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Abstract In this paper we propose a multi-objective, mixed integer linear programming
model to design and manage the supply chain for biofuels. This model captures the trade-
offs that exist between costs, environmental and social impacts of delivering biofuels. The
in-bound supply chain for biofuel plants relies on a hub-and-spoke structure which optimizes
transportation costs of biomass. The model proposed optimizes the CO2 emissions due to
transportation-related activities in the supply chain. The model also optimizes the social
impact of biofuels. The social impacts are evaluated by the number of jobs created. The
multi-objective optimization model is solved using an augmented ε-constraint method. The
method provides a set of Pareto optimal solutions. We develop a case study using data from
the Midwest region of the USA. The numerical analyses estimates the quantity and cost
of cellulosic ethanol delivered under different scenarios generated. The insights we provide
will help policy makers design policies which encourage and support renewable energy
production.

Keywords Multi-objective optimization · Hub-and-spoke supply chain ·
Densified biomass · Augmented ε-constraint method · Rail transportation

1 Introduction

Fossil fuels, such as oil, coal and natural gas currently represent the prime energy sources in
the world. However, an increasing energy demand, coupled with increasing concerns over
the environmental impact of fossil fuel consumption, have resulted in an increased interest
in renewable energy. Some of the major sources of renewable energy are biomass, solar, and
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Fig. 1 Increasing growth of biofuels consumption (US DOE, 2010)

wind. The United States Department of Energy (2006) has identified biofuels as one of the
future powers sources in theUSA thatwill reduce nation’s dependency on fossil fuels, thereby
having a positive impact on the economy, environment, and society. A variety of biomass
feedstocks are presently used to produce biofuel and electricity. According to EIA, biomass
contributes nearly 3.9 quadrillion British thermal units (BTU) and accounts formore than 4%
of total U.S. primary energy consumption (USEIA 2010). Over the last 30 years, the share
of biomass in the total primary energy consumption has averaged less than 3.5% (USEIA
2010). The Energy Independence and Security Act of 2007 (USDE 2007) set the Renewable
Fuels Standard (RFS) in order to increase the share of biomass in the total energy production.
RFS calls for an increase of cellulosic biofuel production to 16 billion gallons a year (BGY)
by 2022 (USDA 2008; Biomass Program Multi-Year Program Plan, 2010). The proposed
2014 production volume for cellulosic biofuel is 17 million gallons a year (MGY), and the
proposed range is 8–30 MGY (EPA 2014). Due to policies, such as RFS, it is expected that
the share of biomass in the total renewable energy production will increase in the near future.

Figure 1 presents the expected biofuels production for the period 2011 to 2040. The figure
indicates that the production of cellulosic ethanol is expected to increase and will become
a major contributor in meeting the RFS requirements. Consequently, the number of biofuel
plants which produce cellulosic ethanol is expected to increase in the near future. These
plants will need tools to aid their supply chain design and management decisions, such as,
facility location, transportation mode selection, capacity expansion decisions, etc. One of
the main contributions of this paper is the proposed optimization model which captures
product and supply chain characteristics which are specific to biofuel industry. For example,
a number of studies indicate that in order to reduce biomass transportation costs and make
2nd generation biofuels cost-competitive, we have to invest on large-capacity plants which
gain from economies of scale in production (Hess et al. 2009). Large capacity plants would
rely in a larger number of farms, most of which would be located further away. To decrease
transportation costs plants would rely in using rail and barge for transportation. Additionally,
biomass would be processed at the farm prior to delivery to increases its bulk density, and
be transformed into a stable, dense, and flowable commodity, easier to load and unload,
and cheaper to transport. These facts imply that the best design for the in-bound distribution
network design is a hub-and-spoke network structure, which is indeed reflected in this model.
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The main objective of many models developed and analyzed in the area of supply chain
optimization, logistics management and transportation systems analysis has beenminimizing
costs. This is also the case with the literature related to biofuel supply chains. Most recently,
there has been growing interest to incorporate environmental and social objectives to biomass
supply chain models. This trend makes sense since this is a new industry, thus, there is an
opportunity here to do things right from the very beginning. Another contribution of this
paper is providing a model that captures the environmental impacts of biofuels by estimating
CO2 emission due to transportation, biorefinery location, and biorefinery operations. The
model also captures the social impacts of biofuels by estimating the number of jobs created
due to biomass production, preprocessing, transportation, and biorefinery operating.

Other papers in the literature use multi-objective optimization models to capture the eco-
nomic, environmental, and social impacts of biofuels (You et al. 2012). Different from the
literature, this paper focusses on large-scale, regional biofuel supply chains. Thus, the model
captures problem characteristics which become evident when you analyze large-scale sup-
ply chains. For example, based on current practices, the use of unit train to deliver biomass
becomes cost competitive when transportation distances are longer than 100miles (Gonzales
et al. 2013). The model we propose captures important details about rail transportation, such
as, existing rail network structure and available capacities, non-linear railway cost function,
and hub location costs. As a result, the model we propose can help policy makers evaluate
the impacts of policies implemented at the Federal level. For example, the US Billion Ton
Study led by the Oak Ridge National Laboratory indicates that there is enough biomass in
the U.S. to meet the RFS goals set by EPA. The question is whether biomass can be collected
and delivered to biofuel plants in a cost competitive manner. Studies like our can be used to
evaluate the potential of meeting the RFS goals at the national level.

A contribution of this paper is the development of a case study which was developed
using a number of reliable data sources (see Sect. 5). Thus, the results from the numerical
analysis are very insightful. The results provide estimates of the delivery cost of cellulosic
ethanol, unit emissions due to supply chain activities, and the number of new jobs created in
this industry. The relationships revealed provide insights which help policy makers design
policies that support renewable energy production.

Finally, the mathematical model we propose is a challenging multi-objective linear mixed
integer programming (MILP)model.We used an augmented ε-constraintmethod to solve this
multi-objective problem and generate a set of Pareto optimal solutions. We use lexicographic
optimization to obtain the ranges of ε1 and ε2. Doing this provides us with better estimates
of the Pareto frontiers.

2 Relevant literature

The model we propose is on-line with the following streams of research in the area of supply
chain: biomass supply chain and logistics management, transportation cost analysis, hub-
and-spoke network design problem, and multi-objective optimization. Next we provide a
summary of these streams of research and identify our contributions.

The biomass supply chain optimization literature presents a number of deterministic and
stochastic models. The deterministic models are extensions of the facility location model.
Thesemodels are used to identify biorefinery sittings (Eksioglu et al. 2009; Parker et al. 2010;
Bai et al. 2011; Kim et al. 2011a; Papapostolou et al. 2011; Roni et al. 2014a; Marufuzzaman
et al. 2014). Some deterministic models are used to identify the number, capacity and location
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of biofuel plants in order to make use of the available biomass in a particular region in a cost
efficientmanner. The stochastic research on biomass supply chains uses extensions of the two-
stage, location-transportation stochastic programming model to identify biorefinery sittings
(such as, Cundiff et al. 1997; Huang et al. 2010; Kim et al. 2011b; Chen and Fan 2012;
Gebreslassie et al. 2012).

