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iPrivacy: Image Privacy Protection by Identifying

Sensitive Objects via Deep Multi-Task Learning
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Abstract— To achieve automatic recommendation of privacy
settings for image sharing, a new tool called iPrivacy (image
privacy) is developed for releasing the burden from users on
setting the privacy preferences when they share their images for
special moments. Specifically, this paper consists of the following
contributions: 1) massive social images and their privacy settings
are leveraged to learn the object-privacy relatedness effectively
and identify a set of privacy-sensitive object classes automatically;
2) a deep multi-task learning algorithm is developed to jointly
learn more representative deep convolutional neural networks
and more discriminative tree classifier, so that we can achieve
fast and accurate detection of large numbers of privacy-sensitive
object classes; 3) automatic recommendation of privacy settings
for image sharing can be achieved by detecting the under-
lying privacy-sensitive objects from the images being shared,
recognizing their classes, and identifying their privacy settings
according to the object-privacy relatedness; and 4) one simple
solution for image privacy protection is provided by blurring
the privacy-sensitive objects automatically. We have conducted
extensive experimental studies on real-world images and the
results have demonstrated both the efficiency and effectiveness
of our proposed approach.

Index Terms— Image sharing, privacy setting recommendation,
object-privacy alignment, image privacy protection, privacy-
sensitive object classes, deep multi-task learning, tree classifier
for hierarchical object detection.

I. INTRODUCTION

W
ITH the growing popularity of smart-phones and other

mobile devices, high-quality cameras are increasingly

pervasive. As a result, capturing images and sharing them on
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social platforms like Facebook, Instagram and Foursquare has

become a common part of our daily life. However, without

the proper privacy protection [1]–[4], the shared images can

reveal much of users’ personal and social environments and

their private lives since images can intuitively tell when and

where a special moment took place, who participated and what

were their relationships. Unfortunately, many people especially

young users of social networks often share private images

about themselves, their friends and classmates without being

aware of the potential impact on their future lives caused by

unwanted disclosure and privacy violations.

With the increasing concerns on image privacy [5]–[16],

major social websites start offering privacy tools that allow

users to manually specify coarse-grained privacy settings

(preferences), such as whether an image is public, private

or visible to their family members or friends. However, due

to the lack of privacy knowledge, it would not be easy

for common users to correctly configure privacy settings to

achieve their desired levels of privacy protection; also, given

the large number of images being shared and the tedious steps

needed for fine-grained privacy settings, some users may not

be willing to spend extra time on providing such fine-grained

privacy settings [1]–[4].

To release the privacy setting burden from users, a new

tool called iPrivacy (image Privacy) is developed to automate

the privacy configuration process during social image sharing.

Unlike many previous works [5]–[13] which typically recom-

mend privacy settings based on similarity of users’ profiles

or image tags, we study the problem in a different angle by

looking into the shared images themselves. Our idea is to auto-

matically detect the privacy-sensitive objects from the images

being shared, recognize their classes, and identify their privacy

settings. Based on the detection results, our system would be

able to warn the image owners what objects in the images need

to be protected before sharing and also provide recommended

privacy settings. For example, Fig. 1 shows two categories of

privacy-sensitive object classes: (a) user-independent classes

such as humans, locations and discrimination texts in images;

and (b) user-dependent classes such as home shrines and

visual attributes for personal hobbies. Considering 1.82

billions active users of social networks and trillions of shared

images, there may exist a large set of privacy-sensitive object

classes. Thus, the critical challenge to be conquered here is to

identify all the privacy-sensitive object classes efficiently and

learn the object-privacy relatedness precisely from the large

number of social images so as to provide real-time privacy

recommendation. To achieve this, we cannot directly adopt
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Fig. 1. Illustration of some privacy-sensitive object classes:
(a) user-independent classes: (a1) sensitive people, (a2) sensitive locations,
(a3) public toilet, (a4) discrimination texts; (b) user-dependent classes:
(b1) home shrines which may indicate personal religions, (b2) visual
attributes which can indicate smoking in public, (b3) conference name tags,
(b4) personal information tags.

Fig. 2. An Overview of the key components of our iPrivacy system.

existing machine learning tools. Specifically, if a flat approach

is employed, the computational cost will grow linearly with the

total number of privacy-sensitive object classes (to be detected

and recognized) and hence it is not scalable; if a hierarchical

approach [19], [20] is adopted, the object detection process

could be speed up dramatically but it would seriously suffer

from the so-called inter-level error propagation problem, i.e.,

the mistakes made at the parent nodes will propagate to their

child nodes and such mistakes cannot be recovered.

