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INTRODUCTION

How technologies impact regional and national economies is an enduring debate
that traverses the spectrum from optimism to pessimism. Factory automation and
computerization were two major foci of this debate in the last half of the 20™ century.
Leaps in robotics and artificial intelligence (Al) technologies that have taken place in the
first decade of the 21 century have shaped the most recent phase of the debate.

The literature on the topic tends to be 1) speculative and anecdotal in nature, and
2) focused on macro-level changes in productivity and employment. Three recent books,
the New Division of Labor (Levy & Murnane, 2012), The Second Machine Age
(Brynjolfsson & McAfee, 2014), and the Rise of the Robots (Ford, 2015), offer
generalized interpretations of the impacts of technological change as well nationally-
oriented policy recommendations such as education reform and the expansion of social
safety nets. These discussions offer little to regional policy makers who must not only
plan for potential job losses, but also strategize about how to remain competitive in a
rapidly changing global economy.

Due in part to insufficient data about robots and Al, academic researchers have
been slow to take up the issue. Standard industry and occupational data sources are not
disaggregated sufficiently to distinguish robotics activities from other related categories.
The few studies specifically examining the impact of robots have used data from the trade
association of the robotics industry (Graetz & Michaels, 2015) or from a survey designed
to distinguish robots from other types of production machinery (Jdger et al., 2015). These
data and analyses, like the popular commentary on robots and jobs, are national in scope

and fail to reflect substantial subnational variations that are apparent in the use of



production technologies (Essletzbichler & Rigby, 2005; Rigby & Essletzbichler, 1997,
2005). Consequently, the dominant narrative about the rising robotic age tends toward
technological determinism, treating mass roboticization as a universal and inevitable
result of technological progress.

In light of current blind spots in the debate about emerging technologies and the
economy, this paper has two purposes. First and foremost, it describes the geographical
imprint of a growing and potentially disruptive industry that would otherwise not be
discernible with current publically available data sources. This basic industry mapping
allows for the characterization of differentiated and geographically embedded knowledge
bases within an industry that are presently obscured by industrial taxonomies. Second,
borrowing from evolutionary economic geography (EEG), the boundary-spanning
properties of the field and industry are explored for insights leading to robot-aware local

and regional economic development.

ROBOTICS INDUSTRY DATA

It is not currently possible to identify robotics producers or those who work with
robotics from traditional publicly available U.S. data because robots are only treated as
subcategories of machinery in the North American Industrial Classification System
(NAICS) and Standard Occupational Classification (SOC) codes. For example, SOC code
51-442 for Welding, Soldering, and Brazing Machine Setters, Operators, and Tenders,
includes those who ‘set up, operate, or tend welding, soldering, or brazing machines or
robots that weld, braze, solder, or heat treat metal products, components, or assemblies’

(United States Bureau of Labour Statistics, 2010). A worker who uses a welding machine



to hand-weld sheet metal may have very different skills, qualifications, and employment
prospects than one who programs a robot to perform this task, but both would be
identified by the same code under the current taxonomy (see Note 1, online appendix for
further discussion of robotics and SOC codes).

Additionally, the U.S. Census Bureau’s Annual Survey of Manufacturers (ASM)
instructs establishments to include capital expenditures for robots in the ‘New and Used
Machinery and Equipment: All Other Expenditures for Machinery and Equipment’
category (United States Census Bureau, 2014, 2015b). While not inaccurate, this
categorization is broad: it includes all production equipment (e.g. ‘motors, lathes, punch
presses, etc.” [p. 13]), but excludes computers and software. Robots are pieces of
production machinery, but they also require sophisticated software. Thus, it is unclear
how an establishment that purchases both robots and the engineering and programming
services necessary to integrate them into the production processes would report these
expenditures on the form. This lack of clarity can cause systematic errors in collected
data since the cost of installing and programming a robot (a process known as
‘integration’ described in the ‘Robotics Industry’ section below) has been estimated to
add an additional 40% to 150% to the cost of the robot itself (Hunt, 2012).

The 2009 European Manufacturing Survey, analysed by Jager, Moll, Somm, &
Zanker (2015) marks the first attempt to isolate robot use in its questionnaire. Note 2,
online appendix provides a brief description of how this is done.

The only data that specifically enumerate robots in the U.S. come from the
International Federation of Robotics (IFR). These data, which compile robot sales from

several national robotics associations and large suppliers (International Federation of



Robotics, 2012), are collected by country. Robotics trade associations, including the
Robotics Industries Association (RIA) and the IFR use these data to report national sales
trends in robotics. Graetz and Michaels (2015) also used these data to estimate the effects
of robots on productivity and workers’ hours and wages in 14 manufacturing industries
within 17 member countries of the Organization for Economic Cooperation and
Development (OECD). The authors report that robots are associated with productivity
increases and a skill-biased trend in labour usage across country-industry pairs.

While Graetz and Michaels’ (2015) focus is on macro-level rather than meso- or
micro-level outcomes, some of their results suggest that there are significant regional
variations in robot usage. The countries analysed differ significantly in robot density,
which is measured by the number of robots per millions of hours worked (see Table 1 in
Graetz and Michaels, 2015).

In addition to privileging a ‘macro’ perspective, analyses such as Graetz’ and
Michaels’ also conceptualize robots as abstracted pieces of advanced machinery. Again,
this abstraction may be a symptom of the way data are collected. But it is also
problematic if the goal is to address the ‘other side of the coin” when it comes to robots—
the potential for innovation and economic development. While robotics is an innovative
field, this innovation is not limited to the advancements in basic robotics science (e.g.
robot vision or sensing, two of the most promising areas of robotics technology). The
application of these new capabilities to commercial processes—integration—also
requires innovation, albeit of a different type, often associated with ‘low-tech’ industries
and ‘synthetic’ knowledge bases (see Discussion section). The entire realm of robotic

innovation encompasses both the science involved in creating robots and the



competencies involved in optimizing their use. The cost estimates for integration reported
above suggest this latter component is a significant factor in the diffusion or robots.
These evolving and complex sets of inputs to robotics highlight the difficulty of defining
and studying high-technology industries and industrial clusters in a time of rapid
technological change.!

In light of these difficulties, the immediate purpose of the robotics census
(hereafter, the ‘census’) conducted and reported on in this paper is to serve as an initial
step for enabling a more robust analysis of the robotics ecosystem. Ultimately, the goal is
to understand the robotics industry in a way that accounts for the regional variations in
industry presence and the deployment of robotic capabilities. This understanding is
essential for addressing the potential positive and negative impacts of robotics that

motivate local and regional policy responses.