The literature on biomass transportation cost analysis is focused on estimating truck; rail
and barge transportation costs (Gonzales et al. 2013; Roni et al. 2014b). A study byMahmudi
and Flynn (2006) investigate biomass transportation by rail. A study by Eksioglu et al. (2011)
investigate rail and barge transportation costs for biomass. Other works related to biomass
logistics costs analysis are the ones by Kumar and Sokhansanj (2007), Sokhansonj et al.
(2006), Jacobson et al. (2014), Ren et al. (2015).

The hub-and-spoke design problem is conventionally called the hub location problem
(Campbell and O’Kelly 2012). A number of extensions of the hub location problem are
found in the literature. These extensions are proposed in order to capture issues that arise
when managing this supply chain, such as, non-linear economies of scale, traffic manage-
ment, transportation mode selection, and congestion. The existing literature can be divided
into two major groups, the single hub (SH) and the multiple hubs (MH) location problem.
In a SH location model, the routing of the flow to/from a non-hub node is done through
the hub. In a MH setting, the routing of the flow to/from a non-hub node is done through
multiple hubs. Thus, flow initiated from a non-hub node traverses a number of hubs before
reaching its final destination. Mixed integer programs (MIP) are used to model the problem
to represent the fixed hub location costs, and nodes-to-hub allocations (Skorin-Kapov et al.
1996; Campbell and O’Kelly 2012). Due to computational challenges faced when solving
these large sized MIP models, a number of different heuristic approaches have been design
to solve the problems. For example, Chen (2007) developed a hybrid Simulated Annealing
heuristics, Silva and Cunga (2009) developed a number of Tabu Search heuristics, Cunha and
Silva (2007) developed a hybrid Genetic Algorithm and Simulated Annealing-based heuris-
tics, Camargo et al. (2009) present a Benders Decomposition-based solution approach and
Labbe andYaman (2004) propose a Lagrangean Relaxation-based approach. For an extensive
review of this problem see Alumur and Kara (2008), Tunc et al. (2011).

A limited number of papers in the literature propose multi-objective optimization models
for the biofuel supply chain design and management. For example, Zamboni et al. (2009)
present a MILP model that simultaneously minimizes the supply chain operating costs and
GHG emissions due to supply chain activities. Perimenis et al. (2011) provide a decision sup-
port tool to evaluate biofuel production pathways. This tool integrates technical, economic,
environmental and social aspects along the entire value chain of biofuels starting from bio-
mass production to biofuel end-use. Mele et al. (2009) address the problem of optimizing the
supply chains for bioethanol and sugar production. Their bi-criteria MILP model addresses
economic and environmental concerns. The model minimizes the total cost of managing the
supply chain network, and minimizes the environmental impact over the entire product life
cycle. El-Halwagi et al. (2013) incorporate safety concerns into the biorefinery location selec-
tion and capacity management problem. They establish tradeoffs between costs and safety
issues using Pareto curves. You and Wang (2011) study the optimal design and planning
of biomass-to-liquids (BTL) supply chains under economic and environmental criteria. You
et al. (2012) address the optimal design and planning of cellulosic ethanol supply chains
under economic, environmental, and social objectives.

Multi-objective integer linear programs have been solved using exact and heuristics solu-
tion approaches. An exact algorithm identifies the whole set of non-dominated solutions for
the problem. Heuristics approximate, identify bounds for the set of non-dominated solu-
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tions. For example, Abounacer et al. (2014) propose an ε-constraint method to generate
an exact Pareto frontier of a complex three objective location-transportation problem. The
following is a list of exact methods. Zhang and Reimann (2014) provide a simple aug-
mented ε-constraint method to generate all non-dominated solutions for a multi-objective
integer programming problem. Kirlik and Sayın (2014) propose an algorithm to generate
all non-dominated solutions for multi-objective discrete optimization problems with any
number of objective functions. Jozefowiez et al. (2012) provide a generic branch-and-cut
algorithm. Mavrotas (2009) and Mavrotas and Florios (2013) propose enhancements of the
augmented ε-constraint method. The non-exact methods use metaheuristics (You and Wang
2011; Laumanns et al. 2006), approximations (see Köksalan and Lokman 2009), greedy
search algorithms (Özdamar and Yi 2008; Chang et al. 1997), goal programming (Vitoriano
et al. 2011; Li et al. 2012), and fuzzy multi-objective programming (Sheu 2010) in order to
find non-dominated solutions.

The work by You et al. (2012) is closely related our study. Different fromYou et al. (2012)
who focus on analyzing the state of Illinois, this work focusses on large-scale (region-based)
supply chain modeling and captures problem characteristics which become evident when
one analyzes large-scale supply chains. Our modeling approach and solution methodology
are substantially different.

3 Problem description and formulation

3.1 Supply chain structure for biofuel delivery

The proposed structure of the supply chain follows the Advanced Supply System concept
proposed by the Idaho National Laboratory (INL) (2014). This system uses preprocessing of
biomass to mitigate density and stability issues that prevent biomass from being handled in
high-efficiency bulk dry solid or liquid distribution systems. Advanced supply system relies
on densifying biomass at local preprocessing facilities before delivering to a biorefinery and
before long distance transportation.

Figure 2 presents a supply chain consisting of four local preprocessing facilities, two
depots, one biofuel plant, one terminal for biofuel blending and storage, and two customers.
Preprocessing facilities are located at farms. These facilities deliver biomass to depots through
truck shipments. If a preprocessing facility is located within 75miles of a biofuel plant, it is
assumed that the facility has the option of shipping directly to the biofuel plant bypassing
the depots. This assumption is supported by studies that find truck transportation of biomass
is not cost efficient beyond 50miles (Brower 2010). This transportation option is not made
available to facilities located further away from a plant in order to reduce the problem size.

