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Abstract. This paper presents a cost-efficient and reliable supply chain network design
model for biomass to be delivered to biofuel plants. Biomass is bulky, so transportation
modes such as rail and barge can be used to deliver this product. For this reason, this
study focuses on multimodal supply chain designs for biofuel. Biomass supply is highly
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seasonal, but the high production seasons for biomass in the Southeast United States often
coincide with or are followed by hurricanes, and drought seasons, both of which impact
transportation. The dynamic multimodel transportation network design model this paper
presents enables this supply chain to cope with biomass supply fluctuations and to hedge
against natural disasters. The mixed-integer nonlinear programming model proposed is
an NZ-hard problem, and we develop an accelerated Benders decomposition algorithm
and a hybrid rolling horizon algorithm to solve this problem. We tested the performance of
the algorithm on a case study using data from the Southeast United States. The numerical
experiments show that this proposed algorithm can solve large-scale problem instances
to a near optimal solution in a reasonable time. Numerical analyses indicate that, under
normal conditions, the minimum cost model outperforms the reliable models. However,
under disaster scenarios, the minimum cost model is 2.65% to 9.20% more expensive than
the reliable and static model and 6.28% to 17.73% more expensive than the reliable and
dynamic model. Thus, the reliable and dynamic multimodal network design decisions can
aid biofuel supply chain management decisions, especially when considering the potential
impacts of natural disasters.
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1. Introduction
Production of biofuels is expected to increase in
the near future because of the requirements set by
the Renewable Fuel Standards (RFS) (U.S. Environ-
mental Protection Agency 2007). Based on these re-
quirements, 36 billion gallons a year (BGY) of biofuels
should be produced by 2022. These standards cap corn-
ethanol production to 15 BGY, and they require that at
least 16 BGY of cellulosic biofuels be produced. In 2013,
1.3 billion gallons (BG) of biodiesel (U.S. Energy Infor-
mation Administration 2013a) and 13.3 BG of ethanol
(Renewable Fuels Association 2013) were produced
and production of cellulosic biofuels is expected to con-
tinue to increase. Investors will need tools to support
their supply chain design and management decisions,
so the goal of this paper is to build models of cellulosic
biofuel supply chains that ensure efficient and reliable
performance.

The efficiency and reliability of the supply chain are
crucial aspects of the biofuel industry. Ensuring that
these supply chains are cost-efficient is challenging
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because of the physical characteristics of the raw mate-
rial used to produce these biomass fuels. Biomass is
bulky and difficult to transport; its supply is seasonal
and uncertain; and biomass is widely dispersed geo-
graphically. For these reasons, collection and trans-
portation costs are high. Modes like rail and barge can
be used to deliver biomass to reduce transportation
costs. These modes are typically used for long-haul
and high-volume shipments of other bulk products,
such as corn, soybeans, and other large harvest crops.
When barge is used, the supply chain becomes vulner-
able to unexpected natural disasters, such as floods,
hurricanes, and droughts,—which interrupt the sup-
ply chain’s regular operations. Therefore, designing
reliable supply chains to hedge against risks from
unexpected natural disasters is important. The model
proposed here is an integer program that minimizes
costs of supply chain activities and hedges against risks
from unexpected natural disasters. This model will
serve managers of biofuel plants who face supply chain
design and management decisions.
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One of the motivations for this work is the power-
ful impact that catastrophic events have on transporta-
tioninfrastructure and logistics management. For exam-
ple, natural disasters like Hurricane Katrina in 2005
(National Oceanic and Atmospheric Administration
2005), the earthquakes in China and Haiti in 2008 and
2009, respectively (Gill 2010), and human-caused disas-
ters, such as the 2003 U.S. Northeast blackout (Pacific
Northwest National Laboratory 2013) and the 2010 Gulf
of Mexico oil spill (Polson 2011), devastated transporta-
tion systems and consequently interrupted logistics
and supply chain activities. Furthermore, the timing
of potential disruptions due to hurricanes and floods
corresponds with the harvest season for biomass. For
example, the harvest season for corn stover—typically
early September until late November—coincides with
the hurricane season in the Southeast and is followed by
droughts of agricultural waterways. Historical records
indicate that the Southeast hurricane season starts in
mid-August and continues until the end of October
(see Figure 1(a)) (State Climate Office at North Carolina
2012). Hurricanes also impact agricultural waterways
shipments of biomass to the Gulf of Mexico and ship-
ments of stover to and from the North Carolina and
South Carolina Atlantic coastlines. Droughts along the
Mississippi River and other agricultural waterways typ-
ically happen during the winter because of the impacts
moisture and cold weather have in the Midwest (see Fig-
ure 1(b)) (U.S. Drought Monitor 2013b). Other disrup-
tions, such as flooding of the Mississippi River and its
tributaries (see Table A.1 in the appendix), impacts bio-
fuel supply chain operations. Thus, biomass seasonal-
ity, coupled with transportation uncertainty due to dis-
ruptions, impacts supply chain performance. To handle
these uncertainties efficiently, managers need to adjust
their short-term and midterm supply chain decisions
dynamically.

To manage the supply chain and cope with facil-
ity disruptions, managers need decision-support tools.
These tools should capture the seasonal nature of
biomass supply, use the proper transportation modes
for biomass transportation, and rely on existing prac-
tices used to manage agricultural products’ supply
chains. The model proposed in this paper accounts
for these important observations. We present a multi-
modal transportation network to design the inbound
supply chain of biofuel facilities. Multimodal trans-
portation network models are typically used to design
supply chains for bulk products, such as corn and
other agricultural products. The first hub in the net-
work serves as a shipment consolidation point, and
the second hub is a deconsolidation point. Rail and
barge transport biomass between hubs since these
modes are typically used for high-volume, long-haul
transportation of bulk products. The model proposed
is dynamic because it identifies when to open new
biorefineries and in which season to use, or discon-
tinue using, a multimodal facility. The model also
determines a transportation schedule for shipments
between facilities and identifies a production schedule
and inventory levels.

To optimize costs in this supply chain, the model
allows facilities the flexibility of using different modes
of transportation—thus different multimodal facili-
ties—in different seasons. This practice is followed by
many companies that deliver corn and grains by barge
from the Midwest to the Gulf of Mexico. For exam-
ple, because of the Mississippi River drought dur-
ing the winter, companies use rail or truck instead
of barge. Another practice is to maintain invento-
ries and delay biomass delivery. Although these prac-
tices reduce the impact that potential disruptions may
have on the supply chain, transportation or inventory
costs will increase because some modes of transporta-
tion are more expensive or because carrying inventory

Figure 1. (a) The Total Number of Stormy Days in North Carolina from 1851 to 2012 (State Climate Office at North Carolina
2012), and (b) Contiguous U.S. Drought Areas (in %) (U.S. Drought Monitor 2013b)
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increases costs. Clearly, making these decisions is not
easy since they are impacted by biomass availability,
inventory holding costs, transportation costs, and other
concerns. Models like the one proposed in this paper
are useful for decision makers since they aid in making
supply chain decisions that minimize the overall sys-
tem costs. The model proposed here minimizes costs
under normal and disruption scenarios.