ROBOTICS CENSUS RESEARCH METHOD

Because robots are not treated as distinct categories for analysis in centrally
collected NAICS or SOC data, the authors conducted a census of the U.S. robotics
industry using two proprietary business databases (ReferenceUSA and ThomasNet), as
well as the membership of the Robotic Industries Association (RIA)—the North
American robotics trade association. Each firm that self-identified as a robotics-related
firm was vetted individually via its website to determine the veracity of its claim. The
census includes location, employment, sales, and country-of-ownership data for the U.S.

robotics-related establishments. However, not all records from ReferenceUSA or



ThomasNet included employment and sales values. For these records, values were
imputed (see Note 3, online appendix for imputation methodology).

In reporting the results of the census the term ‘robotics-related industry’ is used to
describe the sector that has been captured. This cautious term is employed because, while
the establishments in the database all specialize in some aspect of robotics, many of them
are also engaged in related types of business. In particular, the database has captured
general automation companies that manufacture controls, cables, and machine tools that
have applications outside of robotics. The same is true for integrators: many integrators
that specialize in robotics also perform factory automation services that do not involve
robots. As a result, not all of the employees represented in the database work directly in
robotics.

While the census is not a true census in the sense that it unambiguously accounts
for every member of the U.S. robotics industry, it does capture all establishments that
were available through widely-used business databases when the research was
conducted—the period from May to September, 2015. Robots have been sold at record
rates since about 2010, and the size of the industry is expected to grow rapidly in the near
future (International Federation of Robotics, 2012, 2014; Robotics Industries Association,
2014, 2015), so a limitation of this type of point-in-time establishment count is that it will
likely become out-dated quickly.

The definition of ‘robot’ that informs this research is the following: an actuated
mechanism programmable in two or more axes with a degree of autonomy, moving
within its environment, to perform intended tasks (International Organization for

Standardization, 2012). This definition restricts robots to physical objects that have



physical implications for their environments. In this way, it sets robots apart from
artificial intelligence in general. While robots embody certain types of artificial
intelligence technologies, the larger field includes purely informational activities like
computer-based medical diagnoses, the generation of online content, or mining legal
documents for important text.

Robots are further distinguished by whether they are industrial robots or service
robots. Industrial robots are those used in manufacturing processes, while service robots
are used by service providers or individual consumers (International Federation of
Robotics, 2012). Examples of service robots are Roombas (household robotic vacuums
made by iRobot) or robots that make deliveries in hospitals. The current composition of
the global robotics industry presently remains dominated by the older and more
established industrial robotics sector. In 2013, the value of sales of industrial robots was
US$9.5 billion while the value of service robot sales was US$1.7 billion (International
Federation of Robotics, 2014). The census reflects this orientation: only 91 out of the 856
U.S. robot-related firms produce or work with service robots. Thus, the analysis of the
census focuses mainly on industrial robotics. However, the emergence of the service
robotics industry becomes a key question taken up in the Discussion section.

Finally, this research was verified by an industry expert, Mr. Alex Shikany, RIA
Director of Market Analysis, with particular attention being paid to the section that

follows—the characterization of the robotics industry.



THE ROBOTICS INDUSTRY

The industrial robotics industry consists of two types of firms: suppliers and
integrators.
Suppliers

Suppliers design, produce, and sell robots, robot components, and robot-specific
technologies to robot-using manufacturers (RUMs) either directly or through integrators.
In the census, original equipment manufacturers such as American Grippers, Inc., which
makes tools for robotic arms, and Macron Dynamics, which makes motion control
products for automation systems, are classified as suppliers. Robot manufacturers such as
ABB and Fanuc are also suppliers.

Nearly all suppliers of industrial robots are headquartered outside of the U.S.
According to the International Federation of Robotics (IFR), 28 of the Federation’s robot-
supplier members represent 12 countries (IFR, 2016), while four countries are home to
three or more robot suppliers: Denmark and Switzerland each have three while Germany
and Japan each have six. Adept, the lone U.S.-based member of the IFR supplier group,
employs 95 people in two locations according to the census.? As of 2012, four major
robot suppliers held 17.1% of the worldwide industrial robot market share (MarketLine,
2012), and each of these firms was headquartered outside the U.S.: Fanuc and Yaskawa
Motoman (Japan); Kuka (Germany); and ABB (Switzerland).

This locational pattern implies that U.S.-based robot users import much of their
robot stock. Indeed, the IFR reports that while the U.S. ranked fourth worldwide in the
number of robot installations in 2011, most of these robots were imported from Japan or

Europe (2012) (the IFR report does not provide exact import or export numbers for the



U.S.). As shown in Table Al (see online appendix), the two countries that produce the
most robots, Japan and Germany, each exported roughly three quarters of their
domestically produced robots in 2011, as indicated by the export ratio. At the same time,
Germany is also a significant importer of robots. Japan, in contrast, almost solely uses
domestically produced robots in domestic manufacturing plants. Through 2011, China
ranked in the top five of robot-using nations, and the rate of growth of its robot stock far
exceeded that of any other nation (IFR, 2012).

These data reflect trade in actual industrial robots; they do not include trade in
robot-specific components and software, which are significant inputs to robot
installations. Examples of this kind of product are specialized grippers for the ends of
robotic arms, positioners and drives for mounting and moving robots within factories,
cables for robot wiring, and software and cameras for robot ‘vision’ systems. While some
of these auxiliary suppliers may be original equipment manufacturers (OEMs), supplying
components for the ‘bodies’ of actual industrial robots, most supply aftermarket
peripheral equipment and software that optimize robot installations and performance.

Following the RIA’s classification scheme, this census also categorizes these
firms as suppliers. While the web-based research method precludes an exact
determination of the products that the establishments make, a conservative estimate is
that over 50% of the supplier establishments in the census are neither makers of actual
robots nor subsidiaries of foreign robot makers. Thus, U.S.-based robot suppliers are
generally engaged in the production of peripheral equipment rather than robots

themselves.
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Integrators

Because of the global, yet concentrated, pattern of robot production as well as the
complex and highly customized nature of robotic systems, integrators have a pivotal role
in designing and implementing robotic systems for RUMs.