Depots are rail ramps (or ports) where truck shipments of biomass are consolidated. High-
volume, long-haul shipments are delivered from depots to biofuel plants by rail (or barge). It
is expected that a biofuel plant will have railway access to handle the large amount of biomass
required to operate at high capacity. Thus, depots represent the first hubs and biofuel plants
represent the second hubs in this supply chain. The final product, cellulosic ethanol, is shipped
to a bulk terminal or a redistribution bulk terminal fromwhere it is then delivered to customers.
Bulk terminals are typically blending facilities where cellulosic ethanol is stored until it is
blended with gasoline. Depending on the volume shipped and transportation distance either
truck or rail is used for cellulosic ethanol delivery. Typically, rail is used for distances longer
than 75miles. From the bulk terminal, shipments of cellulosic ethanol are delivered by truck
and in smaller quantities to gas stations.
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Prep. 
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Depot Biofuel plants Customers Bulk terminal for 
fuel blending and 
storage facilities 

Fig. 2 Supply chain network structure

3.2 Model formulation

We propose a mixed integer linear program (MILP) to model this supply chain design and
management problem. This model is an extension of the facility location model since it iden-
tifies locations for depots, and biofuel plants based on information about investment costs,
transportation costs, etc. Let G(N , A) denote the supply chain network, where, N represents
the set of nodes and A represents the set of arcs. Set N consists of subset P which represents
the set of preprocessing facilities, subset D which represents the set of depot, subset B which
represents the set of potential biofuel plant locations, subset L which represents set of bulk
terminal locations and subset C which represents set of customers. Set A consists of subset
T1 which represents the set of arcs that connect preprocessing facilities to depot, T2 which
represents the set of arcs that connect preprocessing facilities to biofuel plant, subset T3 which
represents the set of arcs that connect biofuel plant to the bulk terminal, subset T4 which rep-
resents the set of arcs that connect bulk terminal to the customer, subset R1 which represents
the set of arcs that connect depots to biofuel plants and subset R2 which represents the set of
arcs that connect biofuel plants to the bulk terminals. Let T = {T1 ∪ T2 ∪ T3 ∪ T4} and R =
{R1 ∪ R2}. The transportationmode used along arcs in T and R are truck and rail respectively.

3.2.1 Cost objective

The costs along arcs in T are linear, and there are no upper bounds on the amount shipped
using these arcs. For truck transportation, we consider that a fixed cost (θT ) occurs per mile
and per ton shipped due to fuel consumption. Additionally, a fixed cost (ϑT ) occurs per ton
loaded/unloaded in the truck. Let di j denote the distance traveled along arc (i, j) ∈ T , then,
transportation cost per ton shipped along this arc are equal to ci j = ϑT +θT ∗ di j . Let Xi j

be the amount shipped along arc (i, j), then the total transportation cost along this arc is
f (Xi j ) = ci j Xi j (Searcy et al. 2007).
Total transportation cost along an arc in R is of a multiple-setup structure as described by

Eq. (1). In this equation, Ψi j is the fixed cost for loading/unloading a unit train, ci j is the unit
transportation cost per ton shipped along (i, j), vi j is the capacity of a unit train (i, j), and n
is the number of unit trains used (Roni 2014b).
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f (Xi j ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if Xi j = 0
�i j + ci j Xi j if 0 < Xi j ≤ vi j
2 ∗ �i j + ci j Xi j if vi j < Xi j ≤ 2 ∗ vi j

...

n ∗ �i j + ci j Xi j if (n − 1) ∗ vi j < Xi j ≤ n ∗ vi j

(1)

Equation (1) presents a piecewise linear cost function. In order to incorporate this function
within the objective function of the MILP model presented below, we introduce integer
variables Zi j . These variables represent the number of unit trains moving along arc (i, j).
Thus, fi j (Xi j ) = �i j Zi j + ci j Xi j . Total transportation costs in this supply chain are:

TRC =
∑

(i, j)∈T ci j Xi j +
∑

(i, j)∈R

(
ci j Xi j + Ψi j Zi j

)
(2)

Hub location costs represent the investment costs necessary to build the infrastructure in
support of loading/unloading unit trains at a depot. Let Wi be a binary variable which takes
the value 1 when node i ∈ D is used as a depot, and takes the value 0 otherwise. Let ςi be
the fixed investment cost at node i ∈ D. Total hub location costs are HC = ∑

i∈D ςiWi .
Let �ik be the fixed investment costs to build a biofuel plant of capacity k (k ∈ K ) at
node i ∈ B. Let βik be a binary variable which takes the value 1 if node i is selected as
biofuel plant location, and takes the value 0 otherwise. Total biofuel plant location costs are
BC = ∑

k∈K
∑

i∈B �ikβik .
In this formulation we consider that the system is penalized for not meeting demand. Let

πi represent demand shortage and let αi represent the corresponding penalty cost at customer
i . Then, expression

∑
i∈C αi�i represents the penalty for not meeting demand.

The cost objective function minimizes the total of transportation cost, hub location costs,
and a penalty costs for unmet demand, and it is defined as follows:

minimize : TC =
∑

(i, j)∈T ci j Xi j +
∑

(i, j)∈R1

(
ci j Xi j + Ψi j Zi j

)

+
∑

(i, j)∈R2

(
ci j Xi j + λi j Yi j

) +
∑

i∈D ςiWi

+
∑

k∈k
∑

i∈B �ikβik +
∑

i∈C αi�i

3.2.2 Environmental objective

The model captures CO2 emissions which result from fuel combustion due to transportation
in the supply chain. Themodel also captures CO2 emissions due to constructing and operating
biofuel plants, and operating the hubs. We consider that the emission function is linear with
respect to quantities shipped and quantities processed in facilities (Argo et al. 2013). Let ei j
represent CO2 emission per ton per mile shipped along arc (i, j) ∈ A. Let εik represents
CO2 emission per ton processed at the biofuel plant located in i ∈ B. Let μi represents CO2

emission for establishing a hub in i ∈ D. The following environmental objective minimizes
total emissions in the supply chain.

Minimize : T E =
∑

(i, j)∈T,R
ei j Xi j +

∑

i∈D μiWi +
∑

k∈K
∑

i∈D εikβik (3)

3.2.3 Social objective

The social benefits of this supply chain are measured by the number of accrued local jobs.
Jobs are created to support biomass and biofuel transportation, biofuel plant construction
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and operation and hub operation. The number of transportation jobs created is linear and
depends on the transportation distance, and quantity shipped. The number of job created due
to biofuel plant construction and operation depends on the production capacity of the plant.
The number of jobs created due to hub operation is fixed (NREL, 2013). Let pTi j represent the

number of transportation jobs created, let pDi represent the number of job created due to hub
operations, and let pBik represent the number of job created due to construction and support
operations of biofuel plant i . Then, the social objective function is defined as follows:

max SB =
∑

(i, j)∈T pTi j Xi j +
∑

(i, j)∈R1
pTi j Zi j +

∑

(i, j)∈R2
pTi j Yi j

+
∑

i∈D pDi Wi +
∑

k∈K
∑

i∈D pBikβik (4)

3.2.4 The MILP model

Table 7 in Appendix 1 summarizes the parameters, and decision variables declared in this
model. Next, we present the multi-objective MILP problem formulation. We refer to this as
formulation (P).