The model proposed is an extension of the clas-
sical fixed charge network design problem, which is
known to be an /%-hard problem (Magnanti and Wong
1981). Therefore, solving large instances of this supply
chain problem is a challenging task. For this reason,
we develop and implement two algorithms: a rolling
horizon (RH)-based heuristic and an enhanced Ben-
ders decomposition algorithm. Numerical experiments
confirm that both algorithms efficiently solve midsized
problem instances. For large-scale problems, an algo-
rithm that integrates the rolling horizon heuristic and
the accelerated Benders decomposition algorithm pro-
vides near optimal solutions by avoiding the stand alone
algorithms prohibitively long running times. We imple-
ment these algorithms using data from a case study
of the Southeast United States. The results from solv-
ing the case study provide detailed periodic produc-
tion and transportation plans that capture feedstock
seasonality and hedge against risk due to unexpected
natural disasters. In summary, the key contributions of
this paper are (a) the development of a new, dynamic,
integrated reliable hub location and network design
problem—the corresponding mixed-integer linear pro-
gramming (MILP) formulation presented proposes a
supply chain design that minimize costs and mitigates
risks due to disruptions and biomass supply seasonal-
ity; (b) the development of a Benders-based rolling hori-
zon heuristic, which provides high-quality solutions for
large problem instances in a reasonable amount of time;
and (c) the development of a real-life case study based
on data from the southeast region of the United States.

The remainder of this paper is organized as follows:
A review of the literature is given in Section 2; Sec-
tion 3 formulates the mathematical model; Section 4
introduces the solution algorithms; Section 5 presents
numerical results and draws managerial insights; and
finally Section 6 concludes this paper.

2. Literature Review

Since the mid-2000s, research in biofuel supply chains
has focused on minimizing the total system costs.
These studies develop integrated biofuel supply chain
networks to deliver biofuel at a competitive price to
the end users. To achieve this goal, studies such as
Zamboni, Shah, and Bezzo (2009) and Eksioglu et al.
(2010) develop deterministic models optimizing the
total plant location and transportation costs in biofuel
supply chain networks. These works are extended

TR L
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by Eksioglu et al. (2009), Kang et al. (2010), Huang,
Chen, and Fan (2010), An, Wilhelm, and Searcy (2011),
Eksioglu et al. (2013); and Xie, Huang, and Eksioglu
(2014) to capture system dynamics better by consider-
ing multiple periods of optimization frameworks. Xie
and Ouyang (2013) develop a mixed-integer program-
ming model for a dynamic, multitype, facility coloca-
tion problem, which, during a fixed planning horizon,
minimizes the total costs from facility construction,
capacity expansion, and transportation. The authors
use an accelerated Benders decomposition algorithm to
solve large-sized problem instances. To capture system
uncertainties, Kim, Realff, and Lee (2011), Chen and
Fan (2012); and Huang, Fan, and Chen (2014) develop
stochastic models to aid with the design and manage-
ment of biofuel supply chain networks. One of the
key assumptions of the above mentioned literature is
that facilities—some of which are multimodal trans-
portation facilities—are robust and never fail. How-
ever, unexpected disruptions at transportation facilities
have been observed on multiple occasions (Mouawad
2005; Credeur 2011; Polson 2011). These facts highlight
the need to address the potential risk of facility fail-
ures in the process of designing and managing biofuel
supply chain networks.

The practice with other agricultural products in-
dicates that the inbound supply chain systems for bio-
refineries should rely on using multiple modes of
transportation. Research by Eksioglu et al. (2010) is
one of the first works that evaluates the impact of ac-
cessibility to a multimodal transportation network on
the biofuel supply chain performance. Most recently,
Xie, Huang, and Eksioglu (2014) extend this work by
developing a fully integrated multimodal transporta-
tion system for the cellulosic biofuel supply chain
network. Both these models consider biomass supply
fluctuations due to seasonality. The model proposed
here is closely related to these studies. However, unlike
these works, which assume that the transportation sys-
tem is reliable and never fails, the model proposed
here considers the impact of disruptions of multimodal
hubs in the biofuel supply chain performance. Other
studies that analyze the impacts of multimodal trans-
portation hubs in the supply chain network design
decisions are Oosterhuis, Molleman, and Vaart (2005),
Melo, Nickel, and Saldanha da Gama (2005); and
Hinojosa et al. (2008).

Although many researchers have focused on hub lo-
cation models, only two papers in the literature specif-
ically study the dynamic hub location problem. Camp-
bell (1990) develops a continuous approximation model
to help transportation terminals handle an increas-
ing regional demand for their services. Contreras,
Cordeau, and Laporte (2011) develop a dynamic, unca-
pacitated, hub location problem that minimizes the
total system cost over a finite planning horizon. The
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model proposed in this paper is an extension of the
paper by Contreras, Cordeau, and Laporte (2011). Our
work differs because it considers hub disruptions as
part of a dynamic multimodal transportation network
design problem. Additionally, we propose customized
algorithms, extensions of the Benders decomposition
algorithm (Benders 1962) and therolling horizon heuris-
tic (Kostina et al. 2011), and provide a real-world case
study to show the efficiency and efficacy of the proposed
models and solution algorithms.

Reliability issues in supply chain design are a topic
of interest for many researchers. Peng et al. (2011) state
that even a carefully constructed supply chain net-
work can be severely damaged if, during the design
phase, managers fail to consider potential disruptions.
Daskin (1982, 1983) first considers facility unavailabil-
ity in a maximal covering location problem. This work
is extended by Drezner (1987) by developing models
for reliable p-median location problems. Snyder and
Daskin (2005) propose models for reliable uncapaci-
tated fixed-charge location problems (UFLP) and the p-
median problem where facility disruptions occur ran-
domly with identical probability. Cui, Ouyang, and
Shen (2010), Li and Ouyang (2010), Shen, Zhan, and
Zhang (2011); and Li, Zeng, and Savachkin (2013)
extend existing models by relaxing the uniform dis-
ruption probability assumption introduced by Snyder
and Daskin (2005). A brief overview of the reliability
facility location models can be found from a study by
Snyder et al. (2006).

A major stream of research has already been con-
ducted on reliable facility location models. However,
the model, which considers reliable multimodal trans-
portation network design problems, is scarce. To our
knowledge, the model proposed by An, Zhang, and
Zeng (2015) is the only study that addresses reliability
issues for the single- and multiple-allocation hub-and-
spoke network design problems. The authors consider
disruptions at transportation hubs where the risk of
hubs becoming unavailable is mitigated by identify-
ing backup hubs and alternative transportation routes.

Figure 2. Network Configuration of a Biofuel Supply Chain

Intermodal hubs

(0 9)

Feedstock suppliers

BIiRfHFR | r.:-:-l}

This work is closely related to the work presented here,
but the model we propose considers a multimodal
transportation network design model that mitigates
risk by deciding at the planning stage what hub to use,
or discontinue using, during different seasons of the
year. Therefore, our model proposes a proactive, not a
reactive, approach to manage the supply chain.