Anecdotally, some RUMs have in-house robotics integration capabilities, most
notably large automotive manufacturers. The extent of robotics expertise embedded in
large end-product manufacturers and OEMs deserves further study. The only instance
where it is revealed in the census is Boeing’s entry: the aerospace manufacturer is an
integrator certified under the RIA’s integrator certification program. Some RUMs have
even developed robots in-house, and successfully marketed them to other manufacturers,
although the evidence of this phenomenon is limited largely to Japanese manufacturers in
the 1970s and 1980s (Roy & Sarkar, 2015).

Integrators possess a unique set of knowledge and expertise. They also complete
the robotics supply chain by providing the link between suppliers of robots (including
robot components and auxiliary technology and devices) and their customers, the
manufacturers.

Robotics integration is one example of the larger field of systems integration,
which itself is a subcategory of firms that provide knowledge intensive business services
(KIBS), ranging from accounting to management consulting to engineering. Integrators in
particular work with and specialize in various types of complex technical systems, from
information and communications technology to energy distribution (Hobday et al.,
2005).They have an imperative to provide ‘turnkey solutions,” or ‘the entire set of

activities involved in the design, construction, testing, and delivery of a fully functioning
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system.” (Davies, 2004, p. 748). This turnkey model is essentially the one by which
robotics integrators operate.

While integrators often ‘supply’ customers with physical robot installations, the
distinction made in the census is that integrators’ installations are value-added systems,
assembled from assortments of suppliers’ products (see Note 4, online appendix for

illustrative examples of integrator firms).

RESULTS OF THE ROBOT-RELATED INDUSTRY CENSUS

Evidence of Robotic Regions

While the robotics-related industry is small in the context of the entire U.S.
economy (about 0.05% of the total nonfarm employment), it is significant in several
regions. Fig. A1 (see online appendix), which maps robotics-related employment in core
based statistical areas (CBSAs) (see Note 5, online appendix for CBSA definition)
illustrates that the strongest concentration of robotics employment is in the traditional
manufacturing hubs of the Midwest that border the Great Lakes—the area often referred
to as the ‘rust belt’ or the ‘frost belt.” Table 1 lists 30 CBSAs that the authors have
initially classified as Robotic Regions. These Robotic Regions are designated based on

the criterion of having at least seven robot-related establishments (the 85" percentile).

Table 1 here

Major manufacturing centers, as expected, factor prominently in this list: the

Detroit and Chicago metropolitan statistical areas (MSAs) rank first and second in
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robotics-related establishments and fifth and seventh, respectively, in robotics-related
employment. The Minneapolis, Cleveland, Cincinnati, Grand Rapids, and Los Angeles
MSAs are also hubs for both manufacturing and robotics. The Seattle MSA, which is the
headquarters of the aircraft manufacturer Boeing, ranks highly in employment but barely
makes the list in terms of establishments, because Boeing employs 5,000 of the region’s
5,367 robotics-related workers. However, all 5,000 of these employees likely do not work
directly with robots, because, as mentioned at the outset of the paper, the census does not
distinguish occupations within firms or establishments.

Several smaller regions such as the lowa City, IA, Fort Collins, CO, Reno, NV,
and Akron, OH MSAs, do not have enough robotics-related establishments to make the
list of Robotic Regions, but they each demonstrate significant robotics employment,
especially for their relatively small size. For example, each of these regions has more
robotics-related employment than the much larger Washington, D.C. metropolitan region.
These observations indicate that a simple count of robotics-related establishments and
employees—though an important first step—can provide only a potential characterization
of the U.S. robotics landscape. For this reason, the authors caution that the list of Robotic
Regions in Table 1 is meant as a guide for further research rather than a definitive list of
regions with robotics advantages.

Smaller regions display quite prominently in terms of location quotients (see Note
6, online appendix), an index of specialization. Values above ‘1’ indicate regional
specialization, and higher values indicate stronger specialization. The location quotients
mapped in Fig. 1 generally correspond to the employment measures in Fig. A1 (online

appendix) indicating that Robotics Regions demonstrate not only high overall levels of
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robotics-related employment, but also high levels relative to other regions. Indeed, Table
A2 (see online appendix), which shows location quotients for MSAs with populations of
at least 300,000 is similar to Table 1, although large metropolitan regions with high levels
of overall employment fall lower on the list or drop off entirely (e.g. Los Angeles and
New York) because their more diverse industrial compositions moderate the effect of any

individual industry.

Figure 1 here
Caption: Robotics-Related Location Quotients for CBSAs in the U.S.
Source: Authors’ calculations based on robotics census and U.S. Census Bureau

County Business Patterns 2013

Robotics and Industrial Co-location

Robotics-related industry clusters demonstrate properties similar to other
industries, albeit on a smaller scale (see Fig. A3 and Note 8, online appendix for further
detail on comparative clustering). Robotics also co-locates with other related industries.
The density of robotics-related firms in the Midwest (Figs. 1, Al, and A2) suggests that
robotics is especially co-located with auto, metals, and machinery manufacturing, which
are also concentrated in this part of the country.

To test this assumption, the authors calculated Pearson correlations between
robotics-related employment in CBSAs and employment in the U.S. manufacturing sector
overall, as well as the subsectors that correspond to those reported by the IFR (2012,

2014) as being the most intensive users of robots in the late 2000s and early 2010s. These
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tests confirm that the hypothesized associations are statistically robust (see Table A3,
online appendix). The coefficients indicate moderate (information, chemical, computer,
transportation, and food manufacturing) to strong (fabricated metal and machinery
manufacturing) positive correlations. Machinery manufacturing has the largest coefficient
which is likely due in part to robot manufacturing being a subset of this sector according
to NAICS (United States Census Bureau, 2012, 2015b). In the census, 321 establishments
identify themselves as being part of the machinery manufacturing subsector. However, a
correlation stronger than .53 would be expected if robotics were simply a subset of
machinery manufacturing. This magnitude of correlation suggests that the robotics
industry has a unique geography that diverges from the machinery industry as a whole.
Part of this divergence may be due to the influence of the information sector
(NAICS 51) on robotics. While its correlation, also shown in Table A3, is weak to
moderate, the prominent status of the Boston, New York, and San Jose MSAs as Robotic
Regions suggests the robotics-information connection may become more important as the
robotics industry grows. These three MSA regions have NAICS 51 (Information) location
quotients of 1.45, 1.49, and 3.08, respectively (United States Bureau of Labour Statistics,
2014). The implications of this connection for regions are taken up in the Discussion

section of this paper.’

