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Abstract. A key untapped feature of game-based learning environments is their
capacity to generate a rich stream of fine-grained learning interaction data. The
learning behaviors captured in these data provide a wealth of information on
student learning, which stealth assessment can utilize to unobtrusively draw
inferences about student knowledge to provide tailored problem-solving sup-
port. In this paper, we present a long short-term memory network (LSTM)-based
stealth assessment framework that takes as input an observed sequence of raw
game-based learning environment interaction data along with external
pre-learning measures to infer students’ post-competencies. The framework is
evaluated using data collected from 191 middle school students interacting with
a game-based learning environment for middle grade computational thinking.
Results indicate that LSTM-based stealth assessors induced from student
game-based learning interaction data outperform comparable models that
required labor-intensive hand-engineering of input features. The findings sug-
gest that the LSTM-based approach holds significant promise for evidence
modeling in stealth assessment.

Keywords: Game-based learning environments - Stealth assessment - Deep
learning - Computational thinking + Educational games

1 Introduction

Recent years have seen a growing interest in intelligent game-based learning envi-
ronments because of their potential to effectively promote learning and engagement [1].
These environments simultaneously integrate the adaptive pedagogical functionalities
of intelligent tutoring systems with the engaging interactions provided by digital games
[2, 3]. Research has begun to explore student modeling for game-based learning
environments including modeling student knowledge [4] and students’ progression
towards learning goals [5] following work on student-adaptive learning featuring tai-
lored narratives, feedback, and problem-solving support [6].
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Stealth assessment [4] is a game-based assessment framework based on
evidence-centered design (ECD) [7]. ECD features task, evidence and competency
models for diagnostic measurement of multiple aspects of students’ proficiency and
performance. Built on the three models presented in ECD, stealth assessments utilize a
rich stream of student interactions (i.e., an evidence model) with various
problem-solving tasks (i.e., a task model) in game-based learning environments, to
draw inferences about student knowledge and skills (i.e., a competency model). The
evidence model provides the connections between the competency model and the
stream of low-level observations, enabling the competency model to update the
appropriate competencies related to the task being performed. In contrast to typical
formative assessments, stealth assessment has the potential to not only create a valid,
reliable evidence model utilizing observed sequences of detailed learning behaviors,
but also to perform assessments of a wide range of constructs in an unobtrusive,
invisible way, with the aim of providing useful feedback to students and teachers to
enhance learning and inform instruction [4, 8].

A key challenge posed by stealth assessment is how to effectively handle both
cyclical causalities between actions and events in the gameworld and temporal rela-
tionships characterized within learning behaviors. Students are likely to deliberately
choose their next action by referring to the current task, their previous actions, and any
feedback they received on their previous actions in the gameworld. Despite the pop-
ularity of utilizing evidence rules, which define a set of salient features that are
indicative of specific student competencies in the evidence model, previous work based
on evidence rules often ignores these complex relationships found within student
learning behaviors [4, 9, 10]. Furthermore, these features are often hand-engineered, so
they are domain expert-dependent, labor-intensive, and domain-specific.

As an alternative to manually devising an evidence model, an approach that
automatically extracts patterns and learns predictive features from sequences of raw
player actions would be more scalable, less labor-intensive, and would enable the
induction of evidence models that directly represent student learning processes without
sacrificing causal, temporal relationships. In this work, we investigate long short-term
memory networks (LSTMs) [11], a type of gated recurrent neural network, for
automating the creation of the evidence model without requiring hand-authored evi-
dence rules and statistical models. LSTMs automatically extract salient features from
temporal data and effectively preserve a longer-term memory by operating three gates
featured in the network. Results of an evaluation suggest that LSTM-based stealth
assessors directly induced from students’ interactions with a game-based learning
environment show significant promise for stealth assessment.

2 Related Work

Intelligent game-based learning environments are situated at the intersection of
(1) digital games that increase students’ motivation through rich settings (e.g., com-
pelling plots, engaging characters) in virtual environments, and (2) intelligent tutoring
systems that foster students’ learning through tailored scaffolding and context-sensitive
feedback. Recent work in game-based learning environments explores a broad
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spectrum of subject matters ranging from high school mathematics [12], to middle
school computer science [13], anti-bullying [14], language and culture learning [3], and
science inquiry [15], among others.