Minimize : (TC (X, Z , Y, β,W,�) , T E (X, β,W,�)) (P)

Maximize : (SB (X, Z , Y, β,W,�))

Subject to:
∑

j∈D⋃
B

Xi j ≤ si ∀i ∈ P (5)

∑

i∈P

Xi j −
∑

i∈B
X ji = 0 ∀ j ∈ D (6)

∑

i∈PUD

Xi j −
∑

i∈L
X ji = 0 ∀ j ∈ B (7)

∑

i∈B
Xi j −

∑

i∈C
X ji = 0 ∀ j ∈ L (8)

∑

i∈L
Xi j + � j = g j ∀ j ∈ C (9)

Xi j − vi j Zi j ≤ 0 ∀ (i, j) ∈ R1 (10)

Xi j − τi j Yi j ≤ 0 ∀ (i, j) ∈ R2 (11)
∑

i∈P

Xi j − u jW j ≤ 0 ∀ j ∈ D (12)

∑

j∈P
⋃

D

X ji −
∑

k∈K
qikβik ≤ 0 ∀i ∈ B (13)

∑

k∈K
βik ≤ 1 ∀i ∈ B (14)

Xi j ∈ Rn ∀ (i, j) ∈ A (15)

πi ∈ Rn ∀i ∈ C (16)

Wi ∈ {0, 1} , ∀i ∈ D (17)

βik ∈ {0, 1} , ∀i ∈ B, k ∈ K (18)
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Zi j ∈ Z+ ∀ (i, j) ∈ R1 (19)

Yi j ∈ Z+ ∀ (i, j) ∈ R2 (20)

Constraints (5) indicate that the amount of biomass shipped from a preprocessing facility
is limited by its availability. Constraints (6)–(8) are the flow balance constraints at depots,
biofuel plants, and bulk terminals respectively. Constraints (9) indicate that customer demand
could be satisfied through shipments from terminals or the market. These equations also
measure demand shortage. Constraints (10) and (11) set an upper limit on the amount of
biomass shipped using rail cars. Constraints (12) set a limit on the storage capacity of a
hub. Constraints (13) set a limit on the capacity of a biorefinery. Constraints (14) set a limit
on the number of biofuel plants at a particular location. Constraints (15) and (16) are the
non-negativity constraints. Constraints (17) and (18) are binary constraints. Constraints (19)
and (20) are the integrity constraints.

4 Solution approach

In this section we describe the approach used in order to generate the set of Pareto optimal
solution for our MILP problem. The set of Pareto optimal solutions is also known as the
set of efficient, non-dominated, non-inferior solutions. These are solutions for which we
cannot improve the value of one of the functions without deteriorating the performance
of the rest of the objective functions. The two main approaches used in the literature to
solve a multi objective problem are the weighted sum method and the ε-constraint method.
Works (Mavrotas 2009; Steuer 1986; Miettinen 1998) point out that the ε-constraint method
is advantageous over the weighting sum method. This is mainly due to the fact that the ε-
constrained method is computationally efficient. The ε-constraint method optimizes one of
the objective functions. The remaining objectives are incorporated in the constraint set as
shown below. We refer to this as formulation (Q).

min TC (X, Z , Y, β,W,�) (Q)

Subject to: (5) − (20)

T E (X, β,W,�) ≤ ε1 (21)

SB (X, β,Z,Y,W,�) ≥ ε2 (22)

The values of ε1 and ε2 are bounds set on the value of the environmental and social ben-
efit objectives. Traditionally, the ε-constraint method requires identifying upper and lower
bounds–in other words, defining a range—for each objective incorporated in the constraint
set. Calculating these ranges for TE and SB is not a trivial task (Isermann and Steuer 1987;
Reeves and Reid 1988; Steuer 1997). Moreover, the optimal solution of formulation (Q) is
guaranteed to be an efficient solution for (P) only if both constraints (21) and (22) are binding
(Miettinen 1998; Ehrgott and Wiecek 2005). Otherwise, there is an alternative optimal solu-
tion to this problem, and the solution obtained from solving formulation (Q) is not efficient.
Such a solution is a weakly efficient solution.

In this paper we apply a novel version of ε-constraint method known as the augmented
ε-constraint method (Mavrotas and Florios 2013; Mavrotas 2009) in order to find the Pareto
optimal solutions. In this method the ranges of ε1 and ε2 are calculated using the Lexico-
graphic optimization method. The efficiency of the solution found is guaranteed since the
reformulated ε-constraint model uses appropriate slack or surplus variables.
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4.1 Lexicographic optimization to obtain the ranges of ε1 and ε2

The Lexicographic optimization method starts by ranking the objective functions based on
their priority level. The function with highest priority makes the top of the list. In our
problem, the total cost function has the highest priority, followed by the total emission
and the social benefit functions. Next, based on the Lexicographic optimization method,
we optimize the following 3 problems, and calculate corresponding objective function
values. The 1st problem to optimize is: minimize TC s.t. (5)–(20). The solution to this
problem is

(
X∗, Z∗, Y ∗, β∗,W ∗,�∗) , and the corresponding objective function value is

f 11 = TC
(
X∗, Z∗, Y ∗, β∗,W ∗,�∗). The solution found is then used to evaluate the objec-

tive function values for the total emission (f 12) and the social benefit (f 13) functions. The
2nd problem optimized is: minimize : T E s.t (5)–(20) and the additional constraint
TC (X, Z , Y, β,W,�) = f 11 + δ1. Where δ1 is a very small number. We increase the
value of δ1 from 0 to some small positive number in order to obtain a feasible solution to
this problem. Adding this constraint guarantees that the new solution found optimizes TE
while maintaining the value of the cost function (TC) at its lowest possible value. We denote

this new solution by
(
X̃ , Z̃ , Ỹ , β̃, W̃ , �̃

)
. The corresponding objective function value is

f 22 = T E
(
X̃ , Z̃ , Ỹ , β̃, W̃ , �̃

)
. The solution found is then used to calculate the objective

function values for the total cost function (f 21) and the social benefit function (f 23). Finally,
the 3rd problem optimized is: Max SB (X, Z , Y, β,W,�) s.t (5)–(20) and two additional
constraints: TC (X, Z , Y, β,W,�) = f 21 + δ1, and T E (X, Z , Y, β,W,�) = f 22 − δ2.
Where δ2 is a very small positive number. We increase the values of δ1 and δ2 from 0
to some small positive numbers to obtain a feasible solution to this problem. We denote

this new solution by
(
X , Z , Y , β,W ,�

)
. The corresponding objective function value is

f 33 = SB
(
X , Z , Y , β,W ,�

)
. The solution found is then used to calculate the objective

function values for the total cost function (f 31) and the emission function (f 32). At the end of
implementing the Lexicographic optimization method we construct the payoff table shown
in Table 1.

