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MIXED METHODS FOR TWO-PHASE DARCY-STOKES
MIXTURES OF PARTIALLY MELTED MATERIALS WITH
REGIONS OF ZERO POROSITY"

TODD ARBOGASTT, MARC A. HESSE!, AND ABRAHAM L. TAICHERS

Abstract. The Earth’s mantle (or, e.g., a glacier) involves a deformable solid matrix phase
within which a second phase, a fluid, may form due to melting processes. The system is modeled as
a dual-continuum mixture, with at each point of space the solid matrix being governed by a Stokes
flow and the fluid melt, if it exists, being governed by Darcy’s law. This system is mathematically
degenerate when the porosity (volume fraction of fluid) vanishes. Assuming the porosity is given,
we develop a mixed variational framework for the mechanics of the system by carefully scaling the
Darcy variables by powers of the porosity. We prove that the variational problem is well-posed, even
when there are regions of one and two phases. We then develop an accurate mixed finite element
method for solving this Darcy—Stokes system and prove a convergence result. Numerical results are
presented that illustrate and verify the convergence of the method.
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1. Introduction. The equations of mantle dynamics introduced by McKen-
zie [28] have a wide range of applications in Earth physics [2, 27, 26, 25], such as
in modeling midocean ridges, subduction zones, and hot-spot volcanism, as well as to
glacier dynamics [22, 9, 37] and other two-phase flows in porous media [13, 18]. For
example, at a midocean ridge, melt is believed to migrate upward until it reaches the
lithospheric “tent” where it then moves toward the ridge within a high porosity band.
Simulation of this phenomenon requires numerical methods that accurately handle
highly heterogeneous porosity and the single-phase to two-phase transition.

The model assumes a dual-continuum mixture of solid matrix and fluid melt. The
mixing parameter is the porosity ¢, i.e., the volume fraction of fluid melt, which is
assumed to be much smaller than one, but it may be zero in parts of the domain
where there is no fluid melt.

We use subscripts f, s, and r to refer to a quantity associated with the fluid melt,
the matrix solid, or the relative fluid minus solid, respectively. Fluid melt forms at
the boundaries of rock crystals and so obeys Darcy’s law for fluid flow around solid
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matrix “grains,” which is

k 2420
(1.1) u=o¢v, =p(vy —vy) = —OQST(VW —Prg);

where u is the Darcy velocity, v and p are the velocity and pressure, u is the viscosity,
k(¢) = kop?*+2® is the porosity dependent permeability with © a constant between
0 and 1/2 (see, e.g., [13, 38]), p is the density, and g is the downwards pointing
gravitational vector.

As the two phases melt or solidify, total mass is conserved. After applying a
Boussinsq approxzimation [35] (constant and equal densities for nonbuoyancy terms),
this is expressed as

(1.2) V-(u+v,)=0.

Conservation of momentum for the slowly creeping mixture obeys the Stokes
equation. In terms of the deviatoric stress of the mixture

(1.3) 6 =06(vs) =2us(1 — ¢)(Dvs — 5V - v,I),
wherein Dv, = £(Vv, + Vvl) is the symmetric gradient, we have that
(1.4) —Vp+V-6(vs) = —(ps + dpr) g,

where p = ¢ps + (1 — @)pm = ps + @p, is the mixture pressure.
The mechanical system is closed by relating the solid and fluid pressures through
a compaction relation [34]

(1.5) ps—pfz—%v~vs,

where ps/¢ is the solid matrix bulk viscosity.

When coupled with solute transport and thermal evolution, the model transitions
dynamically in time from a nonporous single phase Stokes solid to a two-phase porous
medium. Because the model is based on mixture theory, it has the advantage that
the free boundary between the one- and two-phase regions need not be determined
explicitly in the numerical approximation. Unfortunately, the disadvantage is that
the Darcy part of the equations is mathematically degenerate in regions where the
porosity is zero, since then there is only the one solid phase, even though the model
equations continue to describe both phases over the entire domain 2. In this paper we
assume that ¢(x) is given at some instant of time, and we discuss only the mechanics
part of the full model.

A mixed finite element method (MFEM) is a good candidate for a computational
approximation of the mechanics part of this model. MFEMs have an extensive theory
for both Darcy and Stokes flows. Moreover, velocity fields computed using MFEM are
continuous on each element and have a continuous normal component across element
boundaries. This allows coupling with the transport equations of solute and thermal
evolution, since the velocities unambiguously determine particle trajectories.

The Stokes part of the system is well-behaved, but the Darcy part has difficulties
when ¢ vanishes. Later, we will see (2.26) and (2.27), which imply that

(1.6) I~ =Cul| +[l¢~/2V - u|| + [|¢*/*ps|| < C
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for some constant C, where || - || is the L?(£2)-norm. These estimates suggest that the
fluid pressure py may be unbounded where porosity vanishes. Indeed, the fluid pressure
is no longer a physical variable when there is no fluid. Moreover, any numerical
method that does not take into account the degeneracy of ¢, say by instead imposing
a small nonzero porosity ¢y everywhere, is sure to have a condition number that grows
as ¢g — 0. Our numerical results will show these issues.

Recently, two of the current authors [6, 5] developed an MFEM and cell-centered
finite difference method for a single Darcy system with a similar degeneracy as appears
in (2.4)—(2.5). The key is to follow the hint in the stability estimates and scale the
fluid pressure and velocity to avoid problems with vanishing porosity. In this paper
we apply this idea to the full set of mantle mechanics equations (1.1)—(1.5).

In the rest of the paper, we present in section 2 our scaled formulation that di-
rectly resolves the issue of degenerate porosity. We prove the existence and uniqueness
of a solution to the scaled variational formulation. In section 3 we define our MFEM
for the numerical approximation of the scaled variational formulation and prove its
convergence. In section 4, we present a modification of the MFEM that is locally mass
conservative. In section 5, we discuss implementation and give a mass lumping mod-
ification that results in a relatively simple solution procedure on rectangular meshes.
Numerical results illustrating and evaluating the effects of degenerate porosity are
given in sections 6-7. We include tests of a one-dimensional compacting column with
various porosity functions, and a two-dimensional test example akin to a midocean
ridge. We conclude the paper in section 8.

2. A scaled mixed variational formulation. Define the pressure potentials
(2.1) af =ps —prgz and  qs =ps — prgz,
where z is depth and indeed ¢, is defined using the fluid density ps. Also let
(2.2) q=¢qr + (1= )as = ¢s + dar — as)

be the mixture potential and note that

1
(2.3) pf_ps—Qf_(Is—m(Qf_Q)'
We find it convenient to remove ¢, from (1.1)—(1.5). We obtain
k 2420
(2.4) u+ Lqu =0,
Hf
¢ _
(2.5) sV - ut ———(qr — q) =0,
1-9¢
(2.6) Vg=V-6(vs)=-(1-9)prg,
¢
2. Vovi——" (q;—q) =0,
(2.7) sV - v 1_¢(Qf q)=0

where the deviatoric stress of the mixture is given in (1.3). For simplicity, the model
parameters are assumed to be constant. Equation (2.4) represents Darcy’s law for an
incompressible fluid, (2.6)—(2.7), (1.3) is a Stokes system for a highly viscous, com-
pressible material (matrix plus fluid), and (2.5) plus (2.7) enforces mass conservation.

We suppose that the spatial domain €2 is a bounded, simply connected, Lipschitz
domain in R%, d = 1, 2, or 3, with outward pointing unit normal vector v. We impose
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boundary conditions on the fluid and solid velocity of the form
(2.8) u-v=g, and vs=gs; on I

We need the compatibility condition
(2.9) / (gr +8s-v)ds=0.
o

2.1. Standard function spaces. The space L?(f2) consists of all square inte-
grable, real-valued functions on Q. It is equipped with the inner product (u,v) =
(u,v)q = [, uvdr and associated norm [ju = (u,u)/?. Denote by H'(2) all square
integrable functions with square integrable weak derivatives. This space has the
norm |[ull; = {||Ju||? + || Vu|?}'/2. Let H(div; ) denote all square integrable vector-
valued functions with square integrable weak divergence, and equip it with the norm
Il gy = L)l + [V - w2172,

We can restrict functions in H(€2) to the boundary 9 using the trace lemma [1,
24]. The space of these restrictions is H'/2(9Q) C L?(99), and we have the bound

(2.10) llull1/2,00 < Callull:.

A similar lemma holds for functions in H(div; ) [17], and
(211) ”u : I/H—l/Q,BQ < CQ||u||H(diV;Q)7

where || - || 12,60 is the norm of the dual space of H/2(0%).