To address the aforementioned challenges, our iPrivacy

system takes four main steps (as illustrated in Fig. 2): (1) Deep

CNNs are learned to achieve semantic image segmentation

and identify large numbers of object classes from massive

social images, and an automatic object-privacy alignment algo-

rithm is developed to learn the object-privacy relatedness and

identify a set of privacy-sensitive object classes; (2) A visual

tree is learned to organize large numbers of privacy-sensitive

object classes hierarchically in a coarse-to-fine fashion, which

can provide a good environment to determine the inter-related

learning tasks automatically; (3) A deep multi-task learning

algorithm is developed to learn more representative deep

CNNs and more discriminative tree classifier jointly, so that

we can achieve fast and accurate detection of large numbers

of privacy-sensitive object classes; (4) Automatic recommen-

dation of privacy settings for image sharing is achieved by

detecting the underlying privacy-sensitive objects from the

images being shared, recognizing their classes, and identi-

fying their privacy settings according to the object-privacy

relatedness. In addition, a simple solution for image privacy

protection is further provided by blurring the privacy-sensitive

objects automatically. Finally, to evaluate the performance of

our proposed iPrivacy system, we have conducted extensive

experimental studies on real-world images. The experimental

results have demonstrated both efficiency and effectiveness of

our proposed approach.

The remaining of the paper is organized as follows.

Section 2 reviews the related work briefly; Section 3 presents

our algorithm on leveraging deep learning for semantic image

segmentation and our automatic object-privacy alignment

algorithm for assigning the privacy settings given at the

image level into the most relevant object classes; Section 4

introduces our algorithm for visual tree construction; Section 5

presents our algorithm for joint learning of the deep CNNs

and the tree classifier over the visual tree; Section 6 reports

the experimental results for algorithm and system evaluation;

Section 7 concludes the paper and outlines the future work.

II. RELATED WORK

In this section, we briefly review the most relevant research

on: (1) privacy protection for social image sharing [5]–[18],

[49], [50]; and (2) deep learning [23]–[30], [51] and multi-task

learning for object detection [21], [22], [37], [38].

A. Privacy Protection for Social Image Sharing

Several recent works have studied how to automate

the privacy setting process for image sharing [5]–[18].

Bonneau et al. [14] proposed the concept of privacy suites

which recommend users a suite of privacy settings that

“expert” users or other trusted friends have already set, so that

normal users can either directly choose a setting or only need

to do minor modification. Ravichandran et al. [13] studied how

to predict a user’s privacy preferences for location-based data

(i.e., share her location or not) based on location and time of

day. Fang et al. [16] proposed a privacy wizard to help users

grant privileges to their friends. The wizard asks users to first

assign privacy labels to the selected friends, and then uses this

as the input to construct a classifier to classify friends based

on their profiles and automatically assign privacy labels to the

unlabeled friends. More recently, Klemperer et al. [12] studied

whether the keywords and captions (which are provided by the

users when they tag their photos) can be used to help users

create and maintain access-control policies more intuitively,

where the social tags created for organizational purposes can

be re-purposed to help create reasonable access-control rules.

The aforementioned approaches focus on deriving

policy settings for only traits, so they mainly consider social

context such as one’s friend list. While interesting, they

may not be sufficient to address challenges brought by

images for which privacy may vary substantially not just

because of social contexts but also due to the actual image

content as considered in our work. Zerr’s work [17] and

Squicciarini et al. [18] have explored privacy-aware image

classification by using a mixed set of features, both content

and meta-data. More recently, Tonge and Caragea [49]

integrated the deep features for image privacy prediction and
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Fig. 3. Our results on semantic image segmentation: (a) original social images; and (b) semantic segmentation of object regions for human beings and cars,
bikes, motorcycles.

Fig. 4. Our results on semantic image segmentation: (a) original social images; and (b) semantic segmentation of object regions for human beings and
animals (horses, cats and dogs).

Spyromitros-Xioufis et al. [50] leveraged user-dependent

images and privacy settings to support personalized privacy-

aware image classification. Both teams have found that the

deep features can yield remarkable improvements on the

performance as compared with other handcrafted visual

features such as SIFT, GIST and color histograms. Compared

to them, our approach provides a finer level of image

classification and is much more efficient.