Let smax
1 = max

(
f 12, f

2
2, f

3
2

)
, smax

2 = max
(
f 13, f

2
3, f

3
3

)
, smin

1 = min
(
f 12, f

2
2, f

3
2

)
,

smin
2 = min

(
f 13, f

2
3, f

3
3

)
. We use these values to create a range for the values that ε1 and ε2

can take during the optimization. We divide this interval into k equal subintervals in order
to obtain good estimates on the values of ε1 and ε2. The benefit of using the Lexicographic
optimization method is to identify a range of values that ε1 and ε2 can take. These values
provide a dense representation of the efficient set.

4.2 Reformulating the ε-constraint method with appropriate slack or surplus
variable

Weovercome the problemof generatingweakly efficient solutionswhenusing the ε-constraint
method by incorporating the appropriate slack or surplus variables in the constraint set and
in the objective function. Introducing these variables forces the algorithm to produce only
efficient solutions. The new problem, which we call RMMILP is the following:

min TC (X, Z , Y, β,W,�) + δ(S1 + S2)

Subject to: (5)–(20)
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Step 1 Build the payoff table (Table 1) using the Lexicographic optimization method   
Calculate the range of values for  and  using the payoff table 

Set number of intervals to k and compute step size by , 

Set the Pareto optimal set 
Step 2 For i = 0 to k do

For j = 0  k do
       Update the values of  in RMMILP   
       Solve RMMILP 

If RMMILP feasible Then
               Add solution to 

Else  
Break 

End If 

Next j

Next i

Fig. 3 A procedure for the augmented ε-constraint method

T E (X, Z , Y, β,W,�) + S1 = ε1 (23)

SB (X, Z , Y, β,W,�) − S2 = ε2 (24)

S1, S1 ∈ R+ (25)

In the objective function, δ is an adequately small number. Typically, δ takes values between
10−3and 10−6. This reformulation of the ε-constraint method avoids the generation of weakly
efficient solutions (Mavrotas 2009). We are now ready to present the procedure we develop
to solve our multi-objective optimization problem using the augmented ε-constraint method.
The procedure is shown in Fig. 3.

5 Data collection for the case study

5.1 Biomass supply

Biomass availability data at the county level was extracted from the Knowledge Discov-
ery Framework (KDF) database (2012), an outcome of the US Billion Ton Study led by
the Oak Ridge National Laboratory. This data was further processed by INL to identify
potential locations for preprocessing facilities and the corresponding amount of densified
biomass available. This paper considers the biomass available on the following nine states,
some located in the Midwest and some in the West of USA. The selected states are: Iowa,
Nebraska, Kansas, South Dakota, California, New Mexico, Nevada, and Arizona. We focus
our analysis in these states because they have substantial amounts of biomass available for
biofuel production (such as, Iowa, Nebraska, Kansas and South Dakota) or are major users
of biofuel (such as, California). The total number of counties considered in this study is 602.
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Fig. 4 A summary of the input data

The primary biomass sources considered in this study are agricultural residue originated from
primary crop such as corn, wheat, sorghum, oats, and barley.

5.2 Biofuel demand

We estimate the demand for biofuel at the county level. In order to estimate demand we
investigated the size of population and gasoline consumption in each county. The data about
population size is collected from the 2010 US Census (2010). The data about gasoline con-
sumption is obtained from the Energy Information Administration (EIA) (2013).

5.3 Rail network data

The data about the US railway network structure was provided by Oak Ridge National
Laboratory (2009). This database consists of 80,486 rail links, and 36,393 unique origin and
destination nodes. Of the 36,393 nodes, only 20,686 are rail stations. The data set provides
the following information for each rail link: origin, destination, length, ownership, terrain,
number of main line tracks, main track authority (signal system), interval of passing sidings,
speed limit, federal information processing standard state code (FIPS), and standard point
location code (SPLC). Figure 4 summarizes the input data used. The figure lays out the
distribution of available biomass and biofuel demand in the states we are investigating, and
the corresponding rail network. Our model considers this network structure as given and does
not suggest modifications to its structure.

5.4 Transportation cost

Next we provide details about the structure of truck and rail transportation cost functions.
Note that, we assume full-truck-load (FTL) shipments via truck or rail mainly because of the
nature of the products delivered. Biofuel is a liquid and biomass is bulky, thus, we expect that
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a truck/rail car will be used for single-customer deliveries. To minimize the transportation
costs, one would deliver FLT shipments.

5.4.1 Truck

In order to estimate the costs of biomass transportation using trucks we use data provided by
Searcy et al. (2007). Searcy et al. (2007) provide two cost components, a distance variable
cost (DVC) and a distance fixed cost (DFC). The distance variable cost includes fuel and
labor costs. The distance fixed cost includes the cost of loading and unloading a truck.
These costs were provided for different types of biomass, such as, woodchips, straw and
stover. We used the data provided for woodchips since the physical properties of densified
biomass are similar to woodchips. The DVC of woodchips is estimated $0.112/ton-mile and
DFC is estimated $3.01/tons. Woodchips are shipped using truck with a capacity of 40 tons.
Truck transportation costs of biofuel are estimated based on Searcy et al. (2007). Biofuel
transportation is evaluated based on a tandem tanker carrying 40 tons of ethanol. The DVC
of ethanol is estimated $0.08/ton-mile and DFC is estimated $3.86 /tons. This data is used
as follows in order to calculate ci j (in $/ton) for (i, j) ∈ T : ci j = DFC + DVC ∗ di j . In
this equation, di j represents the distance between locations i and j .

5.4.2 Unit train and single car shipment

The majority of freight transportation in the US is handled by four Class I railway compa-
nies. The two Class I railways that span the West USA are Burlington Northern Santa Fe
Corporation (BNSF) and Union Pacific Railroad Company (UP) (Congress of the United
States 2006). Roni (2013) presents a regression analysis of rail transportation costs using
rail waybill data; and uses this data to estimate the variable cost of transporting densified
biomass and biofuel. The regression equations quantify the relationship between variable
transportation unit cost ($/ton) and car type, shipment size, rail movement type, commodity
type, etc. Equations (26) and (27) are extracted from Roni (2013). These equations represent
the relationship among variable unit cost (y) (in $/ton), railway distance (x1 given in miles)
and car ownership (x2) for received moves by BNSF and UP. Note that, x2 is an indicator
variable, which takes the value 1 if the railcar used is owned by the railway company, and
takes the value 0 otherwise. The adjusted R2 value for these regression equations is greater
than 95% and p-values for the independent variables are less than 0.01%.

yBNSF = −0.65 + 0.015x1 + 1.96x2 (26)

yU P = 0.78 + 0.0138x1 + 3.78x2 (27)

Equations (26) and (27) assume that the type of rail car used is covered hopper and a single
railway moves a shipment from its origin to its destination. The capacity of each rail car is
100 ton. The size of a unit train operated by BNSF is typically 100 cars. Since it is mainly
BNSF that serves the states we consider in this analysis, we assume that a unit train is 100
cars long.