Despite all these efforts, little work has been done
to address the impact of disruptions to the biofuel
supply chain network design and management. Li
et al. (2011) propose one discrete and one continu-
ous model to design reliable bioethanol supply chain
networks. They use numerical analysis to evaluate the
impact of disruptions on optimal refinery deployment
decisions. Wang and Ouyang (2013) propose a game-
theoretical-based, continuous approximation model to
locate biorefineries under spatial competition and facil-
ity disruption risks. These studies only consider failure
risks at biorefineries. These studies do not focus on
evaluating the impact that disruptions of intermedi-
ate transportation facilities have on the biofuel supply
chain performance. The model we propose fills this gap
that exists in the current literature.

3. Problem Description and

Model Formulation

This section presents a mathematical model for a
multiperiod biofuel supply chain network design and
management problem. The model considers potential
facility disruptions and responds by dynamically iden-
tifying the multimodal facilities to use, or discontinue
using, in each period to optimize systemwide costs. Sec-
tion 3.1 provides a mixed-integer nonlinear program-
ming (MINLP) formulation of the problem, referred
to as [DR]. Section 3.2 provides an MILP formulation,
which is easier to solve with commercial software and
the algorithms we propose in Section 4.

3.1. Nonlinear Problem Formulation
Let 4(W,s1) denote the supply chain network for the
problem presented in this paper. Figure 2 gives an
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example of the network structure for a biofuel supply
chain that consists of two suppliers, one multimodal
facility, two biorefineries, and two markets. The set of
nodes in G(N, o), denoted by W, consists of the set of
suppliers .7, the set of candidate multimodal facility
locations ¥, the set of candidate biofuel plant loca-
tions %, and the set of markets 6. Each supplier i € .7
produces s;, units of biomass in time period ¢ € 7. Each
market ¢ € G demands b, gallons of biofuel in period .
This formulation assumes that a substitute product in
the market can be used to satisfy the demand for bio-
fuel. The market price for the substitute product is
denoted by 7t,,. This price, which is exogenously deter-
mined, represents the penalty per unit of unsatisfied
demand. This penalty also serves as a threshold of the
biofuel’s unit delivery cost using the proposed system.
That means, if the unit cost of delivering biofuel to
markets through this supply chain exceeds the thresh-
old, then demand will be satisfied by the substitute
product.

For nodes j € 7, W}, denotes the fixed cost of using
hub j of capacity | € ¥" at the beginning of time
period t. We assume that the hubs are already located
at a given location j € ¥ and the fixed cost of using the
hub (e.g., build additional sidings (track and turnout),
purchasing forklifts) represents the additional infras-
tructure that is required to connect a biofuel plant
to this hub. Our motivation here comes from real-
life applications. Many large-scale production facilities
have direct access to rail and barge transportation. We
denote 7),;, as the recovery gain associated with discon-
tinued use of the hub. W, is the fixed cost of locating a
biofuel plant of capacity | € #’ in location k € 7. Multi-
modal facilities serve as shipment consolidation points.
We assume that every biofuel plant is colocated with a
multimodal facility and the capacity of the multimodal
facility is assumed to be equal of the biorefinery. We
further assume that the transportation costs between
the biorefinery and the multimodal facility are negligi-
ble. This assumption is derived from the fact that many
large-scale production facilities have direct access to
shipping by rail and barge.

The set of arcs, denoted by s/, consists of four dis-
joint subsets, s¢*, ..., s4*. Let ¢ for (i, j) € o1 denote the
variable unit cost of moving products along these arcs
in time period t. Set s/' consists of the arcs joining
suppliers with multimodal facilities; set s> consists of
arcs connecting multimodal facilities. Set /> consists
of arcs that directly connect suppliers to biorefiner-
ies; and set s¢* consists of arcs connecting biorefineries
to markets. Travel distance along arcs in /' is short.
Thus biomass is shipped along these arcs by trucks.
Transportation quantities along arcs in /> are large,
and transportation distances are typically long. Thus,
transportation modes such as rail and barge are used to
move biomass between hubs. We denote the unit cost

L)

along arcs (i, ) € ¢ and (j, k) € 4> by c;,. These costs
are equal to ¢y, = ¢ + . Arcs in s4® represent direct
shipments of biomass from suppliers to biofuel plants.
These arcs are used to consider the scenario when a
supplier is located nearby a biofuel plant, and there-
fore, direct truck shipments are delivered. Biomass,
when delivered by rail or barge, is transported using
cargo containers. Therefore, for rail and barge trans-
portation, in addition to the variable unit transporta-
tion cost, this study considers that a fixed cost & jkts
represents the costs associated with the loading and
unloading of containers, occurs in period t. Container
capacity is denoted by v*P. Biofuel is transported by
truck from biofuel plants to the market. We assume
that all of the costing parameters, variable and fixed,
will vary over the planning horizon.

In our model setting, the first hubs, the consolida-
tion points, need storage capacities. We facilitate this
via the use of capacity parameters, c; . This is because,
rail cars from different suppliers would be waiting at
this consolidation point until a dedicated unit train is
created consisting of 60-90 rail cars of biomass from
different suppliers to be delivered to a single plant.
Delivery of biomass via dedicated unit trains is a must
to minimize biomass delivery costs. Otherwise, the cost
of delivering biomass via small rail shipment consist-
ing of a few rail cars is not economical. This assumption
(about dedicated unit rail) is based on the outcomes
of a recent report from the Idaho National Lab (INL),
which describes structural elements of a biofuel supply
chain that would meet our future needs for biofuels
(Hess et al. 2009). Since each train has a unique destina-
tion, then the second hub (deconsolidation point) does
not have much role in this supply chain. The unit train
is delivered at the biorefinery, and biomass is stored
there. This is another motivation why the second hub is
merged with biorefineries. Now, at the biorefinery, we
do consider capacities: production capacity (p),") and
storage capacity (h,"). The sets, input parameters, and
decision variables used in this section are described
in Table 1.

The following decision variables are introduced:

1 if the multimodal facility j of capacity
Yz]‘ = I is used in time period ¢,
0 otherwise;
Vied"; je g ted.
1 if a biofuel plant of capacity
Y, = I is opened at location k,

0 otherwise;
Vie# ke

Variables Z;, identify the number of containers used
between facilities j and k in period t. Variables Py,
represent the amount of biofuel produced at biofuel
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Table 1. Description of the Sets, Parameters, and Decision
Variables

Symbol Description
Sets

N Set of harvesting sites (farms)

¥ Set of multimodal facilities (hubs)

K Set of potential locations for biofuel plants

H Set of multimodal facilities and biofuel plants; i.e.,
H=FUH

G Set of markets

& Set of production capacities for biofuel plants

& Set of storage capacities for multimodal facilities

T Set of time periods

Parameters

Wi Fixed cost of using a hub of capacity | € %" at location j € ¥
in time period t € 7

Ny Recovery gain associated with discontinued use of a hub of
capacity / at j in period ¢

M Fixed cost of opening a biofuel plant of capacity I € # at
location k € 7

Ent Fixed cost of a cargo container for transporting biomass
along arc (j, k) € s4* in period t