B. Deep Multi-Task Learning for Object Detection

Our proposed iPrivacy is built upon deep learning tech-

niques, and hence we briefly discuss the new contributions in

our work compared to existing works on deep learning. Deep

learning [23]–[25] has demonstrated its outstanding abilities

on learning high-level features and significantly boosting the

accuracy rates for large-scale object detection (i.e., detecting

and recognizing large numbers of object classes), but they

still have room to improve. For example, softmax is used

to flatly map the high-level features into large numbers of

object classes, where the inter-task correlations (inter-class

visual similarities) are completely ignored. As a result, the

process for learning the deep CNNs may be pushed away

from the global optimum because the gradients of the objective

function are not uniform for all the object classes and such

learning process may distract on discerning the object classes

that are hard to be discriminated [26]–[30]. In our work,

a tree structure is seamlessly integrated with deep network

to identify the inter-related learning tasks (the the gradients of

the objective function for such inter-related learning tasks are

more uniform) and avoid such distraction effectively.

Multi-task learning [21], [22] has demonstrated its ability on

learning more discriminative classifiers by considering multi-

ple inter-related learning tasks jointly. However, they cannot be

directly applied to our case due to the following two reasons.

First, traditional multi-task learning algorithms usually assume

that all the tasks are equally related. However, such assumption

does not hold in image sharing because it is unnecessary for

each privacy-sensitive object class to be related with all the

others. Second, although there have been some recent efforts

in improving the efficiency [26]–[30], [37], [51], multi-task

learning algorithms still yield high computational cost which

would not be able to provide real-time recommendations for

users who would like to share images instantly.

III. SEMANTIC IMAGE SEGMENTATION AND AUTOMATIC

OBJECT-PRIVACY ALIGNMENT

In social websites, privacy settings are given to entire

images. Such image-level privacy cannot tell which object in

the image is indeed the sensitive one that needs protection.

Therefore, the first phase in our iPrivacy system is to obtain

a finer-level privacy setting, i.e., object-level privacy settings.

This phase consists of the following major steps: (1) obtain

semantic segmentations of object regions; (2) identify a set of

privacy-sensitive object classes from large numbers of social

images; (3) convert image-level privacy setting to object-level

privacy setting by assigning the image-level privacy settings to

the most relevant object regions (object classes) in the images,

and we can take lessons from some pioneering researches

on automatic object-tag alignment [39]–[43]; and (4) learn

object-privacy relatedness, i.e., the correspondences between

the object classes and the privacy settings. In what follows, we

elaborate the details of each step. Without loss of generality,

we consider three groups of privacy settings in this work:

(a) public; (b) private; and (c) shared with friends or family.

First, we segment each social image into a set of semantic

object regions by integrating deep CNNs [45]–[48] with CRF

(conditional random fields) models [44]. Specifically, we train

a fully CNNs in an end-to-end way to enable pixel-level

prediction and classification. Then, a CRF model is further

learned to integrate the neighboring pixels for the same object

classes to generate semantic object regions. As shown in Fig. 3

and Fig. 4, our integrated approach can identify semantic

object regions and their categories (object classes) effectively.

After segmentation, we proceed to introduce our object-

privacy alignment algorithm that precisely assigns image-level

privacy settings to the object classes in the images. Note that

the semantics of each social image can be described effectively

by all its object classes. For a given social image, by projecting
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Fig. 5. Image clustering results, where the semantically-similar social images are illustrated according to their semantic similarities.

all its object classes over the full set of 1000 object classes,

we can obtain a 1000-dimensional sparse representation for

the given social image, e.g., bag of object classes. Based on

this, we define the semantic similarity between two images as

follows:

κI (X i , X j ) =

1000
∑

l=1

δ(X l
i , X l

j ) (1)

where X i and X j are the bags of object classes in these two

social images, δ(X l
i , X l

j ) is defined as:

δ(X l
i , X l

j ) =

⎧

⎪

⎨

⎪

⎩

1, i f X l
i = X l

j = 1;

0, otherwi se

(2)

where X l
i = X l

j = 1 indicates that two images X i and X j

contain the same object class, i.e., the lth object class. Then,

we cluster all the social images based on their semantic simi-

larities κI (·, ·). Some experimental results on image clustering

are shown in Fig. 5, from which we can see that images in

the same cluster contains similar object classes.

Next, we merge the privacy settings of the images in the

same cluster to generate a short list of common privacy

settings. Such common privacy settings are re-ranked accord-

ing to their occurrence frequencies. Then, those with higher

occurrence frequencies are selected to represent the privacy

settings of the whole cluster. Specifically, given a cluster, let P

denote the integrated set of privacy settings for all the images

in this cluster, and let t be one particular privacy setting in P ,

we define the relevance score between the privacy setting t

and an object class Ci as follows:

γ (Ci , t) =
‖ �(Ci , t) ‖

‖ �(C, P) ‖
(3)

where �(C, P) denotes the full set of images in the

cluster which contains a set of object classes C =

{C1, · · · , Ci , · · · , Cm } and has the integrated set of privacy

settings P , and �(Ci , t) denotes a subset of images in the

cluster that contains object class Ci and has the privacy

setting t . In summary, �(Ci , t) ⊆ �(C, P), Ci ∈ C and

t ∈ P . ‖ �(Ci , t) ‖ is the number of images in �(Ci , t)

and ‖ �(C, P) ‖ is the number of images in �(C, P).