The space L>(2) consists of all essentially bounded functions on 2 equipped with
the essential supremum norm || - || (o). The space W' () consists of the functions
in L*°(Q) that have weak derivatives also in L°°(2), and the norm is || - [[yy1.00 () =
[ [Izee @) + IVl 2o @y)a-

2.2. The scaled formulation. Following [6], we define the scaled relative ve-
locity and scaled fluid potential

(2.12) Vv, =¢'"%u and gr = ¢1/2qf,

respectively, and we reformulate the problem (2.4)-(2.7) as

(2.13) Vi + od™® V(g™%qs) =0,
s
(2.14) psd 2V - (¢1TO%) + ﬁ@f —¢'/%q) =0,
(2.15) Vqg=V-6(vs) =—=(1-9¢)preg,
(2.16) psV - v — " (G5 — ¢'/%q) =0,

L—-¢

wherein we have scaled the entire second equation by ¢~
on u in (2.8) rescales to ¢**°v, - v = g, on 9Q.

The scaled equations make sense provided that the gradient and divergence terms
are well-defined when ¢ = 0. The divergence term in (2.14) expands to

/2 The boundary condition

(217) Qz)—l/Qv . (¢1+@‘7T) _ ¢1/2+@v . {,r + ¢@—1/2v¢ . {,r7
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and it is well-defined provided that, for example,
(2.18) p° 2V € (L=(Q))%

The gradient terms in (2.13) make sense under the same condition. The porosity ¢
in the physical model satisfies the full set of equations, including solute and thermal
transport equations. It is not clear if we should expect that this porosity satisfies
our condition. Nevertheless, we will assume that the condition holds. Our numerical
results suggest that it is not strictly necessary, and perhaps can be weakened (see
also [6] for a discussion of the necessity of this condition).

We should not expect the scaled velocity v, to lie in H(div; Q)); rather, v, should
lie in the space

V, = Hy(div; Q) = {v € (L*(Q))?: ¢ /?V - (¢'TV) € L* () }.
As discussed in [6], this is a Hilbert space with the inner product
(8, V)5, = (@,9) + (6712V - (61790), 72V - (¢'199)).

Moreover, these vector functions have a well-defined normal trace on 92, and, simi-
larly to (2.11),

(2.19) |t/ - vl|—1/2.00 < Co{llV| + ¢~V - ('O}

We also have the space H, ;1/ 2 (09), which is the image of this normal trace operator
on V, = Hy(div; Q).

2.3. The scaled weak formulation. Define the function spaces

Vo = {v e Hy(div; Q) : #/?tv . v =0on o0},
Wy = L*(Q),
Veo = (H(Q)* = {ve (H'(Q)?:v=0o0n o0},

Wo = L?(Q)/R = {w € L*(Q): /dex = 0},

each with its natural norm.

To impose essential boundary conditions (2.8), we assume that g, € (H'/2(99))?
and extend it continuously from the boundary into the domain, so that the extension
gs € Vo = (H'(Q))? and ||gs|l1 < Clgslli/2,00- In a similar way, following [6], we

assume that ¢—1/2g, € H;l/z((?ﬂ), the image of the scaled normal trace operator on
V, = Hy(div; Q) which appears in (2.19). Then ¢~'/2g, has a bounded extension
g, € V,. on  such that

(2.20) O HCg v =gV Oy, v = 12g. on ON.

We require the scaled compatibility condition

(2.21) /BQ(gr +8s) - ds=0.
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Scaled formulation. Find v, € @7’70 +8r Gr € Wy, vy € V0 + g, and ¢ € Wy
such that

(2.22)
(Zi‘ﬁ,’dﬁ) - (qu,(b_l/zV . (¢1+®¢r)) =0 V¢r € @T’,O)
(67 1/2V(¢"9%,), wy)
(2.23) + </J,S(11—(l5)(qf — ¢1/2q),wf) =0 wa c Wy,
(2.24) —(¢, V- ps) + (6(vs), Vips) = _((1 - Qb)Prga"ps) Vs € Vs,
(2.25)
V-Vw—LmN—l/2 w)| =0 Yw € W.
(V- vs,w) Ns(l_qs)(qf ¢ "%q), 0

2.4. Existence and uniqueness of the solution. The following theorem
shows that the scaled model is well-posed. (See also [4] for treatment of the Dirichlet
condition on the Darcy system.)

THEOREM 1. Assume that (2.18) holds on the porosity, 0 < ¢ < ¢* < 1, and the
extensions g, € V,. and g, € V satisfy (2.21). Then there exists a unique solution to
the scaled formulation (2.22)—(2.25), (1.3), and it satisfies

19l + 1o~ - (6" OV | + 1l + Ivslla + llgll
(2.26) < C{lprl + llgrll + 19712V - (6O | + llgslln }-
The unscaled equations (2.4)—(2.7) are ill-posed where ¢ = 0. If we restrict

¢ > ¢ > 0, the equations are well-posed, and we can unscale the variables in (2.26)
to show the bound

(2.27) lo™ =% ull + [lo~"2V |l + 16" gzl + [|Vsll + lgll < ©

(i.e., (1.6)). We conclude that the two velocities and the solid matrix pressure remain
stable, i.e., they are bounded, as ¢, — 0, but the fluid potential may become un-
bounded. This potential loss of stability is a significant issue for numerical modeling.
We remark that the correct scaling (2.12) is found by restricting ¢ > ¢. > 0 and
showing directly the bound (2.27) (see also [6, 4]).

Before proving the theorem, we state a well-known result [10, 11, 30] that we
need.

THEOREM 2 (Babuska-Lax-Milgram). Let U and V be two real Hilbert spaces.
Suppose that a : U x V. — R is a continuous bilinear functional such that for some
constant v >0 and allu € U andv € V, v # 0,

(2.28) sup |a(u,v)| > ~v||lul] and  sup |a(u,v)| > 0.

llvl=1 flull=1

Then, for all f € V*, there exists a unique solution v € U to

a(u,v) = f(v) YveV,
and

1
(2.29) [Jull < ;Hfl\-
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Proof of Theorem 1. Let
X = QT,O X Wf X Vsp X Wo,

and take U = V = X which is indeed a real Hilbert space. The bilinear form is defined
by (2.22)-(2.25) for any U = (V,,0,4f,Vs,0,9) € X and ¥ = (¢,, ws, ¥, w) € X as

G(U,\I’) = (/l:_g{’nOa/‘/)T) - (qfa¢71/2v : (¢1+9,¢T)) + (¢71/2V : ((ler@{’nO)awf)
1 -
+ (/M( ;= ¢"%q),wy — ¢1/2w)
- (Qa V- "/)s) + (&(VS,O)v V'l/)s) + (V * V5,0, ’LU)

The linear functional is

f(‘II) = _((1 - d))prga"/)s) - <Z_£gra¢r> - (Qs_l/QV : (¢1+®gr)7wf)
—(0(gs): Vips) — (V- gs, w).
Clearly we have continuity (boundedness) of a on X x X and f on X.

Our scaled formulation is written in the context of the Babuska—Lax—Milgram
theorem as follows. We find U € X such that

(2.30) a(U,0) = f(T) Y€ X,

and then set v, = v, o + g, and vy = v, 0 + 8.
We will need an estimate of the term (6(vs), Vvy). Using the definition (1.3),

(6(vs), Vvs) = (2us(1 — ¢)(Dvs — 5V - v,I), Vvy)
=24{((1 = ¢) Dvs, Dvy) — (1 = ¢)V - v, V - v) }.

We conclude that

(6(vs), Vvs) > C|| Dyl
for some positive constant C. An application of Korn’s inequality [23, 16] results in
(2.31) (6(v.), Vv.) = ClIDv, |2 = Cilv, 2.

We turn attention to the inf-sup condition, the first condition in (2.28). We recall
the inf-sup condition for the Stokes problem [23, 17, 16, 15]. There exists g > 0 such
that for any w € Wy = L*(Q)/R,

(2.32) N G DT

P.€Vs0 ||¢s||1
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We conclude that there is v, € V, o normalized so that ||v4||1 = ||g|| and satistying
(2.33) —(¢,V - vq) = 57sllal®.

For any U = (V,0,qf,Vs0,q) € X, we take the test function in (2.30) to be
v = (¢T7wf7¢s;w) € X defined by

(2.34) Yr=Vro, wp=qs+ 807V (17%,),
' Ps =Vs0+02vy, and w =g,

where §; > 0 and J; > 0 will be determined below. After combining and canceling

some terms,

2

1 1

1% ~ _ ~ 2
o) = KL ol 4816729 (00,0 + - |

(@ — ¢*%q)

+(6(vs,0), Vo) —02(q, V - vg)

o (ﬁWf —0'%q),071 V- (¢”®vr,o)> 1 62(6(veo), Vvg).