Stealth assessment can play an important role in game-based learning environ-
ments. Previous work on stealth assessment based on evidence-centered design uses
sequences of students’ interactions with the learning environment to dynamically
assess students’ knowledge. For stealth assessment, various families of machine
learning techniques have been investigated. Kim and colleagues [9] investigated
Bayesian network-based evidence modeling, which requires two primary steps:
(1) defining targeted competency and observable variables and building a directed
graphical model, and (2) specifying the conditional probabilities between parent nodes
and corresponding child nodes. Falakmasir et al. presented the SPRING data analysis
pipeline that does not require costly domain knowledge engineering [16]. Specifically,
SPRING trains two hidden Markov models (HMMs), one for high-performing and the
other for low-performing students per game level. Two log-likelihoods of an observed
sequence of student events are computed based on the two HMMs, and finally the
difference between the two log-likelihoods for each game level is used as an inde-
pendent variable for a linear regression model that predicts post-test scores. In our
previous work, we presented DeepStealth [13], a framework based on deep neural
networks [17] for stealth assessment. DeepStealth uses a deep feedforward neural
network (FFNN)-based evidence modeling approach, in which the multi-level, hier-
archical representations of the input data are learned through the training process of
deep networks. While the last two approaches have an advantage over the Bayesian
network-based approach by requiring less domain expert knowledge for evidence
modeling, the competency model (e.g., competency model variables, dependencies
between variables) is not designed at the same level of granularity as the Bayesian
network and thus provide less fine-grained insight into concept mastery. While
DeepStealth uses manually engineered features (e.g., features produced by
expert-authored evidence rules), the LSTM-based approach introduced here fully
automates the process of evidence modeling by directly utilizing raw game interaction
data (i.e., a sequence of low-level actions).

3 ENGAGE Game-Based Learning Environment

Encack (Fig. 1) is a game-based learning environment designed to introduce compu-
tational thinking to middle school students. It features a rich immersive 3D storyworld
built with the Unity multi-platform game engine. The ENGAGE curriculum was developed
by adapting the AP® Computer Science Principles course learning objectives [18] for
U.S. middle school students (ages 11-13). A central aim of the curriculum and
game-based learning environment is to promote computational thinking and
problem-solving processes that involve abstraction and algorithmic thinking, and allow
students to effectively use computational tools for data analysis, modeling, and simu-
lations [19]. In addition to providing a foundation for advanced computer science work
in high school, the problem-solving activities and computational challenges within the
game are designed to increase middle school student’s interest in computer science.
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Fig. 1. EncaGE game-based learning environment.

In the game, students play the protagonist who is sent to rescue an underwater
research facility. As students progress through the game, they discover that all of the
computing devices within the facility have been commandeered by a nefarious
researcher. Students navigate through a series of interconnected rooms, each of which
presents students with a set of computational challenges they must solve by either
programming devices or operating devices in reference to the programs already written
for the devices. Programmable devices are programmed using a visual programming
language, in which visual blocks are linked together [13]. Finally, support is provided
throughout the game by a cast of non-player characters who help progress the narrative
and offer clues to assist students in solving the computational challenges.

One of the levels in the game, the Digital World, allows students to explore how
binary sequences are used to represent digital data. The work presented in this paper
focuses on students’ problem-solving activities within this level. To complete a set of
binary learning tasks, students must find the binary representation of the base-ten
number stored in the binary lock device (Fig. 2, Left). Specifically, students must
review an existing program (Fig. 2, Right) associated with the binary lock device, flip

| baseten 5|16 |

open lock

Fig. 2. (Left) A binary lock device that students must unlock. The white tiles indicate the bits
are 1, whereas black tiles denote 0. The current binary number is 01110 and the corresponding
base-ten number, 14, is displayed on the device as immediate feedback. (Right) The visual
programming interface displaying the binary lock’s program.
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binary tiles on the binary lock device to change the binary sequence (Fig. 2, Left), and
execute its program. If the binary sequence matches the base-ten number stored in the
program, the current binary lock device opens upon execution and the player can move
on to a previously inaccessible area in the room. Through these tasks, students learn
about the concept of bits in binary numbers and the weight assigned to each bit.