Equations (28) and (29) are used to estimate the variable unit cost for cellulosic ethanol
for single car shipments. These equations assume that the type of rail car used is tank car
with capacity over 22,000 gallons; the rail car is owned by the customer; and a single railway
company moves the rail car from its origin to its destination.

yBNSF = 6.40 + 0.0276x1 (28)

yU P = 6.7174 + 0.0239x1 (29)
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Table 2 Costs related to railway
sidings

Item Cost

Track-rail and ties $717.80/yard

Turnout-allows rail cars to switch tracks $110,000.00

5.5 Hub investment costs

Only a few rail ramps are equipped to handle the loading and unloading of unit trains. In
addition to equipment, there are certain infrastructural requirements necessary to handle unit
trains. The infrastructure necessary is typically built by corn elevators, blenders, coal plants,
or third-party logistics service providers.

In this study we consider that unit trains are loaded at rail ramps in case that the facilities
exist. Otherwise, investments are required to build additional sidings. These investments
are what we consider as hub location costs. Table 2 summarizes the typical costs which
occur when building a railroad siding. We consider that one turnout and additional tracks
are required. Since in this study we calculate annual costs of the supply chain, the annual
equivalent for these investments is calculated and used. We assume the lifetime of such an
investment is 30 years, and the discount factor is 10%.

5.6 Biofuel plant investment costs

You et al. (2012) provide investment and operating cost for a 45 MGY ethanol productions
plant that uses simultaneously scarification and fermentation technologies. They estimate
the investment costs for build a biorefinery that produces 45 MGY of cellulosic ethanol are
$159,400,000. Wallace et al. (2005) in his study estimates that doubling the size of a biofuel
plant increases the investment costs by a factor of 1.6. We used this factor and interpolate
investments costs in order to estimate investment costs for biofuel plants of different sizes.
We use a 20 years project life and a 15% interest rate. The project life and interest rate is
used to calculate the equivalent annual investment costs. In order to be consistent with the
literature, and due to the availability of data, we consider 3 different biorefinery sizes: 60
MGY, 90 MGY and 120 MGY (Searcy and Flynn 2008; Jacobson et al. 2014).

5.7 CO2 emissions

Emissions due to rail and truck transportations are calculated using the following equation:
CO2 emissions (in kg) = (Transport volume by transport mode) * (Average transport distance
by transport mode) * (Average CO2-emission factor per ton-mile by transport mode). The
average CO2 emission factor recommended by theWorld Resource Institute andWorld Busi-
ness Council for Sustainable Development for road transport operations is 0.297 kg/ton-mile.
The average CO2 emission factor recommended by the same organizations for rail transport
operations is 0.0252 kg/ton-mile. The unit CO2 emission from biofuel plant operations is pro-
vided by a study from Argo et al. (2013). This study shows that the average CO2 emissions,
due to the use of chemicals and enzymes in a biofuel plant, are 2.2 kg/gallon.

5.8 Social impact data

The number of accrued local jobs for biorefinery construction and operations is extracted
from the Jobs and Economic Development Impact (JEDI) model developed by National
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Renewable Energy Laboratory (NREL 2013). JEDI is a tool that estimates the economic
impacts of constructing and operating power generation and biofuel plants at the local and
state levels. Table 9 presents the number of jobs created due to biorefinery construction and
operations as extracted from JEDI. Note that, the number of jobs created is a function of the
plant size.

The number of job created in the trucking industry is estimated based on the travel distance
and amount of biomass shipped annually. We assume that a truck can carry a maximum load
of 40 tons of bulk solids, and 8000 gallons of liquids. The average travel speed is assumed
40miles/h. Additionally, we assume a truck has 2 drivers; there are 40 working hours per
week; and 50 weeks per year. Based on these assumptions, the number of miles traveled
by one truck is (40 hours/week)*(50 weeks/year)*(40miles/hour) = 80,000 miles/year. The
number of ton-miles per truck is (80,000 miles/year)*(40 tons) = 3,200,000 tons-miles/year.
Thus, the number of jobs created for ton-mile is (2 drivers)/(3,200,000 tons-miles/year). To
calculate the number of trucking jobs per ton along arcs (i, j) ∈ T1 ∪ T2(pTij) we multiply

(2/3,200,000) with the distance of arc (i, j). We follow a similar approach to calculate pTij
for (i, j) ∈ T3 ∪ T4.

We assume that each unit train requires two crews. The number of job openings in the
railway industry is calculated based on the distance traveled in each route and the number of
unit trains operating annually. We assume that two jobs per hub will be created in order to
operate the hub.

5.9 Data pre-processing

In this section we describe three approaches we follow in order to reduce the size of the
problem investigated without compromising the quality of the solutions found.

Typically, trucks would deliver biomass directly to the biofuel plant when travel distances
are short. For this reason, we did add an arc between a preprocessing facility and a biofuel
plant only when the distance between the two is 75 miles or less. Doing this reduced the
number of arcs in the network, and consequently the problem size.

The data about the US railway network consists of 80,486 rail links, and 36,393 unique
origin and destination nodes. Of the 36,393 nodes, only 20,686 are rail stations. Of the rails
stations listed, 11,301 are operated by BNSF, CSXT, NS and UP. Of the 80,486 rail links,
72% of are shorter than 5 miles. Since a unit train is a dedicated train, it will follow a single
path from shipment origin to its destination without being regrouped in rail ramps along the
way. This is why the network structure between depots and biofuel plant is represented by a
bipartite network (see Fig. 2). Each arc of this bipartite network represents the shortest path
between a depot and a biofuel plant. We calculated the shortest paths using the Dijkstra’s
algorithm (Ahuja et al. 1993).

Finally, when creating arcs between a biofuel plant and bulk terminals we examine the
length of a path. If the length is less than 75miles, thenwe create an arc (i, j) ∈ T3; otherwise,
we create an arc (i, j) ∈ R2.

6 Experimental results

The augmented ε-constraint algorithm is implemented using C++. The IBM CPLEX 12.5.1
Concert Technology is used to solve theMILPmodels. All tests were conducted on a desktop
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Table 3 Model comparisons based on biomass delivery

Scenario Cost minimization model Multi-objective model

Costs Emissions Jobs Costs Emissions Jobs
($/gal) (lbs/gal) (nr) ($/gal) (lbs/gal) (nr)

1 3.38 7.28 4068 3.87 6.57 5000

2 3.39 7.68 4322 3.47 6.51 5508

3 3.28 6.54 3751 3.55 6.25 4200

computer with Intel � Core i7 3.1 GHz CPU and 32 GB memory limit, on a windows
operating system.