There is some Cy > 0 such that

(0(vs,0), Vvg) < C2HV8,0|

1lvells = Callvsollllall,

so using (2.31) with its constant C; > 0 and (2.33), we see that

(U 9) = L 90| 4+ 8167129 - (01090 + ian — /2|2
T CilIVaoll? + Lol
0 (g s = 0007 Y (01499,0) )+ 0a6 () T
> %Hw,a\z + 361|672V - (6149%,.0)|)F + Lorsllall?

+ L (1 - 512> G — o' ql* + (01 - 52022> [Vs,o0ll3-
s 2MS(1 _¢*) s /

Taking ¢; and d2 positive but sufficiently small shows that for some ¢ > 0,
- _ - 2
a(U,®) > c{[[¥rol* + |62V - (8% 0)||” + [[vsolld
+ s — o' 2all + llall* + 16127}

Moreover,

sl < llas — "2l + llall,

and we have shown the first condition in (2.28). The second follows by symmetry.
We have thus met the conditions of the Babuska—Lax—Milgram theorem, and we

conclude that the problem (2.22)—(2.25), (1.3) has a unique solution. Moreover, the

bound (2.29) is what is written in Theorem 1. 0
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3. The mixed finite element method. Assume 2 is a polygonal domain in
one, two, or three dimensions. Let T, be a conforming finite element mesh of simplices
or rectangular parallelepipeds covering 2 with maximal spacing h, and let &, denote
the set of element endpoints, edges, or faces.

To continue the exposition, we will restrict ourselves to two dimensions. Extension
to one and three dimensions should be clear. Let P,, denote the space of polynomials
of degree n and P, ,,, denote the polynomials of degree n; in x and ns in z (taking
the second coordinate to be the depth z).

3.1. Finite element spaces. For the Darcy part of the system, we choose the
lowest order Raviart—Thomas (RTy) finite element space Vg x Wrr [31, 17, 33]. On

an element E € Ty, Ver(E) = (Pg x Py) @ (fﬁ)]P’o it E is a triangle and Py o x Pg 3

if £ is a rectangle, and Wgp(E) = Py. The degrees of freedom are the normal fluxes
on the edges for Vg, and the average values over the elements for Wgr, i.e.,

(3.1) VRT = span {v8 :/ve cvpds =10d. ¢ Ve, f € c‘,'h} ,
f
(3.2) WRT:span{wE :wE|p:5E,F VE,FE'EL},

where §;; is the Kronecker delta function for indices 7 and j. RTq is first order
accurate in H (div; Q) x L2(2) D Vgt x Wgrr. We could use quadrilateral elements as
well, as long as we substitute the Arbogast—Correa (ACy) space [3] for RT).

For the Stokes part of the system, we could choose any inf-sup stable finite element
space Vg x Wg C (H}(Q))? x (L?(2)/R). A good choice on rectangular meshes
is the Bernardi-Raugel (BR) space Vpr x Wpr [14, 7]. On a rectangular element
E €Th, Ver(E) =P1 2 x Py and Wpr(E) = Wrr(E). BR is first order accurate in
(HY(Q))? x (L?(Q)/R). The space was first introduced to solve the Stokes equation,
and it has been used to solve Darcy problems with continuous velocities [7]. It is a
natural choice for our coupled Darcy—Stokes system, since the convergence rates of
the two spaces match.

We could also use standard Taylor-Hood (TH) elements [23, 17, 21]. If E € T}, is
triangular, Vo (E) = Py x Py and Wy (F) = Py and, if E is rectangular, Vo (E) =
Pyo x Pg o and Wrg(E) = Py ;. On rectangular meshes, TH is more accurate than
BR, but TH has more degrees of freedom. However, we would not gain any additional
overall convergence within the coupled system because of the Darcy part.

3.2. The scaled mixed finite element method. To impose the essential
boundary conditions, the extensions g, and g are projected into the finite element
spaces as g, € Vg and g, € Vg (Vpr or Vpy) in such a way that the following two
compatibility conditions hold:

(3.3) / (s —gs) - vds=0 and (¢0'7®g, +g&5) - vds = 0.
o0 le)
We also need to define
VRT’QZ{VEVRT:V-VZOOIlaQ},
Vso0={veVsg:v=0on o0},

Wsp:{wEWs:/wdm’:O}.
Q
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Scaled mized finite element method. Find v, € Vrro + &, G50 € Wrr, Vs n €
Vs,0 + 85, and ¢, € Wg g such that

(3.4)

<ll:_::‘~’r7h71/jr> - ((jf,ha ¢71/2V ’ (¢1+®,¢T)) =0 V"l)r € VRT,O;

(¢=1/2V (61497, 1), wy)
(35) + (ﬁ@ﬁh - ¢1/2qh),wf> =0 Vwy € Wrr,
(36) - (Qha Y 1/)8) + (&(V&h)a vl‘/)-s) = _((1 - ¢)prga¢s) v"l)s S VS707
(3.7)
1/2

(Vv n,w)— (h((jﬁh - ¢>1/2%),w) =0 Vw € Ws o,

where the term ¢ is defined by (1.3). While the scaled finite element method is
well-defined when ¢ vanishes due to the condition (2.18), it is important to avoid
division by zero in the implementation. One must evaluate the two divergence terms
containing ¢ to a negative power in (3.4)—(3.5) at quadrature points. Because the
divergence terms scale with ¢ to the overall power 1/2 + © > 0, these terms should
be set to zero when ¢ vanishes. That is, at a quadrature point where ¢ = 0, take the
value of the entire term to be zero at that point.

LEMMA 3. If (2.18) holds, then there exists a unique solution to the scaled mized
finite element method (3.4)—(3.7).

Proof. The scaled method gives rise to a square linear system when restricted to
bases for the finite element spaces, so existence of a solution is equivalent to unique-
ness. To show uniqueness, set to zero the quantities g,., g, and g. The test functions

Y, =Vyn € VRro, wj=qsn € Wrr, %s=Vsn €Vso, and w=q, € Wgp,

when substituted into (3.4)—(3.7) and after the equations are added, imply that

Z—gllf’nth + < (Grn — 6" 2an), drn — ¢1/2(Jh) + (6(vsn), Vv ) = 0.

ot
,us(l - d))

Thus V.., = 0, the estimate (2.31) shows v, =0, and Gy, = o 2qp,.

The discrete version of the inf-sup condition (2.32) holds for BR and TH Stokes
elements with a possibly smaller constant 0 < 7§ < ~g independent of k. Therefore
there is some v, 5 € Vg o such that ||[vg |1 = |l¢n| and

(3.8) —(@n V- van) = 375l

The choice 95 = v, in (3.6) shows that g, = 0, and so also G, f = ¢/%2q, =0. O

3.3. Convergence of the scaled method. To derive a bound for the error,
we first take the difference of (2.22)—(2.25) and (3.4)—(3.7) and add the resulting
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equations to see that

<IL]:—£(\~/'T - i}1",}7.)7,‘/)’1“) - ((jf - (jf,hv ¢—1/2v : (¢1+®¢7’))

+ (¢—1/2V (MO (%, — Vin)), wy)
(g @~ =0y )
(3.9) —(q—qn, V- s) + (6(vs — V), Vbs) + (V- (Vs — V), w) =0

for any 1, € Vrr,0, wy € Wrr, 9 € Vg0, and w € Wg .

Before defining our choice of test functions, we need the usual projection operators
associated with RTq (or ACy). Let Py, : L?(2) — Wi denote the L?(Q)-projection
operator mapping onto the space of piecewise constant functions Wgr. Let 7gyp :
H(div; Q) N L?*T¢(Q) — Vgt (any € > 0) denote the standard RT or Fortin operator
that preserves element average divergence and average edge normal fluxes [31, 17,
33, 3]. We also need the usual H!(Q)-projection 7s : H(2) — Vg and the L?(2)-
projection Py, : L2(Q) — Ws.

Let the function v, € Vg o arise from the discrete version of the inf-sup condition
for Stokes (2.33) (as in (3.8)), normalized so that ||vg |1 = [|Pws¢—aqn|| and satisfying

(3.10) = (Pwsd = an, V - V) 2 338 Pwsa — anl*.
Similarly to the test functions taken in (2.34), we take
Yr = (Ve — Vi) = (Ve — TRTV:) — (TRTEr — &) € Vg0,
Wi = Pirgeds — Qf.n + 61 Puigr [0 2V - ("9 (¥, — V1))] € Whr,
Ps = (Vs = Vsn) — (Vs — TgVs) — (Ts8s — &) + 02Vgn € Vg0,
w = Pwsq — qn € Ws,o,

where 97 > 0 and d2 > 0 will be determined below. We remark that the term
multiplying 6; must be projected back into the discrete space, and so our derivation
is not completely straightforward.