In this work, we analyze 191 students’ interaction data (101 males, 88 females,
2 unreported) from a teacher-led deployment of ENGAGE in four public middle school
classrooms. Prior to beginning the Digital World unit, and immediately following the
unit, students completed online pre- and post-test assessments measuring computer
science attitudes [20], self-efficacy [21], and content knowledge (e.g., binary repre-
sentation). Students achieved improvements in content knowledge covered in the
Digital World unit, and a paired z-test comparing pre-test (M = 0.43, SD = 0.21) to
post-test (M = 0.59, SD = 0.24) indicated that students’ learning gains were statisti-
cally significant with a sizable effect size, #(185) = 12.25, p < .001, d = .70, where 186
out of 191 students took both the pre- and post-knowledge tests. These external
learning measures are used as predictive features for our evidence models, along with
the game interaction data.

4 LSTM-Based Stealth Assessment Framework

For a stealth assessment framework to be scalable to a broad range of learning envi-
ronments, it must be able to easily accommodate a wide range of domain-specific
features. Focusing on this aspect, we first describe how our work is framed in
evidence-centered design (ECD) [7] and then turn to our LSTM-based stealth assess-
ment framework. From an ECD perspective, the three models are summarized as
follows:

e Task Model: We use 11 binary-lock solving tasks from the Digital World unit, the
objective of which is finding the binary representation that matches the base-ten
number specified in the program.

e FEvidence Model: Observed sequences of actions in the game reveal students’
competencies. A generic feature set is used to represent actions. For ENGAGE, there
are 19 possible actions, and thus 19 distinct features are used to represent each
action using one-hot encoding. In addition to the game interaction evidence, stu-
dents’ five pre-test scores on the knowledge assessment, self-efficacy, and three
measures of computer science attitudes are utilized as evidence. An LSTM-based
evidence model informs the competency model in order to update students’ com-
petency levels.

e Competency Model: Following our previous work [13], we examine one compe-
tency model variable with respect to students’ overall knowledge about binary
representation, where the actual labels for their competency levels are acquired from
students’ post-test performance.

For domain independence, scalability, and robust performance, the evidence model
supports a generic feature set as well as missing data. The low-level generic feature set
in the evidence model can represent any types of action without being bound to a
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specific domain, thereby yielding enhanced scalability for the stealth assessment
framework. We use a single generic feature set to represent actions in this work, but the
framework can support multiple feature sets depending on the design of actions in the
learning environment (e.g., “clicking the first binary tile” can be represented using two
distinct feature sets: the action-type feature set that contains click, and the
action-argument feature set that contains first binary tile).

In this work, the binary learning tasks allow 19 possible actions, including 11
pairing actions’ associated with 11 devices described in the task model (e.g., binary
lock device in Fig. 2, Left), 5 bit-click actions (e.g., clicking a binary tile in Fig. 2,
Left), two actions for operating the programming interface (open and close in Fig. 2,
Right), and a program execution action to run the device’s program.

The evidence model is designed to consider students whose data (either external
pre-test scores or task activities) is partially missing. For example, it is possible that a
student missed a class and has only partial gameplay data or did not complete some
pre-tests prior to playing the game. To formulate the external learning measure evi-
dence from missing pre-test data, we perform mean imputation using a mean score of
other students’ scores for the specific pre-test. On the other hand, in cases where
students did not solve a specific task in the game, the game evidence is generated by
linking any observed learning activities, skipping the unsolved tasks. For example, if a
student completed only two tasks (T; and T3) and missed one task (T,) in-between, the
activities for T; and T3 are linked to generate a data instance, ignoring T,. Since it is
not uncommon for a student to be absent from class within a multi-week intervention,
this specific design for the evidence model is necessary to broaden tailored learning
support to all students who participated in the learning activities.

For the competency model, students’ competencies are represented by their
post-test performance on the knowledge assessment items for binary representations.
The competencies are defined based on a tertile split (‘high’, ‘medium’, or ‘low’) with
respect to post-test scores on the assessment, and thus this stealth assessment task is
cast as a three-class classification problem that predicts one’s competency level using
an LSTM-based stealth assessor.

