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Abstract. We consider the linear degenerate elliptic system of two first order equations
u = —a(¢)(Vp — g) and V - (b(¢)u) + ¢p = ¢/2f, where a and b satisfy a(0) = b(0) = 0 and
are otherwise positive, and the porosity ¢ > 0 may be zero on a set of positive measure. This model
equation has a similar degeneracy to that arising in the equations describing the mechanical system
modeling the dynamics of partially melted materials, e.g., in the earth’s mantle and in polar ice
sheets and glaciers. In the context of mixture theory, ¢ represents the phase variable separating the
solid one-phase (¢ = 0) and fluid-solid two-phase (¢ > 0) regions. The equations should remain
well-posed as ¢ vanishes so that the free boundary between the one- and two-phase regions need not
be found explicitly. Two main problems arise. First, as ¢ vanishes, one equation is lost. Second, it is
shown by stability or energy bounds for the solution that the pressure p is not controlled outside the
support of ¢. After an appropriate scaling of the pressure and velocity, we obtain a mixed system
for which we can show existence and uniqueness of a solution over the entire domain, regardless of
where ¢ vanishes. The key is to define the appropriate Hilbert space containing the velocity, which
must have a well defined scaled divergence and normal trace. We then develop for the scaled problem
a mixed finite element method based on lowest order Raviart—Thomas elements which is stable and
has an optimal convergence rate for sufficiently smooth solutions. We show some numerical results
that verify the optimal rates of convergence for sufficiently regular solutions.
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1. Introduction. Let 2 C R™ (n =1, 2, or 3) be a domain, let ¢ : Q — [0, "],
0 < ¢* < oo, be a given differentiable function that we will call porosity, and let a and

b lie in C1([0, ¢*]) with a(0) = b(0) = 0 and both positive on (0, ¢*]. For the velocity u
and the pressure p, we consider the linear degenerate elliptic boundary value problem

(1.1) u=—a(¢)(Vp—g) in Q,
(1.2) V- (b(¢)u) + dp=¢'*f inQ,
(1.3) b(g)u-v = ¢ *gx on A9,

where g and f drive the system and a Neumann boundary condition has been applied
for some gy (we will also treat a Robin boundary condition; see (5.1)). The choice
of scaling in (1.2)-(1.3) in terms of ¢ will become clear as we develop the ideas.
The critical factor here is that ¢ may vanish on a set of positive measure. This
leads to a loss of control on p (see (2.4)), and a number of issues arise for numerical
approximation. In fact, p may be unbounded outside the support of ¢, which is
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difficult to approximate numerically. Moreover, if ¢ vanishes, say everywhere for
simplicity, it appears that the first equation implies that u = 0, but the second
equation trivializes to 0 = 0, leading to more numerical difficulties.

Degenerate elliptic equations have been approximated in many works, e.g., [16,
23, 5, 22, 11], using weighted Sobolev spaces and least squares techniques. But in
these works, € is the support of ¢, so the degeneracies are isolated to 92 and interior
sets of measure zero. It is important in some applications that ¢ is allowed to vanish
on a set of positive measure.

The system (1.1)—(1.3) arises, for example, as a simplified mathematical model of
mantle dynamics. Models of flow in the earth’s mantle [1, 20, 19, 18, 3] are based on a
mixture of fluid melt and matrix solid. Both fluid and matrix phases are assumed to
exist at each point of the domain. The porosity ¢ > 0 represents the relative volume of
fluid melt to the bulk volume, and this quantity is very small (a few percent) within
the mantle. Fluid melt is believed to form between rock crystal boundaries [27],
forming a porous medium, and so the interstitial fluid velocity v is governed by a
Darcy law in terms of the fluid pressure ps, such as

(14) B(vi—vs) = —%(vpf— og),

for some (relative) permeability K (¢), viscosity p¢, and density p. The matrix solid
is deformable, and it is modeled as a highly viscous fluid (velocity vs, pressure pg,
viscosity ps) governed by a Stokes equation. Conservation of mass, assuming constant
and equal phase densities (or a Boussinesq approximation), gives the mixture equation

(1.5) V- (éve+ (1 — ¢)vs) =0,
and a compaction relation is given as
(1.6) HsV - Vs = ¢(ps — ps)-

Because these systems have been combined using mixture theory, one obtains a
single, two-phase model that is assumed to hold even when one of the phases dis-
appears. Such models have advantages in numerical approximation, since the free
boundary between the one- and two-phase regions need not be determined, and the
equations remain unaltered in a time-dependent problem when a phase disappears or
forms in some region of the domain. A similar model arises in modeling two-phase
flow within a nondeformable porous medium [9, 21, 10, 14] and in the modeling of
partially melted ice, e.g., in glacier dynamics [17, 6, 26].

Nevertheless, the model (1.4)—(1.6) gives rise to a degenerate system when the
fluid melt disappears. The Stokes part is well-posed, since there is always matrix rock
present at each point of space (i.e., ¢ < ¢* < 1). Thus, we ignore the matrix part
of the problem. Assuming a relative permeability of the form K (¢) = proa(¢) and
setting b(¢) = ¢, we then extract the simplified mathematical model (1.1)—(1.3) with
U = Vi — Vs and p = pr. In the mantle dynamics problem, ¢~'/2f would represent
the matrix pressure pg, and perhaps one would set a(¢) = $'1% for some 6 > 0.