Introducing Py, thrice into (3.9) yields

</l:_£(‘7r - ‘Nfr,h)a"/)r) — (Pwardr — dfhs Pwee [¢*1/2V (6'%9,)])

+ (P [07 12V - (6703 — Vin)] s wy)

- ((jf - PWRTQf’ ¢71/2V ) (¢1+®,¢,T))

+ (ﬁ(} —dpn — "% (q — ), wy — ¢1/2w)

- (q — Gh, V- 'lps) + (&(VS - Vs,h)a V"/’s) + (v . (Vs - Vs,h)a w)

(3.11) =T + -+ Ts (respectively) = 0.
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For the first term in (3.11), we deduce that for some generic constant C' > 0,

= ﬁH{’r — Vel — &({’r —Vrh), Ve — TRTVy + TRTEr — &
ko ko

> LL 15, — w02 = {9 — mre¥el? + I mrrer — 8007}
ko

For the next two terms, for any € > 0,
Ty +Ts = — (Powgedy — Qr.n> Porge [¢7 2V - (61 1%%,)])

+ (Pwae [07/2V - (619 (97 — ¥r0))] wy)

= (Pwnads = @p.hs P [07 2V - (8170 (¥, — mrr¥, + TRr8r — £1)])
+ 01 HPWRT [¢71/2V (¢1+® —Vin) ] H

> 61| Porge [67/2V - (O ¥ = )] || = el Pornr iy — gl
— C{|Porer [0~ V2V - (610 (%, — 7rr )] |

+ [P [671/2V - (61F© (i — &))] [}

Skipping T} for the moment, the next term is
1
Ts5 = (7 s —drn— 0" (0 —an))sw —¢1/2w>
ﬂs(l_(b)(f f ( ) wy
1 S 1/2 S 1/2 )
= dr —qrn—9'°(q—qn),dr — dsn — /(¢ —qn)
(g O = = 020 = )y — g - 62

B P 1/2 - S V2 —
(us(l =9 (G = arn — &7 (a—an)):df — Pwae s — ¢/ 7(q — Pwsq)
1 - - _ - -
+ 01 (M(l—(b)(w —drn — ¢ a — an))s Pwne e V29 ('O (v, — Vm))})
1
> ———|liy —drn — "2 (a—an)|?
2us(1—¢*)” F— s ( i
— C{llds — Pwrrsl® + lla — Pwsall®
+ 03| o [671/29 - (61O (¥ = %)) [}
Noting that w = ¢ — g», — (¢ — Pwsq), the sixth and eighth terms satisfy
TG + T8 = _(q - qhav ws) + (V . (Vs - Vs7h),U})
= (q —qn, V- (Vs — TSVs + TS8s — gs)) - (v ) (VS - Vs,h)a q— PWSQ)
- 52 [(Pqu — qh, V. Vq,h) + (q - Pqu7 V. Vq,h)} .
Recalling (3.10) and that |vg |1 = |Pwsq — gnl|, we have
To +Ts > 16278 [1Pwsq — anll? — §6278lla — anl® = €|V - (vs = vin)lI®
= C{llg = Pwsal® + IV - (vs = msve)|* + |V - (msgs — &5)II°}
2 %527§||q - %”2 — €|V (vs — Vs7h)||2
= C{llg = Pwsal? + |V - (vs = msvs) |2 + |V - (msgs — &5)1°}-
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Finally, for the next to last term, note that ¥, = mgvs — v — Tsg8s +8&s + 02V h,
so we have from (2.31) that

T7 = (6(vs — Vsn), V1bs)
= (0(msVs = Vo, — Ts8s + 8s), Vi) + (6(vs — TsVs + Ts8s — 8s), Vbs)
> Cy||msvs — Von — ms8s + &sl|T — 3C1[msve — v}
- C{”Vs - 7T5VS||% + H7ngs - gSH% + 55”"(]#”%}
> 3Ci[lvs = venllt = C{llvs — msvsll§ + [|Imsgs — &l + 02 Pwsa — anll*}-

We turn now to the fourth term T4 in (3.11), which we estimate similarly to a
term in [6, section 7] for the degenerate Darcy system. That is, we introduce the
projection I — Py, and compute as follows:

~Ty = (G5 — Pwnedy, &~ °V - (¢'%%,))
= (G5 — Pornnrs (I = Puorge )~V - (6" 1%9,.))
= (G — Pwrr: (I = Porgr )0 *TOV -ty + (I — Py ) (1 + ©)9° 2V - 4p,.)
< Clldy = PG I{ I = Puver ) 8" 2TV - 4p | + [l |},

since we have assumed the bound (2.18) on the term ¢®~1/2V¢. Because V -1, is
piecewise constant, we have that

(I = Pwne )02V - h | < (T = Powvr )0 > | Lo (o) |V - 0
< Ch |82l wroe (o |V - 9, |
< Ch||V 4.,

using [20] for the approximation of the L2-projection in L™ and (2.18) again. If we
assume that the mesh is quasi-uniform, then we can remove the divergence operator
in the final expression at the expense of a power of the mesh spacing h. Thus we have

—Ts < Cllgs = Pwner | [l

< el Ve = Vel + C{lldr — PG I* + V0 — oo vel|* + I 7rrgr — 017}

Combining these estimates results in

;_k];”{’r - ‘~’r7h||2 + 61HPWRT [(b_l/ZV : (¢1+®(‘~’T - ‘~’r7h))} ||2 + %CIHVS - Vs7h||%

1
+o————ldr — drn — ¢"(g — a)II” + 0275 Mg — anl®
2/'68(1 o (b ) f f 4 S

< 6{||PWRqu - (jf,h”Q + (V- (vs — Vs7h)||2 + H‘N’T - ‘N’r,hHZ}

+ C{|[vr — TRV |2+ (| Pwee [0V - (8179 (V) — TRTVL))] ||2

+ g = & l* + [ Po [671/2V - (140 (rrrer — &)
+ HQf - PWRT(jf||2 + ||(] - PquHz
+ 03| Porr [67/2V - (O (¥ — )] |

(3.12) +lvs = msvill§ + I 7sgs — &l + 5311 Pwsq — anll*}-

2
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Note that

ldr = dgnll® < N3y —drn — ¢"*(a = an)I* + la — anl*.
Therefore, if we take €, §1, and do small enough, we have proven the following theorem.

THEOREM 4. Assume that (2.18) holds on the porosity, 0 < ¢ < ¢* < 1, the
mesh is quasi-uniform, and the extensions g, € @r and gs € Vg satisfy (2.21) and
their approzimations satisfy (3.3). Then the difference of the solution to the scaled
formulation (2.22)—(2.25), (1.3), and its finite element approximation satisfy

Ve = Vel + || Pweer [¢71/2V ('O (¥ —Vin))] |+ 1Ivs = vanlh
+ gy = apnll + lla — anll
< {19 = 7RV | + || P [6712V - (8179 (%0 — 7R9,)) ] ||
+ | mrrgr — &0l + || Pore [¢071/2V - (6179 (nrrgr — £0))]|
(3.13) + s = Pweedsll + llg = Pwsall + lvs = 7l + [[7sgs — &sll1}-
If the solution is sufficiently smooth, this bound implies first order convergence.
It also implies stability of the scheme even when the solution is not very smooth.

4. A modification for local mass conservation. As in [5], we define a locally
mass conservative implementation of the scaled method by using the quantity ¢ =
Pwrr® € Wgrr given by taking the average over each element E € Ty, i.e.,

(4.1) forx € E, d;(x) =¢p = ﬁ /E odx,

where |E| is the area of E. When ¢|g = ¢z = 0 vanishes on an element E, ¢ is
identically zero on E. We modify the two divergence terms in the scaled MFEM
(3.4)—(3.7) by replacing

5PV (¢MOV) i g # 0,

_ ¢
12y, (140 b ’
¢ @OV by {0 £ on 0,

We also modify the two terms in (3.5) and (3.7) involving the pressure potentials.
These changes make the method locally mass conservative, as we show later.