Core Unit flow cost along arc (I, k) € s/ in period ¢

P Unit production cost at a biofuel plant of size I located at k
in period ¢

hyy Unit inventory cost at biofuel plant k in period ¢

Tl Unit penalty cost of not satisfying demand of market g in
period t

Sy Amount of biomass available at site i € .7 in period t

b Biofuel demand of market g € G in period ¢

Biomass storage/handling capacity of a multimodal facility
of size | € " atlocation j

hr Biomass storage capacity of a biofuel plant of size | € #* at
location k

vewp Cargo container capacity

pir Production capacity of a biofuel plant of size I at location k

¢ Conversion rate from biomass to biofuel

gt Failure probability of multimodal facility j in time period ¢

Decision variables

Yy If a biofuel plant of capacity [ is opened at location k; 0
otherwise

Yy If the multimodal facility j of capacity [ is used in time
period t; 0 otherwise

Zi Number of containers used between facilities j and k in
period f

X Amount shipped along (i, j) € # in period ¢

X Amount of biomass delivered in period ¢ from supplier i to
biofuel plant k though facilities j and k

Kigt Amount of biofuel delivered to demand city g from biofuel
plant k in period ¢

Py, Amount of biofuel produced at biofuel plant k of capacity !
in period ¢

Hy Amount of biomass stored at biofuel plant k in period ¢

Uy, Amount of unsatisfied demand in market g in period ¢

plant k of capacity [ in period t. Variables H;, repre-
sent the amount of biomass stored at biofuel plant k in
period ¢, and Ugt represents the amount of unsatisfied
demand in market g in period ¢.

We assume that each hub is disrupted independently.
Although it may seem simplified, there is a reason
behind this assumption. Consider the location of the
main hubs of Delta Air Lines in the United States:
Detroit, Atlanta, New York, Minneapolis, and Salt Lake

BIiRfHFR | r.:-:-l}

City. These Delta hubs are located far away from one
another. Similarly, since hubs are shipment consoli-
dation points, the chances are they are located away
from one another, and therefore will not be affected
by the same disruptions. We denote by g;, the disrup-
tion probability of hub j € 7 in period t. Thus, (1-g;,)
is the probability that this hub is operating during
time t. A shipment can be delivered to a biofuel plant
through the multimodal transportation network if both
the facilities j and k are operating. This happens with
a probability of (1 —g;)(1-¢qy,). The probability that
either or both facilities fail is (9, + 4, — 4;:4x:)- The coef-
ficient Bc;y, represents the unit emergency service costs
to deliver the product in case of a disruption. One can
think of B as a representation of the decision-maker’s
attitude toward risk. A risk averse decision maker
would assign f a high value; and a risk pro decision
maker assigns  small values. Since p depends on the
decision-maker’s attitude toward risk, and we assume
a centralized system, the value of beta is independent
of facility location. We assume that direct truck ship-
ments are not affected by disruptions. Let X; j+ represent
the amount shipped along (i, j) € ¢ in period ¢; and X,
represent the amount of biomass delivered in period ¢
from supplier i to biofuel plant k though facilities j
and k. Then, the expected variable transportation cost
along the multimodal transportation network is

Z Z (Cz‘jkt(l - th)(l - qkt)Xijkt
teT Liey,jef kex
+BCi(q e + Gue — qjtqkt)Xijkt) + Z Cijt Xijt | -
(i, j)est®
The problem is to identify where to locate biore-

fineries among the candidate locations k € ¥; what
should be the production capacity of each biofuel
plant; which transportation hub to use or discontinue
using in period t; and how much biomass to deliver
to a biofuel plant, how much biomass to keep in the
inventory, and how much biofuel to deliver to the mar-
kets in each time period. The goal is to minimize the
total system costs under normal and hub disruption
scenarios. The following is an MINLP formulation of
the problem referred to as model [DR]:

[DR]
minimize Z Wi Y
let, ke
+ Z Z (\Ijljtyljf(l - Ylj,t—l) - nljtYZj,t—l(l - Yljt))
teT LleZ,jey
+ >0 EwZut D, Cu
(j, k)es? icd,jef ke

: ((1 —q:) 1= q) Xije + B(qjs + 91 — 9 'tqkt)Xi'kt)
] ) ] ] 7]
+ Z Cire X + Z Crat Kigt
( (

i, k)es® k, g)est*

+ Z PP + Z i Hy, + Z T Uy

e’ ket ke 9€6



Downloaded from informs.org by [130.127.226.150] on 29 June 2017, at 13:40 . For personal use only, all rights reserved.

Marufuzzaman and Eksioglu: Designing a Multimodal Transportation Network

500 Transportation Science, 2017, vol. 51, no. 2, pp. 494-517, ©2016 INFORMS
subject to biofuel will be fulfilled through the hub-and-spoke dis-
) tribution network or through substitute products avail-
Z Xigs + _ Z X <8 Vi€J, ted, @ able in the market. Constraints (5) indicate that the total
keF jef kex . . .
amount of biomass shipped through a multimodal
¢ Z X + Z X + Hy g1 = Hye | = Z Py, facility is limited by its capacity. Constraints (6) show
= (i, jyestt les? that the amount of biomass shipped between hubs
VkeZ, teT, (2) s limited by the number of available containers and
Z Xigt < Z Py, Vke#, ted, (3)  container capacity. Constraints (7) are the biofuel pro-
ges les 7 duction capacity limitations at a plant. Constraints (8)
Z Xigr+Ug=by, VgeG, teT, (4)  are the biomass storage limitations at a biofuel plant.
kez cap ) _ Constraints (9) ensure that, at most, one biofuel plant
;ﬂxi}kf < Zh ¢ Yy Vj€F teT, ®) s operating at a particular location in period t. Con-
ie € le . . .
. traints (10) and (11) are the binary constraints, and (12)
capz 2 5 s
; X SV Ly, V(j, k)€, tET, ©) are the integer constraints. Constraints (13) are the non-
p lkt = p[CZPYlk/ Vie keH, ted, %) negativity constraints.
cap ~ o
= Z} Iy Yo, Ve, ted, ) 3.2. ALinear Model Formulation
le . .
5 yl:s - ©) Model [DR] is nonlinear bgcaus? of the Y.Zﬁ(l.— Yy i-1)
— and Y};,4(1 - Y};) expressions in the objective func-
e tion. The term Y,Y;;,_; in these expressions is the
Y, €{0,1}, Vie? ke, (10) : e 1je-1 1 P
Y, {01}, VieZ icH teT (1) product of two binary decision variables, and there-
= ]S v fore it takes values 0 and 1. We use the following tech-
kaf €Z°, Vjej keX ted, (12) nique to linearize model [DR] (Ghaderi, Boland, and

Kijktr Xitr Xigrr Pies Hyy Ugy 2 0,
VieJ, jef ke, ge6, teT. (13)

The objective function minimizes the total expected sys-
tem costs. More specifically, the first term represents the
fixed plant location cost. The second and third terms
represent the costs of using and discontinued use of
hubs. The fourth term represents the fixed cost of trans-
porting cargo containers between intermodal hubs. The
fifth and sixth terms represent the expected transporta-
tion costs under normal and disruption conditions. The
seventh term represents truck transportation costs for
direct shipments of biomass. The eighth term repre-
sents biofuel transportation costs. The ninth and tenth
terms represent the cost associated with producing bio-
fuel and holding biomass in the inventory. The last term
of the objective function represents the penalty cost for
unsatisfied demand.

