ny. It follows that those properties should not be
conserved during coarse-graining, as can be intuitively un-
derstood by the fact that the number of degrees of freedom
associated with the CG model changes with the granularity
of the model.

v) Paper I often cites, in the same sentence, words that are
taken from two different papers of ours: the first is the paper
by Mc Carty et al. [5] (reported as Reference 4 in Paper I), and
the second is the paper by Clark et al. [4] (reported as
Reference 5 in Paper I). One should keep in mind that the two
papers refer to two different intramolecular polymer chain
models. The first paper by McCarty et al. [5], as well as the
paper by Yatsenko et al. [7] also cited in Paper |, is based on
the thread model [12] for which the structure and the ther-
modynamic properties are solved analytically: for this model
the thermodynamic consistency is satisfied in the corre-
sponding limits. The second paper by Clark et al. [4] is based
on the Freely Jointed (FJ) Chain representation of the poly-
mer chain, which has been solved analytically in the two
limit of large intermolecular distances between pairs of CG
units and small intermolecular distances. The numerical so-
lution of the F]J IECG model is valid at any distance, and its
results are reported in our papers, and in Figs. 1 and 2 above.

Sentences and methods from the paper by McCarty et al. [5], do
not always apply to the theory, the system, and the results reported
in the paper by Clark et al. [4], and vice versa. For example, in Ref. 4
of Paper I [5], thermodynamic consistency is only obtained for the
interchain contribution to the internal energy and the interchain
contribution to the virial pressure, because each polymer is coarse-
grained to a point particle and, in that case, no intramolecular con-
tributions are present. It is always true that both intra and

intermolecular contributions need to be included in the energetics
and in the pressure when the polymer is coarse-grained as a chain
of blobs, otherwise those quantities would not be consistent in
variable levels of representation [8].

vi) A careful and useful analysis of the contributions to the
thermodynamic properties in our theory is reported in
Figure 7 of Clark et al. [3], where the figure shows how
different terms contribute to the final pressure of the liquid.
The discussion following Figure 7 of Clark et al. [3] shows
that the IECG theory is most accurate when the liquid is
dense and the chains are long, while N; is larger than the
polymer persistence length. This is, in fact, the type of system
for which coarse-graining models become necessary when
performing a simulation because atomistic simulations are
slow and can require excessive computational resources. In
the IECG approach, all contributions to the thermodynamics
are included. Pressure, for example, contains contributions
from kinetic, intramolecular, and intermolecular terms, as
explained in the discussion following Figure 7 of Clark et al.
[3].

In this paper, thermodynamic consistency of the IECG model is
validated for melts of long polymer chains, for which it is possible
to perform MD simulations with variable levels of coarse-graining,
while conserving the pressure, the compressibility, and the excess
free energy. This is a clear advantage of the IECG method, with
respect to other approaches.
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