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This paper discusses the development of a computationally efficient approach to generate optimal feedback control

laws for infinite time problemsby solving the correspondingHamilton–Jacobi–Bellman (HJB) equation.The solution

process consists of iteratively solving the linear generalized HJB (GHJB) equation starting with an admissible stable

controller. The collocation methods are exploited to solve the GHJB equation in the specified domain of interest.

Recently developed nonproduct quadrature method known as Conjugate Unscented Transformation is used to

manage the curse of dimensionality associated with the growth of collocation points with increase in the state

dimension. Furthermore, recent advances in sparse approximation are leveraged to automatically generate the

appropriate polynomial basis function set for the collocation-based approximation from an overcomplete dictionary

of basis functions. It is demonstrated that the solutionprocess uses thebasis function selectionprocess to automatically

identify a form for the feedback control law, which is frequently unknown. Several numerical examples demonstrate

the efficacy of the proposed approach in accurately generating feedback control policies for nonlinear systems.

I. Introduction

O PTIMAL control theory occupies a central role in the
generation of guidance and control laws for aerospace vehicles

[1]. Extensive research has been carried out to develop semianalytical
and numerical solutions to optimal open-loop and feedback control
problems [2,3]. Optimal open-loop problems are used in trajectory
optimization and path planning to provide optimal trajectories of
dynamical systems that extremalize a given cost function of interest
[1]. In guidance and control problems, energy, time, and fuel are some
performance indices that are minimized [4] to find optimal
trajectories for guidance of aerospace vehicles. Application of the
variational principles [5], in conjunction with the Pontryagin’s
principle [6], typically yields a two-point boundary value problem for
optimal state and the control law. Direct and indirect methods are
used to solve the resulting dynamic optimization problem to
determine the optimal control and state trajectories. Indirect methods
to solve optimal open-loop problems rely on the use of continuation
and othermultiple shooting-typemethods to solve the nonlinear two-
point boundary value problems (the state-costate equations for
necessary conditions of optimality [1,7,8]). Quasi linearization has
also been used to solve the two-point boundary value problems [9].
Direct methods involve the transcription of the dynamic optimization
problems by various discretization schemes to convert the dynamic
optimization problem into a system of nonlinear equations that need
to be solved for the control and state values at specified time
instances. Depending on the quadrature scheme used to approximate
the performance index and the differential equations, a variety of

methods have been developed in the literature [10]. Recently, the
application of pseudo-spectral collocation methods have led to the
development of various direct collocation methods [11–15] and
certain combined direct and indirect methods for open-loop solution
of the optimal control problems [16,17]. Themain shortcoming of the
open-loop solutions to optimal control problems is their sensitivity to
the initial conditions of the dynamical system and the unstructured
perturbations, including modeling errors and exogenous disturbance
inputs. With errors in initial conditions, model parameters, or even
forcing functions, the optimal control problem has to be re-computed
as the problem specifications change. Repeated solution of the two-
point boundary value problems resulting from the Pontryagin’s
minimum principle provides useful means of generating optimal
control laws within a local domain. Although for linear systems a
rapid solution of the open-loop optimal control problem provides a
feasiblemethodology for practical applications, for general nonlinear
systems repeated solution of optimal open-loop problems using both
the direct and indirect methods constitutes a formidable challenge.
Feedback solutions provide an attractive alternative to the optimal

open-loop solutions in that they are fundamentally conceived from
Bellman’s principle of optimality [18], which forms a basis for
dynamic programming. In contrast to the open-loop solutions,
feedback solutions depend upon the current state and provide an
optimal control policy to minimize the value function and provide a
means for the state of the dynamic system to reach a terminal
manifold thatmay be specified by the optimal control problem [1,19].
The optimal control policy can be shown to be related to the value
function and it turns out that the value function satisfies a nonlinear
hyperbolic partial differential equation (PDE) called the Hamilton–
Jacobi–Bellman (HJB) equation. The feedback control solutions can
be determined by solving this PDE over the domain of interest, with
specified boundary conditions for some or all initial states. Local
solutions obtained by solving open-loop problems satisfy the HJB
equation and define the characteristic curves of this equation,
sometimes known as the field of extremals [2,18,19]. Theoretically,
the power of the feedback solutions is derived from the fact that the
sufficient conditions for optimality [1] can be folded back into the
solution process by using the positivity and convexity of the value
functional.
Although the quest for a unified solution approach to the time-

dependent and asymptotic HJB equation remains a holy-grail for a
general dynamical system with arbitrary functions as performance
indices and terminal manifolds, researchers have worked on various
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methods to provide local solutions to this important problem.
Following Kalman’s celebrated linear quadratic regulator (LQR),
Bryson devised the sweep method [1] to derive the linear state
feedback solution for a problem with quadratic cost. Subsequently, a
variety of solutions have been developed to derive optimal control
solutions for smooth problems (where performance index, dynamics,
andmanifold are smooth functions of the state and control variables).
State-dependent Riccati equation approach provides a mechanism to
absorb the nonlinear functions of the state variable within the control
gain function and provides a systematic approach to derive optimal
feedback control solutions [20]. However, the resulting solution is
seminumerical in nature and is shown to demonstrate suboptimal
performance in certain problems. An alternative approach is the so-
called θ −Dmethod [21], which introduces an embedding parameter
(θ) to serve as an ordering parameter and solves the resulting
sequence of semilinear problems. This quasi-linearization style
strategy, in which the value function is updated recursively, as
dictated by the ordering parameter, has been shown towork in a class
of missile guidance problems. Park and Scheeres employ a similar
strategy, while simultaneously making use of the Hamiltonian
dynamics and obtain feedback solutions via a sequence of generating
functions [22]. Each generating function is aimed at solving a
particular term in the HJB equation that is expanded in terms of an
embedding parameter. The resulting process also mimes the Lie-
series method in averaging of dynamic systems [23]. An alternative
solution methodology emerges by developing a series expansion of
the value functional and writing the resulting optimal control law as a
function of the high-order nonlinear feedback gains, following a
process originally developed by Albrekht [24] and later applied by
Carrington and Junkins [25] to derive nonlinear state feedback
control laws for attitude control of rigid spacecraft. This process was
recently generalized to specialize the feedback control process to
reach terminal manifolds at a specified terminal time by Vadali and
Sharma [26]. Although the series solution methodology was shown
to be useful, the curse of dimensionality renders the method to only
provide local solutions. This shortcoming is shared by all other
solutions to the problem. Other strategies include the development of
inverse optimal solutions for nonlinear systems [27]; however, the
inverse optimal solutions assume a structure for the optimal feedback
control, which is unknown in the general problem. Approximate
solutions involving the time-varying approximations of HJB have
also been recently developed by leveraging the immersion and
invariance concepts [28]. Although this solution appears to be
promising, it is unclear how the process can be extended to fixed time
problemswith the terminal constraints. In discrete time problems, the
differential dynamic programming methods [29–33] use successive
quadratic approximations of the dynamics and the cost functions
about a nominal trajectory. These methods provide localized optimal
control trajectories.
An alternative approach for the solution of the HJB equation is to

solve the PDEdirectly. In [34], an adaptive finite differencemethod is
proposed to solve the HJB equation. In addition to the finite
difference approach, the method of characteristics is used to compute
a discretized solution to theHJB. Further, the finite element approach
can also be used to approximate the solution to HJB equation [35].
The high computational cost involved in these methods for higher
dimensions limits the applicability of these methods for many
practical engineering problems. Collocation [36–38] and Galerkin
methods [39,40] can be used to carry out this solution process by the
careful selection of basis functions. Beard et al. [39–41] investigated
the development of a successive Galerkin approximation techniques
for the development of nonlinear optimal and robust control laws.
Building upon Kleinman’s [42] observation that the solution of the
Riccati equation can be obtained by successively solving a sequence
of Lyapunov equations (which are linear in nature), policy iteration is
used in this process to successively improve upon a stabilizing
control solution to the generalized HJB (GHJB). However, the
number of basis functions used in the Galerkin projection and the
collocation operations also suffer from the curse of dimensionality.
Level set methods [43,44] have also been developed recently and
applied to generation of optimal trajectories for UAV path planning