Locations of Integrators and Suppliers

The U.S. robotics-related industry is primarily one of integrators. Integrators out-
employ, outsell, and outnumber suppliers by a margin of approximately two-to-one, (see

Table 2). The largest robotics-related firm in the U.S. is an integrator: Rockwell
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Automation, headquartered in Milwaukee, WI, employs 18,256 people in 97
establishments. Emphasis on integration is a key characteristic of robotics in the U.S.,
and one that has received little attention in commentaries and research about robotics and
automation in general. The two-to-one ratio of integrators to suppliers implies the U.S.
specializes in the design and implementation of robotics systems rather than the design

and production of robotic machinery.

Table 2 here

The locations of integrators and suppliers reveal different types of specialized
innovation economies. Suppliers have a slight tendency to cluster in places associated
with traditional high-technology and consumer-related innovation, while integrators have
an intensified presence in traditional manufacturing economies (see Fig. A2, online
appendix). This geographic dynamic is quantified via Integrator-Supplier ratios, which
indicate the percentage of integrators relative to suppliers within a CBSA Table 3 lists
these ratios for CBSAs with at least 600 total robotics-related employees. CBSAs with
ratios less than .5 fall into a category labeled ‘supplier-dense regions’ in the table, and

those with ratios above .5 are grouped into a category of ‘integrator-dense regions.’

Table 3 here

Several observations emerge from this table. First, the canonical U.S. innovative

regions—Boston and San Jose (Silicon Valley)—rank highly as supplier-dense regions.
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The New York City region, known more for innovation in financial and creative services,
also ranks highly in the measure of suppliers relative to integrators. These regions, in
addition to Pittsburgh (the seventh-ranked supplier-dense region), are home to several top
academic robotics programs: Stanford and UC Berkeley near San Jose, MIT in Boston,
and Carnegie Mellon University in Pittsburgh. Based on prior research on university-
industry spinoffs, such associations are expected (Mowery & Sampat, 2006), but without
further research into the cultures and dynamics of the robotics-related industries,
generalizing about these clusters is premature. However, these supplier-integrator
differentials across space in the robotics industry suggest that corresponding knowledge
base differentials may play a role in these geographies (see the Discussion section for

elaboration on this concept).

Foreign Direct Investment and the Robotics Industry

Industrial robotics is a global, but concentrated, industry. In the U.S., some
foreign robot makers have established North American headquarters while others have
established small branch plants or sales offices (see Note 8, online appendix for branch
plant or sales office criteria for inclusion in the census). As shown in Table A4 (online
appendix), Michigan has received the bulk of robotic foreign direct investment. The four
Michigan CBSAs on the list account for 18 establishments and 2,941 employees,
amounting to 74% of all robotics-related foreign direct investment in the U.S. based on
employment levels.

The impacts of foreign direct investment in the U.S. are varied and depend upon

numerous factors. However, foreign robot manufacturers have not emulated their auto-
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manufacturing counterparts by establishing production facilities in the U.S.* The design
and production of industrial robots largely remains overseas, while local expertise is
involved in installing and enhancing them with peripheral technologies and equipment.
The robot-related FDI that does exist in the U.S. demonstrates a clear pattern of
geographical clustering, which suggests that these firms are fortifying their host regions’
positions within ‘global city-region networks’ of robotics and related activity both

domestically and abroad (Bathelt & Li, 2014).

DISCUSSION
With the uneven geography of robotics as background, inferences are now drawn
about this geography, suggesting hypotheses for further research, and situating discussion

within the context of local economic development.

Robotics as a Relational Industry

Robotics is highly relational in that it bridges boundaries across disciplines,
industries, applications, and knowledge bases. The firms in the census possess a high
degree of ‘relatedness’ (Essletzbichler, 2015; Neffke et al., 2011) and contribute to
‘related variety’ (Frenken et al., 2007) in a region’s industrial portfolio. While the firms
in the census are diverse, they maintain common commercial, technological, and
cognitive threads.

Relatedness is often assessed through quantitative induction. For example, by
using input-output tables to create a relational matrix of all manufacturing industries,

Essletzbichler (2015) shows that inorganic chemicals and metallurgy are statistically
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related to most other manufacturing industries. For the 362 manufacturing subsectors that
are identified by Standard Industrial Classification (SIC) codes, this matrix approach
effectively quantifies relatedness.

However, for robotics, which does not have a SIC or NAICS code, this approach
is not possible. Instead, we must start from a qualitative position to analyze the
relatedness of the robotics industry. As an academic discipline, robotics brings together a
heterogeneous set of intellectual communities. In 2009, authors from mechanical
engineering and computer science departments each accounted for over 55% of
publications in the top academic robotics journals (computer science accounted for the
most of any discipline at just over 30%). At the same time, authors from electrical
engineering departments published about 12% of these articles, while the contributions of
biological and cognitive science researchers rose rapidly during a twenty year period
from zero in 1989, to just over 10% in 2009 (Birk, 2011). Further, robotics is also an
increasingly software-driven field (Birk, 2011), which suggests that the locational
correlation with information-focused regions that we identified is a meaningful one rather
than a statistical accident.

The diversity of the firms in the census reflects the intellectual diversity of the
robotics field and is also emblematic of the relational quality of robotics. The database
includes establishments specializing in a variety of technologies such as machine vision,
motors and drives, industrial wiring and cabling, sensing, navigation, software, and
industrial safety. Integrators act as relational agents by bridging the knowledge of these
technologies across sectoral and spatial boundaries of robot suppliers and robot-using

manufacturers.
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Management scholars suggest industries specializing in products involving
multiple technologies and components tend to assume a ‘loosely coupled’ structure
driven by systems integration, to address the uneven rates of change of component
technologies and the lack of predictability of how components will fit together as they
evolve (Brusoni et al., 2001). Automotive and hard disk drive manufacturing—two
primary users of robotics—are examples of industries with this loose, integrator-
dependent structure (Brusoni et al., 2001). The robotics industry itself may fit into this
category.

For theorizing the regional diffusion and impact of the robotics industry, the
concept of relatedness appears particularly promising. Relatedness and related variety
have become prominent in regional development studies, particularly by scholars who
approach the topic from an evolutionary economic geography (EEG) perspective. EEG
emphasizes the idea that economic units—individuals, firms, and institutions—evolve
together, and that this co-evolution is spatially and socially contingent (Martin & Sunley,
2015; Pike et al., 2009; Schamp, 2010).