6.1 Comparing the cost minimization and the multi-objective optimization models

In order to evaluate the performance of the models proposed in this paper we create three sce-
narios. Each scenario is generated based on the maximum allowable travel distance between
a preprocessing facility and a depot (Table 3). In Scenarios 1, 2 and 3, the travel distance is 10,
30 and 50 miles respectively. That means, in Scenario 1, an arc is added between a particular
preprocessing facility and a depot if the corresponding travel distance is less than or equal
to 10 miles. Therefore, as we go from Scenario 1 to 3 the amount of biomass available to
be shipped through the network increases. The motivation for creating these scenarios is the
fact that deliveries to depots will be completed by trucks, and it is not economical to ship
biomass to a depot if the transportation distance is longer than 30 miles.

Clearly, the number of integer variables and number of constraints varies with the three
scenarios described. The largest problem we solved has a total of 212,320 continuous vari-
ables, 2849 binary variables, 153,466 integer variables and 160,491 constraints. The running
time to solve one problem was anywhere between 10 and 20min.

A set of metrics are used in order to compare the cost minimization model with the multi-
objective model. On addition to the unit delivery cost of biofuel, emissions and number of
jobs created, other important metrics are: amount of biomass delivered and total amount of
biofuel produced; transportation mode used and transportation cost, number of biofuel plants
built and hubs used. A summary of these metrics is provided in Tables 4, 5 and 6. In order
to identify which of the Pareto optimal solutions of the multiple-objective model to select
for these tables, we followed this logic. Among the Pareto-optimal solutions generated we
selected the one with highest number of jobs created, and then, among those solutions, we
selected the one with the lowest emission levels.

Table 3 compares the two models based on cost, emissions, and number of jobs created.
While the minimum cost model focuses on minimizing costs, the multi-objective model pro-
vides solutions which have a greater positive impact on the environment and createmore jobs.
The minimum cost model provides solutions that are 2.31–12.66% cheaper. The multiple-
objective model provides solutions that create 449–1186 more jobs, and reduce emissions
by 13.78–25.48%.

Table 4 compares the two models based on the amount of biomass delivered by truck and
rail. Hubs are used to facilitate rail transportation. The multi-objective model relies more on
rail transportation. Emissions are smaller for this transportation mode due to the fact that in
each trip, higher volumes of biomass and biofuel are delivered. To facilitate rail transportation
more hubs are utilized.
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Fig. 5 Network structure for Scenario 3 of cost minimization model

Table 5 compares the twomodels based on the total delivery cost of biofuel. This cost con-
sists of transportation, labor, and investment costs. The unit transportation costs are smaller
for the multi-objective transportation since the model heavily relies on rail transportation.
More hubs are utilized in order to minimize truck deliveries and increase access to rail. For
this reason, labor and investment costs are higher, and consequently the total unit cost is
higher.

Table 6 summarizes the number of biofuel plants open and corresponding sizes, the total
production capacity, the utilization rate of these plants, the biofuel production, and the per-
centage of RFS goals met under each scenario. These results are provided separately for
each model Table 6. The minimum cost model in order to minimize the total biofuel plant
investment costs, and gain from the economies of scale that come with large production facil-
ities, opens fewer biofuel plants, but of larger capacity. Consequently, transportation costs
to these plants are higher. The multi-objective model opens smaller sized plants. This mode
also invests in utilizing more hubs, therefore, investment costs are higher, more people are
employed; however, transportation costs and emission levels are lower. Since maximizing
biofuel production and meeting RFS goals was not an objective, the multi-objective model
does not try to maximize utilization rates of plants.

Note that, the RFS goals set by EPA were reduced in 2014 below the volumes originally
set by Congress (EPA 2014). Based on the new goals, in 2014, only 33 MGY of cellulosic
biofuel is expected to be produced. This number increases to 206 MGY by 2016. In 2015,
the total RFS requirements are 15.93BGY. The percentages presented in Table 6 are with
respect to overall RFS requirements. Clearly, the requirements set on cellulosic biomass can
be met at a unit cost between $3.5-4 per gallon.

Table 8 in the Appendix lists the location of biorefineries for the cost minimization and
multi-objective problems. Figs. 5 and 6 present the network structure for the cost minimiza-
tion and multi-objective models. These are the results from solving Scenario 3. Based on
these results, biofuel plants are located closer to the supply, and therefore, in Iowa, Kansas,
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Fig. 6 Network structure for Scenario 3 of multi-objective model
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Fig. 7 Pareto curves for Scenario 1: a Unit delivery cost versus CO2 emissions for different targeted number
of job created; b Unit delivery cost versus number of job for particular emission target

Nebraska, and South Dakota. Two biofuel plants are located in Colorado to be close to cus-
tomers. Tables 8 and 9 in the appendix present the specific locations of biofuel plants and the
number of jobs created in each state.

6.2 Pareto curve

The Pareto curves in Figs. 7, 8 and 9 present the tradeoffs that exist among economic, envi-
ronmental and social objectives. It would be interesting to show the three-dimensional plots
for the three objectives considered. However, creating three dimensional plots requires many
points for the vectorization. As these three objectives are interrelated, we had to identifymany
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of job created; b Unit delivery cost versus number of job for particular emission target
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Fig. 9 Pareto curves for Scenario 3: a Unit delivery cost versus CO2 emissions for different targeted number
of job created; b Unit delivery cost versus number of job for particular emission target

weakly efficient solutions to create the three-dimensional plot. Therefore, we are presenting
instead a number of two-dimensional Pareto optimal solutions. These two dimensional charts
represent the tradeoffs between two of the three objectives which satisfy a threshold level set
on the third objective.

Figure 7a plots the relationship between the unit delivery for cost and CO2 emissions
for different levels of targeted number of jobs created under Scenario 1. Figure 7b plots the
relationship between the unit delivery for cost and number of jobs created for different levels
of targeted CO2 emissions under Scenario 1. Similar plots for Scenario 2 are presented in
Fig. 8a, b, and for Scenario 3, results are presented in Fig. 9a, b.

Results from these figures indicate that, for a given job target as the emission level
decreases, delivery cost increases. These relationships are intuitive. To decrease emission
levels, biofuel plants should reduce shipment volumes by truck. This requires investments to
increase the number of hubs used and consequently improve accessibility to railway lines.
Another observation is that: as the number of jobs increases, delivery cost increases as well.
Increasing the number of jobs in this system affects labor costs and consequently the unit
delivery cost of cellulosic ethanol.
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The shape of the curves presented in Figs. 7a, 8a and 9a is similar and indicates a negative
relationship between unit costs and unit emissions. That means, reducing CO2 emissions
from supply chain activities increases the cost of delivering biomass. However, the shape
of the Pareto curve becomes flatter when emission levels are between 6 and 8 lbs/gal. That
means, reducing CO2 emissions from 8 to 6 lbs/gal (Fig. 8a) increases the unit cost by 10
cents. The marginal increase in costs increases as emission reductions approach 4 lbs/gal.
Reductions in emissions could be achieved via imposing an emission tax, setting an emission
cap, etc. Clearly these policies would impact costs in the supply chain. However, it is often
possible to have a great impact on emission reductions with only marginal increases in costs.