Constraints (1) indicate that the amount of biomass
shipped from supplier i in period t is limited by
biomass availability. Constraints (2) are the flow con-
servation constraints at biofuel plants. These con-
straints indicate that the amount of biofuel produced
in period t is limited by the amount of biomass
shipped in that period and the available inventories.
If a biofuel plant only holds biomass inventories, capi-
tal investments for such plants will be extremely high.
Therefore, to deal with biomass supply uncertainties,
biomass inventory should be held to maximize utiliza-
tion of the existing production capacity. Constraints (3)
indicate that the amount of biofuel delivered to the
market is limited by the amount of biofuel produced in
period t. Constraints (4) indicate whether demand for

1 TR L
BiIA TR r..-:-l',.

JabalAmeli 2012).

Let Fj, be a new binary variable that is equal to
Yij, -1 Yy Let R,jt and R,jt be two decision variables de-
fined as follows:

Rm = Yz]':(l - Yzj,H) = Yljt - Fz;u
Vied, jeyg ted, (14)
ﬁljt = Yl]’,t—l(l - Ym) = Ylj,t—l _Pljt/
Vied jeyg, ted. (15)

By simplifying constraints (14) and (15) we obtain
the following:

Yy +R; =Y +Ry, Vied' jef ted, (16)
Ry, Ry €{0,1}, Vied' jeg ted. (17)

Since constraints (16) can be viewed as a network
flow problem, for a given j € ¥ and [ € I, the poly-
tope {(Yl/t/Rl/t/Rl]f) € [0 1]3|T| YI]t 1+Rl]t - Yl]t + RI]t/
Vt e J} will have the integrality property. Therefore,
the resulting mechanism will provide a tight linear
programming formulation for model [DR]. The new
linear formulation of model [DR] is denoted by [LDR]
and it is presented below

[LDR]
minimize Z W Y,
le#t, ke
w200 20 WpRy=—nuRy)+ > &4Zy
teT Liesh, jey (i, j)est?
+ Z Citg Xiga Z Crar Xgt + Z Cijkt
(i, k)est® (k, g)est* i€d, jey, kex
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: ((1 - qjt)(l - qkt)Xijkt +B(qje+qre — quqkt)Xijkt)

+ Z Plktplkt"'zhktHkr+Zﬂgtugt]/

led? ke ke 8€G

subject to (1)—(13) and (16)—(17).

To demonstrate the benefits of using the model pro-
posed in this research, we compare its performance
with the following three models: (a) minimum cost
model, (b) reliable and static model, and (c) reliable
and dynamic model. We refer to [LDR] as the reliable
and dynamic model. The reliable and static model is a
special case of [LDR], which considers that once a mul-
timodal facility opens, it will continue to be available
for use. Therefore, the fixed multimodal facility cost is
paid from the period the facility is open, and thereafter.
The minimum cost model does not consider disrup-
tions; the model considers that hubs will be dynami-
cally used throughout the year. This can be obtained
by setting the value of {;;}cs, 15 = {9ki }rew, 1e7 = 0.0 in
the objective function of [LDR].

4. Solution Approaches

Problem [LDR] is #%-hard since a special case of this
problem is the capacitated facility location problem.
Therefore, commercial solvers, such as CPLEX, can-
not solve large-scale instances of this problem. In this
section we propose the following approaches to solve
[LDR]: a rolling horizon heuristic, a greedy rolling
horizon heuristic, a Benders decomposition algorithm,
and a Benders-based rolling horizon algorithm. The
goal is to generate a near optimal solution for [LDR] in
a reasonable amount of time.

Benders decomposition separates the problem into a
master problem and a subproblem. The master prob-
lem focuses on strategic decisions that are the facility
location and capacity decisions; hub selection deci-
sions; and transportation capacity decisions. The sub-
problem, which we solve for fixed values of some of
the integer variables, is a linear program. The subprob-
lem is an extension of the capacitated transportation
problem, thus it is easy to solve. The master problem is
a challenging problem to solve because it is an integer
program. However, we efficiently solve the problem by
adding valid inequalities, such as, the Pareto-optimal
cuts, knapsack inequalities, logistics constraints, and
integer cuts. Because of the structure of [LDR], if we
were to decompose the problem in some other way,
then we would be losing the structural properties
in the subproblems. For example, if we were to use
Lagrangian relaxation and relax constraints (2); then
the problem would be decomposed by time period into
|7] smaller-sized problems. Each subproblem would
then be easier to solve. However, the correspond-
ing subproblems lose information about the inventory
holding and its relationships to the inflow and outflow

1 TR L
BiIA TR r..-:-l',.

in a facility. To overcome this drawback, we propose
to solve the problem using a rolling horizon heuristic.
This heuristic solves the problem iteratively |7] times.
In iteration 7 (0 < 7 <|J]) a simpler problem is solved
by fixing some of the integer variables. The hybrid
Benders-based rolling horizon algorithm uses Benders
algorithm to solve the subproblems created in each iter-
ation of the rolling horizon algorithm. This algorithm
takes advantage of our efficient Benders decomposition
algorithm to solve the easier, time-restricted, subprob-
lems solved during the RH algorithm. Both algorithms
presented here complement one another. Whereas the
accelerated Benders algorithm finds near optimal solu-
tions for solving small to medium size network prob-
lems; the RH-Benders provides high-quality feasible
solutions within a reasonable amount of time in solv-
ing large-size problem instances.

4.1. A Rolling Horizon Heuristic

This algorithm is based on the rolling horizon scheme
proposed by Balasubramanian and Grossmann (2004)
and Kostina et al. (2011). The approach is suitable for
large-scale problems where solving the overall prob-
lem exactly is computationally intractable. Based on
this approach, the original problem is decomposed
into a series of smaller subproblems. Each subprob-
lem comprises a few consecutive periods during the
planning horizon. These subproblems—which are of a
smaller size—are solved sequentially. Figure 3 shows
how we use the rolling horizon approach to solve a
problem with three time periods.

Let t; denote the starting time period of subprob-
lem s. Let N® denote the number of time periods com-
prised in subproblem s. Depending on the type of
problem solved, N*® could be different or could be the
same for all of the subproblems created. The number of
time periods within each subproblem stays fixed at N.
We call approximate subproblem s the following approx-
imation of problem [LDR]:

e Time horizon starts in period f; and ends in
period T.

* YV €{0,1}and Zy, € Z* for ty <t <t5 + N.

* 0<Y,<land Zy eR" fort>t;+N.

* The values of Y}, and Z;, for t < t; are fixed to the
values found when solving approximate subproblem
s—1.

Let [RH] denote the rolling horizon algorithm
described below. Let [RH(s)] denote the sth approxi-
mate subproblem that is solved during the sth iteration
of the algorithm.

Step 1. Initialize; set starting time period to t; = 0; set
the length of time interval to N; set s «— 1.
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Figure 3. Application of a Rolling Horizon Strategy for a Three Time Period Problem
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Iteration 3: —C)—
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Step 2. Solve the approximate subproblem [RH(s)]
using CPLEX.

Step 3. If t, > |J], then Stop; else, set s < s +1, go to
Step 2.