The conceptual underpinnings of grouping industries based on relatedness in EEG
are similar to those of a Porterian industrial cluster—broadly, a set of co-located and
related industries (Porter, 1998, 2003). However, rather than assuming that existing
cluster strength determines the growth trajectory of the industries within it and the region
that contains it (e.g. Delgado et al., 2014), the EEG approach allows for assessments of
how clusters themselves evolve based on the degree of the relatedness of their industries
and other more traditionally studied factors such as transportation costs and institutional

characteristics (Boschma, 2015; Martin & Sunley, 2015).
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Industrial related variety is hypothesized to facilitate productive regional
evolution (i.e. economic growth) by acting as a balance between regional industrial
diversity and specialization (Asheim et al., 2011). The interplay between regional
diversity (formally called ‘urbanization’) and specialization (‘localization’) has long been
of interest to scholars who study agglomeration. While excessive urbanization exposes a
region to a higher variety of sectoral shocks (by virtue of having more sectors within a
regional industrial portfolio), as well as industrial disconnectedness and a lack of focus,
excessive specialization may promote industrial ‘lock-in’ preventing a region’s firms
from shedding unproductive routines and abandoning the production or use of outdated
technology. Additionally, regional diversity may promote combinatorial innovations,
while specialization may lower costs by allowing firms to share resources (Boschma,
2015; Coenen et al., 2015).

While the optimum balance between diversity and specialization is more of a
theoretical construct than an achievable policy goal, working towards it may be
especially beneficial for declining regions because related variety not only offers
cushioning against economic shocks, but also more ‘recombinatory options’ (Boschma,
2015, p. 737) through which a region may adjust its path. Examples of this type of ‘path
renewal’ (Coenen et al., 2015) have been documented in Pittsburgh’s shift from a center
of steel production to steel technology development (Treado, 2010) and in the transition
of a region in Northern Sweden from an economy based in forest product extraction and
production to one based in high value added biorefinery technology (Coenen et al., 2015).

This paper identifies robotics as a boundary-spanning industry and points to the

relevance of Boschma’s question (2015), ‘are boundary-spanning industries affecting the
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capacity of a region to develop new growth paths?’ (p. 744). Determining the answer is
particularly relevant for Robotic Regions such as Detroit and Cleveland that are still
managing decline and coping with a history of overspecializations in outdated industries.
Their strong robotics communities may offer related variety upon which to build new

technologically relevant paths.

Differentiated Knowledge Bases in the Robotics Industry: The Persistent Importance of

‘Low-Technology’

Working toward path renewals for declining regions requires an understanding of
the ‘differentiated knowledge bases’ (Asheim et al., 2011) and their geographical patterns
within the robotics industry. These knowledge bases can be distinguished by the
prevalence of analytical versus synthetic knowledge. According to Asheim and Gertler
(2006), ‘an analytical knowledge base dominates economic activities where scientific
knowledge is highly important, and where knowledge creation is often based on formal
models, codified science, and rational models. Prime examples are biotechnology and
information technology’ (p. 296). In contrast, synthetic knowledge ‘prevails in industrial
settings where innovation takes place mainly through the application or novel
combination of existing knowledge’ (p. 295). An example of an analytically dominant
environment in robotics is an academic or industrial laboratory where researchers are
developing a novel artificial intelligence algorithm or neural network architecture. A
paradigmatic example of a synthetic knowledge-dominant process is integrating robots
into a production system on the shop floor. In the latter case, established technology is

configured, often inductively, to provide a custom solution to a specific problem.
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The robotics census results suggest that there is a spatial aspect to this knowledge
base differentiation within the robotics industry. The regions with high supplier-
integrator ratios can be expected to embody an analytical knowledge base, with product-
oriented research and development privileged over industrial process applications. Places
with lower supplier-integrator ratios (i.e. proportionally more integrators) can be
expected to have an emphasis on synthetic knowledge.

Of the top ten supplier-dense regions (Table 3), four (New York, San Jose,
Philadelphia, and Boston) are prominent global centers in the analytically-dominant
fields of either life science/biotechnology and information technology (or both in the case
of San Jose and Boston), and three (San Jose, Boston, and Pittsburgh) are homes to major
academic robotics research centers. MIT near Boston and Carnegie Mellon University in
Pittsburgh rank among the top 20 institutions in the world in terms of robot research
publications (Ghiasi & Lariviere, 2015), although the list is otherwise dominated by
Asian institutions.

A closer look at these regions’ types of robot firms supports the importance that
knowledge base has for the nature of the local robotics industry. While traditional
industrial robots are largely designed and produced outside of the U.S., the U.S. is home
to robot producers who have focused on alternative and emergent styles of robots.
Indeed, U.S. robotics research demonstrates a comparative advantage in mobile robots,
telerobotics, and humanoid robots, while lagging in industrial robots and industrial robot
applications (Ghiasi & Lariviére, 2015). Collaborative robot> maker Rethink is based in
the Boston area, and Teradyne, a Boston-area automation and test equipment company,

recently acquired Denmark-based Universal Robots (Teradyne, 2015), which is one of
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the leading collaborative robot suppliers. iRobot, the maker of Roomba robotic vacuums,
is also headquartered in the Boston area. Adept, a producer of automated vehicles for use
in factories and warehouses, maintains its U.S. headquarters in Silicon Valley.

These coastal regions also tend to lag in industries that are intensive robot users.
With the exceptions of Boston’s and San Jose’s significant advantage in computer and
electronic product manufacturing, these regions’ location quotients in industries such as
transportation, machinery, and electrical equipment manufacturing are quite low.

In contrast to supplier-dense regions, integrator-dense regions are found mostly in
the U.S. interior where synthetic manufacturing related knowledge bases are more
prevalent.® In these places, learning-by-doing and learning-by-using occur through the
process of robotics systems integration. This is one way that robotics is relational,
bridging not only the scientific innovations in robotics to their practical applications, but
also the ‘high-tech’ industries of electrical and computing machinery to the ‘low-tech’
industries of basic and fabricated metals, food products, and non-pharmaceutical
chemicals’ (the terms high- and low-tech here are in quotes to suggest that the dichotomy
is false; ‘low-tech’ industries in fact display many ‘high-tech’ characteristics [Hansen and
Winther, 2014]) . These relationships have important regional innovation implications,
but the association of analytical knowledge with low technology means that it often flies

under the statistical and policy radar.