Locally conservative scaled MFEM. Find v,.;, € Vrro + &, Gr,n € WrT, Ven €
Vs,0 + &, and g, € Wg o such that

(4.2)
(l]x\%hﬂ/}r) N (‘jf,hv(lg_lﬂv' (¢'T%,)) =0 Vi, € Vrr o,
(&71/2v'(¢1+®‘7r,h),wf)
" )
(4'3) + (;J,S(?f)—(m(qf’h - (bl/ZQh), wf) =0 V’LUf € Wgr,
(4.4) —(qn, V- tps) + (6 (vs,n), Vibs) = _((1 - (b)prgv"l’S) Vs € Vg o,
4.5
—1/2 R
(Vv n,w) — (%(@ﬁh - ¢1/QQh)7w> =0 Yw € W o,
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where the term & is defined by (1.3). On an element E € Tj,, where ¢r = 0, the three
terms in (4.2)-(4.3), (4.5) involving ¢~'/2 are set to zero, and in the second term in

(4.3), we interpret ¢¢~! as one. Furthermore, we define the discrete Darcy velocity
uy, € Vrr and fluid potential gy, € Wrr by their degrees of freedom:

1
(4.6) up Ve = H /¢1+® ds V- v|e Ve € &,
(4.7) arnle =dp*drnle VE € Ti,

wherein we arbitrarily set g7 5|p = 0 if gi;E =0.

The existence of a unique solution can be shown in a way completely analogous
to that for the nonconservative scaled MFEM in section 3. Moreover, one can show
that the locally conservative MFEM is stable. We have no proof of convergence of
the locally conservative method at this time, but the numerical results show optimal
convergence and even superconvergence.

To see local mass conservation of the fluid, let F € T}, be any element. With wg

defined in (3.2), the test function wy = é}E/Q wg € Wgr in (4.3) gives

Hs /E V- (¢1+®‘~’r7h) dx + /E %(éil/%jf,h - qh) dx = 0.

Since v, - v and uy, - v are constant on each edge e C OF, we see from (4.6) that

/ V- (¢1+®\7r7h) do = / d)H@\?T,h cvds = / uy, -rvds = / V- u,dz.
E OF OF E

The definition of g¢;, (4.7) gives

(4.8) Ibs /E V-uy, dr + /E %(qﬁh —qp)dz =0,

which is local mass conservation, i.e., (2.5) holds locally.
We obtain local mass conservation of the solid matrix if we use BR spaces. In
that case, we can take the test function w = wg € Wpg in (4.5) to see

MS/ V'Vs7hd$_/ L(qf,h_q&h) diC:O,
E gl—¢

which is (2.7) holding locally.

5. Implementation of the methods on rectangular meshes. The linear
system corresponding to either of the methods (3.4)—(3.7) or (4.2)—(4.5) has the form

A —B¢ 0 0 ’l~}r Qg
BT —Crs q

(5.1) o Cro 0 =Creo|far| _ [0}
0 0 D¢ —-B Vs b¢
0 -Cl,, BT C. q 0

wherein the solution represents the degrees of freedom of v, », G¢,n, Vs,n, and g with
respect to the bases of the finite element spaces. We remark only on the evaluation
of By and Dy. To avoid approximating derivatives of ¢, the matrix By should be
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computed using the divergence theorem. For the locally conservative method, for any
element FE € T}, and edge e € &,

By e r = ((;5—1/2V : (¢1+®V6)7 wE)
&}—31/2 ¢1+@ dsv.-vg if e C OF and ¢2E #0,
0 if e ¢ OF or ¢ = 0.

A similar expression is used for the nonconservative scaled MFEM of section 3. The
matrix Dy is symmetric, and the (k, ) entry is computed using (1.3) as

D e = (6(Ver), Vibse) = 205 [((1 = )Dvei, D¥se) — 2 (1= )V - Vi, V- 1hsr) ]

We can simplify the implementation when € is a union of rectangular subdomains
in one, two, or three dimensions, and 7 is a rectangular finite element mesh. We
modify either method by approximating the first integral in (3.4) or (4.2) using what
is known as mass lumping. The integral is approximated by a trapezoidal quadrature
rule (-,-)q, so that for any two edges e, f € &,

i Hr
.2 Ae — 7 Ve :_E€ 56 ’
(5.2) f (kOV Vf)Q 2k0| |0, 1

where E. is the one element or union of two elements that have e as an edge. This
approximation diagonalizes A and enables us to eliminate the scaled relative velocity
using the Schur complement from the first row of (5.1),

o, = A" (Bydy + ay).

What remains is a Stokes-like system with two pressure potentials. One can further
eliminate vy = D;l(Bq + by) to obtain

(5.3) (BgA_lBﬁ% g ) (df) _ (‘BZA—lla¢>
_CT,S7¢ BTD; B+CS)¢ q _BTD; b¢7 )

but the matrix BTD(;lB is not easily formed. Nevertheless, one can apply this matrix
and therefore solve a Schur complement system for the two pressure potentials. The
system can be preconditioned by a diagonal preconditioner, using any good precon-
ditioners for the two diagonal blocks, and solved by conjugate gradients; see, e.g., the
block preconditioner defined in [32].

6. Numerical results in one dimension. In this section we simulate a com-
pacting column in one dimension [29]. The column extends over z € [—L, L] and has
no flow through the top and bottom boundaries, i.e.,

(6.1) vs(~L) = v,(L) = u(~L) = u(L) = 0;
moreover, the fluid potential scale is set so that
(6.2) a(0) = 0.
We nondimensionalize using the compaction length scale [27]

(63) L _ (kolus)l/Q
(& Mf
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by defining the dimensionless variables

_ . . k . k 5
r=L.T, qf:|p7‘|chqf7 s = |p’r‘|gLCq57 U = MU; Vs = Mvs-
1234 1253

After dropping the check accent marks, (1.1)—(1.5) become

(6.4) u+¢*29g) =0,
(6.5) u'+ g —¢5) =0,
(6.6) las — 31— 40)v) =1,
(6.7) —¢lar —¢5) =0

Where ¢ > 0, we can reduce the system to a single equation in terms of u as
follows. First, (6.5) and (6.7) imply that v, = —u’ and ¢5 = u'/¢+ q5. Equation (6.4)
gives q} = —¢~272%y. Finally, (6.6) reduces to

3+0—40% )\
(68) ¢2+2@ M u/ —u= ¢2+2@(1 _ ¢)
3¢
On an open interval where ¢ = 0, the equations reduce to u =0, ¢, =1, and v, = 0.

6.1. Closed form solutions. We consider the three porosity functions

(6.9) $o(2) = ¢o,
B o_ if 2 <0,
(6.10) ¢y(2) = {¢+ o0,
0 if z <0,
(6.11) ¢a(2) = { bus iao0

where ¢yp > 0 and ¢_ # ¢4 gives a discontinuous jump in ¢;. Note that ¢g and ¢

satisfy the condition (2.18), since in fact ¢® 1/2V¢2 = 2¢, 2%® for z > 0 is indeed in
L>(Q). However, ¢; does not satisfy this condition.

6.1.1. Constant porosity. Taking ¢(z) = ¢o > 0, (6.8) reduces to
—4 2 -1/2
R = RO ), R = Rlay) = (T g0 )

Solving the differential equation with the potential scale condition (6.2) gives the full
solution in terms of the constants a and b as

(6.12) u=—¢g 2% (1 — ¢o)[1 + acosh(Rz) + bsinh(Rz2)],
(6.13) gr =(1—¢o)g2z— ﬁ —|— asmh(Rz) + bcosh(Rz)]}

i
{ _1—4¢y ¢0[

3 +¢o — 405 R
The boundary conditions (6.1) imply that

(6.14) (1 — o) sinh(Rz) + bcosh(Rz)] }

1
1 s = —Uu, = -, = 0.
(6.15) v u, a cosh(RL) and b=0
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6.1.2. Discontinuous porosity. For ¢ = ¢; in (6.10), we can solve (6.8) on
each subdomain where ¢ is constant. If both ¢, and ¢_ are positive, the result is
(6.12)—(6.14), i.e.,

(6.16) uy = ¢3?°(1 — 1) [1 + ax cosh(Riz) + by sinh(Riz)].