4.1 Long Short-Term Memory Networks

Long short-term memory networks (LSTMs) (Fig. 3A) are a variant of recurrent neural
networks (RNNG5) that are specifically designed for sequence labeling of temporal data.
Traditional RNNs have faced significant challenges with respect to vanishing or
exploding gradients during training deep networks unfolded in time [22]. The three
gating units (input gate, output gate, and forget gate) featured in LSTMs enable
modeling long-term dependencies within temporal sequences by allowing gradient
information to flow over many time steps. LSTMs have achieved state-of-the-art
performance in a diverse set of computational sequence-labeling tasks, including
speech recognition and machine translation [23].

! Within the game, students must pair their virtual in-game computer with devices before they can
manipulate or view a device’s programs.
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In an implementation of LSTMs, the input gate (i,), forget gate (f;), candidate value
of the memory cell (¢;), and output gate (o,) at time ¢ are computed by Eqgs. 14,
respectively, in which W and U are weight matrices for transforming the input (x;) at
time ¢ and the cell output (h,.;) at time # — 1, b is the bias vector of each unit, and ¢ and
tanh are the logistic sigmoid and hyperbolic tangent function, respectively:

iy = o(Wix, + Uihy—1 + b;) (1)
fi = o(Wyxi+ Uphi_y + by) )
¢ = tanh(Wex, + Uchi—y + b,) (3)
0r = a(Wox, + Uph, 1 +b,) 4)

As described in Eq. 5, the current memory cell’s state (c,) is calculated by mod-
ulating the current memory candidate value (¢,) via the input gate (i,) and the previous
memory cell state (c,_;) via the forget gate (f,). Through this process, a memory cell
decides whether to keep or forget the previous memory state and regulates the can-
didate of the current memory state via the input gate. Once again, the current memory
cell state (c,) is controlled by the output gate (o,) to compute the cell activation (h,) of
the LSTM block at time ¢. This step is described in Eq. 6:

¢ = G+ fici-a (5)
h; = o, tanh(c;) (6)

Lastly, we use the final memory cell output vector (/,) to predict the class label for
stealth assessment, which is the competency level of the student. This step is executed
in a softmax layer (top-right in Fig. 3A), which is interpreted as a calculation of
posterior probabilities of the possible class labels. The LSTM is end-to-end trainable,
where all the parameters such as W, U, and b are machine-learned using backpropa-
gation through time.

4.2 Configuring LSTMs for Evidence Modeling

The LSTM’s input, x,, represents the evidence that a student reveals at time 7. As noted
above, the evidence model considers students’ pre-learning measures in addition to
actions in the game. These two types of variables feature different dynamics: actions
are sequential and discrete, whereas the external learning measures are static and
numeric, since they are measured prior to starting the game. Figure 3B describes how
we encode these two different types of variables into a trainable input (x,) at time
t. First, we concatenate the integer index of the action at time # (a,) with the five static
external learning measures (e;—es) to generate the original input (input,). While scores
for external learning measures (e.g., e;) can be directly utilized by the LSTMs because
their relative, numeric values are meaningful, the action index, a,, should be refor-
mulated since its discrete value does not represent a magnitude.
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(A) Softmax layer
Memory Block at time ¢ (to predict competency level)

/’\ gate ()
Ctq _ Memory Cell
h o
i input (e
Xt gate (i)
1
(B) A trainable representation of input at time ¢ (x;)
g _ .
~ ~ Concatenation

[[bitl] o (bit19) (e [ e [ e J e | e ]]
~_
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N 7

——
A vector with an action at time ¢ (a;) along with external learning measures (e, to es)

Fig. 3. (A) An illustration of an LSTM memory block that features three gating units and a
memory cell [22]. (B) An illustration of how an original input (input,) is transformed to a
trainable format (x;). The discrete action variable, «,, is one-hot encoded into a 19-dimensional
vector using bit 1 to 19, and then the induced vector is concatenated with numeric external
learning measure variables (e; to es) to create the final input, x,.