It may seem more straightforward to calculate the

object-privacy relevance score γ (Ci , t) by only using the

co-occurrences ‖ �(Ci , t) ‖ between the given privacy setting

t and the object class Ci because their co-occurrences ‖

�(Ci , t) ‖ can indicate the probability for the privacy setting

t to be assigned to the object class Ci . However, we normalize

the co-occurrences ‖ �(Ci , t) ‖ because of two reasons:

(a) each cluster may contain a large number of semantically-

similar social images and hence a large number of object

classes; (b) our focus is to find the common privacy settings

for all the object classes.

Considering the large amount of social images, it is very

likely to have some object classes co-occurring frequently in

the same images. The frequently co-occurring object classes

are strongly related, and hence, are more likely to share

similar privacy settings. For examples, object classes, such

as computer screens, offices and notebooks, may co-occur

frequently in the same images with similar privacy settings.

Therefore, we model such object co-occurrences as an object

co-occurrence network in order to provide a good environ-

ment to refine the object-privacy relevance scores. Our object

co-occurrence network consists of two key components:

(a) object tags for interpreting the object classes; and (b) their

co-occurrences in social images. In particular, given two object

classes Ci and C j , their co-occurrence φ(Ci , C j ) is defined

as:

φ(Ci , C j ) = ρ(Ci , C j ) log
ρ(Ci , C j )

ρ(Ci ) + ρ(C j )
(4)

where ρ(Ci , C j ) is the co-occurrence probability of two object

classes Ci and C j , ρ(Ci ) and ρ(C j ) are their individual

occurrence probabilities.

ρ(Ci , C j )=
N(Ci , C j )

N
, ρ(Ci )=

N(Ci )

N
, ρ(C j )=

N(C j )

N
(5)

where N(Ci , C j ) is the number of social images which contain

the two object classes Ci and C j simultaneously, N(Ci ) is the

number of social images which contain the object class Ci ,

N(C j ) is the number of social images which contain the

object class C j , and N is the total number of social images.

The object classes, which have large values of co-occurrences

φ(·, ·), are connected to form an object co-occurrence network

as shown in Fig. 6.

Over the obtained object co-occurrence network, we

perform a random walk to refine the object-privacy relevance

scores iteratively. Given an image cluster which contains m

object classes, we use ρk(Ci , t) to denote the object-privacy

relevance score between the object class Ci and the privacy set-

ting t at the kth iteration. For example, ρ0(Ci , t) = γ (Ci , t) is

the initial object-privacy relevance score as defined in Eq.(3).
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Fig. 6. A small part of our object co-occurrence network.

We further define � as an m×m transition matrix, whereby its

element ψi j is used to define the transition probability from the

object class Ci to its inter-related object class C j on our object

co-occurrence network. Such inter-object transition means that

the frequently co-occurring object classes may share similar

privacy settings. ψi j is defined as:

ψi j =
φ(Ci , C j )

∑

Ck∈
Ci
φ(Ci , Ck)

(6)

where 
Ci is the first-order neighbors of the object class Ci on

our object co-occurrence network, and φ(Ci , C j ) is the inter-

object correlation between Ci and C j as defined in Eq. (4).

Correspondingly, the random walk process is formulated as

follows:

ρk(Ci , t) = θ
∑

C j ∈
Ci

ρk−1(Ci , t)ψi j + (1 − θ)γ (Ci , t) (7)

where ρk−1(Ci , t) is the object-privacy relevance score at the

(k −1)th iteration and θ = 0.4 is a weight parameter (e.g., we

assume that the original relevance score is more important than

the transition relevance score). For a given object class Ci ,

all the relevant privacy settings are re-ranked according to

their object-privacy relevance scores with Ci and the privacy

setting with the largest object-privacy relevance score is finally

selected for the given object class Ci .

By assigning the privacy settings (given at the image level)

into the most relevant object classes precisely, our object-

privacy alignment algorithm can effectively: (a) identify a

set of privacy-sensitive object classes (which their privacy

settings are identified as private); and (b) determine the object-

privacy correspondences precisely. Finally, recommending the

privacy settings for the images being shared can be achieved

by detecting their underlying privacy-sensitive objects and

using such object-privacy correspondences to recommend the

best-matching privacy settings for image sharing.