4.2. A Greedy Rolling Horizon Heuristic

The most time-consuming step of the [RH] algorithm
is solving the first approximate subproblem [RH(1)],
mainly because of its large size. Therefore, when solv-
ing [RH(1)] using CPLEX (Step 2 of [RH]), to opti-
mize the running time of [RH], the algorithm stops
as soon as a feasible solution is found. Once subprob-
lem [RH(1)] is solved, the corresponding integer vari-
ables are fixed. Typically, the remaining subproblems
are easier to solve.

To tackle this challenge with [RH], we adopt the
following greedy approach, denoted by [GRHI. This
approach solves the original problem [LDR] for t =1
only. Next, the values of Y; and Z, are fixed, and the
problem for the remaining time periods is solved by
using [RH]. The steps of [GRH] are described below:

Step 1. Solve problem [LDR] for t = 1.

Step 2. Fix the Y, and Z, variables obtained from
Step 1, and apply [RH] algorithm to solve the problem
for the remaining time periods.

4.3. Benders Decomposition

The algorithm described in this section is an exten-
sion of the Benders decomposition method proposed
by Benders (1962). Benders decomposition is a well-
known partitioning method used to solve mixed-
integer linear programs. The motivation for selecting
this method is the structure of formulation [LDR].
The algorithm separates the original problem into two
subproblems: an integer master problem and a linear
subproblem. The underlying Benders reformulation for
[LDR] is the following;:

minimize E W, Y
lest ket

+Z{ > (WpRp—npRy)+ > ‘Sijtziﬁ}'

te7 el jey (i,j)est?
+[LDR-SUBJ(X,U,P,H|Y",Y",2)
subject to (1)—(13) and (16)—(17).

BIiRfHFR | r.:-:-l}

Approximate subproble:?n 3
-
—————— - — Integer ——

O O—

2 3

[LDR-SUB](X, U, P,H | Y?,Y",7) represents the Ben-
ders subproblem, which is presented below. In this sub-
problem, the values of Y := {Y, [l € #*, ke %}, Y :=
(Y lles" jefteTandZ:={Zy, | je fke A, t €T}
are given and satisfy constraints (10)—(13) and (16)—(17).
Therefore, this subproblem has only continuous vari-
ables

[LDR-SUB]
minimize Z{ Z cz’jkt((l - ‘7jt)(1 - qkt)Xijkt
teg \icy,jef ke
+ :B(qjt + ke~ q]‘tth)Xijkt)
+ Z Cie X + Z Crgt Kigt
(i, k)es® (k, g)est*
+ Z PPy + Z hiHy, + Z ngtugt}
les? ke ket 9€%
subject to
Z X + Z X <84(0;;), Vies, ted, (18)
ke jeF ke
¢ Z X + Z Kije + Hy yo1 — Hkt]
=4 (i, f)estt
= > Pu(®y), VYked, ted, (19)
let
D Xig € D P(®y), VkeF, ted, (20)
€% lex
D X+ Uy =by(yy), VgeEG teT, (21)
ke#
Z Xijt < Z Clcjap?ljt()(jt)r Vieg ted, (22)
ied, ker lept
D X SO Ly (), V(. k)est, teT,  (23)
i€y
Py <pitVyliy), Vied ke, ted, (24)
Hy < > 0P Yy(cw), Vked, ted, (25)
les?

Kijktr Xiktr Xigtr Prrer Hypy Ugy 20,
Vie¥, jef keH, g6, teT. (26)
Note that, because of the presence of variables U,,

in constraints (21), formulation [LDR] will always gen-
erate a feasible solution that satisfies demand. This



Downloaded from informs.org by [130.127.226.150] on 29 June 2017, at 13:40 . For personal use only, all rights reserved.

Marufuzzaman and Eksioglu: Designing a Multimodal Transportation Network

Transportation Science, 2017, vol. 51, no. 2, pp. 494-517, ©2016 INFORMS

503

is because the model formulation allows substitute
products—which are assumed to be available in the
market—to satisfy demand if the supply chain cannot.

Let 6={0,,20]ie F,teT}, d={9, |keF, teT},
O={Q, 20|keR, teT}, y={yulg€b teT}, x=
{th ZOIjGj,tEg}, #:{H;kzZOUGf/ke%f te%T},
k={xu>0]|leZL keH, teT},andc={c,, >0|keZX,
t€J} be the dual variables associated with con-
straints (18)—(25), respectively. The dual of the primal
subproblem, called the dual subproblem [LDR-SUB(D)],
can be written as

[LDR-SUB(D)]
maximize Z{Zbgﬁgt—zsuéfﬁ Z CaPYI]tX]f
teT \ge% iy les", jey
2 cap
- Z VP L e — Z Pie YiKKi
(i,j)est? le%? ke
Z hlk Ylkgkt}
les? ket
subject to

=0 = Xji— Uik + PO
SCijkt((1_qjt)(1_qkt)+‘8(qjt+qkt_qjtqkt))/
VieJ,jef keF, teT, (27)

=0+ PO <cp, V(i k)est® teT, (28)
Vor—Pr<C, V(k,g)est?, tE€T, (29)
=V + D = Ky SPiprs

Vie?" ke, teT, (30)
GOy 1~ PSu—cr<hy, Vked, ted, (31)
Vet STlgy, Vgeg,ted, (32)
o,x,u,P,x,ceR”, (33)
v, Y€eR. (34)

Let O represent the objective function value of the
subproblem. Then, Benders master problem is repre-
sented as follows [LDR-M]:

[LDR-M]
minimize Z W, Y,
le? ke
+Z{ Z (W Ry =1 Ry ) + Z EijtZijt}"‘Q
teT el jey (i,j)et?
subject to
cap
0+ 3 Shsuou+ 3 ]
teT \ied le&",jej
PRI IS
teg \ ge§ (il]')eyzz
Z PZk Klkalk Z th gkfylk}/
let keH let ke

Y(y,0,x,11,%,c)€Pp, (35)

BIiRfHFR | r.:-:-l}

Y,j,t_1+R,jt=Y,jt+R,jt, Vies, jey,ted, (36)

DVYy<1, Vkex, (37)
lez?

Y, €{0,1}, Vie# keZ, (38)
Y, €{0,1}, Vie jeg teT, (39)
Ry, R;€{0,1}, VieL' jeg, teT, (40)
ij,eZ+, Vief ke, ted. (41)

In this formulation, constraints (35) are the optimal-
ity cut constraints, and &, is the set of the extreme
points of the feasible region of [LDR-SUB(D)]. Since 0
is the optimal objective function value of [LDR-SUB],
its value is an upper bound to the objective function
value of the solution from [LDR-SUB(D)] for fixed val-
ues of Y?, Y", 7. Therefore,

0= Z{Zbgtygt_zsitéit Z Cl] X]tYl]t

teg \ ge§ i€y leh ]ej
- Z (o Hijt 1]1.‘ Z plk KlthIk
(i,j)esA? le#? ket
Z hzk thYlkt}
le<? kex

Y(y,0,X, 1,K,C)EPy. (42)

To accelerate the running time of the master prob-
lem, we add the following inequalities:

Cap

]kt<2{ }Ylﬂ, Y(j,k)esi?, teT, (43)

lesh

cap
Z]kt<2{ s }Y,k, Y(j,k)est*, teT. (44)

let

Inequalities (43) and (44) are valid for [LDR-M] since
they present the relationship that exists between the
binary facility location variables and the integer, con-
tainer flow variables. The ratio [c,c;’p /v?] represents
the maximum number of containers initiated from hub
j to deliver the available biomass. This amount is an
upper bound on the total biomass delivered to biofuel
plant k. The ratio [c);" /v**] represents the maximum
number of containers to be received at biofuel plant
k to fully utilize its capacity. That number is clearly
an upper bound on the total number of containers
received from hub j. Additionally, these inequalities set
the number of containers to zero if no facility is located
in some of the potential facility location sites. Compu-
tational experiments indicate that these valid inequali-
ties significantly reduce the number of iterations of the
Benders algorithm.