[45]. The solution process in the level set methods involves the
computation of the field value over the set of grid points in the domain
of interest. This becomes computationally expensive when the
dimensions grow beyond 2.
The main challenge of formulating discretization strategies to

solve multivariate PDEs like the HJB equation lies in the curse of
dimensionality. The principal contribution of this paper is to address
this computational challenge. Recently developed Conjugate
Unscented Transformation (CUT) method is leveraged to alleviate
this curse of dimensionality and provide a computationally efficient
algorithm to solve the HJB equation in moderate to high dimension
spaces. The CUT methodology provides nonproduct quadrature
points directly in the multidimensional space that can be used as
collocation points. Furthermore, the recent advances in sparse
approximation are exploited to formulate the interpolation
polynomials directly in the multidimensional space for the chosen
collocation points. In particular, sequential l1-norm minimization is
carried out to select appropriate basis from a dictionary of over
complete basis functions. An iterative procedure for the solution of
the GHJB is presented to avoid solving the nonlinear set of equations
that generally arise in the solution process of the HJB equation.
Finally, numerical experiments involving some benchmark problems
like the tumbling rigid body in space and attitude control of satellite
are performed to show the efficacy of the proposed approach.

II. Problem Formulation

The objective of the paper is to solve the optimal regulation
problem:

P1∶
�
min
u�t�

V�x�t0�� � R
∞
t0

fl�x�t�� � u�t�TRu�t�g dt
subject to: _x � f�x� � g�x�u; x�t0� ∈ Ω

(1)

where x ∈ Rn, u ∈ Rr, and Ω ⊂ Rn with the origin 0 ∈ Ω. R is a
symmetric positive definite matrix and is used to penalize the energy
expended by each of the control inputs. We note that the dynamical
system constraints considered in the problem P1 are of a special
structure, where the control input u�t� influences the evolution of the
state vector in an affine manner. Without loss of generality, we
assume that the origin is an equilibrium point; that is, f�0� � 0,
contained in the domain of interest. Thevector functions f�·� andg�·�
are Lipschitz continuous on Ω [46]. The cost l�·� is positive definite
andmonotonically increasing in kxk, where k · k denotes the norm of
the state vector. A calculus of variations approach provides a solution
to this problem by imposing the stationarity of the augmented cost
functional with respect to possible control functions. The dynamical
system constraints are augmented to the integrand with the aid of
Lagrange multipliers called the costates. Costates measure the
sensitivity of the cost with respect to the state vector (denoted by
λ�t� ∈ Rn, λ�t� � �∂V∕∂x�). Pontryagin’s principle [6] provides a
means of generating the optimal control laws as a function of these
costates, by minimizing the Hamiltonian function defined as
H�x�t�; u�t�� ≔ l�x�t�� � u�t�TRu�t� � λT �f�x� � g�x�u�t��. For
the problem P1, where the cost associated with the control authority
appears quadratically, the control function that minimizes the
Hamiltonian can be written explicitly as u�t� � −�1∕2�R−1g�x�Tλ.
The explicit dependence of the control on the costate function
mandates the integration of the adjoint equations with appropriate
initial conditions. Therefore, the determination of optimal control
leads to a search for the specific initial costate values, λ�t0�, that also
depend implicitly on the initial state x�t0�. Because the control profile
is distinctly specified for each initial condition, the set of solutions
obtained by looking at the necessary conditions of optimality is
known as the open-loop solutions. Existence of local minima and the
lack of proper choice for initial costates make the determination of
open-loop solutions quite challenging in practical applications.
An alternative approach to open-loop solution attempts to develop

an explicit functional relationship between the state and the costate
functions, by recognizing the fact that the costates measure the
sensitivity of the value function being optimized with respect to the
dynamics of the system. By making use of the relationship, in
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conjunction with the necessary conditions obtained from the
variational principle Hu � 0, for the performance index in P1, the
control can bewritten explicity as u�t� � −�1∕2�R−1g�x�T�∂V∕∂x�.
Thus, following the developments of Caratheodory [3], one finds that
the problem of finding an optimal control law gets transformed into a
problem of determining a value function to regulate the dynamical
system to the origin from all initial conditions in the domain of
interest. This cost to go function is obtained by solving the nonlinear
PDE called the HJB equation [18] written as

l�x�t�� � ∂V
∂x

T
f�x� − 1

4

∂V
∂x

T
g�x�R−1g�x�T ∂V

∂x
� 0 (2)

To ensure the stability of the feedback control law, the boundary
condition V�0� � 0, ∀ x ∈ Ω needs to be enforced. Intuitively, this
PDE represents the fact that, for the autonomous dynamical system,
the characteristics of the optimal value functional flow in a way so as
to attain a minimum value of the Hamiltonian, uniformly in the state
and time dimensions. In general, the solution of this PDE is difficult
to compute in a closed form; that is, the form of the value function
V�x�t�� cannot be determined as an explicit function of the state
vector so as to minimize a general cost functional, subject to the
constraints of a nonlinear dynamical system [1,47].Kalman [48] used
calculus of variations to demonstrate that the solution of the HJB
equation with a quadratic cost function subject to the constraints of a
linear system is a quadratic form of the state vector itself. This is
shown to provide a linear state feedback controller. Bryson and Ho
extended this approach and devised a sweepmethod [1] that provides
different feedback forms for tracking time-varying reference signals
and reaching a terminal manifold, for the fixed and free terminal time
problems.
As outlined in the introduction, several subsequent investigations

have been carried out to establish feedback solutions u�t� � k�x; t�
in a systematic manner with limited success. In the series solution
methods [24–26], researchers have parameterized this general
function k�x; t� as a polynomial series, with time varying coefficients
in an attempt to generalize Kalman’s canonical developments
involving the linear quadratic regulation problem. This leads to the
development of nonlinear state feedback control laws, written as
ui�t� � S1i;jxj � S2i;j1j2xj1xj2 � : : : , where Einstein’s summation
convention [49] was employed to enable compact representation of
the series involved. Equations for the high-order feedback control
gains Ski;j1;j2; : : : ;jk are derived using coupled sets of nonlinear
algebraic equations that may be difficult to solve.
The difficulties imposed by the solution of the HJB equation in

Eq. (2) arise from the fact that it is nonlinear in the first spatial derivate
of the value function, ∂V�x�∕∂x. The nonlinearity manifests itself in
various forms in all the solution methods (i.e., coupled algebraic
equations in the series solution methods being a case in point). These
issues are compounded by the high dimensionality of the control
problems. Stabilization and reachability constraints also impose
additional conditions on the feedback control laws so that the
challenge of finding the gains is rendered intractable.
With the aim of alleviating the problems associated with the

nonlinearity of the equation, Saridis and Lee [41] propose a
sequential updating algorithm to generate a sequence of stable
control laws that improve the performance function with each
iteration. Starting from a known admissible controller ua�x�, the
iterative process then solves for the value function produced by this
stabilizing control by solving the associated generalized HJB
equation given by

∂V
∂x

T �f�x� � g�x�ua�x�� � l�x� � uTa �x�Rua�x� � 0 (3)

where ua�x� is a known admissible control [41,46]. Note that this
PDE, known as the GHJB, is now a linear equation in the first
derivative of the value function V�x� and becomes more amenable to
standard solution methods. Upon solving the GHJB equation, the
control law for the next iteration is recomputed using the relationship
ua�x� � −�1∕2�R−1g�x�T�∂V∕∂x�. The control cost in Eq. (1) can in

general be assumed to be any positive definite function of the control,
but the quadratic form of the control cost makes it simple to express
the controller as a linear function of thevalue function. This process is
repeated until the value function converges uniformly in the domain
of interest. This approach has come to be known as the policy
iteration, and the limiting value function V�x� is shown to satisfy the
HJBEq. (2). The policy iteration process is akin to quasi linearization
[9], originally devised by Bellman, and a cousin of the perturbation
methods well known to classical mechanicians [23]. Starting from a
known stable controller u�0��x�, the two-step process involved in the
GHJB value iteration process can be written as