IV. VISUAL TREE CONSTRUCTION

The second phase in our iPrivacy system is to provide

an effective organization of a set of privacy-sensitive object

classes obtained from the previous step. For this, a visual tree

T = (V, E) is learned which comprises a set of nodes V and

a set of edges E. Each non-leaf node c ∈ V is associated with

a set of privacy-sensitive object classes L(c) ⊆ {1, . . . , M}

which are a subset of its parent node. Each leaf node is

associated with one particular privacy-sensitive object class.

Given two privacy-sensitive object classes C j and Ci , their

inter-class visual similarity S(Ci , C j ) is defined as:

S(Ci , C j ) =
1

R2

∑

xl∈Ci

∑

xh∈C j

κo(xl, xh) (8)

where R is the number of training images, κo(·, ·) is

the Gaussian kernel function for similarity characterization,

xl and xh are the deep features for the lth social image from

the object class Ci and the hth social image from the object

class C j , and R is the total number of social images from

each object class. Given N privacy-sensitive object classes,

their inter-class similarity matrix S is obtained automatically

and its component is defined as Si j = S(Ci , C j ).

Such inter-class visual similarities are then used to

determine their inter-class separability. The visually-similar

privacy-sensitive object classes are difficult to be separated

by the node classifiers. They should be assigned to the same

coarse-grained group (superclass) of privacy-sensitive object

classes to avoid early incorrect partitioning at a high-level node

of the visual tree. In other words, partitioning mistakes at the

high-level nodes are more critical because of inter-level error

propagation. Therefore, we develop the following approach.

A top-down approach is applied to partition large numbers

of privacy-sensitive object classes hierarchically, which starts

from the root node (that contains all the privacy-sensitive

object classes) and ends at the leaf nodes (each leaf node

contains one particular privacy-sensitive object class). For each

non-leaf node c, its M privacy-sensitive object classes are

partitioned into B smaller groups (i.e., B children nodes at

next level) by minimizing inter-group visual similarity and

maximizing intra-group visual similarity:

min

{

ψ(c, B) =

B
∑

l=1

∑

Ci∈Gl

∑

C j∈Gc/Gl
S(Ci , C j )

∑

Ci∈Gl

∑

Ch∈Gl
S(Ci , Ch)

}

(9)

where S(Ci , C j ) is the inter-class visual similarity between

two privacy-sensitive object classes Ci and C j , Gc = {Gl |l =

1, · · · , B} is used to represent B groups (clusters) of M

privacy-sensitive object classes for the current non-leaf node

c, and Gc/Gl is used to represent other B − 1 groups in Gc

except Gl . Note that if the set L(c) for a non-leaf node c

has less than B privacy-sensitive object classes, only |L(c)|

child nodes are generated. This node partitioning process is

performed repeatedly until a complete tree is created whereby

each leaf node contains one single privacy-sensitive object

class. At the end of partitioning, the privacy-sensitive object

classes, which share significant common visual properties but

may contain subtle visual differences, are finally assigned

to the sibling leaf nodes under the same parent node.
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Fig. 7. Hierarchical partitioning of the inter-class similarity matrix S for
visual tree construction: B = 4 and H = 5, where B is the branching factor
to indicate the number of sibling child nodes under the same parent node and
H is the maximum depth of visual tree (from root node to leaf node).

Fig. 8. The illustration of the key components of our deep multi-task learning
algorithm for joint learning of deep CNNs and tree classifier.

Fig. 7 illustrates an example of this hierarchical clustering

process when the branching factor is B = 4 and the maximum

depth is H = logB No, where No is the totally number of

privacy-sensitive object classes.

Our visual tree can organize large numbers of privacy-

sensitive object classes hierarchically in a coarse-to-fine

fashion, which allows our hierarchical deep multi-task learning

algorithm (presented in the next section) to learn discrimina-

tive tree classifier effectively. Moreover, the use of the tree

classifier can help reduce the computational cost significantly

by ruling out unlikely groups of privacy-sensitive object

classes (i.e., irrelevant high-level nodes) at an early stage

V. JOINT LEARNING OF DEEP CNNS

AND TREE CLASSIFIER

The third phase in our iPrivacy system is to learn the tree

classifier and the deep CNNs jointly over the visual tree in an

end-to-end fashion, so that we can achieve fast and accurate

detection of large numbers of privacy-sensitive object classes.

As illustrated in Fig. 8, our deep network contains two parts:

(a) deep CNNs for image representation; and (b) tree classifier

for hierarchical object detection. The significant difference

between our deep networks and traditional deep CNNs is that

the tree classifier is used to replace the N-way flat softmax

classifier [24], [32]. A bottom-up deep multi-task learning

algorithm is further developed to achieve joint learning of the

deep CNNs and the tree classifier.