The master problem [LDR-M] provides an equiva-
lent formulation of the original problem [LDR]. The
challenge faced when solving [LDR-M] is the problem
size. Note that the number of inequalities (35) is equal
to the number of extreme points of the feasible region
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of problem [LDR-SUB(D)]. This number could be very
large. For this reason, we solve instead a restricted master
problem [LDR-RM] that uses instead only a subset of 7,
denoted by 7}, C%),. Therefore, problem [LDR-RM] is
a relaxation of [LDR], and the optimal solution to the
restricted problem provides a lower bound for [LDR].

The general idea of the standard Benders decompo-
sition algorithm is to iteratively solve [LDR-RM]. In
iteration 7, subproblem [LDR-SUB(D)] is solved, and
a new extreme point p €%, is identified and added
to 7% =% Up. Next, the restricted master problem is
solved. This procedure continues until the gap between
the lower bound generated by solving the restricted
master problem and the upper bound generated by
solving the subproblem is smaller than some predeter-
mined value e.

Let UB" and LB" denote the upper and lower bound
of [LDR] at iteration n. Let &}, denote the set of
extreme points of [LDR-SUB(D)] at iteration n. The
algorithm starts by solving [LDR-RM], which provides
alower bound for this problem. We fix the values of the
corresponding integer and binary variables to Y/l’;{ for
les ke, f/l/’?t for leSEh,jG;F,tey‘, and Z]’.}d for (j,k)e
sl,,t€T. We use these values to solve the dual subprob-
lem [LDR-SUB(D)]. A pseudocode of the basic Benders
decomposition algorithm is provided below.

Let

n — n
ZMas = Z W Y

le? ke

+Z{ Z (\ylth;}t_nlth;}t)"‘ Z Eijtz;}t};
teg \lesy,, jeg (i,j)est?

let zy,, denote the solution to [LDR-RM] and z{
denote the solution to [LDR-SUB(D)] during the nth
iteration of the Benders decomposition algorithm.

Algorithm 1 (Benders decomposition)
UB" «—+00, LB" ¢«——00, 11, €, P, 0
terminate < false
while (terminate = false) do
Solve [LDR-RM] to obtain {Y}; };cot rco,
{Yl;lt}le,‘fh,jej,teﬁ'/ {Z;}t}(i,j)ewz,teu‘/ ZK,H,, ZKI/IAS
if (z};p>LB") then
LB" ez}
end if
Set:
Yi=Y! forle’ keX
Y,]’?t:Yl’]?t forle¥", jef,teT
Z3,=7Z5, for (jk)est? teT
Solve [LDR-SUB(D)] to obtain
(ngém)(gu ‘ujkt/ Kiker th) eQJD and ZSUB
if (255 +21as <UB") then
UB" 2§53+ 25
end if
if (UB"-LB")/UB" <€) then

1 TR L
BiIA TR r..-:-l',.

terminate < true
else
g]%*'l:g]og U{(ygt/6it/thuujkt/Klkt/th)}
end if
ne—n+l
end while.

4.4. Enhancements of Benders Decomposition
Algorithm

In this section we present a few different cuts that we

have identified and used to improve the performance

of Benders decomposition algorithm.

4.4.1. Pareto-Optimal Cuts. Magnanti and Wong
(1981) introduce the Pareto-optimal cuts, which are
added to the master problem. The motivation is to
identify from a set of potential cuts which cut has the
greatest impact on the quality of the master problem.
Work by Roy (1986) and Wentges (1996) shows that
Pareto-optimal cuts contribute to improving the per-
formance of Benders algorithm by strengthening the
cut added to the master problem in each iteration of
the algorithm.

With respect to our problem, recall that an optimal-
ity cut (35) for [LDR-RM] is generated using the infor-
mation from an optimal solution to [LDR-SUB(D)]. Sub-
problem [LDR-SUB(D)] is a transportation problem,
which are known to have multiple optimal solutions
(Uster and Agrahari 2011). This inherent degeneracy
property of transportation problems implies that mul-
tiple optimality cuts can be generated in an iteration
of Benders algorithm, therefore, identifying the single
cut that greatly impacts the quality of the solution to
[LDR-RM] is critical. This study adopts an approach
proposed by Papadakos (2008) for implementing sub-
problem independent Pareto-optimal cuts. Papadakos
(2008) shows that when the solution of the auxiliary
problem depends on the solution to the dual Benders
subproblem, then generating a Pareto-optimal cut is
computationally challenging. This challenge is greater
especially when the Benders subproblem is a difficult
problem to solve. To remedy this problem, Papadakos
(2008) proposes the Modified Magnanti-Wong (MMW)
method that generates a Pareto-optimal cut using the
concept of core points. A core point is located in the
relative interior of the convex hull of feasible region
and serves as a proxy for the optimal solution.

The following is the formulation of the Modified Mag-
nanti-Wong (MMW) subproblem solved in each iter-
ation of Benders algorithm instead of [LDR-SUB(D)].
We refer to this subproblem as [LDR-SUB(MMW)].
Let Y be the polyhedron defined by (36), (37),
0<Y, <1, VieYZ, je¥ teT;, 0<Y <1, VIeY, keZ;
and Z;,>0, Vjej, ke, teT. Let ri(Y') denote the
relative interior of Y. A Pareto-optimal cut can
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be obtained by solving the following subproblem,
for Ylo.teri(YLP), Vies", j€¥ t€T; and Yﬁ(eri(YLP),
Vie?’, ke:

[LDR-SUB(MMW)]
o cap+ 0
maximize Z{Zbgtygt—Zsitéit— Z ¢ Y]thjt
teT \ geb i€y leY,je¥
0 capy,0
- Z Ucapzmﬂiﬁ_ Z Pie YK
(i,j)esty leZ,keZ
cap 0
- Z hyy Ylkgkt}
leH, ke
subject to

=0 = Xji—Hjir + POy
SCijkt((1_177t)(1—%)+.3(%+’7kt_q]‘t‘7kt)),
VieJ, jef ke, teT, (45)

=0+ <cyy, V(i k)est teT, (46)
Vor— @S0, V(k,g)Est?, tET, (47)
— O+ O — Ky <pye, VIEL" ke, teT, (48)
GO =P —cp<hy, VkeF, ted, (49)
Vet STy, VgEGLET, (50)
o,x, 1, P,x,ceRT, (51)
Y, O€eR. (52)

In this formulation, Y,Oj Y, and Z?k , are core points.