Step 1:
∂V�k�

∂x

T

�f�x� � g�x�u�k��x�� � l�x� � uT�k��x�Ru�k��x� � 0

Step 2: u�k�1��x� � −
1

2
R−1g�x�T ∂V

�k�

∂x
(4)

Hence, the problem of solving the nonlinear HJB equation has
been converted into the problem of iteratively solving the linear
GHJB equation. The initial stabilizing controller to start the policy
iteration process may be chosen by exploiting the passivity results of
mechanical systems. Passivity results of mechanical systems ensure
that a stabilizing state feedback controller always exists and forms a
basis for chosen initializing controller. Because optimality always
follows the necessary condition of stabilizability, this assumption is
not unreasonable. A continuous functional approximation of the
value function can be considered to solve the GHJB equation during
this iteration process. Beard et al. [46] makes use of the Galerkin
method to solve the GHJB equation to provide an iterative approach
to solve for the value function. The main shortcoming of discretizing
the solution of multivariate PDEs using functional approximation is
the curse of dimensionality of the resulting algebraic equations that
result from the transcription process. As discussed in [46], the
Galerkin procedure suffers from explosive growth of basis functions
as the state dimension is increased, which makes the resulting
approach intractable for computational purposes for many practical
engineering problems. In the next section, a collocation-based
discretization of the GHJB is discussed that leverage recent advances
in nonproduct quadrature methods and sparse approximation to
alleviate the curse of dimensionality.

III. Approximate Value Function

As discussed in the previous section, optimal feedback control
laws can be derived by iteratively solving the GHJB equation. In this
section, the conventional collocation methods to solve the GHJB are
now discussed. Assuming the value function V�x� to be a smooth
function with at least continuous first-order derivative, V�x� is
written as a linear sum of known basis functions:

V�x� �
Xm
i�0

ciϕi�x� � cTϕ�x� (5)

The basis functions ϕ�x� � �ϕ1�x�;ϕ2�x�; : : : ;ϕm�x��T are
assumed to have at least continuous first-order derivatives and
satisfy the boundary condition ϕi�0� � 0. There are infinitely many
choices for basis functions such as polynomials, wavelets, B-splines,
radial basis functions, and so on. The problem of choosing an
appropriate basis function is difficult because one usually cannot
specify the characteristics of the unknown value function. However,
polynomial functions are generally used because of the remarkable
result in the approximation theory. According to the Stone–
Weierstrass theorem, a sequence of prescribed continuous function
always exists on a compact interval [50–52]. As a virtue of this
theorem, any continuous function on a compact interval can be
approximated well with a polynomial variables having sufficient
number of terms.
By using the approximate value function of Eq. (5), the problem of

solving the GHJB is transformed into the corresponding problem of
solving for the m coefficients from m independent equations. The
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method of weighted residuals is used to derive the set of equations
governing each of them coefficients [53]. The residual is formed by
substituting the approximate value function of Eq. (5) into the GHJB
PDE of Eq. (2):

e�x� � cTJ�x��f�x� � g�x�u�k��x�� � l�x� � uT�k�Ru�k� (6)

where the partial derivative of the approximate value function with
respect to x is given as

∂V
∂x

T � cT

2
6666666664

∂ϕ1

∂x1
∂ϕ1

∂x2
∂ϕ1

∂x3
· · ·

∂ϕ1

∂xn
∂ϕ2

∂x1
∂ϕ2

∂x2
∂ϕ2

∂x3
· · ·

∂ϕ2

∂xn
..
. ..

. ..
.

· · · ..
.

∂ϕm

∂x1
∂ϕm

∂x2
∂ϕm

∂x3
· · ·

∂ϕm

∂xn

3
7777777775

� cT1×mJ�x�m×n

� cTJ�x� (7)

In the method of weighted residuals, them independent equations
are constructed by requiring the residual e�x� to vanish in a weighted
integral sense:

Z
Ω
Ψj�x�e�x� dx � 0 j � 1; 2; : : : ; m (8)

where the set Ψ � fΨj�x�g is a set of linearly independent weight
functions also known as test functions. Some conventional methods
to generate the m independent equations are Galerkin, least squares,
and collocation. In Galerkin method, the weight functions Ψ are
taken to be the same as the basis functions ϕ:

Z
Ω
ϕj�x�e�x� dx � 0 j � 1; 2; : : : ; m (9)

Minimizing the integral of the square of the residual error leads to
the least squares formulation given by

∂
∂cj

Z
Ω
e�x�2 dx �

Z
Ω

∂e�x�
∂cj

e�x� dx � 0 j � 1; 2; : : : ; m (10)

where it can be observed that the weight functions are
Ψj�x� � �∂e�x�∕∂cj�. In collocation, the weight functions are taken
to dirac-delta functions, Ψj�x� � δ�x − xj�, at specially chosen
points xj.Z

Ω
δ�x − xj�e�x� dx � e�xj� � 0 j � 1; 2; : : : ; m (11)

In other words, the residual is required to be identically zero at the
m chosen collocation points. In allmethods ofweighted residuals, the
solution of original GHJB is transcribed into a problem of solving a
linear set of equations. Both the Galerkin and least square methods
require the computation of multidimension projection integrals. The
computation of these integrals become increasingly expensive with
the increase in state-space dimension or order of basis functions [46].
On the other hand, the collocation method avoids the integration
process altogether by requiring the GHJB to be exactly satisfied at
specially chosen collocation points within the domain Ω. The
selection of the collocation points is crucial in obtaining a well-
conditioned resulting system of equations for the unknown
coefficients. In this paper, a new choice of collocation points is
presented that efficiently capture the structure of the value function,
leading to awell-conditioned system of equations as a solution for the
HJB equation. In addition to the collocation points, the choice of
interpolating functions is of consequence in ensuring the
implementation of an effective collocation approach for solution of
multidimensional PDEs like the HJB equation. In one dimension,

Lagrange interpolation polynomials constitute an ideal choice for
collocation, owing to their minimal order. However, this choice
ceases to be a minimal order set of interpolation functions in higher
dimensions. Constructing the least-degree polynomials in the general
multidimensional space is an active area of research. Recent advances
in sparse approximation provide a means of constructing minimal
order interpolation functions. A novel collocation scheme that builds
upon two key features is now detailed. The features are 1) the use of
nonproduct cubature points to curtail the growth of collocation points
with increase in the state dimension, and 2) sparse approximation
tools to facilitate an automated construction of least-degree
interpolating polynomials.

A. Collocation Points

In the one-dimensional system, the Gaussian quadrature points,
along with Lagrange interpolation polynomials, provide the optimal
choice for collocation points alongwithminimal order basis functions.
In [11–15], the Gauss–Legendre (GLgn) quadrature points are used to
discretize the time domain to satisfy the necessary conditions.
However, the Gaussian quadrature methods suffer from curse of
dimensionality because the number of quadrature points in general
n-dimensional space is constructed from the tensor product of one-
dimensional quadrature points. Even for amoderate-dimension system
involving, for example, six state variables, the number of points is
56 � 15;625, with only five points along each direction.
The sparse grid quadratures, and in particular Gauss–Legendre–

Smolyak (GLgnSM) quadrature method, take the sparse product of
one-dimensional quadrature rules and thus have fewer points than the
equivalent Gaussian quadrature rules, but at the cost of introducing
negative weights [54], which can further lead to numerical instability
[55]. Note that the Gaussian quadrature rule is not minimal for
m ≥ 2, and there exists quadrature rules requiring fewer points in high
dimensions [56]. For instance, the well-known unscented trans-
formation (UT) [57] provides third-order quadrature points, with the
number of sigma points exhibiting a linear growth as a function of the
dimensionality of the problem at hand. Recently developed CUT
methodology provides an extension of the UT to generate nonproduct
quadrature points of order greater than three in a multidimensional
space. In thiswork, recently developedCUTmethodology is leveraged
to alleviate this curse of dimensionality and have a computationally
efficient collocation scheme to solve the GHJB equation in a
multidimensional space. As evident from our recent work on
uncertainty propagation, the CUT methodology provides much fewer
quadrature points than its conventional counterparts without
compromising on the accuracy [58,59]. In the following section, a
succinct discussion pertaining to the CUT algorithm is provided.