A. Joint Learning for Sibling Leaf Nodes

For a given parent node Ch at the second level of the visual

tree, the multi-task node classifiers for its visually-similar

privacy-sensitive object classes (its sibling leaf nodes at the

first level of the visual tree) are trained simultaneously by

optimizing a joint objective function:

min

⎧

⎨

⎩

ν

R
∑

l=1

B
∑

j=1

ξ l
j + δ1T r

(

W W T
)

+
δ2

2
T r

(

W LW T
)

⎫

⎬

⎭

(10)

subject to:

∀R
l=1∀

B
j=1 : yl

j

(

W T
j · x l

j + b
)

≥ 1 − ξ l
j , ξ l

j ≥ 0 (11)

where R is the number of training images for each privacy-

sensitive object class, W j is the classifier parameter for the j th

privacy-sensitive object class C j , Tr(·) is used to represent the

trace of matrix, ξ l
j indicates the training error rate, δ1 and δ2

are the regularization parameters, ν is the penalty term, W =

(W1, · · · , W j , · · · , WB), L is the Laplacian matrix of the

relevant inter-class similarity matrix S. The inter-class visual

similarities S(·, ·) as defined in Eq. (8) are used to approximate

the inter-task relationships, the manifold regularization term

Tr
(

W LW T
)

is used to enforce that: if two visually-similar

privacy-sensitive object classes Ci and C j have larger inter-

class visual similarity S(·, ·), their multi-task node classifiers

will have stronger correlations.

The joint objective function as defined in Eqs.(10-11) is

optimized by using the stochastic alternating direction method

of multipliers (ADMM) algorithm [33], [34], which is able

to handle non-smooth regularization term. The correspond-

ing gradients for the joint objective function as defined in

Eqs.(10-11) are calculated and they are back-propagated [31]

through the deep CNNs to fine-tune the weights.

The dual problem for joint classifier training is defined as:

min

⎧

⎨

⎩

B
∑

j=1

R
∑

l=1

β
j

l −
1

2δ1
βT Y�

(

�+
δ2

δ1
�

(

L
⊗

I
)

�

)−1

�Yβ

⎫

⎬

⎭

(12)

subject to: ∀R
l=1∀

B
j=1 :

R
∑

l=1

β
j

l · y
j

l = 0, 0 ≤ β
j

l ≤ 1

(13)

where Y = [yl
j | l ∈ {1, R}, j ∈ {1, B}]T ∈ {0, 1}R×B and

yl
j ∈ {0, 1}B×1 is the class indicator vector for the training

image x l
j , I is the identical matrix, L

⊗

I is the Kronecker

product between two matrix L and I , β = (β1, · · · , β j ,

· · · , βB) is the set of the dual variables, β j = (β
j

1 , · · · ,

β
j

l , · · · , β
j
R), � is a block diagonal similarity matrix and it is
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Fig. 9. Our experimental results on integrating the deep CNNs and the tree classifier to detect and recognize the most significant privacy-sensitive object
class (i.e., human beings) and protecting image privacy via simply blurring privacy-sensitive objects: (a) original image; (b) human regions detected by deep
learning; (c) detected human objects; (d) face identification for privacy-sensitive objects; (e) face blurring for privacy-sensitive objects; (f) shared images with
privacy protection via simple face blurring.

defined as:

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�1

. . .

� j

. . .

�B

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

where � j ∈ R
R×R is the similarity matrix for R training

images for the j th privacy-sensitive object class.

After the optimal β∗ is obtained by solving Eqs. (12-13),

we can compute the optimal α∗ = (α∗
1 , · · · , α∗

j , · · · , α∗
B) as:

α∗ =
1

2δ1

(

� +
δ2

δ1

(

�
(

L
⊗

I
)

�
)−1

�Yβ∗

)

(15)

where α∗
j = (α1∗

j , · · · , αl∗
j , · · · , αR∗

j ). Finally, the multi-task

node classifiers for the sibling privacy-sensitive object classes

under the same parent node (superclass) Ch are defined as:

∀B
j=1 : f 1

C j
(x) =

R
∑

l=1

αl∗
j κ(x l

j , x) + b∗
j , C j ∈ Ch (16)

B. Joint Learning for Sibling Non-Leaf Nodes

For a given high-level non-leaf node Ck , training the multi-

task node classifiers for its sibling child nodes is achieved by:

min

{

ν

R
∑

m=1

B
∑

h=1

ξm
h + γ1T r

(

W W T
)