Robot-Aware Regional Economic Development Policy

Following Asheim et al. (2011), regional development policies should take into

account local related variety and knowledge bases because they each have different and
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complementary implications for development. While synthetic knowledge is more
difficult to codify and travels better through local networks (Asheim et al., 2011;
Cohendet & Amin, 1999), analytical, science-based knowledge may be served better by
supporting its transmission between, rather than within regions (Asheim et al., 2011;
Cohendet & Amin, 1999). Britton (2003), for example, shows how both intra- and
interregional networks support different aspects of the Toronto electronics cluster.
Likewise, the distance between the production and use of advanced manufacturing
technologies (including robots) factored heavily in the ultimate adoption and
effectiveness of these technologies (Gertler, 1995). This distance can be defined literally
in terms of physical distance, as well as conceptually as ‘cultural” distance: users and
producers who thought about technology differently had difficulty working together to
implement it.

In light of these properties, we borrow from Hansen and Winther (2014) four
concrete policy recommendations aimed at further reducing distances and enhancing the
relational capacity of the entire robotics industry. Because of their emphasis on ‘low-
tech’ industries, these policies are oriented toward integrator-dense regions with strong
synthetic knowledge bases. These regions can 1) develop innovation strategies that
recognize the importance of incremental, synthetic, or ‘low-tech’ innovations as opposed
to dominant science-based models, 2) support robotics-related capital and R&D
investment for low- or medium-tech SMEs, 3) foster academic-industry collaborations
aimed at robotics process improvements (these would include research universities as
well as community and technical colleges), and 4) understand and facilitate supplier-

customer relationships, encompassing robot suppliers, robot integrators, and robot-using
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manufacturers. In Hansen and Winther (2014), these recommendations are generalized
and based on the Danish experience. Here, they are tailored to the robotics industry and
supply chain and meant, using a specific case, to illustrate the point made by Hansen and
Winther and others (e.g. Patel & Pavitt, 1994; Tunzelman & Acha, 2006): that ‘high-
tech’ and ‘low-tech’ are not oppositional, but rather complementary forces in economic
evolution. This concept is especially important as low-tech industries like food, metals,
and some chemical products are consistently intensifying their robotics use (International
Federation of Robotics, 2014).

Of course, crafting strategy around low-tech, synthetic knowledge cannot single-
handedly ‘save’ a declining region. However, the examples of path renewal cited above
(forestry and steel) have a common focus on the ‘high-tech end of...low-growth sectors’
(Tunzelman & Acha, 2006, p. 410). Rather than job-creating, they may be ‘job-
preserving’ or ‘job-changing’ (Hansen & Winther, 2014) which can be important to
regions looking for stability in a time of upheaval. As a relational industry, robotics is
illustrative of these possibilities.

For supplier-dense regions with more of an analytical knowledge base and basic
research presence, policy makers can encourage university-industry and commercial
collaborations according to existing strengths. The U.S. emphasis on non-industrial and
mobile robots opens the door for a wide set of boundary-spanning collaborations
involving healthcare, transportation, and security to name a few. For example, ‘Mcity,” a
collaboration between the University, the State of Michigan, and several local automotive

companies, is an entire mock city meant for researching and testing autonomous vehicles
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located on the campus of the University of Michigan (Mobility Transformation Center,

2015; Paukert, 2015).

CONCLUSION

Rapid cross-sectoral developments in robotics and artificial intelligence have the
potential to be disruptive. As such, they have generated much popular media prediction,
speculation, and hand-wringing. Scholarly and popular literatures of this century have
focused on macro-level changes in productivity and employment stemming from these
technologies. But these ‘big-picture’ interpretations fail to consider the spatially
contingent implications of technology development and diffusion. Consequently, as
robotics and Al infiltrate local production and services economies, policy makers,
economic developers, and leaders lack insight into the impacts and responses they should
consider for their regional economic resilience.

In response to this critical knowledge deficiency, this paper has reported the
results of a census of the robotics industry, focusing on manufacturing, the largest and
oldest sector associated with robotics. It contributes the first description of the
geographical imprint of this emerging industry.

Several Robotic Regions stand out as especially well-positioned to be leaders in
robot-related innovation. However, these regions form a heterogeneous group, and their
differences are related to their relative robotic advantages. Midwestern Robotic Regions
tend to rely on the synthetic knowledge of integrators to incorporate robots into
production processes, while coastal regions specialize in the analytical pursuits of

generating new robotics technology. Rather than viewing the research and development
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focus of the analytical regions as superior to the applied integration knowledge that
predominates in the rust belt, both types of knowledge are highly relational and provide
opportunities for regional path renewal. Policy makers should recognize that innovation
and robotic diffusion are not independent of each other. They are in fact linked
geographically and commercially by integrators, a group that has been overlooked by
commentary and analysis on the topic. Increasing understanding about this group and
their relational capabilities will be key to successfully responding to 21 century

technological change on the local and regional levels.
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TABLES AND FIGURES FOR MAIN TEXT

Table 1: Establishment and Employment Counts for “Robotic Regions”

MSA Establishments Employment
Detroit-Warren-Dearborn, MI 66 3,012
Chicago-Naperville-Elgin, IL-IN-WI 42 2,367
Boston-Cambridge-Newton, MA-NH 36 2,068
Los Angeles-Long Beach-Anaheim, CA 29 1,513
New York-Newark-Jersey City, NY-NJ-PA 24 1,192
Cincinnati, OH-KY-IN 21 1,391
San Francisco-Oakland-Hayward, CA 21 531
Minneapolis-St. Paul-Bloomington, MN-WI 20 2,265
Pittsburgh, PA 19 715
San Jose-Sunnyvale-Santa Clara, CA 19 656
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 19 610
Cleveland-Elyria, OH 18 8,411
Dallas-Fort Worth-Arlington, TX 18 380
Milwaukee-Waukesha-West Allis, W] 17 8,971
Atlanta-Sandy Springs-Roswell, GA 17 460
Grand Rapids-Wyoming, Ml 15 2,512
Charlotte-Concord-Gastonia, NC-SC 15 556
Indianapolis-Carmel-Anderson, IN 13 294
Houston-The Woodlands-Sugarland, TX 13 552
Raleigh, NC 13 285
Columbus, OH 9 5,351
Washington-Arlington-Alexandria, DC-VA-MD-WV 9 238
St. Louis, MO-IL 9 218
Louisville/Jefferson County, KY-IN 8 398
Dayton, OH 8 219
Nashville-Davidson-Murfreesboro-Franklin, TN 8 174
Boulder, CO 8 86
Seattle-Tacoma-Bellevue, WA 7 5,367
Davenport-Moline-Rock Island, IA-IL 7 236
Rochester, NY 7 197