The results in Figs. 7a, 8a and9a indicate that, in order to complywith increased restrictions
on CO2 emissions, plants need to rely on rail shipments. For this reason, at low emission
levels more hubs are utilized and the investments on the infrastructure are higher. As emission
levels increase, the restriction on emissions become redundant and do not have an effect on
costs anymore. This is the reason why at high emission levels, increasing emissions does not
affect the unit cost.

The results from Figs. 7b, 8b, and 9b indicate a positive relationship between the number
of jobs created and the unit cost. More jobs are created when truck - rather than rail - is used
to deliver biomass. This is mainly because to ship the same amount of biomass, less railroad
crew members are required as compared to truck drivers.

7 Conclusion

In this paper, we present a multi-objective optimization model for the cellulosic ethanol
supply chain. The model optimizes costs, environmental, and social impacts of this supply
chain. The cost objective represents transportation, facility location, and operations costs. The
environmental objective representsCO2 emissions due to transportation, facility construction,
and operations. The social objective represents the number of new jobs created in order to
handle transportation, hub operations, biofuel plant construction and operations. The multi-
objective model is solved using an augmented ε-constraint method. This method identifies
a set of Pareto optimal solutions. The relationship among the corresponding objectives is
depicted through a number of graphs presented in the paper.

The underlying supply chain has a hub-and-spoke network structure. Such a network
structure is appropriate for the delivery of bulk products, such as biomass, or cellulosic
ethanol. In this network, depots serve as shipment consolidation pointswhere small shipments
of biomass from preprocessing facilities are consolidated into high-volume shipments. High-
volume shipments of biomass are then delivered to biofuel plants by rail. Such a system
positively impacts transportation costs, and consequently, the delivery cost of cellulosic
ethanol, and CO2 emissions. Using rail transportation, rather than truck, for high-volume
and long-haul shipments reduces emissions.

The numerical analyses indicate that the goals set by the 2014 RFS for production of
cellulosic biofuel can be met. The minimum cost model does minimize the delivery cost
of cellulosic biofuel, but the multi-objective model has a greater positive impact on the
environment and society. Theminimum cost model invests on building large sized production
plants to take advantageof the economies of scale that comewith producing in large quantities.
This model does not invest as much in building rail hubs, and relies on truck transportation.
The multi-objective model proposes investments in building more small sized plants that
employ additional workforce. The corresponding supply chain relies on rail transportation to
reduce CO2 emissions, and uses a larger number of hubs to enable the delivery of biomass.
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We plan on extending the work presented in this paper. We are currently extending the
scope of the case study by investigating thewhole USA. Extending the scope of the case study
will impact the problem size. We are developing decomposition-based algorithms to solve
efficiently each single-objective optimization models within the algorithm scheme proposed
here.
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Appendix 1

See Table 7.

Table 7 The definitions of sets, parameters and decision variables used

Set definitions

N Set of nodes in supply chain network G(N , A)

P Set of preprocessing facilities

D Set of hub

B Set of biorefinery locations

L Set of bulk terminal

C Set of customers

A Set of arcs in G(N, A)

T1 Set of arcs that connect preprocessing facilities to hub

T2 Set of arcs that connect preprocessing facilities to the biorefinery

T3 Set of arcs that connect biorefinery facilities to the blending facilities

T4 Set of arcs that connect blending facilities to the customer

R1 Set of rail arcs that connect depots to biofuel plants

R2 Set of rail arcs that connect biofuel plants to the bulk terminals

K Set of biofuel plant capacity level indexed by k

Problem parameters

ci j Unit cost charged per ton shipped along (i, j) ∈ A

di j Distance of (i, j) ∈ A

Ψi j Reflects a fixed cost for loading/unloading a unit train (i, j) ∈ R1

λi j Reflects a fixed cost for loading/unloading a unit train (i, j) ∈ R2
vi j Represents the maximum capacity of a unit train along arc (i, j) ∈ R1
τi j Represents the maximum capacity of a rail car along arc (i, j) ∈ R2
ςi Fixed investment cost at node i ∈ D

ui Capacity of node i ∈ D

�ik The fixed investment cost at node i ∈ Bwith capacityk ∈ K

si Supply of biomass at a pre-processing facility i ∈ P

gi Demand of biomass at a customer locationi ∈ C

αi Shortage cost at customer location i ∈ C

qik Capacity of biorefinery node i ∈ B is k ∈ K
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Table 7 continued

Emission parameters

ei j CO2 Emission per ton per mile in arc set (i, j) ∈ T1, T2, T3, R

εik CO2 Emission from biorefinery i ∈ B with capacity k ∈ K

oi CO2 Emission for establishing a hub at node i ∈ D

Social factors

pTi j Number of jobs created per ton due to transportation activities in arc (i, j) ∈ A

pBik Number of job created for biorefinery i ∈ B with capacity k ∈ K

pDi Number of job created due to locating depot i ∈ D

Decision variables

Xi j Flow along arc (i, j) ∈ A

Zi j Number of unit trains moving from hub i to biorefinery j

Yi j Number of single care moving from biorefinery i to bulk terminal j

Wi A binary variable which takes the value 1 if i is used as a hub, and 0 O/W

βik A binary variable which takes the value 1 if i is used as a biorefinery, with capacity k and 0 O/W

�i Demand shortage at customer location i ∈ C

Appendix 2

See Tables 8 and 9.

Table 8 Biorefinery locations

Cost minimization model Multi-objective model

State SPLC City Capacity (MGY) State SPLC City Capacity (MGY)

CO 746413 Blakeland 120 CO 744149 Roydale 60

CO 748538 Southern JCT 90 CO 746453 Sedalia 120

IA 536640 Newton 120 CO 746689 Crews 90

IA 534553 Eldridge 60 IA 533370 Burchinal 90

IA 549256 McClelland 120 IA 536244 Minerva JCT 60

KS 592634 Selden 120 IA 537370 Washington 90

KS 584261 Menoken 90 KS 581577 Muncie 60

KS 589156 Partridge 120 KS 584261 Menoken 90

KS 598754 Meade 90 KS 599754 Hugoton 120

NE 555973 Darr 120 NE 553346 Elkhorn 60

SD 522530 Selby 120 NE 555973 Darr 90

NE 559550 Imperial 120

SD 525160 Miller 60
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