2. A priori estimates and a change of dependent variables. Let LP(S)
be the standard Lebesgue space of index p, 1 < p < co. Later we will need the space
WkP(S), the standard Sobolev space of k weakly differentiable functions for which
each derivative is in LP(S) (so LP(S) = W%P(S)). We may omit S if S = Q. Let (-,-)
denote the L?(f)) inner-product or possibly duality pairing, and let (-,-) denote the
L?(09) inner-product or duality pairing.
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To develop intuition about the degenerate system (1.1)—(1.3), we proceed formally
by assuming that there is a sufficiently smooth solution and that ¢ is reasonable. Once
we understand the system on a formal level, we will return to a rigorous analysis of
the problem in the next section. It will be convenient to define

c(¢) = Vb(¢)/a(¢) and d(¢) = v a(¢)b(e).
The possibility that ¢(¢) is ill-defined will be discussed in the next section.
After multiplying (1.1) by ¢(#)%4 and (1.2) by w, integrating, and integrating by
parts, we obtain the weak form
(2.1) (e(9)’u,9) — (p,V - (4(®)¥)) = (b(d)g, %),
(2:2) (V- (B()u),w) + (¢p,w) = (¢"7f,w),

where the test function 1 satisfies the homogeneous boundary condition (1.3) with
gy =0 on 9.
Suppose that we can extend gy to uy in Q such that

(2.3) b(¢)uy - v = ¢'%gy  on 9.
Taking ¥ = u — uy and w = p, and also taking w = ¢~V - (b(¢)u), in (2.1)-(2.2)

results in the a priori energy estimates

(24) le(é)ull + 16" ?pll + 16712V - (B(@)u)]|

< C{IIf 1+ lld(@)ell + lle(@)unl| + [I6~/2V - (b(¢)un)|}
in terms of the norm ||-||x,s of the Hilbert space H*(S) = W*:2(S), where ||-||s = ||“|lo,s
and ||-|| = ||+ ||q- Assuming the data are given so that the right-hand side is bounded,

as ¢ vanishes, we potentially lose control of p (and possibly u). This makes sense,
since p is the fluid pressure and there is no fluid phase. Nevertheless, we wish to have
a well-posed two-phase mixture even as one phase disappears. We do this by making
a change of dependent variables.

Let the scaled velocity and scaled pressure be defined as

(2.5) v =c(p)u=+/b(¢)/a(¢)u,
(2.6) q=¢?p,

respectively, since we have control of these quantities. Since b(¢)u = d(¢@)v, the
system (1.1)—(1.3) becomes

(2.7) v=—d¢)(V(¢~/%¢9)—g) imnQ,
(2.8) V- (d(¢)v) +¢'/2q=¢"2f inQ,
(2.9) d(@)v -v = ¢ %gx on 9.

If we divide the second equation by ¢!/2, this system is antisymmetric, since the
formal adjoint of —d(¢)V(é~1/2(-)) is ¢~ /2V - (d(¢)(-)). Now the energy estimates
(2.4) are transformed using (2.5)—(2.6) to read more simply as

(2.10) VIl + llgll + ll¢~*/2V - (d()v)|
< C{IIfIl+ lld(@)gll + l[vnll + 4712V - (d()v)ll},

where vy = ¢(@)un.
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3. The space Hy 4(div). We return to mathematical rigor. Based on the
previous section, we are led to define the space

(3-1) Hya(div; Q) = {v € (L*(@))" : ¢ /2V - (d(¢)v) € LX)},

wherein we must assume that ¢ behaves well enough to support the definition. The
natural condition to impose is

(3.2) ¢71/%d(¢) eL™(Q) and ¢7/?Vd(9) € (LO(V)".
The meaning is then clear: To define Hy 4(div), we interpret
(3.3) ¢712V - (d(¢)v) = ¢71/2Vd(¢) - v + ¢ 2d($V - v,

and so we simply require that ¢~/ 2d(¢) times the weak divergence of v lies in L.
To ensure that the formal adjoint operator —d(¢)V (¢~/2(-)) is well defined, we also
ask that

(3-4) ¢732d(¢)V¢ € (L=(Q))".
We remark that our conditions (3.2) and (3.4) are equivalent to the requirements that
¢~ 1/2d(p) € W1:>=(Q) and ¢—1/2Vd(¢) € (L>(2))™.

Lemma 3.1. If (3.2) and (3.4) hold, then Hy 4(div; Q) is a Hilbert space with the
inner-product
(3.5) (4, V) 1y a(a) = (0, V) + (672V - (d(d)u), 672V - (d(9)V)).
Moreover, H(div;Q2) = {v € (L*(Q))" : V-v € L*(Q)} C Hy q4(div; Q).

Proof. Tt is clear that Hy 4(div) is a linear space and that (-, )i, ,(aiv) is an inner-
product. We must show that the space is complete. Let {ug}32; C Hy q(div) be a
Cauchy sequence, which is to say that

e — el ycary = lae — uil® + 16772V - (d() (e — we))||> — 0

as £,k — co. As a consequence, there is u € (L?)" such that uy — u as k — oo, and
there is £ € L? such that & = ¢~'/2V - (d(é)ux) — £ as k — .

To obtain strong convergence of the full divergence term, multiply by a test
function ¢ € C§°(€1), integrate, integrate by parts, and use the product rule for
the gradient operator to compute

(6712V - (@d(@)ur), §) = — (uk, d($)V(¢7/*0))
= 5 (0, 6™/ 2d()V6Y) — (s, 67 /d($)VY)

—s 3w, 2d(@)V9) — (u, 6™ /2d()VY)
= — (wd(9)V(¢~*y))
=(¢71/2V - (@), 9)-

We conclude that & = ¢~1/2V - (d(¢)uy) converges weakly to ¢—1/2V - (d(¢)u) in L.
Therefore, £ = ¢~1/2V - (d(¢)u), and the proof of completeness is finished.

For any v € H(div), both v € (L?)" and V - v € L2, and so (3.3) implies that
¢~1/2V - (d(¢)v) € L?, and the final assertion of the lemma holds. O
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We wish to apply the Neumann boundary condition. Define the normal trace
operator vy q : Hg q(div;2) = H =12 (92) using the integration by parts formula

(3.6) (8.a(v),w) = (¢7/2V - (d(¢)V), w) + (v,d($)V (¢~ *w)),

wherein w € H'/?(8Q) has been extended to w € H'(Q). Note that (3.2) and
(3.4) imply that the operator is well defined by the right-hand side, and that we can
interpret v4 a(v) = ¢~ /2d(¢)v - v.

LEMMA 3.2. If (3.2) and (3.4) hold, then y4q : Hy a(div; ) — H-1/2(09Q) is
well defined by (3.6), and there is a constant C > 0 such that

(3.7) 176.a(V)|=1/2,60 = 6~ /2d($)v - v||—1/2,60 < Cll Ve, saiv)

for any v € Hy q(div; Q).
Finally, we apply the homogeneous boundary condition to define

(3.8) Hyao(div;Q) = {v € Hya(div; Q) : 74.4(v) = ¢ /?d(¢)v -v =0 on 69},
and we let the image of the normal trace operator be denoted by
(3.9) H /%(09) = vp.a(Hs,a(div; 2)) € H-2(09).