1. Conjugate Unscented Transformation

Rather than using tensor products as in Gauss quadrature, the CUT
approach judiciously selects special structures to extract symmetric
quadrature points constrained to lie on specially defined axes as
shown in Fig. 1. These specially defined axes include conjugate and
scaled conjugate axes in addition to the conventional principal axes
used in the UT algorithm. In n −D Cartesian space, the principal
axes are defined as the n orthogonal axes centered at the origin. The
points on the principal axes are enumerated as

a) 2D axis b) 3D Octant-perspective view
Fig. 1 Symmetric set of points and axis 2D and 3D space.
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σi ∈ f��I�kjk ∈ Dg; i � 1; 2; 3; : : : ; 2n (12)

whereD � f1; 2; 3; : : : ; ng and �I�k represent the kth row or column
of the n × n-dimensional identity matrix I. Each point on the
principal axes is at a unit distance from the origin.
In n −D Cartesian space, the “pth-conjugate axes with p ≤ n” is

defined as the directions that are constructed from all the
combinations, including the sign permutations, of the set of principal
axes taken p at a time. The set of pth conjugate axes labeled as cp,
where the points are listed as cpi , are

cpi ∈
n�

�σN1
� σN2

: : : � σNp

�����N1; N2; : : : ; Np

�
⊂ D

o

i � 1; 2; : : : ; 2p
�
n
p

	

In n −D Cartesian space, the “pth-scaled conjugate axes” is
defined as the set of directions constructed from all combinations,
including sign permutations, of the set of principal axes such that in
every combination exactly one principal axis is scaled by a parameter
h ∈ R. The set of pth-scaled conjugate axes is labeled as sp, and the
points are listed as spi :

spi ∈
n�

�hσN1
� σN2

: : : � σNp

�����N1; N2; : : : ; Np

�
⊂ D

o

i � 1; 2; : : : ; n2p
�
n
p

	

The various axes for the 2D case are shown in Fig. 1a, whereas
Fig. 1b shows a different perspective views of the first octant for a
3 −D case. It should be mentioned that all the eight octants in the
3 −D case are symmetrical. As theGaussian and uniform probability
density function (pdf) are symmetric, choosing points on the
symmetric axes inherently satisfy all the moment constraint
equations involving odd exponents. Given a single point, the fully
symmetric set for each type can be easily compiled by taking all
possible permutations of coordinate position and sign as shown in
Table 1 [55]. For each quadrature point, two unknown variables, a
weight wi and a scaling parameter ri, are assigned. The equations
representing the integrals of monomials of desired order, known as
moment constraint equations, are derived in terms of unknown
variables ri and wi. Because of the spatial symmetries of quadrature
points, the odd-order moment constraint equations are automatically
satisfied, and so wi and ri are found by solving the even-order
equations. Notice that different sets of cubature points can be found
depending on p and the order of the moment constraint equations.
The conjugate axes are chosen sequentially to keep the total number
of quadrature points to be minimum. These new sets of so-called
quadrature points are guaranteed to exactly evaluate integrals
involving polynomial functions with significantly fewer points.
Table 2 enumerates CUT points that satisfy seventh-order moment

equations (designated as CUT6) up to dimension 6. The set of
moment constraint equations using points in Table 2 is given as

2r21w1 � 2nr22w2 � 4�n − 1�r23w3 � 1 (13)

2r41w1 � 2nr42w2 � 4�n − 1�r43w3 � 3 (14)

2nr42w2 � 4r43w3 � 1 (15)

2r61w1 � 2nr62w2 � 4�n − 1�r63w3 � 15 (16)

2nr62w2 � 4r63w3 � 3 (17)

2nr62w2 � 1 (18)

1 − 2nw1 − 2nw2 − 2n�n − 1�w3 � w0 (19)

The quadrature points on the principal axes have been assigned a
weight ofw1 and are constrained to lie symmetrically at a distance r1
from the origin. Points on the nth-conjugate axes (cni ) have been
chosen with a weightw2 and are constrained to lie symmetrically at a
distance scaled by r2. Finally, the third set of points is selected with
weightw3 and is constrained to lie symmetrically at a distance scaled
by r3 along the 2nd-conjugate axes (c2i ). Solving Eqs. (16–18) for
unknown weights leads to following analytical expressions:

w1 � 8 − n

r61
; w2 � 1

2nr62
; w3 � 1

2r63
(20)

The substitution of the analytical expression Eq. (20) for weight
variables in Eqs. (13–15) leads to following system of three
polynomial equations:

2�8 − n�a21 � a22 � 2a23�n − 1� � 1

2�8 − n�a1 � a2 � 2a3�n − 1� � 3

a2 � 2a3 � 1 (21)

where r1 � �1∕ 





a1

p �, r2 � �1∕ 





a2

p �, and r3 � �1∕ 





a3

p �. This
reduced system of equations in Eq. (21) is simpler to solve than the
original system of equations given by Eqs. (13–19). More details
about the CUT methodology and its comparison with conventional
quadrature rules to compute statistical moments can be found in
[60–63]. The CUT points compared with the equivalent GLgn
quadratures are shown in Fig. 2. Clearly, CUT points have much
smaller growth as compared with both the GLgn quadrature points
and the Smolyak scheme. In the following section, the CUT points
are used to derive a unique collocation process to solve the GHJB
equation.

2. Collocation Process

Assuming that there are totalN collocation points, the collocation
process leads to following system of N equations in m unknowns to
exactly solve the GHJB at prescribed points, xi:

Table 1 Fully symmetric set of points

Type Sample point No. of points

σ �1; 0; 0; : : : ; 0� 2n
cp �1; 1; : : : ; 1|�����{z�����}

p

; 0; 0; · · · ; 0|�����{z�����}
�n−p�

� 2p�np�

sn�h� �h; 1; 1; : : : ; 1� n2n

Table 2 Points for CUT6 (n ≤ 6)

Position Weights

1 ≤ i ≤ 2n xi � r1σi wi � w1

1 ≤ i ≤ 2n xi�2n � r2c
n
i wi�2n � w2

1 ≤ i ≤ 2n�n − 1� xi�2n�2n � r3c
2
i wi�2n�2n � w3

Central weight x0 � 0 w0 � w0

N � 2n2 � 2n � 1
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S1∶

8>>>><
>>>>:

cTJ�x1��f�x1� � g�x1�u�k��x1�� � l�x1� � uT�k�Ru�k� � 0

cTJ�x2��f�x2� � g�x2�u�k��x2�� � l�x2� � uT�k�Ru�k� � 0

..

.

cTJ�xN��f�xN� � g�xN�u�k��xN�� � l�xN� � uT�k�Ru�k� � 0

(22)

This can also be written as

S2∶

8>>><
>>>:

Dc � F
D � �dT

1 dT
2 · · · dTN �T

dT
i � J�xi��f�xi� � g�xi�u�k��xi��; i � 1; 2; : : : ; N

Fi � −l�xi� − uT�k�Ru�k�

(23)

Regardless of the quadraturemethod used, the key challenge lies in
selecting the appropriate order for the polynomial basis set. This is
because the number of collocation points and polynomial basis
functions would not be the same for a general n-dimensional system.
The growth of polynomial basis functions up to a fixed degree, d, is
combinatorial in nature with the increase in state-space dimension.
For a set of polynomial basis functions up to total degree d, the total
number of basis functions is given as m � �n�d

d �, which is different
from the total number of quadrature points (denoted by N) given by
any of the methods. When m < N, that is, the number of collocation
points are greater than the number of basis functions, the collocation
process leads to an overdetermined system of equations. The
overdetermined system typically does not possess sufficient degrees
of freedom to accommodate the physics of the value function. This
manifests itself as lack of an exact solution to the system of equations
and hence should be avoided. An alternative approach would be to
havem > N, that is, fewer collocation points than the number of basis
function. The collocation process in this case leads to an
underdetermined system of equations. Given the fact that the growth
of CUT points is slower than the equivalent Gaussian quadrature
points, they constitute a judicious choice for collocation points. For
discretizing the GHJB equation, the collocation process in
conjunctionwith the CUTmethodology leads to an underdetermined
system of equations. This additional design freedom offered by the
redundant basis functions manifests itself as a lack of uniqueness in
choosing the appropriate polynomial basis function set. In the next
subsection, a convex optimization method is described to
automatically select the appropriate basis function set from a
dictionary of basis functions.