For (6.4)-(6.7) to make sense at the interface z = 0, the functions that are
differentiated must be continuous. The scale condition (6.2) enforces continuity of
¢f. We must impose continuity at z = 0 on u (and thereby on v,) and on

(6.17)  ¢5(0) — %(1 —4¢)v.(0) = (; + %(1 - 4¢)) u'(0) = R™2¢=2729 4/(0).
With the boundary condition (6.1), i.e., ux(+L) = 0, we have four conditions that
determine a+ and by. Letting Fi = ¢2729(1 — ¢1), the coefficients are determined
by solving the relatively simple linear system
(6.18)
cosh(R4L) 0 sinh(R, L) 0 at -1
0 cosh(R_L) 0 —sinh(R_L) | ja—| _ -1
Fi —F_ 0 0 by | | Fo—Fi|
0 0 R.(-¢y) —Ri(1—0)[b 0

In the case that ¢_ = 0 but ¢ > 0, the solution to (6.8) is (6.12)-(6.14) for
z> 0, but for 2 < 0, u =vs =0 (i.e,, a_ =b_ =0) and g5 = z + c_. The interface
conditions imply that

_ cosh(RyL) -1

(619) ay = —].7 b+ = Slnh(R+L) ) and c_ = —b+(1 - ¢+)/R+

Finally, if ¢_ > 0 and ¢ = 0, then

1 —cosh(R_L)

(6.20) a-=-1 b=

and ¢y =-b_(1—¢_)/R_,
where (6.12)-(6.14) gives the solution for z < 0 and for z > 0, v = v, = 0 (ie.,
ay =by =0)and gs = 2z + c4.

6.1.3. Quadratic porosity approximation. The final closed form solution is
an approximation to the system. Set © = 0 and take ¢(z) = ¢2(z) from (6.11).
Working on z > 0, the differential equation (6.8) reduces to

3+ pyz? — 4¢3t '
2.4 T _ 24 2
¢z ( 3.2 u ) —u=¢i2 (1 — ¢y27).

Assuming that ¢ = ¢ 22 < 1, we retain only the lowest order terms, i.e.,
P42 (%) —u= ¢l

which reduces to the Euler equation ¢y2z?u” — 2¢1zu’ —u = ¢%z*. The Euler
exponents are

I e Vi SN SR, Bl Vi e/ S

2 2 ’
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tr_sc_vr x|
=== seovrx

-0.5) -

0.5) -

Depth z (in compaction length)

077 002" T 0.04 7‘-0.001“0“0.001 - 27T T T T2 <6047 T 002" T 07

Fic. 1. Constant porosity (6.9) with ¢o = 0.04. The computed solution is drawn as thick
dashed lines, and the closed form solution as thin, solid dark lines. Shown are the porosity ¢ (phi),
u, vs = —u, qy, and qs, as well as the scaled v and qy.

and, if ¢4 # 1/4, the solution for z > 0 is

2
(6.21) e (blqs (LA 2 — 24,
— 494
1 L4—r1 zr1—3
6.22 = _
(022 " 1—4¢+<z -3 )
(6.23) qs = 2.

For z < 0 where ¢ = 0, the solution is u = vs = 0 and ¢s = 2.

6.2. Verification of the scaled method. We now present numerical results for
the locally conservative scaled mixed method (4.2)—(4.5) and its mass lumped approx-
imation using (5.2). We use the BR spaces for the Stokes part of the system. In one
dimension, the velocity part of the RT and BR spaces reduces to piecewise continuous
linear functions, and the pressure part is the set of piecewise discontinuous constant
functions. The theoretical bound in Theorem 4 would guarantee a convergence rate
of O(h) for the potentials and velocities, provided ¢ satisfies (2.18).

In all tests, we take L = 2, so that the domain extends four compaction lengths,
and we fix © = 0. Each problem is solved on a uniform mesh of n cells. Our computer
code is based on the deal.Il software library [12].

We chose above to fix the pressure scale of Gy by imposing (6.2) in the interior
of the domain. This works well for the closed form solution. However, it does not set
the scale properly in our numerical implementation of the problems. Instead, we set
the pressure scale of ¢ at the point where it achieves its maximum value. Moreover,
in the two cases where the porosity degenerates, we also set the scale of ¢ at the point
where it achieves its minimum value.

6.2.1. Constant porosity tests. For the first set of tests, ¢(z) = ¢o = 0.04.
This problem tests the overall performance of the code when there is no degeneracy
in the porosity. The computed and closed form solutions using n = 80 are shown in
Figure 1, although the former is so accurate that it obscures the latter.

In Table 1 we give the relative errors of the potentials as measured in the L?-norm
for both the scaled mixed method and its mass lumped approximation. The optimal
rates of convergence O(h) are observed for G, gr, and ¢q. We also measured the errors
in the discrete L? norm, which is the usual L?-norm but evaluated using the midpoint
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Constant porosity potential errors. Relative L? errors and convergence rates for the potentials.
We show results for the scaled mized method, the mass lumped approximation, and the scaled mized
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TABLE 1

method but using the discrete L2-norm given by using the midpoint rule.

qr qr q

n L? error | rate L2 error | rate L2 error | rate
Scaled mixed method

20 1.428e-02 | 1.00 3.237e-02 | 1.00 || 3.435e-02 | 1.00

40 7.139e-03 | 1.00 1.618e-02 | 1.00 1.717e-02 | 1.00

80 3.569e-03 | 1.00 8.090e-03 | 1.00 || 8.581e-03 | 1.00

160 1.784e-03 | 1.00 4.044e-03 | 1.00 || 4.290e-03 | 1.00
Mass lumped method

20 1.427e-02 | 1.00 3.236e-02 | 1.00 || 3.434e-02 | 1.00

40 7.139e-03 | 1.00 1.618e-02 | 1.00 1.717e-02 | 1.00

80 3.569e-03 | 1.00 8.090e-03 | 1.00 || 8.581e-03 | 1.00

160 1.784e-03 | 1.00 || 4.044e-03 | 1.00 || 4.290e-03 | 1.00

Scaled mixed method, discrete norm (midpoint rule)

20 8.597e-04 | 1.46 1.949e-03 | 1.46 1.411e-03 | 0.91

40 2.794e-04 | 1.62 6.334e-04 | 1.62 5.422e-04 | 1.38

80 8.263e-05 | 1.76 1.873e-04 | 1.76 1.708¢-04 | 1.67

160 2.271e-05 | 1.86 5.149e-05 | 1.86 || 4.813e-05 | 1.83

320 5.972e-06 | 1.93 1.354e-05 | 1.93 1.279e-05 | 1.91

TABLE 2

Constant porosity velocity errors. Relative L2 errors and convergence rates for the velocities

using the scaled mixed method and the mass lumped approximation.

Uf u Vs

n L? error | rate L? error | rate L? error | rate
Scaled mixed method

20 1.147e-03 | 1.82 4.897e-05 | 1.82 4.897e-05 | 1.82

40 2.972e-04 | 1.95 1.269e-05 | 1.95 1.269e-05 | 1.95

80 7.500e-05 | 1.99 3.203e-06 | 1.99 3.203e-06 | 1.99

160 1.879e-05 | 2.00 8.027e-07 | 2.00 8.027e-07 | 2.00
Mass lumped method

20 1.650e-03 | 1.72 7.047e-05 | 1.72 7.047e-05 | 1.72

40 4.381e-04 | 1.91 1.871e-05 | 1.91 1.871e-05 | 1.91

80 1.113e-04 | 1.98 4.753e-06 | 1.98 4.753e-06 | 1.98

160 2.794e-05 | 1.99 1.193e-06 | 1.99 1.193e-06 | 1.99

quadrature rule. This is a norm for which one might expect to see superconvergence.
Indeed, we see superconvergence for all three potentials. On coarser meshes we see
O(h?/?) for the fluid potentials and O(h) for the mixture, but on fine meshes the
rates rise to O(h?) for all three variables. Similar superconvergence results hold for
the mass lumped approximation.

In Table 2 we give the relative errors of the velocities in the L2-norm for both
the scaled mixed method and its mass lumped approximation. The velocities are
approximated by piecewise linears, so the optimal rates of convergence would be
O(h?). This is precisely what is observed for each of the velocities ¥f, u, and v,.

6.2.2. Discontinuous porosity tests. For the next set of tests, we use the
discontinuous porosity function (6.10) with ¢_ = 0 and ¢, = 0.04. Not only is there
a jump in porosity, but it is also degenerate for z < 0. The discontinuity will land on
a mesh point if n is even, and it will land in the center of a cell if n is odd.

The computed and closed form solutions using n = 80 are shown in Figure 2.
The discontinuity in g¢s is clearly evident. Note that the computation of v, has some
difficulty near z = 0 where the porosity is discontinuous. This difficulty is not seen
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Fi1c. 2. Discontinuous porosity (6.10) with ¢— = 0 and ¢4 = 0.04. The computed solution is
drawn as thick dashed lines, and the closed form solution as thin, solid dark lines. Shown are the
porosity ¢ (phi), u, vs = —u, qf, and qs, as well as the scaled or and §y.