4. A scaled weak formulation and unique existence of the solution. In
this section, we set up and analyze a weak form of (2.7)—(2.9). To apply the essential
Neumann boundary condition (2.9), we define a lifting of the Neumann data gy to a
function vy € Hy 4(div; Q) such that

(4.1) Y8,a(Vn) = ¢~ 2d(¢)vn - v = gn,

which can be found provided that gy € H y/*(9%). We test (2.7) and ¢~'/2 times
(2.8) to obtain our scaled weak formulation: Find v € Hy q0(div;Q) + vy and ¢ €
L%(Q) such that

(42) v, %) = (4,67 2V - ([d($)9)) = (d(9)g, ¥) V¥ € Hy,a0(div; ),
(43) (6712V - (d(¢)v), w) + (g, w) = (f,w) Vuw € L*(9).
We require that f € L?(2) and d(¢)g € (L?(92))".

We saw the a priori energy estimates (2.10) for (4.2)—(4.3), which imply that if
there is a solution to the problem, then it is unique. To prove existence of a solution,
we use a stabilized variational formulation [13]. Let § > 0. The stabilized formulation
is constructed by taking (4.2) for ¥ € Hy g0(div; Q) and adding (4.3) with w replaced
by @ + d¢~1/2V - (d(¢)y) € L2(R) for w € L2(£2). That is,

(44) (v,¥)— (q,072V - (d(9)¥)) + (¢7/2V - (d()V), W) + (g, )
+6{(¢71/2V - (d(¢)Vv),$~ 2V - (d($)¥)) + (2, 672V - (d($)¥)) }
= (d(9)g, %) + (£, %) +6(f, 67V - (d(9)%))
Y(vp,w) € Hyp q,0(div; Q) x LA(9).
All of these problems are equivalent to the problem with § = 0, which is the original

problem (4.2)-(4.3), because for any given 6 and ¥ € Hy q0(div;{2), we can replace
the scalar test function @ by w — 6¢~1/2V - (d(#)¥) € L?(Q) for any w € L?(f).
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The stabilized bilinear form a; : (Hqg,,d‘o(div) X LZ) X (H@d,g(djv) X LZ) —Ris
defined by

(4.5)  as((vo,q), (¥, w))
= (vo,¥) = (0,¢7/*V - (d(&)¥)) + (67/2V - (d(#)vo), w) + (g, )
+6{(¢7/?V - (d(¢)v0), 672V - (d($)¥)) + (0,67 >V - (d(¢)¥)) },
and the linear form bs : Hp q,0(div) x L? — R is defined by

(4.6) bs(, w) = (d(d)g, ¥) — (vn,¥) + (f — 672V - (d() V), w)
+8{(f — ¢~V - (d(¢)Vn), ¢~ /2V - (d($)1)) }.

Now (4.4) is the problem: Find (vo, ¢) € Hg a,0(div; Q) x L2(f2) such that
47 as((vo,q), (¥, w)) =bs(¥,w) V(,w) € Hyap(div; Q) x L*(9).

With v = vp + vy and § = 0, this problem is (4.2)-(4.3). By construction, however,
all of the problems (4.7) are equivalent for any § > 0.

The two forms (4.5)—(4.6) are clearly continuous, i.e., bounded. We claim that
for any 6 € (0,2), the bilinear form a; is coercive. To see this, simply compute

a5 ((v0, ), (v, ) = [Voll2 + lall2 + 6162V - (d(@)vo)|I? + 5(a, 6=/2V - (d(#)vo))
> [voll2 + (1 - 15) lal* + 3616-29 - (d(@)vo)lI?

1
> 3ol sy + (1= 50l

Therefore, we can apply the Lax—Milgram theorem to conclude that (4.7) has a unique
solution for § € (0,2). By the equivalence of the weak problems, we then have a
solution for any 6 > 0, and in particular one for our problem, which is (4.7) with
0 =0, i.e., (4.2)-(4.3) (and for which we already showed the solution is unique). We
have proven the following theorem.

THEOREM 4.1. Let (3.2) and (3.4) hold, f € L%(Q), d(¢)g € (L%(Q))", and
gN € H 1/2(89) If vy is defined by (4.1), then there is a unigue solution to the
problem (4 2)4.3), and the energy estimates (2.10) and (2.4) hold.

5. Some extensions of the results. We can handle Dirichlet and Robin bound-
ary conditions, and in some cases, we can show that p € L%(Q).

5.1. Dirichlet and Robin boundary conditions. Instead of Neumann bound-
ary conditions (1.3), we could impose Dirichlet or Robin boundary conditions of the
form

(5.1) ¢p— w*b(¢)u-v = ¢'*gn  on 99,

where k > 0 is a bounded function and gr is given. Recalling (2.5)—(2.6), the scaled

version 1s

(5.2) g—K*¢"'2d(¢)v -v = gr on Y,
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and the scaled weak form is as follows: Find v € Hy 4(div;2) and g € L*() such
that

(5.3) (v, %) = (¢,67/2V - (d(9)¥)) + (267 (d($))>V - v, ¥ - v)
= (d(¢)8, %) — (gr, ¢~/ d($)¢ - v) Vi € Hy q(div; ),
(54) (67172V - (d(#)V), w) + (g, w) = (f,w) Vw € L*(9).

We require that gg € H/ 2(992) (actually, we require merely that gr be in the
dual space {H;,;ﬂ(aﬂ))*) and, as before, f € L%(2) and d(¢)g € (L%*(2))". Using
the trace Lemma 3.2, the a priori energy estimates are
(5.5) VIl + llall + 4712V - (d(@)V)]| + [lsd™"/d(9)v - vllan

< C{lIfll + lld@)gll + llgrll/2.60};

and the analogue to Theorem 4.1 can be proved in a similar way. We need to modify
as by extending it to (H;&fd(djv) X LQ) X (qu,d(div) X Lz) and adding a term, obtaining

as((v, @), (¥, w)) = as((v,q), (¥, w)) + (K¢~ (d(8))*V - v, 9 - v).
We also redefine bs as bj : Hy q4(div) x L? — R such that

bs(¥,w) = (d(P)g, ¥) + (fyw) — (gr, ¢~ /2d(9)y - v) + 8(f, 671V - (d($)¥))-

THEOREM 5.1. Let (3.2) and (3.4) hold, f € L?(Q), d(¢)g € (L?(Q))", and
gr € HY/2(0Q). Then there is a unique solution to the problem (5.3)~(5.4), and the
energy estimates (5.5) hold.