B. Basis Function Selection

As discussed earlier, the Lagrange interpolation polynomials
provide the minimal order (N − 1) polynomial basis function set to
interpolate a smooth function of one variable throughN given points.
This result does not hold for a general smooth function in n variables
[64]. This is because there aremultiplemonomialswith the same total

degree. For example, in two dimensions, the third-degreemonomials
would be x31, x

2
1x2, x1x

2
2, and x

3
2. In general, the number ofmonomials

in a polynomial of n variables of total degree dwould bem � �n�d
d �.

If N < m, many interpolation polynomials exist. If one considers the
construction of Lagrange interpolation polynomials from the tensor
product of one-dimensional Lagrange interpolation polynomials, it
can be observed that the total degree of the resultant interpolation
polynomial grows quickly even with few number of points. The
higher-order polynomial basis functions are not desirable because of
Gibbs phenomenon [65].
In general, the appropriate set of basis or polynomial degree

cannot be determined just from the number of points. The actual
location of the points also must be considered as it affects the
condition number of matrixD [64]. Hence, it is desired to construct
the interpolation polynomial directly for the given set of points and
dimension. In [64], an algorithm is proposed to construct a minimal
degree interpolation polynomial for the given set of points in
general multidimensional space. The least-degree interpolation
polynomial is generated by first constructing the Vandermonde
matrix [64] from the given points, with each row corresponding to
one point. The columns are formed from the monomials of
increasing order. Gauss elimination with partial pivoting is applied
to the Vandermonde matrix, where the partial pivoting process
follows special rules as outlined in [64]. This algorithm produces
the least-degree interpolation polynomial for the given set of points
and function values, which can in turn be used for collocation.
However, this process can become computationally expensive with
dimension and as the number of points increase.
To overcome this difficulty, a novel sparse optimization–based

basis selection process is incorporated to select the basis that is best
for the given set of points and dynamics of the system.To illustrate the
utility and role of the sparse optimization tools, let us consider a cubic
polynomial approximation problem in one dimension. Four samples
are sufficient to compute the coefficients of the basis functions if the
basis consists of monomials of degree ≤3. On the other hand, when
the basis consists of monomials of degree ≤9 (total of 10 basis
functions), the approximation process presents itself as an
underdetermined problem, with an infinite choice of basis functions
that fit the given four samples with the same tolerance. The sparse
approximation process adds conditioning to this underdetermined
problem by minimizing the number of participating monomials.
In particular, the system S2 is solved by minimizing the l1 norm of

the coefficients. Ideally, l0 norm of the coefficient vector, which
corresponds to the cardinality of the coefficient vector c needs to be
minimized. However, the l0-norm optimization leads to a nonconvex
optimization problem. On the other hand, l1 norm is convex and
provides a close approximation to l0-norm cost function, by making
the coefficients close to zero. Hence, to make the number of basis
functions (or coefficients) equal to the number of points, the excess
m − N coefficients (and thereby basis functions) are sequentially
made zero. The following optimization problem is proposed to select
the coefficients that satisfy S2:

GH5
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Fig. 2 Comparison of number of points.
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P3∶

8>>><
>>>:

min
c

kWck1
Dc � F
Ac ≥ 0

cTϕ�0� � 0

The cost function inP3 is a vector with the ith coordinatemultiplied
by aknownweightswi; that is,Wc � �w1c1; w2c2; : : : ; wmcm�T . The
known weights W � fw1; w2; : : : ; wmg can be used to relatively
weight the coefficients. Given the N collocation points xi, the
corresponding cost-to-go values Vi at these points is given as

�V �

2
666664

V1

V2

..

.

VN

3
777775 �

2
666664

ϕ1�x1� ϕ2�x1� : : : ϕm�x1�
ϕ1�x2� ϕ2�x2� : : : ϕm�x2�

..

. ..
.

: : : ..
.

ϕ1�xN� ϕ2�xN� : : : ϕm�xN�

3
777775

2
666664

c1

c2

..

.

cm

3
777775

� AN×mcm×1 (24)

Hence, the constraint Ac ≥ 0 corresponds to positivity of the value
function. The constraint that cTϕ�0� � 0 guarantees the generation of
stable feedback controller bymaking the cost-to-go function to be zero
at the origin. Optimization problem P3 is convex and can be solved
very efficiently by convex optimization solvers such as CVX [66].
The challenge lies in forcing m − N components of c to be zero.

For this purpose, the weight wi for ith basis function is chosen to be
proportional to the total degree of corresponding basis function. As
the order of the basis function increases, the penalty for
corresponding coefficient is appropriately increased. In this manner,
the higher-degree polynomials have larger participation penalty in
the collocation process. Furthermore, an iterative algorithm
involving sequentially solving the optimization problem of P3 is
outlined in Algorithm 1, to ensure the cardinality of c to be N. The
main idea of this algorithm is to sequentially force the least
polynomial coefficient to be zero in the successive iteration, and
hence this method requires exactlym − N � 1 iterations to force the
cardinality of c to be N. In Algorithm 1, the set C is the set of all
indices of thevectorc that are constraint to zero.Hence, the constraint
cC � 0 is just a set of linear constraints requiring the corresponding
components of c to be zero. Alternatively, the optimization problem
can just be solved over the remaining components of c.

C. Minimal Degree Interpolation Versus Sparse Interpolation

1. Example 1: Polynomial Function

Let us consider a simple case of polynomial interpolation in two
dimensions to compare the relative merits of both the least-degree
interpolation as described in [64] and the proposed approach of
iterative l1-norm optimization. The approximation domain is
assumed to be a square region with opposite corners �−5;−5� and
[5, 5]. GLgn quadraturewith 4 points in each dimension are used, and
hence there are in total 16 points in 2D. The true and known function
that is being interpolated is assumed to be the following sixth-order
polynomial:

p�x�� �3x31�2x21x2�2x1x
2
2�5x32�8x61�16x31x

3
2�8x62�

103
(25)

The function values for interpolation are computed by evaluating
p�x� at the 16 GLgn points; that is, Vi � p�xi� for i � 1; 2; : : : ; 16.
The l1-norm optimization is performed over a dictionary of
polynomial basis up to total degree 6 and is given as

min
c
: kck1

subject to: Ac � V (26)

The total number of monomials up to sixth order is 28. As there are
only 16 points, the remaining 12 basis have to be deleted from the
dictionary. This is achieved by making their corresponding
coefficients identically to be zero. The least-degree polynomial
interpolation is computed from the algorithm as described in [64].
Figure 3 shows the plots of the true function and the interpolation
polynomials computed by both themethods over uniform grid of 500
points over the domain of approximation. It can be observed that the
interpolation polynomials computed by the optimization problem in
Eq. (26) is accurate and in fact overlaps the given true function p�x�,
whereas the least-degree interpolation polynomial has error in
interpolation. This is made evident by the max error in interpolation
in the square domain: 1.03 × 10−8 for l1-norm optimal interpolation,
while 106.1224 for the least polynomial interpolation algorithm.
Further, the optimization in Eq. (26) exactly reproduces the
coefficients of the monomials that appear in p�x�, whereas the others
are made very close to zero and does so with only the 16 chosen
points. Figures 3c and 3d show the absolute error surfaces for the
least-degree interpolation and the l1-norm-optimized polynomial
interpolation, respectively. It can be observed that the l1-norm-
optimized polynomial interpolation achieves lower error over the
entire domain.