TABLE 3
Discontinuous porosity potential errors. Relative L? errors and convergence rates for the poten-
tials. We show results for the scaled mized method, including one case using the discrete L%-norm
given by using the midpoint rule, and one case with the L?-norm restricted to the interior (i.e.,
away from the discontinuity). When n is even, the discontinuity is at a computational mesh point,
but not when n is odd.

ar ar q
n L? error | rate L? error | rate L? error | rate
Scaled mixed method, n even
20 1.040e-02 | 1.00 || 2.852e-02 | 1.00 || 3.622e-02 | 1.00
40 5.202e-03 | 1.00 1.426e-02 1.00 1.811e-02 | 1.00
80 || 2.601le-03 | 1.00 || 7.133e-03 | 1.00 || 9.055e-03 | 1.00
160 1.301e-03 | 1.00 || 3.567e-03 | 1.00 || 4.527e-03 | 1.00
Scaled mixed method, n odd
21 9.961e-03 | 0.98 || 2.744e-02 | 0.98 || 3.955e-02 | 0.87
41 5.140e-03 | 0.99 1.416e-02 | 0.99 || 2.321e-02 | 0.80
81 2.611e-03 | 0.99 7.184e-03 | 1.00 1.428e-02 | 0.71
161 1.316e-03 | 1.00 || 3.615e-03 | 1.00 || 9.218e-03 | 0.64
Scaled mixed method, n even, discrete norm (midpoint rule)
20 || 9.536e-04 | 1.64 || 2.615e-03 | 1.64 1.231e-04 | 1.46
40 || 2.529¢-04 | 1.91 6.935e-04 | 1.91 3.860e-05 | 1.67
80 || 6.225e-05 | 2.02 1.707e-04 | 2.02 1.102e-05 | 1.81
160 1.505e-05 | 2.05 4.128e-05 | 2.05 2.964e-06 | 1.89
Scaled mixed method, n odd, interior
21 9.126e-03 | 0.68 || 2.502e-02 | 0.68 || 3.016e-02 | 0.74
41 || 4.983e-03 | 0.90 1.367e-02 | 0.90 1.658e-02 | 0.89
81 2.572e-03 | 0.97 || 7.052e-03 | 0.97 || 8.670e-03 | 0.95
161 1.304e-03 | 0.99 || 3.576e-03 | 0.99 || 4.431e-03 | 0.98

in w and vy, since compared to 7., these velocities are multiplied by ¢. Overall, the
computed solution is an excellent match to the closed form one.

In Table 3 we give convergence results for the potentials using the scaled mixed
method. The mass lumped approximation has nearly identical results. Even though
¢ does not satisfy the condition (2.18) and is in fact discontinuous, we see good
convergence results. When n is even and the grid resolves the discontinuity in ¢,
we see optimal convergence rates O(h) for all three potentials and superconvergence
O(h?) when using the discrete norm.

When n is odd and the discontinuity in ¢ is not resolved, we see some degradation
in the convergence rate for q. Not shown is that superconvergence is not seen in the
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TABLE 4
Discontinuous porosity velocity errors. Relative L2 errors and convergence rates for the veloci-
ties. We show results for the scaled mized method and the mass lumped approzimation using (5.2).
When n is even, the discontinuity is at a computational mesh point, but not when n is odd.

ﬁf u Vs
n L? error | rate L? error | rate L? error | rate
Scaled mixed method, n even
20 || 2.929e-03 | 1.33 || 4.714e-05 | 1.85 || 4.714e-05 | 1.85
40 1.116e-03 | 1.39 1.213e-05 | 1.96 1.213e-05 | 1.96
80 || 4.120e-04 | 1.44 || 3.090e-06 | 1.97 || 3.090e-06 | 1.97
160 1.491e-04 | 1.47 || 7.850e-07 | 1.98 || 7.850e-07 | 1.98
Mass lumped method, n even
20 1.695e-03 | 1.73 7.076e-05 | 1.73 || 7.076e-05 | 1.73
40 || 4.499e-04 | 1.91 1.878e-05 | 1.91 1.878e-05 | 1.91
80 1.143e-04 | 1.98 || 4.770e-06 | 1.98 || 4.770e-06 | 1.98
160 || 2.869e-05 | 1.99 1.197e-06 | 1.99 1.197e-06 | 1.99
Scaled mixed method, n odd
21 2.027e-03 | 1.20 || 9.004e-05 | 1.25 || 9.004e-05 | 1.25
41 1.055e-03 | 0.98 || 4.524e-05 | 1.03 || 4.524e-05 | 1.03
81 5.614e-04 | 0.93 || 2.368e-05 | 0.95 2.368e-05 | 0.95
161 2.925e-04 | 0.95 1.227e-05 | 0.96 1.227e-05 | 0.96

discrete norm. To test whether the error near the discontinuity pollutes the solution,
we computed the interior errors, given by computing the error in all cells of the mesh
except the five near the discontinuity. That is, we restrict the domain of integration of
the L2-norm to be interior to where ¢ is smooth by removing the center cell and its two
neighbors on each side. This mesh dependent norm shows good O(h) convergence,
and so indeed the error is localized to the region of the discontinuity. We do not,
however, observe superconvergence in the discrete interior norm when n is odd.

The errors in the velocities are given in Table 4. We see good rates of convergence
when n is even, being O(h?) for all cases except the scaled method’s ¢, which is still
O(h3/?). When n is odd, we observe O(h) convergence (we show only the scaled
method, but the mass lumped approximation is similar).

6.2.3. Quadratic porosity tests. For the final set of tests, we use the quadratic
porosity (6.11) with ¢, = 0.001, i.e., ¢2(z) = 0.001 22 for z > 0 and ¢(z) = 0 for
z < 0. The maximal value of ¢ is ¢(2) = 0.004, so the analytic solution (6.21)—(6.23)
should approximate the true solution reasonably well, at least if n is not too large.

The computed and closed form solutions agree quite well, as shown in Figure 3
using n = 80, even though there is a boundary layer near z = 2 in the velocities that
is difficult to resolve. Convergence results for the potentials and velocities are given in
Tables 5 and 6 using the scaled method (the mass lumped approximation gives nearly
identical results). We expect convergence only if the approximate true solution is
adequate. Indeed, we see some degradation of the results as n becomes large, because
the numerical solution does not converge to the closed form solution (6.21)-(6.23).
When the approximation is adequate, we see that the potentials converge to O(h).
(The discrete norm does not display superconvergence for this test problem, but the
errors are much smaller.) The velocities converge to at least O(h), and may approach
O(h?) before the grid becomes too fine.

6.3. Condition number as positive ¢ tends to zero. We now turn our
attention to the nondegenerate problem, so that we can solve the system of equations
using other mixed formulations. We compare our method to a relatively standard
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Fic. 3. Quadratic porosity (6.11) with ¢4+ = 0.001. The computed solution is drawn as thick
dashed lines, and the closed form solution as thin, solid dark lines. Shown are the porosity ¢ (phi),
u, vs = —u, qy, and qs, as well as the scaled v and qy.

TABLE 5
Quadratic porosity potential errors. Relative L? errors and convergence rates for the potentials
for the scaled mized method. When n is even, the transition to positive porosity is at a computational
mesh point, but not when n is odd.

qr qr q
n L? error | rate L2 error | rate L2 error | rate
Scaled mixed method, n even
20 5.326e-03 | 1.01 3.037e-02 | 1.01 3.490e-02 | 1.00
40 2.656e-03 | 1.00 1.520e-02 | 1.00 1.747e-02 | 1.00
80 1.329e-03 | 1.00 7.667e-03 | 0.99 || 8.768e-03 | 0.99
160 6.675e-04 | 0.99 3.963e-03 | 0.95 4.457e-03 | 0.98
Scaled mixed method, n odd
21 5.070e-03 | 1.01 2.893e-02 | 1.01 3.324e-02 | 1.00
41 2.592e-03 | 1.00 1.484e-02 | 1.00 1.704e-02 | 1.00
81 1.313e-03 | 1.00 7.575e-03 | 0.99 || 8.660e-03 | 0.99
161 6.634e-04 | 0.99 3.940e-03 | 0.95 4.430e-03 | 0.98

TABLE 6
Quadratic porosity velocity errors. Relative L? errors and convergence rates for the wvelocities
for the scaled mized method. When n is even, the transition to positive porosity is at a computational
mesh point, but not when n is odd.