5.2. A condition for the pressure to be in L2. In some cases the solution
is more regular than implied by (2.4). Proceeding formally from (1.1)—(1.2), we have
the single equation

(5.6) — V- ((d(¢)’Vp) + ¢p=¢'"2f - V- ((d(4))’8).

We multiply by ¢~ !p and integrate by parts using the homogeneous Neumann bound-
ary condition (1.3) to see that

((d(9))2Vp,V(¢7'p)) + lIpll* = (672 f,p) + ((d(¢))*g, V(67 'p))-
After formally expanding the derivative terms, we obtain
(671(d(¢))*Vp, Vp) + |Ip||?
= (672 f,p) + (67" (d(¢))g, VD) — (67%(d(4))* Vo - &,p)
+ (¢7%(d(¢))*V¢ - Vp,p)
< €{llpl? + lo=/2d(0)Vpl®} + ll¢=3/2d($) V|| (o) |0~ /2d() V| ||
+C{llg™ 21 + 67 2d(d)gll* + ll6~>(d(¢))* Ve - gll*}
for any € > 0, and so
(5.7) I~ 2d(@)Vpl +llpll < C{ll¢g~"2FIl + l67/*d($)gll + ll6~*(d(¢))* Ve - gl|},

provided that [|¢~3/2d(¢)Vé| L) < 2. For greater generality, we have chosen to
work with the scaled pressure. However, it is interesting to note that p may in fact
be stable in some cases, and then it is only the loss of an equation that is problematic
for numerical approximation.
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6. Mixed finite element methods. We now discuss discrete versions of our
scaled systems (4.2)—(4.3) for Neumann and (5.3)—(5.4) for Dirichlet and Robin bound-
ary conditions. We assume that {2 C R™ is a polygonal domain and impose over
it a quasi-uniform, conforming finite element mesh 7, of simplices or rectangular
parallelepipeds having maximal diameter h. We will approximate (v, g) in the lowest
order Raviart—Thomas (RTy) finite element space V, x W [24, 12, 25], although
other mixed elements could be used. If n = 2, the mesh may also contain convex
quadrilaterals, which then use the lowest order Arbogast—Correa (ACyp) mixed finite
elements [2]. We also define the space Vo= {vh € Vi : v -v =0 on 6Q}.

Later we will make use of the usual projection operators associated with RTy or
ACy. Let Pw, : L2(02) — Wj, denote the L?(£2) projection operator, which projects a
function onto the space of piecewise constant functions. We sometimes abbreviate this
operator when applied to a function w as w = Pw, w. Moreover, let 7 : H(div;2) N
L?t¢(Q2) — V}, (any € > 0) denote the standard Raviart-Thomas or Fortin operator
that preserves element average divergence and edge normal fluxes [24, 12, 25, 2].

To simplify the treatment of boundary conditions, when using Neumann condi-
tions, let By = 1 and g = 1 — By = 0, and when using Robin conditions, let fn =0
and fr = 1. Also let Vi = nVio + frVa. The mixed finite element method for
Neumann (4.2)—(4.3) or Robin (5.3)—(5.4) boundary conditions is as follows: Find
Vi € Vi + BV and g, € W, such that

(6.1) (Va, %) — (g0, 62V - (d($)¥)) + Br(x*$~ (d($))*Vh - v, % - v)

= (d(¢)8, %) — Brlgr, ¢~ /*d(d)¢ - v) Vi) € Vy,
(6:2) (¢7Y/2V - (d(¢)vn), w) + (an, w) = (f,w) Vw € W
When using Neumann boundary conditions, we could modify the scheme to find
Vi € Vpo + vy instead. The divergence and boundary terms involve division by
¢, so some care is needed in the implementation. Everything is well defined by the
assumptions (3.2) and (3.4), so at a quadrature point, simply set the term to zero
when ¢ vanishes.

To show unique solvability and stability of the Robin case, we require a discrete
version of the trace Lemma 3.2.

LEMMA 6.1. If (3.2) and (3.4) hold and the finite element mesh Ty is quasi-
uniform, then there is a constant C' > 0 such that

(6.3) g2V - (d(@)vn)ll < C{lIVall + [ Pwi 6™V - (d(d)va)lll}

for any vy € V. Moreover, for some possibly different constant C > 0,

(6.4) lvg,a(va)ll_1/2,60 = ll6~/2d($)vh - v|| _1/2,60
< C{|[vall + |Pws [ 2V - (d($)va)]ll}

for any vi € V.

Proof. The triangle inequality gives that

l71/2V - (d(g)va)l
< 1Pw[671/2V - (d(@)va)lll + 671/2V - (d(@)va) — P [671/2V - (d(@)va)]ll
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We compute

|6=Y/2V - (d(¢)Vh) — Pw;, [6~2/2V - (d(#)va)]|
= |¢7/?Vd(¢) - Vi — Pwi [¢7/*Vd(0) - Vil
+ ¢~ %d(¢)V - v — Pw, [6™/?d(6)V - il
< 2|¢7/2Vd(¢) - vall + |67 /2d($)V - Vi — Pw;, [67/2d(¢)V - va]||
< Cllvall +||(¢7Y2d(¢) — Pw, [~ /2d(#)])V - va ),

since ¢~ 1/2Vd(¢) € (L>°(2))"™ by assumption (3.2). Furthermore, for the last term,

| (67/2d(8) — Pwi[o~/2d($)]) V - va|
< ||¢7/2d(¢) — Pw,, [¢7/2d()]| L= ) IV - V|
< Chll¢™%d(¢)wr= @IV - vall
< Cll¢2d(9)llwr.o ) |V,

using [15] for the approximation of the L%-projection in L® and an inverse estimate,
since the finite element mesh 7}, is assumed to be quasi-uniform. Because ¢—/2d(¢) €
W(Q) by assumptions (3.2) and (3.4), the first result (6.3) is established. The
discrete trace bound (6.4) then follows directly from the trace Lemma 3.2. 0

Substituting into (6.1)—(6.2) the discrete solution ¥ = v — OnVN € \_fh and
w = gn + Pw, [¢~ V2V - (d(¢)v#)] € Wr shows the stability result

(6.5) [IVall + llgnll + Pw, (6772 - (d(&)va)lll + Brllcd™/2d(d)va - vllon
< c{lfll+ ld#)gl
+ Brllgrlli/2,00 + Bx(|[vall + [|Pws [672V - (d(¢)vn)]]l) }-

Uniqueness of the solution is therefore established, and existence follows because the
discrete system over a basis is a square linear system.