2. Example 2: Nonpolynomial Function

In this example, a nonpolynomial function is interpolated using the
sparse optimization–based interpolation and the least-degree
interpolation. The unknown true function being interpolated within
the region Ω � �−4; 4� × �−4; 4� is

p�x� �
�
x41 sin�x1� � 10x42 cos �x2�2 � x81x2 � 100x62



100

(27)

The GLgn points are used as the interpolation points for this 2D
example. It can be observed that the true function has a ninth-degree
monomial x81x2 and a sixth-degree monomial x62. For the sparse
optimization–based interpolation, a dictionary of basis polynomial
functions up to the sixth order are used. It can be observed that the
ninth-degree monomial in the true function is not present in the
dictionary of basis functions. When the GLgn method is used with
three points in each direction, which amounts to nine points in total,
the sparse optimization–based method results in an root mean square
error (RMSE) of 98.99, whereas the least-degree interpolation
method results in anRMSEof 350.08. TheRMSE is computed over a
grid of spacing 0.25 in the domainΩ. When 4 points are used in each
direction, or 16 points in total, the RMSE error for the sparse
optimization method and the least-degree interpolation method is
50.84 and 330.86, respectively. The true functions and the interpolated
approximation are shown in Figs. 4a and 4b. Figures 4c and 4d show
the absolute error surfaces for the least-degree interpolation and the
l1-norm-optimized polynomial interpolation, respectively. It can be
seen that the l1-norm-optimized polynomial interpolation achieves
lower error than the least-degree polynomial interpolation.
Finally, the complete algorithm of obtaining an approximate

solution to the HJB through policy iteration is described in
Algorithm 2. The constraintAc ≥ 0 is used tomake theVi, computed
from Eq. (24), positive as the cost-to-go function has to be positive. It

Algorithm 1 Iterative l1 optimization:
c� � Opt�m;N��D;F;A�

Data: A, D, F, ϕ, m, N, s
Result: Wc	 with m − N zeros

1 C � ∅
2 for i � 0, i ≤ m − N, i � i � 1 do
3 c	 � argmin

c
kWck1

4 Dc � F
5 Ac ≥ 0
6 cTϕ�0� � 0
7 cC � 0
8 C � C ∪ fargmin c	

�C
g
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should be emphasized that the main advantage of the proposed
approach is that one does not need to prescribe the structure of the
feedback control law. The basis function selection process
automatically selects the optimal feedback control structure and the
form of the value function.

IV. Numerical Results

In this section, numerical examples are presented in support of the

utility of the proposed ideas. In the first example, a two-dimensional

system such as the Vander Pol oscillator is considered. In the second

a) Least degree interpoaltion vs true function b) l1-norm optimal interpolation vs true function
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Fig. 3 Example 1: comparison of least-degree interpolation and sparsity-based interpolation.
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Fig. 4 Example 2: comparison of least-degree interpolation and sparsity-based interpolation.

ADURTHI, SINGLA, AND MAJJI 255

D
ow

nl
oa

de
d 

by
 S

U
N

Y
 B

U
FF

A
L

O
 o

n 
Ju

ne
 2

7,
 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

17
55

 



example, the three-dimensional system of satellite spin-stabilization
is considered. Finally, a six-dimensional system of optimal attitude
control is considered that clearly illustrates the computational
advantage of the proposed optimization problem and CUT points. In
all the examples, the initial stabilizing controller structure is derived
by appealing to the passivity of the closed loop. Although the domain
Ω of the solution processmay be adapted to correspond to the level set
of an initial value function, in the examples provided in the paper, a
square domain in the state space is employed for convenience. Simple
regions such as hypercubes make it easy to generate standard
collocation points such as Gaussian quadratures and CUT, which are
well behaved in terms of polynomial approximation. The problem of
trajectories escaping the domain Ω is overcome by considering a
large-enough domain.

A. Example 1: Vander Pol Oscillator

The first example demonstrates the effectiveness of the proposed
approach in deriving a feedback controller for the Vander Pol
oscillator given as follows:

f�x� �
�

x2
−x1 � �1 − x21�x2

�
(28)

g�x� �
�
0

1

�
(29)

The objective is to develop an optimal feedback controller that
asymptotically stabilizes the system to the origin while minimizing
the quadratic cost function; that is, l�x� � xTQx. The proposed
approach is used to approximate the value function that satisfies the
HJB equation. The corresponding controller is then used as the
optimal feedback controller. A square domain Ω with opposite
corners at �−3;−3� and [3, 3] is considered for simulation purposes.
For simulation purposes, the following Q and R matrices are

considered for the quadratic cost function:

Q �
�
50 0

0 50

�
; R �

�
5 0

0 5

�
(30)

An initial stable controller to start the policy iteration process is
chosen to be

u�x� � �−1.2;−1.2�x (31)

The flow of the closed-loop systemwith the initial stable controller
is shown in Fig. 5a. The eighth-order CUT points (CUT8) in two
dimensions are used as the collocation points in Algorithm 2. In
addition to the CUT8 points, collocation points corresponding to the
boundary of the region Ω ([3, 3], �3;−3�, �−3; 3�, �−3;−3�, [3, 0], [0,
3], �0;−3�, �−3; 0�) are added. The points defined on the boundary
help in minimizing the interpolation error in the neighborhood of the
boundary. Therefore, the value function has been evaluated at a total
of 29 collocation points. A set of polynomial basis functions with
total degree not exceeding 7 is used to define the overcomplete
dictionary comprising of a total of 36 basis functions. The redundant
basis functions are selected by the iterative application of the sparse

optimization process. The resultant controller converges well within
20 policy iterations and is used as the optimal feedback controller.
The converged optimal value function thus obtained is given as
follows:

V�x� � 3.047x1x2 � 27.881x22 � 33.926x21 − 1.735x21x
2
2

� 8.09x31x2 − 1.216x1x
3
2 − 1.265x42 � 4.349x41 − 0.043x31x

3
2

− 0.208x41x
2
2 � 0.049x21x

4
2 − 0.731x51x2 � 0.106x1x

5
2 � 0.076x62

(32)

It can be observed that the proposed algorithm picks only certain
monomials from overcomplete dictionary of basis functions.
Figure 5b shows the closed-loop flowof the optimal trajectories in the
domain of interest. The initial value function (plotted as a transparent
mesh) and the converged optimal value function (plotted as a shaded
mesh) are shown in Fig. 5d. Similarly, Fig. 5c shows the plot of the
value function as a function of the distance of the point from origin in
the state space. From these plots, it can be inferred that the optimal
cost function is significantly lower than the initial value function used
by the policy iteration process. Figure 5e shows the extremal field
map contours of the converged optimal value function juxtaposed on
top of the vector field of the unforced system. The optimal control law
overpowers the natural limit cycle usually present in the unforced
vector field to asymptotically drive the trajectories to the origin.
Finally, Fig. 6 shows the initial and final trajectories of the state and
control for the initial condition [3, 3], where u0 is the initial controller
to initiate the GHJB policy iteration process and uf is final controller.
It can be seen that the large state penalty reduces the settling time of
the optimal controller.
To evaluate the performance of the sparse approximation algorithm

in automatically selecting appropriate basis functions, the least-degree
polynomial interpolation algorithm [64] is also implemented with
same set of collocation points. The basis functions selected by using
the least-degree polynomial interpolation algorithm lead to poor
convergence of the policy iteration process. Figure 7a shows the state
flow of the closed-loop systemwith final computed controller after 20
iterations. The corresponding value function is shown in Fig. 7b. From
these plots, it can be inferred that the state trajectories are slow in
converging to the origin as comparedwith the results obtained byusing
the sparse approximation algorithm (as shown in Fig. 5). Furthermore,
the controller becomes unstable toward the boundaries at the bottom
and top of the region Ω as shown in Fig. 7a, in which the initial
conditions for the unstable trajectories are shownwith circularmarkers
(red colored). In Fig. 7c, the level sets for the cost-to-go function do not
remain closed toward the top and bottom boundaries of Ω, implying
that _V�x� does not remain negative in the entire region Ω. This poor
performance in convergence can be attributed to the fact that the least-
degree polynomial interpolation algorithmselects the appropriate basis
functions solely to improve the condition number of the Vandermonde
matrix. Thus, the sparse approximation algorithm clearly emerges as
an appropriate choice for the basis function selection.