+
γ2

2
T r

(

W LW T
)

}

(17)

subject to:

∀R
m=1∀

B
h=1 : ym

h

(

W T
h · xm

h +b
)

≥1−ξm
h , ξm

h ≥0, Ch ∈Ck

(18)

∀B
h=1 : f l+1

Ch
(x) − f l

C j
(x) ≥ 0 (19)

∀B
h=1 : f l+1

Ch
(x) =

B
∑

j=1

η j f l
C j

(x) (20)

where W = (W1, · · · , Wh , · · · , WB ), the inter-level dis-

crimination constraints as defined in Eqs. (19-20) are used

to control inter-level error propagation [52]. The bundle

method [35], [36] is used to solve the optimization problem

as defined in Eqs. (17-20).
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Fig. 10. Our experimental results on integrating the deep CNNs and the tree classifier to detect and recognize the most significant privacy-sensitive object
class (i.e., human beings) and protecting image privacy via simply blurring privacy-sensitive objects: (a) original image; (b) human regions detected by deep
learning; (c) detected human objects; (d) face identification for privacy-sensitive objects; (e) face blurring for privacy-sensitive objects; (f) shared images with
privacy protection via simple face blurring.

By leveraging the visual tree to generate subtrees (each

subtree contains one parent node and at most B sibling child

nodes) iteratively and determine the inter-related learning tasks

automatically, our deep multi-task learning algorithm can pro-

vide an iterative solution for large-scale machine learning, so

that training large numbers of node classifiers over the visual

tree (i.e., tree classifier) becomes computationally tractable.

The fourth phase in our iPrivacy system is to automatically

detect the privacy-sensitive objects from the images being

shared, recognize their classes, and identify their privacy

settings for image sharing. After the tree classifier and the

deep CNNs are available, they are used to predict the label

(object class) for a given image being shared or an object

proposal x in the image being shared, i.e., identifying its

best-matching privacy-sensitive object class. After the privacy-

sensitive objects are identified from the image being shared,

a simple solution for image privacy protection is provided by

blurring such privacy-sensitive objects automatically.

VI. EXPERIMENTAL RESULTS FOR ALGORITHM AND

SYSTEM EVALUATION

All our experiments are conducted on a parallel set that

comprises about 800, 000 social images and their privacy set-

tings. To assess the effectiveness of our proposed algorithms,

we have evaluated multiple aspects: (a) whether our deep

multi-task learning algorithm can obtain better results on

detecting and recognizing large numbers of privacy-sensitive

object classes; (b) whether our deep multi-task learning

algorithm can control the inter-level error propagation more

effectively as compared with other baseline methods and

achieve higher accuracy rates on large-scale object detection;

(c) whether blurring privacy-sensitive objects may significantly

affect the utility of the shared images; and (d) whether

detecting the privacy-sensitive object classes and learning their

object-privacy correspondences can allow us to recommend

better privacy settings for image sharing and image privacy

protection.

As shown in Fig. 9 and Fig. 10, one can observe that

our algorithm can effectively detect and recognize the most

important privacy-sensitive object class (i.e., human beings)

from the images being shared. Detecting and recognizing

such privacy-sensitive objects from images is the first and

most important step for automating image privacy protection.

When such privacy-sensitive object classes are detected and

recognized from the images being shared, we can incorporate

an simple approach to blur such privacy-sensitive objects or

backgrounds to protect the image privacy as illustrated in

Fig. 9 (f) and Fig. 10 (f). The average time cost is around
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Fig. 11. The comparison on the accuracy rates on large-scale object detection
and recognition when different approaches are used for tree classifier training:
(a) our deep multi-task learning algorithm; (b) HD-CNN approach [29].

TABLE I

THE SHORT LIST OF PRIVACY-SENSITIVE OBJECT

CLASSES IDENTIFIED BY THIS WORK

TABLE II

THE SHORT LIST OF PUBLIC OBJECT CLASSES IDENTIFIED BY THIS WORK

1.2 seconds for detecting and recognizing the privacy-sensitive

objects from an image being shared. A short list of the privacy-

sensitive object classes are illustrated in Table I, and a short

list of public object classes are also illustrated in Table II.

To evaluate the effectiveness of our deep multi-task learning

algorithm on controlling the inter-level error propagation, we

have compared our algorithm with three baseline methods:

(a) Traditional hierarchical multi-task learning approach [37];

(b) Label tree [38]; and (c) HD-CNN approach [29]. As shown

in Fig. 11 and Fig. 12, the accuracy rates for our algo-

rithm are higher than that for other three baseline methods.