With the notation |E| for the measure (area or volume) of E € T, the local
average of ¢ restricted to the element E € 7T}, is

A 1
—=— dz.
dlz |E|[E¢

We define the piecewise constant discrete pressure p, € W}, by setting for all E € T,

- if §|r = 0,
o k= {(qs Vig)s if dls £0,

and the discrete velocity up € Va+ Bnvn is defined by setting, for all element edges
(n =2) or faces (n = 3) e,

0 ifbeE/b(q'))ds:O,

(67) up - .U|g =
b,;l/d(qs) ds Vi -vl|e ifbe#0,

so that 7(b(¢)un) = m(d(d)vh).
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7. An analysis of the error of the mixed method. For simplicity of ex-
position, we continue the discussion only for the Robin system (8y = 0). Since
Vi C H(div) C Hy 4(div), we can take the difference of the true weak formulation
(5.3)—(5.4) with discrete test functions and (6.1)—(6.2), which leads to the system

(7.1) (V= Vn,¥) — (¢— an, ¢ 2V - (d()¥))
+ (K267 Ud(9)2(V = V) v, -v) =0 Vipe Vy,
(7.2) (67 1/2V - (d(d)(v — Vh)),w) + (@ — qn,w) =0 Vw € Wy,

We modify this system by introducing our two projection operators to see that

(v — Vi, %) — (§ — an, Pwn [$7/2V - (d(@)¥)]) + (K76 (d(9)) (v — V4) - v, % - V)
=—(v—mv,¥)+ (¢ — 4,67 /*V - (d(o)¥)) — (*¢~ ' (d(¢))*(Vv — V) - v, - v),
(Pw, [0~ /2V - (d(8) (v — va))]l, w) + (4 — qn, w)
= —(Pw[¢7V - (d()(v — V)], w).

Assuming that v is sufficiently regular to compute nv, the test functions ¥ = nv —
Vi € Vi and w = § — gn + Pw;, [0 /2V - (d(¢)(7v — v3))] € W, lead us to
(73)  |lwv —vall* + ¢ — gnll?
+[1Pwi [671/2V - (d(8)(wv — va))III* + lIkd™/2d(d)(wv — Vi) - v|i3q
< O{llv—=v|* + llg — 4II?
+|Pwi[67/2V - @(@)(v = ))]II” + 156~ 2d($) (v —7v) - v 3q
+|(g— 4,672V - (d(#)(xv — va)))|}-

The last term on the right-hand side is troublesome. It arises because we could not
substitute the test function ¢—1/2V - (d(¢)(7v — v4)) & W), for w.

We continue by noting that anything in W}, is orthogonal to g—g. We also expand
the divergence terms using the product rule for differentiation to estimate

[(a— 4,672V - (d(¢)(7v — vn)))|
= (¢~ 4 (I —Pw,)[¢67/°Vd(9) - (v — V1) + ¢ 2d($V - (7v — v1)])]
< Clig = dll {lIlmv —vall + (I = Pw, )~ /?d($)V - (xv —va)lll},

and, since V - (7v — vy) € Wy,

(I = Pwi) [~ 2d($V - (wv — va)]|
= [ = Pw, )¢~ /?d(]V - (wv — va)|
< (I = Pw, )¢ 2d(@) L@V - (xv — va)|
< Ch ¢~ %d(8)llwr. (e IV - (wv — va)|
< Cliwv — val,

using [15] again for the approximation of the L?-projection in L* and an inverse esti-
mate, since the finite element mesh 7T}, is quasi-uniform. Combining the two previous
results, we have that

(7.4) (a4, 672V - (d(&)(wv —va)))| < Cllg —dll v — val|.
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Finally, (7.4), (7.3), and the triangle inequality lead us to the estimate

IV —vall +llg — gl
+ [1Pw, [672V - (d(@) (v — V)]l + [lxd™/2d(4) (v — V&) - vl|aa
< C{llv—nv|l +llg -4l
+1Pw [671/2V - (d(@)(v — 7v)]l| + |Ik¢™2d($)(v —7v) - vlaa}.
Similar estimates can be shown to hold for the system using Neumann boundary

conditions. In this case, the test function ¥ = 7v — v+ vy — VN € Vg is required.
We have shown the following theorem.

THEOREM 7.1. Let (3.2) and (3.4) hold, f € L%(Q), d(¢)g € (L*(Q))", and
assume that the finite element mesh Ty is quasi-uniform. Let (v,q) be either the
solution to (4.2)—(4.3) with vy € Hy 4(div;Q) (and set fy = 1, Brn = 0) or the
solution to (5.3)~(5.4) with gr € H/?(8Q) (and set By =0, Br = 1). Let (Vh,qn)
be the solution to the mized method (6.1)—(6.2). Assume that v, fyvn € H(div; Q)N
L?*¢(Q) for some € > 0. Then
(7.5) v = vall + llg — anll + |Pw, 67 /?V - (d()(v — va))Ill

+ Brllkd™1/2d(¢) (v — vn) - v]loe
< C{llv—nv| +llg — gll + [|Pw, [¢7/2V - (d(¢) (v — =v))]|

+ Brllkg™2d(¢)(v — mv) - v]laq + Bxllvn — V| b, y(aivi) }
< C{llv — 7|z (aiv;e) + llg —dll

+ Brl|lw(v — 7v) - v|laa + B lIVN — 7N |l (aivie) }-

The last estimate of the theorem follows from (3.2) and (3.4). If the solution is
sufficiently regular, the approximation is of order O(h).