B. Example 2: Attitude Spin Stabilization

The second example corresponds to the spin stabilization of a rigid
body. The spin stabilization involves the usage of appropriate
feedback control laws to suppress the rotational motion of a tumbling
rigid body. Accordingly, the Euler’s equations for the rotationmotion

Algorithm 2 Collocation-based Policy Iteration for Stationary Hamilton–Jacobi–Bellman Equation

Data: f�x�, g�x�, m basis ϕ�x�, initial admissible control u�0��x�, and collocation points Xi i � 1; 2; : : : ; N
Result: �V�x�, �u�x�

1 Compute matrix A from Eq. (24)
2 for k � 0, k ≤ K, k � k � 1 do
3 Compute D and F using u�k��x� as in S2
4 c � Opt�m;N��D;F;A�
5 V�k��x� � cTϕ�x�
6 u�k�1��x� � −�1∕2�R−1g�x�TJ�x�Tc
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Fig. 5 Example 1: Vander Pol oscillator with low control cost (proposed approach).
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Fig. 6 Optimal state and control trajectories for initial condition [3, 3].
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Fig. 7 Example 1: Vander Pol oscillator with low control cost (least-degree polynomial interpolation).
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of a rigid body are used as the dynamical system constraint. When
expressed in body principal axis frame of reference, these equations
of motion are written as

I1 _ω1 � �I3 − I2�ω2ω3 � u1 (33)

I2 _ω2 � �I1 − I3�ω1ω3 � u2 (34)

I3 _ω3 � �I2 − I1�ω2ω1 � u3 (35)

where ω � �ω1;ω2;ω3�T constitutes the components of the angular
velocity vector. I1, I2, and I3 are the principal moments of inertia
about the body axis. u � �u1; u2; u3�T is the three-dimensional
control vector of torques about the body axis. A rigid body with the
principal inertias I1 � 14 kg ⋅m2, I2 � 10 kg ⋅m2, and I3 �
8 kg ⋅m2 is considered for evaluation of the control laws developed
in this work. The control objective is to detumble the rigid bodywhile
minimizing the quadratic cost function of state (l�ω� � ωTQω) and
control effort. The domain of interest is a hypercube defined by
opposite corners at �−1;−1;−1� and [1, 1, 1]. The set of polynomial
basis functions not exceeding the total degree of six in three-
dimensional space is used. The CUT8 points are chosen as the 59
collocation points in conjunction with 84 basis function to initialize
the sparse approximation approach to solve the HJB equation. To
evaluate the effectiveness of the sparse approximation approach,
optimal feedback control laws are derived for two cases. The classical
trade-off between the penalties associated with the state and control
functions is investigated, with the control receiving higher penalty in
one case and the state in the other. The state and control penalty
factors, along with initial stable controller for both the cases, are
given below:

Q � qI3×3; R � rI3×3; I3×3 �
2
4 1 0 0

0 1 0

0 0 1

3
5 (36)

Case1: High State Cost: q � 50; r � 3; u0 � −I3×3ω (37)

Case2: High Control Cost: q � 5; r � 30; u0 � −5I3×3ω
(38)

Figures 8a and 9a show the state flow of the closed-loop dynamical
systemwith initial stabilizing feedback control u0 for case 1 and case
2, respectively. The optimal closed-loop state flow fields associated
with the converged optimal feedback laws for both cases are shown in
Figs. 8b and 9b. The cursory examination of optimal state flow fields
reveals that the optimal trajectories in case 1 yield direct path to the
origin because of higher state penalty. This is in contrast to the
optimal trajectories obtained in case 2, in which higher penalty on
control effort ensures the proper use of the flow of the unforced
dynamics to reach the origin. Figures 8c and 9c show the initial and
the converged optimal value function as a function of the norm of the
state vector, that is, kωk. It is evident from these plots that the
converged value function is much smaller than the cost associated
with the initial admissible policy for both the cases. The fact that
multiple ordinates exist for each abscissa is representative of the fact
that the cost functional is asymmetric along different cardinal
directions. To develop the more intuitive understanding of the
converged optimal value function, the surface and contour plots
corresponding to initial and converged value function evaluated at
three different values of ω3 are shown in Figs. 10 and 11. In these
plots, the initial value function is shown by the transparent surface
plot, whereas the converged optimal value function is shown by the
opaque surface plot. Finally, the initial and converged optimal state
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Fig. 8 Optimal state trajectories and value function for case 1.

a) Initial admissible controller based 
trajectories

b) Optimal controller based trajectories c) Optimal value function vs ||x||

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

w1

w
2

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w1

w
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

500

1000

1500

2000

2500

||x||

V
(x

)

Initial
final

Fig. 9 Optimal state trajectories and value function for case 2.
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and control time histories for representative initial condition
([1, 1, 1]) are shown in Figs. 12 and 13 for case 1 and case 2,
respectively. As expected, the high state cost leads to low settling
time, whereas the high control cost leads to lower control torques.
It should be noted that the contour plots of the converged optimal

value functions (as shown in Figs. 10 and 11) for both cases appear to
have the same shape characteristics. This is because the converged
value function in both cases is the same function as given below:

V�ω� � 171.464ω2
1 � 122.474ω2

2 � 97.979ω2
3 (39)

Intuitively, one expects the converged value function to explicitly
reflect the penalties associated with the state and control effort.
However, the converged value function in both cases, in which
disparate penalties have been used in our study, is seemingly
contradictory. To get more insight into this result, let us rewrite the
value function as

V�ω� � 171.464

I1

�
I1ω

2
1 � 122.474I1

171.464
ω2
2 � 97.979I1

171.464
ω2
3

	
(40)

Further examination of the coefficients of the value function
reveals the following structure:

I1
I2

� 14

10
� 171.464

122.474
;

I2
I3

� 10

8
� 122.474

97.979
;

I1
I3

� 14

8
� 171.464

97.979
(41)

It is interesting to observe that the coefficients computed from the
value function enable us to establish the fact that the converged value
function is proportional to the kinetic energy of the rigid body:

V�ω� � α�I1ω2
1 � I2ω

2
2 � I3ω

2
3�;

α � 171.464

I1
� 12.247 ≈










150

p
(42)

The substitution of the value function in the HJB equation leads to
the following expression for the equation error:

Fig. 10 Surface and contour plots of initial and final value function for case 1.

Fig. 11 Surface and contour plots of initial and final value function for case 2.
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Fig. 12 Optimal state and control trajectories for initial condition [1, 1, 1] for case 1.
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e � �qr − α2�
r

�ω2
1 � ω2

2 � ω2
3� (43)

It should be noted that our selected values of q and r lead to the
coefficient of equation error, �qr − α2�, vanishing identically for both
the cases. It is truly remarkable that the proposed computational
framework automatically identifies the purely quadratic formwithout
the cross terms from the dictionary of the sixth-polynomial basis
function. This leads to the identification of a linear feedback control
law as the optimal control law for the spin stabilization problem. This
result agrees with the classical solution established by Debs and
Athans [67]. This unique closure with an established analytical
solution provides strong evidence in support of the utility of the
proposed approach.

C. Example 3: Attitude Regulation

To demonstrate the computational efficiency of the sparse
approximation method in high-dimensional regulation problems, the
optimal attitude regulation is now considered. The six-dimensional
state vector in the attitude regulation problem consists of the three
elements of the Gibbs vector (also known as classical Rodrigues
parameters, CRPs) to parameterize the attitude and three body
angular rates along principal body axes.