Fig. 12. The comparison on the accuracy rates on large-scale object detection
and recognition when different approaches are used for classifier training:
(a) our deep multi-task learning algorithm; (b) traditional hierarchical
multi-task learning approach [37]; and (c) label tree [38].

Fig. 13. The utility of blurred images could be low, i.e., sharing the blurred
images for learning deep CNNs and tree classifier may dramatically decrease
the accuracy rates for object detection.

Fig. 14. The utility of blurred images (i.e., accuracy of tree classifier) may
change quickly when the sizes of blurred regions are increased.

By explicitly leveraging the inter-class visual correlations for

multi-task learning, our deep multi-task learning algorithm

can achieve better performance on distinguishing the visually-

similar privacy-sensitive object classes, which are usually hard

to be distinguished.

Blurring the privacy-sensitive objects in the images being

shared may allow us to protect the image privacy effectively,

but it may seriously affect the utility of the shared images

for classifier training. It is worth noting that the definition

of image utility could be significantly different for various

tasks. For the task of joint learning of the deep CNNs and the

tree classifier, we have compared two approaches: (a) using

original images; and (b) using blurred images. As shown in

Fig. 13, one can observe that using the blurred images may

seriously mislead the joint process for learning the deep CNNs

and the tree classifier, which may dramatically decrease the

accuracy rates for object detection (i.e., the utility of the

shared (blurred) images). For the same object class, as shown

in Fig. 14, increasing the sizes of the blurred regions may

significantly decrease the detection accuracy rate because large
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Fig. 15. The comparison on the effectiveness of our algorithm on privacy
setting recommendation when different types of features are extracted for
image representation and classifier training.

sizes of blurred regions may result in unrepresentative deep

CNNs and generate irrelevant features for training the tree

classifier with lower discrimination power.

Some pioneering researches have leveraged various features

(both handcrafted and deep features) to train the classifiers

for supporting privacy setting recommendation [17], [18],

[49], [50]. Thus it is also very interesting to evaluate whether

using different types of features may bring significant improve-

ment on privacy setting recommendation, e.g., recommending

better privacy settings can achieve better protection of image

privacy or result in less privacy disclosure. For 90, 000 test

images, we partition them into 900 smaller sets according

to their underlying object-privacy relatedness and perform

our algorithm evaluation over these 900 image sets (each

set has 100 images with similar object-privacy relatedness)

independently. For a given image set with T test images, its

privacy disclosure is defined as:

P D =
1

T

T
∑

l=1

δ(PS(Il ), OS(Il )) (21)

where T is the total number of test images (T = 100 in this

experiment), PS(Il ) indicates the predicted privacy setting for

the lth given image Il , OS(Il ) is its original privacy setting

given by users. δ(PS(Il ), OS(Il )) is defined as:

δ(PS(Il ), OS(Il )) =

⎧

⎪

⎨

⎪

⎩

1, i f PS(Il ) 
= OS(Il )

0, otherwi se

(22)

The δ(·, ·) function is used to emphasize that the privacy

disclosure is counted only if the privacy setting for the

given image is predicted incorrectly. We sort the image sets

according to their values of privacy disclosures and illustrate

them in orders.

As shown in Fig. 15, we have compared the performance

of our algorithm for privacy setting recommendation when

different types of features are used for image representation

and tree classifier training. From these comparison experi-

ments, we can observe multiple interesting facts: (1) For most

image sets, the deep features can achieve the best performance

as compared with other handcrafted features such as SIFT,

GIST and color histograms; (2) For some difficult image sets

(with huge uncertainty on the object-privacy correspondences),

all these features (including deep features) may not be able

to achieve acceptable performance, e.g., all of them have

large privacy disclosures; (3) For some easy image sets (with

very good object-privacy correspondences), all these features

(including handcrafted features) can achieve good performance

(with small privacy disclosures).

VII. CONCLUSIONS

In this paper, a novel approach called iPrivacy is developed

to automate the process of privacy settings during image

sharing. Specifically, by learning the object-privacy relatedness

from massive social images, our object-privacy alignment

algorithm can allow us to identify a large set of privacy-

sensitive object classes and their privacy settings automat-

ically. By learning the deep CNNs and the tree classifier

jointly over the visual tree in an end-to-end way, our deep

multi-task learning algorithm can achieve fast and accurate

detection of privacy-sensitive object classes and recommend

the best-matching privacy settings for newly uploaded images.

A simple solution for image privacy protection is further pro-

vided by automatically blurring the privacy-sensitive objects

in images. Our experimental results have demonstrated that

our proposed algorithm has achieved very competitive results

in terms of both the prediction accuracy and the computational

efficiency.
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