8. Some closed form solutions in one dimension. Before presenting nu-
merical results, it is instructive to consider a few closed form solutions to the problem

in one dimension. Let © = (—1,1), a(#) = b($) = ¢ (s0 d(¢) = &, c(¢) = 1), g = 0,
and f = ¢~1/2f, and reduce the mixed system (1.1)—(1.3) to

(8'1) _(¢2p,)f + Q‘Ip — djf: -l<z< 17
(82) ¢*(-1) (1) = ¢*2(1)p'(1) = 0.
This is a Sturm-—Liouville problem. By our energy estimates (2.4), we require that

u=1v=—¢p’ € L?(—1,1) when ¢'/2f € L2(—1,1).
For a > 0, let us simplify to the porosity

(8.3) #(x) = {2 r<o

i o >k
The conditions (3.2) and (3.4) hold if and only if & > 2. Now (8.1)—(8.2) becomes
—z%p" — 20z 'p +p=Ff, O0<z<1l, and p'(1)=0.
When a = 2, we have the Euler equation

(8.4) —2p” —dzp' +p=F, O<z<l.
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In this case the Euler exponents satisfy r(r — 1) +4r — 1 =0, and so

—-3++/13 —3—+/13
(8.5) r1:+%0.3>0 and 1y =————~-33<0,
and the solution to the homogeneous equation is phom(z) = c12™ + caz™. The
boundary condition and the requirement that u = —¢p’ € L%(0,1) show that the

solution is unique. Variation of parameters gives the solution to the nonhomogeneous
equation as

p(z) = Tl__lrz {z:’“l ( j_(li)l dr + cl) — z" ( j,(j)l dr + Cg)}.

If we restrict to

(8.6) fz)=2f, O0<z<l,

then, provided 3 # 1,73 and 0 < = < 1, we have the closed form solutions

p(x) = +Ciz™ + Cyz™.

_.B
(B—r1)(B—r2)
To get f = ¢'/2f = =1+8 € L2(0,1), restrict to 8 > —3/2. Then u = —¢p’ € L2(0,1)
implies that C3; = 0, and the boundary condition determines C. If we arbitrarily set
p =0 for z < 0, the solution can be expressed as

0, _1<IS0:
(8.7) q(z) =zp(z) and p(z)= Bz™ —ryzP
nB-mB-r) TSt
0, —1<z<0,
v(z) =ulz) ={ —B(gm+1 — A+
53) (2) =ul@) = § —Ban+ -t

B—r1)(B—12)

9. Some numerical results. In this section we test the convergence of our pro-
posed numerical scheme (6.1)—(6.2), (6.6)—(6.7) using Dirichlet boundary conditions.
We fix the domain 2 = (—1,1)" and use a uniform rectangular mesh of m = 2/h
elements in each coordinate direction.

‘We implement the tests in terms of manufactured solutions in which closed form
expressions for ¢ and p are given, and from these f and Dirichlet boundary conditions
(i.e., & = 0) are computed. In all tests, we take g = 0 and a(¢) = b(¢) = ¢ (so
d(¢) = ¢, c(¢) = 1, and u = v). In this case, (3.4) follows from (3.2), so we only
check the latter condition.

The code was developed using the deal.II finite element library [8, 7].

9.1. A simple Euler equation in one dimension. We begin with a test case
corresponding to our closed form solution (8.7)—(8.8) of the Euler equation (8.4). In
this case, it is easy to see that in terms of the potential singularity near =z = 0,
lg| ~ |u| ~ |z|*-2 + |z|**+P and |p| ~ |z|%2 + |z|#, and so for any € > 0,

g,uc Hmin(1.83/2+F)—€e .9 pe Jymin(0.8,1/2+58)—¢

Since ¢(z) = 22, 0 < = < 1, we have that ¢—1/2¢/ = 2 € L>°(0, 1), and our conditions
(3.2) and (3.4) on ¢ are satisfied.
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TABLE 1
Euler equation. Shown are the relative discrete L2-norm errors of g, p, and u for various
numbers of elements m x m and for four values of 8. The convergence mate corresponds to a
superconvergent approxrimation, restricted by the regularity of the true solution.

Scaled pressure g Pressure p Velocity u
B m error rate error rate error rate
0.5 32 0.019721 — 0.027441 — 0.007878 =

64 0.009919 | 0.991 0.015205 | 0.852 0.003816 | 1.046
128 0.004975 | 0.996 0.008590 | 0.824 0.001885 | 1.018
256 0.002492 | 0.998 0.004932 | 0.801 0.000938 | 1.006
512 0.001247 | 0.999 0.002863 | 0.785 0.000468 | 1.002
0 32 0.021504 — 0.031925 — 0.009957 ——

64 || 0.010815 | 0.992 0.019032 | 0.746 0.004722 | 1.076
128 0.005424 | 0.996 0.012029 | 0.662 0.002289 | 1.045
256 0.002716 | 0.998 0.007966 | 0.595 0.001125 | 1.024
512 0.001359 | 0.999 0.005437 | 0.551 0.000558 | 1.013
—0.5 32 0.023505 == 0.124442 . 0.013274 —

64 0.011860 | 0.987 0.120184 | 0.050 0.006533 | 1.023
128 0.005968 | 0.991 0.117710 | 0.030 0.003231 | 1.016
256 0.002999 | 0.993 0.115756 | 0.024 0.001604 | 1.010
512 0.001506 | 0.994 0.113991 0.022 0.000799 | 1.006
-1 32 0.024534 — 0.467424 — 0.028559 —

64 0.012366 | 0.988 0.502215 | -0.104 0.019402 | 0.558
128 0.006221 | 0.991 0.528012 | -0.072 0.013445 | 0.529
256 0.003132 | 0.990 0.546552 | -0.050 0.009412 | 0.515
512 0.001583 | 0.984 0.559693 | -0.034 0.006622 | 0.507
—-1.5 32 0.074891 = 0.706240 — 0.268648 =

64 0.072461 | 0.048 0.717895 | -0.024 0.259974 | 0.047
128 0.071367 | 0.022 0.723448 | -0.011 0.252191 | 0.044
256 0.070585 | 0.016 0.726124 | -0.005 0.245192 | 0.041
512 0.069885 | 0.014 0.727429 | -0.003 0.238866 | 0.038

We consider five values of 5 (which is the parameter in the source function f = P
or f=121% 0<z<1),8=1/2,0,—1/2, —1, and —3/2. The numerical results are
presented in Table 1. Based on the regularity of the solution, for ¢ and u we expect
convergence to be approximately O(h!) for 8 > —1/2 and O(h%®) for § = —1, and we
expect no convergence for 3 = —3/2. Indeed, we see these rates in the table, although
q exhibits better convergence in this test when 8 = —1. On the other hand, for p we
expect convergence to be about O(h%®) for f = 1/2 and O(h"®) for 8 = 0, and we
expect no convergence for § < —1/2. Again, we see these rates in the table.