To address this issue, we use one-hot encoding to represent actions. One-hot
encoding creates a bit vector whose length is the number of the actions, where only the
associated action bit is on (i.e., 1), while all other bits are off (i.e., 0). Since we consider
19 distinct actions in ENGAGE, an action (e.g., a,) is represented with a 19-dimensional
vector. The final input (x,) is generated by concatenating the one-hot encoded action
representations with the five external learning measures, and thus the input is a
24-dimensional vector. Like actions in the input, the output of LSTMs should also be
represented using one-hot encoding, due to its discrete nature. Since the number of
possible competency levels is three in our work, the output is represented using a
three-dimensional one-hot vector.

Given this encoding of actions, the next step is to devise an encoding for action
sequences. Suppose that a student performed three actions and achieved the compe-
tency level, ‘high’. We generate x|, x,, and x3 based on our input encoding approach.
A naive method to generate a sequence is creating one from the list of actions, [x;, x,,
x3], along with the target label ‘high’. Another approach to generate sequences is using
sequence subsampling. The sequence subsampling method can generate more
sequences for the same case. For the same example, a subsampling method can produce
three sequences, [x;], [x1, x»], and [x], x5, x3], all with the same target label of ‘high’, by
accumulating actions sequentially. While the naive approach creates only one training
example (i.e., one sequence), this subsampling approach can create as many training
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examples as the number of actions per student (three sequences in this example). Since
actions in a sequence represent a student’s dynamic learning progress to achieve the
final competency, we adopt the subsampling method that induces fine-grained training
examples.

Finally, as with many other machine learning techniques, an effective configuration
of network hyperparameters for LSTMs often must be empirically determined. There
are several categories of hyperparameters to consider, including optimization (e.g.,
optimizer, learning rate), model structure (e.g., the number of hidden units, initialized
weights), and training criterion (e.g., regularization terms, loss function) [24]. In this
work, we adopt a grid-search on a model structure-based hyperparameter, the number
of hidden units, which has the most significant influence on predictive performances of
LSTMs among others in student goal recognition work [5]. We explore five values for
the hyperparameter: 80, 100, 120, 140 and 160. Other than this, we investigate a
single-layer LSTM with a softmax layer for classifying given sequences of actions,
adopt a mini-batch gradient descent with the mini-batch size of 128, set the dropout rate
[25], a regularization parameter, to 0.75, and utilize categorical cross entropy for the
loss function and the Adam stochastic optimizer [26]. Finally, the training process stops
early if the validation score has not improved within the last seven epochs. In this work,
10% of the training data is used to determine early stopping, while 90% is utilized for
supervised training, leaving the test set purely unseen. The maximum number of
epochs is set to 100. For devising LSTM-based evidence models, we use Keras [27], a
python-based modular neural networks library.

5 [Evaluation

We evaluate evidence models’ predictive accuracy with 10-fold student-level
cross-validation. The same data split is used for a fair comparison with the competi-
tive baseline approaches. In this empirical evaluation, 191 students’ gameplay data
along with their external pre-learning measures are investigated, where 35,571 data
instances are generated for training LSTM-based evidence models, following the
sequence subsampling technique. We compare the LSTM model to the previous
state-of-the-art deep feedforward neural network pre-trained with stacked denoising
autoencoders (FFNN) [13], support vector machine (SVM), and naive Bayes model
(NB). As discussed, unlike our LSTM models, the three competitive baseline models
utilize four salient game features engineered by domain experts, including the number
of binary tile flips, the number of binary tile double flips (a binary tile flipped and then
immediately flipped again), the number of times the device programs are executed, and
the amount of time students spent in the programming interface [13]. Also, for these
three baseline models, in case that the gameplay data is partially missing, mean
imputation is performed per game feature as done for missing pre-learning measures,
since these models take fixed-size inputs. All four evidence modeling approaches
utilize the same set of external learning measures as additional evidence.

For each computational approach, the best model configurations are identified in
the process of 10-fold cross-validation. Similar to the grid search method applied for
the LSTMs, we grid-search a set of hyperparameters for FFNNs, SVMs and NBs.
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For FFNNs, we explore two hyperparameters, the number of hidden layers (from one to
five) and corruption rate (four randomly chosen values), while freezing some other
hyperparameters (e.g., 40 hidden units per layer, softmax for the output activation
function). We examine two hyperparameters that are popularly explored for opti-
mization: the penalty parameter (C) and gamma (y) for SVMs with a radial basis
function [28]. C is chosen from {1, 10, 50, 100}, and y is chosen from {0.0005, 0.001,
0.005, 0.01, 0.05}. Finally, for NBs, we investigate two distributions (normal distri-
bution and kernel smoothing density estimate) to fit models for the data.