vf u Vs
n L? error | rate L2 error | rate L2 error | rate
Scaled mixed method, n even
20 3.663e-04 | 1.23 1.546e-06 | 1.14 1.546e-06 | 1.14
40 1.166e-04 | 1.65 5.104e-07 | 1.60 5.104e-07 | 1.60
80 3.252e-05 | 1.84 1.429e-07 | 1.84 1.429e-07 | 1.84
160 1.079e-05 | 1.59 4.342e-08 | 1.72 4.342e-08 | 1.72
Scaled mixed method, n odd
21 3.408e-04 | 1.27 1.444e-06 | 1.19 1.444e-06 | 1.19
41 1.115e-04 | 1.67 || 4.886e-07 | 1.62 4.886e-07 | 1.62
81 3.179e-05 | 1.84 1.397e-07 | 1.84 1.397e-07 | 1.84
161 1.071e-05 | 1.58 || 4.304e-08 | 1.71 4.304e-08 | 1.71

MFEM and to the expanded MFEM [8]. We also compare our method to a symmetry
preserving formulation in which we balance the degeneracy by using a square-root
scaling of the coefficient ¢>*2€ in (2.4) and modify (2.5), as was done in, e.g., [19].
However, we would still need to divide by ¢ in a standard approach, so we modify
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condition number

7
1/0e

Fic. 4. Compacting column. Condition numbers for the standard, expanded, symmetric, and
scaled formulations as ¢e — 0 for the porosities defined in (6.9)—(6.11) plus pe.

the test function as was done in our scaled method and in [6]. (See [4] for explicit
definitions of the three methods.) We consider the two nonconstant porosities (6.10)—
(6.11) (¢_ = 0), but add a small positive constant ¢. > 0 to each. We take ¢ — 0T
and observe the condition number of the linear system that is solved by each method.

In Figure 4 we see that the condition number increases rapidly as ¢. — 0 except
for the scaled method, which remains stable. Indeed, as we saw already, the scaled
method works well even when the porosity is identically zero in parts of the domain.

7. Numerical results in two dimensions. Finally, we present numerical re-
sults for the mass lumped approximation of the scaled method (4.2)—(4.5), (5.2) using
the TH Stokes spaces and the deal.Il software library [12]. Our two-dimensional
problem is related to simulation of the mantle near a midocean ridge (MOR).

If porosity is constant, ¢ = ¢p, and one sets V-u =V - v, = 0, then (1.1)-(1.5)
can be solved in an infinite quarter-plane {z > 0,z > 0} [36]. This problem describes
viscous corner flow if, at the top of the mantle {z = 0}, one sets the MOR spreading
rate as a boundary condition v, - 7 = v, - X = Uy, and on the ridge axis {x = 0}, one
sets the symmetry condition vy - v =vy -2z =0 and 0vs/0z = 0. The solution is

4psU,
00 === on) (5 lada)
20U tan~!(x/2) (22 + 2%) — 22
(72) vt ( & )
~ ko(1 = ¢o) 2+26 4psUo 2wz
= N i G CO R

We solve the full system of equations on the rectangular domain —160km < z <
160km, 0 < z < 160 km. The MOR is at (0,0). We take us = 10'° Pa-s, py = 1Pas,
ps = 3300kg/m3, ps = 2800kg/m3, ky = 10¥m?, © = 0, and Uy = 10 %m/s
= 3.1536 cm/yr. The boundary conditions are defined by imposing (7.2) on the Stokes
velocity v and (7.1) on the potential ¢ = ¢y. However, to avoid the singularity at the
corner, we translate z to x — ¢ when z < 0 and x + ¢ when x > 0 before evaluating
(7.1)—(7.2), where we arbitrarily set £ = 20m. We use a mesh of 160 x 80 elements.

In Figure 5 we show the Stokes solution using ¢ = 0. Note that the mantle flows
up to the MOR and outward from there. There is no fluid melt in this computation,
although our code solves for the Darcy system as well as the Stokes system. Rather
than normalizing the average of ¢ to zero, we set a single point to zero.
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Fia. 5. MOR-like example with zero porosity. We show the solid matrixz potential qs as a
contour in Kg/(m-s?) and the velocity vs as streamlines.
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F1G. 6. MOR-like example. We show the porosity and the solutions (Vs,qs), (Vr,qy), and
(u,qf). The porosity and potentials in Kg/(m-s?) are shown as contours, the relative velocity v, as
arrows, and the other velocities as streamlines.

We then set a a not identically vanishing porosity by the formula

120km — 2\ > || )
05 == L < <
005( 120Kk ) (1 247 if 2 <120km and |z| < z 4/,

0 otherwise,

(7.4) oz, 2) =

wherein we could offset by any value of ¢, but we simply chose to use the previously
chosen value ¢ = 20m. In Figure 6, we show the porosity and the solutions (v, ¢s)
to the Stokes system, (V,,{s) to the scaled Darcy system, and (u,gy) to the Darcy
system. The form of the solution is dictated by our (arbitrary) choice of ¢. The
scaled and unscaled Darcy solutions show fluid melt rising and focusing into the
MOR, and some melt leaving the domain to form new crust. The Stokes solution
varies significantly from the case in Figure 5 where there is no melt. The solid matrix
rises at the bottom, but it falls at the top near the MOR to compensate for the rise of
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fluid melt to the surface. The scaled potential G¢ is much smoother than qf, and so the
former is much easier to approximate. The porosity vanishes in a significant portion
of the domain; nevertheless, there is no difficulty solving the system accurately.

8. Conclusions. We developed a mathematically well-posed, mixed variational
framework for McKenzie’s equations governing the mechanics of a mixture of molten
and solid materials [28], assuming that the porosity ¢ is given and satisfies the hy-
pothesis (2.18). Our formulation handles the regions where there are two phases (i.e.,
the mixture variable ¢ > 0) as well as the mathematically degenerate regions where
there is only the single solid matrix phase (i.e., ¢ = 0). The formulation is based on
a careful scaling of the Darcy variables by powers of the porosity [6].

We defined an MFEM based on our scaled variational formulation and proved its
optimal order convergence. We also presented two modifications, one that is locally
mass conservative, and the other involving mass lumping (5.2) to simplify and increase
solver efficiency on rectangular meshes.

Numerical results of a one-dimensional compacting column with various porosity
functions (6.9)—(6.11) showed an excellent match to the closed form solutions for ¢g
and ¢y, as well as a good match to the approximate solution for ¢5. Degeneracies in
the porosity posed no difficulties for the simulations; in fact, the condition number
of the linear system is nearly insensitive to degeneracies in ¢. The results showed
that the method indeed achieves optimal convergence and that the mass lumping
approximation does not degrade the results in any way.

The nondegenerate constant porosity example showed O(h) convergence for the
potentials and superconvergence of order O(h?) when measured in the discrete mid-
point rule norm. The velocity achieved the optimal O(h?) convergence for this one-
dimensional problem. The degenerate, quadratic porosity example also showed op-
timal O(h) convergence of the potentials and perhaps O(h?) convergence of the ve-
locities, regardless of whether the computational mesh resolved the point where ¢
transitions from zero to positive.

The degenerate and discontinuous porosity example had an interesting set of
results. Even though the porosity does not satisfy (2.18), the MFEM achieved good,
but not necessarily optimal, convergence in all cases. When the computational mesh
resolved the transition point of ¢, we saw O(h) convergence for the potentials and
superconvergence of order O(h?) when measured in the discrete midpoint rule norm.
We also saw O(h3/2) convergence for o, and O(h?) convergence for u and vs. The
mass lumped approximation actually improved the convergence to O(h?) for all three
velocities. However, when the computational mesh did not resolve the transition
point in ¢, we saw O(h) convergence for the potentials §; and ¢y, but only O(h'/?)
for q. The discrete norm did not help, but we did verify that the main errors were
localized to a region near the transition point, since removing the error there led to
O(h) convergence for all three potentials. The velocities converged to order O(h).
This example suggests that the condition (2.18) may not be strictly necessary.

In the full model of mantle dynamics, the porosity evolves and so must be approx-
imated. In a finite element or discontinuous Galerkin method, one would naturally
approximate ¢ by continuous or discontinuous polynomials on each element of the
computational mesh. Any jumps in the porosity will then naturally lie on the bound-
aries of the elements, and so we would expect our method to perform well.

A two-dimensional test example akin to an MOR showed the strong effect that
melt can have on the velocity field. Even though the porosity vanished in much of the
domain, our locally conservative scaled finite element method showed good results.
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Using the mass lumped approximation, the method easily reduces to a single Stokes
system with two potentials, and the efficiency of the linear solver is fairly insensitive
to the absence of melt. We believe that our method is highly suited to realistic
problems of the mechanics of mantle dynamics, and that it can be used effectively as
a component of the full mantle dynamics problem.
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