9.2. A smooth solution test in two dimensions. For the next series of tests,
we assume that p = cos(6xy?) is smooth and that ¢ is given by

0, r<—3/4ory<—3/4,

(9.1) ¢= (z+3/4)%*(y +3/4)%* otherwise.

We note that ¢=1/2V ¢ is in (Lm((—l, 1)2))2 if and only if & > 2. Nevertheless, we
consider the five values & = 2, 1, 1/2, 3/8, and 1/4. Owing to the singularity in =
along = = —3/4, we see that for any € > 0,

ge HOV/2< and ue (B2,

Results are given in Table 2. We see O(h) convergence for ¢ and u when o = 2
and 1. For these two largest values of @, ¢ and u are (nearly) sufficiently regular
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TABLE 2
Smooth p two-dimensional test. Shown are the relative discrete L2-norm errors of g, p, and u
for various numbers of elements m x m and for three values of o defining ¢. The convergence rate
18 better than expected for low values of .

Scaled pressure g Pressure p Velocity u
a m error rate error rate error rate
2.0 16 0.168371 — 0.091681 — 0.227056 -

32 0.085350 | 0.980 0.050988 | 0.846 0.112325 1.015
64 0.043004 | 0.989 0.029729 | 0.778 0.056147 1.000
128 0.021588 | 0.994 0.018401 0.692 0.028124 | 0.997
256 0.010816 | 0.997 0.011964 | 0.621 0.014091 0.997
1.0 16 0.109458 — 0.078700 — 0.191054 —
32 0.055158 | 0.989 0.041996 | 0.906 0.094530 1.015
64 0.027715 | 0.993 0.023506 | 0.837 0.047351 0.997
128 0.013912 | 0.994 0.014135 | 0.734 0.023880 | 0.988
256 0.006980 | 0.995 0.009043 | 0.644 0.012153 | 0.974
0.5 16 0.086993 = 0.075720 — 0.166463 =
32 0.044064 | 0.981 0.039040 | 0.956 0.082994 | 1.004
64 0.022311 0.982 0.020722 0.914 0.042063 | 0.980
128 0.011329 | 0.978 0.011606 | 0.836 0.021808 | 0.948
256 0.005780 | 0.971 0.006963 | 0.737 0.011962 | 0.866
0.375 16 0.082881 = 0.076193 — 0.162887 —
32 0.042577 | 0.961 0.040198 | 0.923 0.085878 | 0.924
64 0.022666 | 0.910 0.023732 | 0.760 0.052387 | 0.713
128 0.013659 | 0.731 0.017894 | 0.407 0.040953 | 0.355
256 0.010643 | 0.360 0.017134 | 0.063 0.039050 | 0.069
0.25 16 0.089039 = 0.092354 — 0.179598 —
32 0.061751 0.528 0.074371 0.312 0.126078 | 0.510
64 0.057174 | 0.111 0.076599 | -0.043 0.115282 | 0.129
128 0.060753 | -0.088 0.084176 | -0.136 0.118547 | -0.040
256 0.066000 | -0.120 || 0.092146 | -0.131 0.124752 | -0.074

to support first order convergence, but @ = 1 is insufficient for the condition (3.2).
Perhaps this condition is overly restrictive for convergence. In fact, it may be enough
that ¢—1/2V¢ € (L2((-1, 1)2))2, which is true here if and only if a > 1.

There is some degradation in the convergence rate for ¢ and u when o = 0.5, and
we see poor convergence behavior for the two smallest values of . Even though the
pressure p is smooth (at least where ¢ > 0), its approximation shows poor convergence
for all values of a.

We depict the solutions p and ¢ in Figure 1. Although p was chosen to be smooth,
we have displayed p = 0 in the one-phase region, since it is ill-defined there. Therefore,
p is not smooth on the boundary between the one- and two-phase regions B = {z =
—3/4,y > —3/4}U{z > —3/4,y = —3/4}. We also display the scaled pressure g,
which is well behaved for @ = 2 and degenerates near B as a decreases (i.e., as $'/2V¢
loses its regularity).

The reader should note that B lies on a grid line. If we take an odd number of
elements, we will avoid this. Results are shown in Table 3. When a =2 or a =1, we
see errors and rates of convergence similar to those for the case of B being resolved
by the grid in Table 2. However, the errors and convergence rates are worse for the
more challenging cases of a < 1/2.

9.3. A nonsmooth solution test in two dimensions. For the final series of

tests, we assume that ¢ is given by (9.1) with e = 2, but we impose the nonsmooth
pressure solution

(9.2) p=1y(y—3z)(z+3/4)°, B=-1/4,-1/2, or —3/4.
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Fic. 1. Smooth p two-dimensional test. Shoun are the pressure p and scaled pressure q for
various values of a defining ¢. The pressure is smooth, except on the boundary of the support of
¢ (i.e., = —3/4 or y = —3/4). The scaled pressure becomes less regular as o decreases near the
boundary.

TABLE 3
Smooth p two-dimensional test. Shown are the relative discrete L2-norm errors of g, p, and u
for various odd numbers of elements m x m and for o = 2 and 0.25 defining ¢. The convergence is
similar to the case of grids that resolve the boundary between the one- and two-phase regions when
a =2, but not for o = 1/4.