Source: Authors’ Database

Table 2: Robotics-Related Establishments, Employment Size, and Sales by Type of Firm

Total Integrators Suppliers
Establishments 856 518 338
Employment 65,198 42,168 23,030
Sales Volume $14,294,641,435 $9,339,847,435 $4,954,794,000

Source: Authors’ database



Table 3: Supplier-Integrator Ratios for CBSAs

ith at Least 600 Robotics-Related Employees

Integrator-
Type of Integrator Supplier Total Supplier
Region CBSA Employment Employment Employment Ratio
Supplier- Columbus, OH 358 4,993 5,351 0.07
Dense New York-Newark-Jersey City, NY-NJ- 121 1,071 1,192 0.10
Regions PA
San Jose-Sunnyvale-Santa Clara, CA 76 580 656 0.12
Boston-Cambridge-Newton, MA-NH 287 1,781 2,068 0.14
Grand Rapids-Wyoming, Ml 389 2,123 2,512 0.15
Birmingham-Hoover, AL 81 250 331 0.24
Pittsburgh, PA 190 525 715 0.27
Los Angeles-Long Beach-Anaheim, CA 564 949 1,513 0.37
Minneapolis-St. Paul-Bloomington, MN- 849 1,416 2,265 0.37
Wi
Dallas-Fort Worth-Arlington, TX 152 228 380 0.40
Philadelphia-Camden-Wilmington, PA- 254 356 610 0.42
NJ-DE-MD
Integrator- Kansas City, MO-KS 835 0 835 1.00
Dense lowa City, 1A 750 0 750 1.00
Regions Wapakoneta, OH 600 0 600 1.00
Milwaukee-Waukesha-West Allis, WI 8,874 97 8,971 0.99
Seattle-Tacoma-Bellevue, WA 5,302 65 5,367 0.99
Cleveland-Elyria, OH 8,198 213 8,411 0.97
Louisville/Jefferson County, KY-IN 383 15 398 0.96
Akron, OH 600 34 634 0.95
Houston-The Woodlands-Sugar Land, 407 145 552 0.74
TX
San Francisco-Oakland-Hayward, CA 351 180 531 0.66
Detroit-Warren-Dearborn, Ml 1,762 $1,250 3,012 0.58
Chicago-Naperville-Elgin, IL-IN-WI 1,333 $1,034 2,367 0.56
Atlanta-Sandy Springs-Roswell, GA 240 $220 460 0.52
Charlotte-Concord-Gastonia, NC-SC 287 $269 556 0.52
Cincinnati, OH-KY-IN 704 $687 1,391 0.51

Source: Authors’ Database
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Figure 1: Robotics-Related Location Quotients for CBSAs in the U.S.
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1.

Online Appendix

Eight-digit SOC codes for robotics technicians (17-3024.01) and robotics
engineers (17-2199.08) have been established but they are for descriptive
purposes only (O*NET, 2015). Occupational data are not collected to this degree
of specificity by the U.S. Census Bureau or the Bureau of Labour Statistics
(United States Bureau of Labour Statistics, 2015; United States Census Bureau,
2015b)
The 2009 European Manufacturing Survey has assessed robots as separate pieces
of technology by two

) whether they use robots and b) how intense this use
is. Responses to the “intensity” question take the form of a three-level “high,
medium, and low” scale, based on the judgment of the respondent. The specific
instructions for answering this question are as follows: “Extent of actual
utilization compared to the most reasonable potential utilization in your factory:
Extent of utilized potential ‘low’ for an initial attempt to utilize, ‘medium’ for
partly utilized and ‘high’ for extensive utilization” (Jager et al., 2015, p. 76).
While still subjective, this strategy achieves a more accurate representation of
robot usage at the firm level than any used in the U
However, it has not been analysed yet on a subnational level, nor does it account
for the inputs of integrators in robotic systems.
In the case of employment, 683 out of the total 856 records had exact employment

values. Another 44 had only employment ranges. For records with ranges, the



midpoint of the range was used as the value. For the remaining 129 records (15%
of the entire database), the median employment size based on type of
establishment (integrator or supplier) was assigned to the record. The median
integrator employment size is 20 and the median supplier size is 15. The same
process was performed for sales data. 39 records had sales ranges, and
212 records (25% of the entire database) were imputed based on median values.
The median annual sales value for integrators is $6,419,000 and the median value
for suppliers is $6,423,500 (see Table A4).

. A typical example of an integrator firm is Creative Automation, a 40-employee
firm in Southeastern Michigan that ‘provides turnkey automation solutions for
industry’ (Creative Automation, 2016). However, large automation firms with
many branch plants factor prominently in the industry. Lincoln Electric and
Rockwell Automation branches together account for 26% of U.S. integrator
establishments (136 of 518) and 53% of integrator employment (22,486 of
42,168).

. According to the U.S. census, ‘the term Core Based Statistical Area (CBSA) is a
collective term for both metro and micro areas. A metro area contains a core
urban area of 50,000 or more , and a micro area contains an
urban core of at least 10,000 (but less than 50,000) . Each
metro or micro area consists of one or more counties and includes the counties
containing the core urban area, as well as any adjacent counties that have a high
degree of social and economic integration (as measured by commuting to work)

with the urban core’[A1] (United States Census Bureau, 2015a). Our analysis of
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robotics-related establishments covers all CBSAs. The CBSAs with robotics-
related establishments are designated by yellow polygons in Fig 2. We
identified 13 robotics-related establishments that are located in places that are not
part of a CBSA.

Location quotients are commonly used indicators of comparative industrial
advantage. Following (Leigh & Blakely, 2013), they are calculated according to
the formula:

©)

(%)

LQ =
Where:

ei= local employment in industry i

e = total local employment

E; = national employment in industry i

E = total national employment

The robotics-related industry demonstrates a familiar intra-industry clustering
pattern. Figs. 1 (main text), A1, and A2 show this phenomenon cartographically,
with obvious concentrations in Midwestern CBSAs. Fig. A3 compares histograms
of CBSAs’ location quotients in robotics to those of other similar and related
industries. All of the distributions, including robotics, have a strong positive skew
and a long tail, characteristic of phenomena that follow a power-law. The
robotics-related industry’s notably high skewness value is attributable to most

CBSAs having no identifiable robotics-related employment in the census.
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plants are assumed to be regional sales offices and thus not reflective of the

scientific or technical knowledge bases that the census is designed to capture.