Table 1. Average accuracy rates of the LSTMs, FFNNs, SVMs, and NBs. {columns : rows} for
the four machine learning techniques indicate {number of hidden units}, {number of hidden
layers : corruption rate}, {gamma : penalty parameter}, and {distribution}, respectively. The
highest accuracy rate is marked in bold for each technique.

LSTMs 80 100 120 140 160
58.1% 56.1% 58.6% 63.9% 60.7%
FFNNs 1 2 3 4 5
0.20 61.9% 59.1% 56.6% 57.6% 59.7%
0.39 56.6% 61.3% 60.7% 56.5% 55.5%
0.69 59.1% 54.0% 62.9% 52.3% 54.5%
0.82 58.1% 59.7% 57.1% 55.0% 49.8%
SVMs 0.0005 0.001 0.005 0.01 0.05
1 50.8% 55.5% 59.1% 58.1% 56.0%
10 58.6% 59.2% 58.6% 59.2% 58.6%
50 59.2% 59.7 % 56.6% 57.1% 58.1%
100 59.2% 56.6% 58.7% 58.7% 58.1%
NBs Normal Kernel
48.1% 41.6%

Table 1 reports the average accuracy rates across different hyperparameter con-
figurations for each machine learning technique from cross-validations. Overall, the
highest performing LSTMs (the number of hidden units: 140) achieve 63.9% accuracy
rate, which outperforms the highest performing models from FFNNs (62.9%), SVMs
(59.7%) and NBs (48.1%) as well as the majority class baseline (41.9%).

In addition to the predictive performance improvement, the LSTM-based stealth
assessment has two notable benefits over the baseline approaches. First, the capacity to
handle various lengths of action sequences, effectively learning sequential patterns, and
performing sequence labeling per action points towards LSTMs as being a viable solution
for stealth assessment. For instance, as opposed to the FFNN-based approach that takes as
input a fixed size of input features generated using the entire sequence of actions, LSTMs
can sequentially make a prediction per action, and thus enable dynamic, run-time for-
mative assessments on student competencies. Second, LSTMs directly utilize raw game
interaction data dispensing with the need for manually engineering features to induce
stealth assessors. This characteristic constitutes considerable benefits over the other
models, since the feature engineering process is not only labor and time-intensive, but
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also impedes scalability of the stealth assessment framework to other learning environ-
ments due to the domain-specificity of the engineering process. It is noteworthy that the
LSTMs directly utilizing low-level inputs achieve the highest accuracy without lever-
aging expert knowledge.

6 Conclusions and Future Work

This paper has introduced a novel LSTM-based stealth assessment framework that shows
promise for accurately assessing learners’ competency levels. Using data collected from
multi-week classroom deployments of a game-based learning environment for middle
grade computational thinking, we conducted an evaluation of four stealth assessment
induction approaches that predict student post-competencies. The results suggest that
LSTM-based stealth assessors outperform the previous state-of-the-art approach, deep
feedforward neural networks pre-trained with stacked denoising autoencoders, as well as
support vector machines and naive Bayes models, with respect to predictive accuracy of
students’ post-competencies. This result is notable in that the LSTM-based evidence
models were induced directly using raw game interaction data, whereas the other models
were devised using domain-expert engineered features. Together with the sequence
modeling capability, the LSTM-based stealth assessment framework offers the potential
to serve as the foundation for formative assessment that operates dynamically, unob-
trusively, and is readily applicable to various learning environments. In the future, it will
be important to investigate stealth assessor model optimizations and regularizations for
further improving performance and informing decision making for adaptive scaffolding.
It will be also important to measure the stealth assessors’ early prediction performance to
evaluate their capacity for formative assessment. It will also be important to design a
granular set of competencies for stealth assessors to be more diagnostic and provide
fine-grained pedagogical support to further enhance student learning.
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