_ρ � H�ρ�ω (44)

I1 _ω1 � �I3 − I2�ω2ω3 � u1 (45)

I2 _ω2 � �I1 − I3�ω1ω3 � u2 (46)

I3 _ω3 � �I2 − I1�ω2ω1 � u3 (47)

where

H�ρ� � 1

2
�I − S�ρ� � ρρT� (48)

S�ρ� �
2
4 0 ρ3 −ρ2
−ρ3 0 ρ1
ρ2 −ρ1 0

3
5 (49)

The objective is to optimally regulate the system to the
origin while minimizing the quadratic cost function, with
l�ρ;ω� � q�ρTρ � ωTω�. The initial admissible controller to
initialize the policy iteration process is assumed to be given by

u � −

2
4 15 0 0 5 0 0

0 15 0 0 5 0

0 0 15 0 0 5

3
5� ρ

ω

�
(50)

This problem is also considered in [68], in which the Galerkin
method is used to solve the GHJB equation. Because of the high
computationally complexity involved in the integration process and
the large number of basis functions considered, the authors
heuristically add basis functions to have as few polynomial bases as
possible. The sparse approximation–based collocation approach,
described in Algorithm 2, aids in eliminating this heuristic process,
by optimally selecting the suitable basis functions.
The ninth-order CUT points corresponding to the Gaussian

function, 745 in number, are used as the collocation points. This is in
contrast to using ninth-order GaussHermite quadrature points, with 5
points in each direction, leading to a total number of 15,625 points to
achieve the same level of interpolation accuracy in the domain of
interest. In addition to the CUT points within the domain, points are
also added at the boundary of the domain Ω to improve the
interpolation accuracy near the boundaries of the hyper cube. A total
of 284 boundary points are added at the coordinates corresponding
to the following discrete sets: ��1;�1;�1;�1;�1;�1�,
��1;�1; 0; 0; 0; 0�, and ��1;�1;�1; 0; 0; 0�. A set of multivariate
polynomial basis functions not exceeding a total degree of 8 is
considered to compile the overcomplete dictionary of a total of 3003
basis functions. It can be further inferred that the ninth-order Gauss
Hermite points lead to an overdetermined system of equations with
no exact solution, and one has to resort to fifth-order Gauss Hermite
quadrature points, with three points along each direction to guarantee
a solution. Clearly, this leads to larger interpolation error and loss in
solution accuracy.
The closed-loop state flow fields corresponding to the initial

admissible and the converged optimal feedback laws in ρ1 − ρ2
subspace at a given value of other state vectors are shown in Fig. 14.
Figure 15 shows the initial and converged optimal value functions as
a function of the norm of the state vector. As anticipated, the
converged value function is observed to be lower in cost than the cost
associated with the initial admissible policy for both the cases. The
fact that multiple ordinates exist for each abscissa is representative of
the fact that the cost functional is asymmetric along different cardinal
directions and is once again prominently shown in Fig. 15.
Representative state and control time histories corresponding to
initial admissible and converged optimal feedback control laws
associated with the initial state vector �1.5; 1.5; 1.5; 0.8; 0.8; 0.8�T are
reported in Figs. 16 and 17. These plots clearly show that the optimal
trajectories asymptotically converge to origin.
Recall that the largest-order Gauss Hermite quadrature points one

can use for the collocation process along with eighth-order
multivariate basis functions is 5 to realize an underdetermined system
of equations. To emphasize the efficacy of the ninth-order CUT

a) Optimal state trajectories b) Corresponding control trajectories
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Fig. 13 Optimal state and control trajectories for initial condition [1, 1, 1] for case 2.
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points, the fifthGaussHermite points (729 in number), alongwith the
284 boundary points, are used to solve the GHJB equation for each
policy iteration. The closed-loop state flow fields in the ρ1, ρ2
subspace for the initial stabilized and the converged optimal feedback
laws are shown in Fig. 18a. Figure 18b shows the initial admissible
and the converged optimal value functions as a function of the norm
of the state vector. For ease in comparison, the number of iterations
required for convergence of the optimal value function in the policy
iteration process is held fixed. The negative value of final converged
value function in these plots can be attributed to the use of lower-
order Gauss Hermite quadrature points. This fact is also evident by
the observation that some trajectories in Fig. 18a corresponding to
initial condition represented by red circles become unbounded and
hence are not shown. These results clearly illustrate the effectiveness
of the proposed methodology in solving the HJB equation accurately
for high-dimension problems.

D. Computational Details

The curse of dimensionality is pervasive in solving high-
dimensioned multivariate PDEs and represents a formidable
challenge. The proposed approach is also affected by this challenge.
This is evident from the increase in the size of the dictionary along
with the number of the collocation points as a function of the state
dimension. In Example 3, solution of the HJB equation necessitated
the use of 745 collocation points in conjunction with 3003 eighth-
order basis functions in six dimensions, whereas the solution of
Example 1 is produced using 36 seventh-order polynomial basis
functions with 29 collocation points. Notice that the use of
nonproduct quadrature methods like CUT limits the growth of
collocation points to be much smaller than the combinatorial growth
of the basis functions. The proposed approach exploits the sparsity
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Fig. 14 Example 3: optimal attitude regulation.
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Fig. 15 Example 3: initial and final cost.
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Fig. 16 Example 3: final state trajectories computed by CUT points for a specific initial condition.
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Fig. 17 Example 3: final control trajectories computed by CUT points
for a specific initial condition.
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that results from the disparate distinction between the growth patterns
of the collocation points and the interpolation functions with the state
dimension. Exploiting advances in sparse approximation tools, a
systematic approach is thus realized to mitigate the curse of
dimension.
Building upon the fact that the sparse approximation problem is a

convex optimization problem, a variety of recently developed tools
can be used to aid in implementing the proposed solution approach.
In this paper, an open-source convex optimization toolbox from
CMSoft (called CVX) is employed to solve the sparse approximation
problem. Just to provide an idea, the processor time to compute the
feedback controller for Example 3 in a Matlab framework was about
20 min. Finally, it is of consequence to emphasize that the feedback
control synthesis approach realized in this paper subsumes the
realization of the feedback control structure along with the optimal
state feedback gains, and can be carried out entirely offline. The
computational time incurred in the synthesis process can therefore be
modest.

V. Conclusions

A computationally efficient algorithm is discussed to derive the
optimal feedback control laws for infinite time problemswhile solving
the infinite time HJB equation. The numerical approaches to solve the
Hamilton–Jacobi–Bellman (HJB) equation suffer from curse of
dimensionality with an increase in the state dimension, making
conventional methods computationally intractable for deducing
feedback laws for optimal control of a variety of dynamical systems of
interest in engineering practice. The solution process consists of
iteratively solving the lineargeneralizedHJB (GHJB) equation starting
with an admissible stable controller. Recent advances in nonproduct
quadraturemethods and sparse approximation results are used to tackle
the challenges associated with the growth of the state dimension. The
Conjugate Unscented Transformation (CUT) method is used to define
collocation points in an n-dimensional space. While maintaining the
same level of interpolation accuracy as the conventional Gauss
quadrature points for a given order, the CUT collocation process
generates much fewer points, aiding in an effective solution of the
GHJB equation in moderate- to large-dimensional problems. To
overcome the challenges associated with the combinatorial nature of
the growth of the multivariate polynomial basis function that exceeds
the growth rate of the number of collocation points, a sparse
approximation–based approach is used to select appropriate basis
functions from an overcomplete dictionary. The basis function
selection approach solves an l1-norm convex optimization problem to
carry out the selection processwhile simultaneously identifying a form
of the optimal feedback control laws that is typically unknown in a
variety of problems. Several numerical examples are presented to
provide evidence in support of the efficacy of the proposed approach in
solving the HJB equation in a computationally efficient manner. In
particular, the unique agreement of the computed solution with the
analytical solution for the spin stabilization of a rigid body problem
provides a strong basis for optimism in demonstrating the utility of the

approach in solving the HJB equation. Although the CUT points have
been used in this work as a potential collocation points, the developed
methodology is fairly generic and can make use of any approach to
generate collocation points in general n-dimensional space.
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Fig. 18 Example 3: attitude control problem.
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