This rule has one exception—suppliers headquartered outside of the U.S. with

only one U.S. location. In these cases, small establishments are included in the

census because they represent a large supplier’s sole U.S. presence. For

integrators, all branches, regardless of size, are included in the census.

Supplemental Figures and Tables

Figure Al: Robotics-Related Employment in the U.S.
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Figure A2: Robotics-Related Establishments in the U.S. by Type (Integrator/Supplier)
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Figure A3: Histograms and Skewness of Robotics and Other Industries’ Location
Quotients
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Table Al: Robot Imports and Exports for Germany and Japan, 2011
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Japan Germany

Domestic Production 98,182 18,947
Imports 214 15,255
Exports 70,502 14,669
Import Ratio (Imports/Domestic Production x 100) .8 80.5

Export Ratio (Exports/Domestic Production x 100) 71.8 77.4

Source: Adapted from IFR, 2012(International Federation of Robotics, 2012)

Table A2: Location Quotients for Robotic Regions with Populations > 300,000

MSA Location Quotient
Milwaukee-Waukesha-West Allis, WI 21.62
Cleveland-Elyria, OH 16.67
Columbus, OH 11.81
Grand Rapids-Wyoming, Ml 10.34
Seattle-Tacoma-Bellevue, WA 6.46
Fort Collins, CO 4.61
Reno, NV 4.33
Akron, OH 4.04
Harrisburg-Carlisle, PA 3.46
Detroit-Warren-Dearborn, Ml 3.37
Cincinnati, OH-KY-IN 2.87
Davenport-Moline-Rock Island, IA-IL 2.66
Santa Maria-Santa Barbara, CA 2.57
Lansing-East Lansing, Ml 2.55
Minneapolis-St. Paul-Bloomington, MN-WI 2.39
Fort Wayne, IN 2.20
Spokane-Spokane Valley, WA 2.17
Beaumont-Port Arthur, TX 2.09
Toledo, OH 2.05
Ann Arbor, Ml 1.93
Rockford, IL 1.78
Kansas City, MO-KS 1.72
Boston-Cambridge-Newton, MA-NH 1.60
Green Bay, WI 1.53
Syracuse, NY 1.39
Louisville/Jefferson County, KY-IN 1.35[A2]
Birmingham-Hoover, AL 1.35
Kalamazoo-Portage, Ml 1.32
Dayton, OH 1.28
San Jose-Sunnyvale-Santa Clara, CA 1.27
Pittsburgh, PA 1.20
Raleigh, NC 1.13
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Boulder, CO 1.12

Charlotte-Concord-Gastonia, NC-SC 1.07[A3]
Chicago-Naperville-Elgin, IL-IN-WI 1.07
Calculated by Authors

Robotics data: Authors’ database
Industry employment data: U.S. Census Bureau County Business Patterns 2013

Table A3: Correlations between Robotics and Related Industries based on CBSA
Employment

Sector NAICS  Coefficient Standard t- p-value
(Pearson’s R) Error Statistic
Manufacturing - Total 31-33 0.48 0.00 16.4 0.000
Fabricated Metal Mfg 332 0.51 0.00 18.1 0.000
Machinery Mfg 333 0.53 0.00 18.9 0.000
Food Mfg 311 0.37 0.00 12.1 0.000
Transportation Mfg 336 0.44 0.00 14.6 0.000
Computer & Electronic 334 0.37 0.00 12.1 0.000
Product Mfg
Chemical Product Mfg 325 0.34 0.00 10.9 0.000
Information 51 0.33 0.00 10.61 0.000
Calculated by Authors

Robotics data: Authors’ database
Industry employment data: U.S. Census Bureau County Business Patterns 2013

Table A4: Extent of Robotics-Related Foreign Direct Investment (FDI) in Metropolitan
and Micropolitan Areas
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Metropolitan/Micropolitan Area Employ Sales Establish
-ment  Volume -ments

Grand Rapids-Wyoming, Ml 2,093 $32,750,500 3
Minneapolis-St. Paul-Bloomington, MN-WI 1,016 $269,425,00 3
Detroit-Warren-Dearborn, Ml 723 $243,423,00 12
New York-Newark-Jersey City, NY-NJ-PA 565 $77,112,500 3
Harrisburg-Carlisle, PA 501 $6,423,500 1
Chicago-Naperville-Elgin, IL-IN-WI 431 $132,136,50 8
Providence-Warwick, RI-MA 200 $169,872,00 2
Atlanta-Sandy Springs-Roswell, GA 163 $51,597,000 3
Los Angeles-Long Beach-Anaheim, CA 122 $20,385,000 4
Houston-The Woodlands-Sugar Land, TX 120 $6,423,500 1
Ann Arbor, Ml 110 $197,291,00 2
San Jose-Sunnyvale-Santa Clara, CA 106 $43,316,000 2
Beaumont-Port Arthur, TX 100 $11,000,000 1
Torrington, CT 90 $38,158,000 1
Washington-Arlington-Alexandria, DC-VA-MD-WV 75 $25,687,500 2
San Francisco-Oakland-Hayward, CA 52 $16,315,000 3
Cincinnati, OH-KY-IN 45 $34,061,500 3
San Diego-Carlsbad, CA 45 $12,847,000 2
Dallas-Fort Worth-Arlington, TX 35 $31,195,000 2
Indianapolis-Carmel-Anderson, IN 30 $6,423,500 1
Huntsville, AL 20 $6,419,000 1
Jackson, MS 20 $6,419,000 1
Burlington, NC 15 $6,423,500 1
Charlotte-Concord-Gastonia, NC-SC 15 $3,050,000 1
Jackson, Ml 15 $6,423,500 1
Pittsburgh, PA 15 $6,423,500 1
Reading, PA 15 $6,423,500 1
Spartanburg, SC 15 $6,423,500 1
Sidney, OH 11 $12,949,000 1
Boston-Cambridge-Newton, MA-NH 10 $21,266,000 1
Milwaukee-Waukesha-West Allis, WI 10 $2,648,000 1

Source: Authors’ database, only establishments with 10 employees or more displayed.
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