Scaled pressure g Pressure p Velocity u
a m error | rate error | rate error | rate
2.0 1T 0.158736 — 0.093725 — 0.213317 —

33 0.082806 | 0.939 0.053970 | 0.796 0.108907 | 0.970
65 0.042348 | 0.967 0.032562 | 0.729 0.055285 | 0.978
129 0.021422 | 0.983 0.020726 | 0.652 0.027907 | 0.986
257 0.010774 | 0.991 0.013747 | 0.592 0.014036 | 0.991
1.0 17 0.103762 — 0.078254 — 0.178981 —
33 0.053759 | 0.949 0.041893 | 0.901 0.091192 | 0.973
65 0.027388 | 0.973 0.022864 | 0.874 0.046193 | 0.981
129 0.013836 | 0.985 0.013206 | 0.792 0.023283 | 0.988
257 0.006960 | 0.991 0.008070 | 0.710 0.011705 | 0.992
0.5 17 0.084208 — 0.076555 — 0.162552 —
33 0.045726 | 0.881 0.047379 | 0.692 0.091236 | 0.833
65 0.026708 | 0.776 0.036328 | 0.383 0.058930 | 0.631
129 0.018298 | 0.546 0.032643 | 0.154 0.046176 | 0.352
267 0.014852 | 0.301 0.030929 | 0.078 0.041385 | 0.158
0.375 17 0.084986 = 0.088812 — 0.170818 =
33 0.054351 0.645 0.069672 | 0.350 0.112138 | 0.607
65 0.043071 0.336 0.066478 | 0.068 0.090562 | 0.308
129 0.040022 | 0.106 0.067148 | -0.014 0.084275 | 0.104
257 0.039486 | 0.019 0.068153 | -0.021 0.082818 | 0.025
0.25 17 0.100156 = 0.116319 — 0.202030 —
33 0.084350 | 0.248 0.110231 0.078 0.162366 | 0.315
65 0.082428 | 0.033 0.113804 | -0.046 0.151568 | 0.099
129 0.083791 | -0.024 0.117700 | -0.049 0.150139 | 0.014
257 0.085413 | -0.028 0.120492 | -0.034 0.151005 | -0.008
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Fic. 2. Nonsmooth p two-dimensional test. Shoun are the pressure p and scaled pressure q for
two values of 8 in (9.2). The pressures are smooth, except on the boundary of the support of ¢ (i.e.,
x=—3/4 or y=—3/4). The two pressures become less regular near the boundary as 3 decreases.
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TABLE 4
Nonsmooth p two-dimensional test. Shoun are the relative discrete L2 -norm errors of g, p, and
u for various odd numbers of elements m x m and for 8 = —1/4 and —3/4 defining p in (9.2).

Scaled pressure g Pressure p Velocity u
B m error rate error rate error rate
—1/4 17 0.113422 e 0.219468 — 0.164061 —

33 0.059622 | 0.928 0.170744 | 0.362 0.090493 | 0.858
65 0.030586 | 0.963 0.138230 | 0.305 0.048777 | 0.892
129 0.015493 | 0.981 0.114252 | 0.275 0.025908 | 0.913
257 0.007798 | 0.991 0.095306 | 0.262 0.013628 | 0.927
—1/2 17 || 0.113601 — 0.464281 — 0.165351 T
33 0.060562 | 0.907 || 0.436380 | 0.089 0.090903 | 0.863
65 0.031451 | 0.945 0.417038 | 0.065 0.048833 | 0.896
129 0.016115 | 0.965 0.401995 | 0.053 0.025859 | 0.917
257 0.008201 | 0.975 0.389323 | 0.046 0.013566 | 0.931
—3/4 17 || 0.111486 = 0.684562 — 0.168008 TR
33 0.061565 | 0.857 || 0.676109 | 0.018 0.092050 | 0.868
65 0.033496 | 0.878 0.673052 | 0.007 0.049354 | 0.899
129 0.018222 | 0.878 0.672571 0.001 0.026147 | 0.917
257 || 0.009990 | 0.867 || 0.673278 | -0.002 0.013765 | 0.926

This pressure and the scaled pressure g = ¢!/2p are depicted in Figure 2, where one
can see clearly the degeneracy in p near © = —3/4 and that g is better behaved. In
the case 8 = —1/4, ¢ and components of u lie in H1-?5~¢ and are relatively smooth,
whereas when 3 = —3/4, ¢ and components of u lie only in H%75—¢ (any € > 0). We
use grids that do not resolve the interface between the one- and two-phase regions.
The discrete errors and convergence rates are shown in Table 4. The scaled pressure
converges as expected, and the velocity seems to be converging a bit better than
expected. The pressure barely converges at all, or even may diverge.

10. Summary and conclusions. We considered a two-phase mixture of matrix
solid and fluid melt, which can degenerate as the porosity ¢ vanishes. Energy estimates
suggested that the pressure p is uncontrolled; moreover, an equation is lost when ¢
vanishes, making it difficult to handle the equations numerically.

We changed variables to a scaled set that remains bounded in the energy esti-
mates. To formulate a well-posed mixed weak problem in the scaled variables, we
defined precisely the Hilbert space Hy 4(div) within which the scaled velocity resides.
The key hypotheses were that ¢—1/2d(¢) € W*°(Q) and ¢—1/2Vd(¢) € (L>(Q))".
Moreover, a normal trace operator was defined to handle boundary conditions. Ex-
istence and uniqueness of a solution to the weak formulation was obtained from the
Lax—Milgram theorem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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We defined a mixed finite element method based on lowest order Raviart—Thomas
and Arbogast—Correa spaces. The method is stable, and an error analysis showed
optimal rates of convergence for sufficiently smooth solutions.

In a simple case in one dimension, the equations reduce to an Euler equation
for which a closed form solution was computed. Numerical tests of this problem
showed that the mixed method achieved optimal rates of convergence with respect
to the regularity of the solution. Convergence of the true pressure was relatively
poor. A numerical test for a two-dimensional problem using d(¢) = ¢ also exhibited
optimal convergence rates when ¢ was reasonable. In this test, it was necessary that
¢~ 12V $ e L?, which is weaker than being in L>. Moreover, meshes that did not
match the boundary of the one-phase region showed no degradation of results from
cases with meshes that match this boundary when ¢—1/2V¢ e L2.

We plan to present an easy to implement cell-centered finite difference (CCFD)
approximation of this mixed method in [4]. The CCFD method is stable and locally
mass conservative, and numerical tests show that it maintains optimal convergence
rates and even achieves superconvergence. The techniques developed in this paper
will be applied to the simulation of the mechanics of mantle dynamics in [3].

Acknowledgment. The authors express their appreciation to Professor Marc
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