These points are updated as follows:

Yp = Y +(1-0)Yy,, Vied' jeg teT,
Y) = TYE{+(1—T)YC”<, Vies' ke,
Zyy = 123+ (=12, Vj€F ke, teT,

where Yiﬁ, Y,, and ij, are the solutions obtained
from the current master problem. Experimental results
indicate that setting 7=0.5 provides the best em-
pirical results. Note that the auxiliary subprob-
lem [LDR-SUB(MMW)] is independent of the solu-
tions obtained from the original dual subproblem
([LDR-SUB(D)]) and will assist the Benders master
problem to be one step closer to the optimal solution
from the very first iteration (Papadakos 2008).

4.4.2. Knapsack Inequalities. Santoso et al. (2005)
show that when a good upper bound is available from
the Benders decomposition algorithm, then adding
a knapsack inequality—presented below—along with
the optimality cut constraint (35) will improve the qual-
ity of solutions derived from the Benders master prob-
lem. The authors also point out that state-of-the-art
solvers such as CPLEX can derive a variety of valid
inequalities from the knapsack inequality, which expe-
dites the convergence of the Benders decomposition
algorithm. Let UB" be the best-known upper bound

1 TR L
BiIA TR r..-:-l',.

obtained so far. The following valid inequality is added
to the master problem [LDR-RM] in iteration #n +1:

UB" > Z{ Z (\Plthljt_nlthljt)
teT Vel jey
+ Z (Wi — p]C:pKlkt - hjcngkt)ylk
les? kex
+ Z (&g = 0Py Zyy + Z boi Vgt

(i,])esty g€%

- Z Sit0i — Z C;;lethjt}' (53)
i€y leZ, jey
Similarly, we add the following valid inequalities to
the master problem [LDR-RM] to speed up the branch-
and-bound procedure of the solver. Let LB" denote the
best-known lower bound obtained so far

LB" < > W,Y,

le#? ke

+ Z{ Z (\Illth]jt - n]]tR]]f) + Z Ei]»tzi]»t} + 6.

teT Vet jey (i, j)esty
(54)

4.4.3. Logistics Constraints. In the initial stages of the
Benders decomposition algorithm, the master problem
produces very few first-stage decision variables. This
is the case until sufficient information is gathered from
solving the subproblem. To overcome this issue with
the master problem, we add the following logistics con-
straints. The rationale is to bring to the master problem
some information from the subproblem. Doing this
will improve the running time of the Benders decom-
position algorithm.

Recall the demand satisfying constraints described
in Equation (4). Since this is a minimization problem,
these constraints can be expressed as follows:

D Xpg+Uy=by,, Vgeb,ted. (55)
ket

Furthermore, constraints (3) and (7) can be rewritten
as follows:

D X< Yy, VkeF, ted. (56)
g€G lest

Combining constraints (55) and (56) and dropping
the penalty term U, obtains the following inequalities
that are added to the master problem:

DU PtYu= > by, Vited. (57)
e’ ket 8€9
Here Egt represents the amount of biofuel demand

expected to be met through the supply chain network.
Thus, ng =ax bg,, Vgeg,teJ. We can initialize the
value of a between 0.0 to 1.0; and when a=1.0, con-
straints (57) require that all of the demand is satisfied

by this supply chain.
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4.4.4. Integer Cuts. To expedite the running time of
the master problem we add the following inequal-
ities generated using a local branching technique
(Fischetti and Lodi 2003). These inequalities when
added to the master problem during iteration n+1,
force the problem to generate a solution different
from the solution generated during iteration n. In
other words, adding these cuts to the master prob-
lem excludes from the feasible region the solutions
identified in the previous iteration. Let ?1’}: for le#",

j€F, t€T and f/ﬁ( for 1e#’, ke be the solutions
obtained from solving the master problem in itera-
tion n. Let Og/Tz{(l,j,t)lYl’}tzl, Vied!, je¥ teT} and
Ys={(1,k)| Y =1, Vle#", keZ}. We add the following
constraint to the master problem in iteration n+1:

Z (1=Yy)+ Z (1-Yy)

(1 j,)eyr (1, ke
+ > Yt D Y=L (58)
Ljey} (ke

This inequality forces the values of the binary facility
location variables in iteration n+1 to be different from
iteration n. The two consecutive solutions will differ by
at least one variable.

Similarly, to reduce the search space and the number
of iterations of the Benders decomposition algorithm,
we add to the master problem the following superset
and subset cuts. These cuts help reduce the solution
space of the master problem by limiting the number
of feasible network configurations. Consequently,
adding these constraints reduces the search space for
the binary variables (Iyer and Grossmann 1998)

S Vsl Vied' jegted,  (59)

(Lj.tey)
D Yu+Y21, Vied jefted. (60)
L Hey}

4.4.5. Heuristics Improvement Obtaining Good Solu-
tions Before Convergence. The master problem is a
mixed-integer linear program. This problem is diffi-
cult to solve; thus, obtaining an optimal solution for
moderate sized networks is a challenging problem. The
solutions obtained from solving the master problem in
the initial iterations of the Benders algorithm are of
low quality. This is mainly because initially, the mas-
ter problem has not received much information about
the subproblem. The quality of the solutions found
improves as the algorithm progresses. Therefore, to
reduce the running time of the algorithm, one can stop
solving the master problem as soon as a feasible solu-
tion is found in the initial iterations of the Benders
algorithm. As the algorithm progresses, we search for
better solutions to the master problem.

To implement this, we initially set a large optimal-
ity gap when solving the master problem. This gap

1 TR L
BiIA TR r..-:-l',.

is gradually reduced as the algorithm progresses. The
initial optimality gap is 5% and is reduced gradually
to 1%.

Setting Branching Priorities. To accelerate the solution
of the master problem, we set proper branching priori-
ties for the decision variables of Z, Y, and Y. Setting
branching priorities provides CPLEX with the order in
which the solver branches these variables. Numerical
analysis indicates that branching on Z, variables first
followed by Y, and Y, saves some computational time
when solving the master problem.

4.5. A Hybrid Benders Based Rolling

Horizon Algorithm
This approach combines the rolling horizon and accel-
erated Benders decomposition algorithms. The Benders
decomposition algorithm is used to solve the subprob-
lems created during the implementation of the rolling
horizon algorithm.

When problems with sufficiently large-sized net-
works are solved using [RH], solving the first few sub-
problems created using CPLEX is difficult. However,
as soon as the first few subproblems are solved, then
the remaining subproblems can easily be solved by
CPLEX. For this reason, when implementing the [RH]
algorithm, we solve the first few subproblems using
an accelerated Benders decomposition algorithm, and
solve the remaining subproblems using CPLEX. The
overall procedure, named [BRH], is described below:

Step 1. Initialize; set starting time period to t§=0; set
the length of time interval to N; set s 1.

Step 2. Solve the approximate subproblem [RH(s)]
using accelerated Benders decomposition algorithm.

Step 3. If t,>|J], then Stop; else, set s«<s+1, go to
Step 2.

5. Computational Study and
Managerial Insights

This section summarizes and interprets the results
from the numerical study. The goal of this section is to
test the performance of the algorithms proposed and
draw important managerial insights about the supply
chain. The case study is developed using data from the
Southeast region of the United States.

5.1. Data Description

Biomass Supply. We have collected data about bio-
mass availability from the following nine states: Mis-
sissippi, Alabama, Louisiana, Tennessee, Arkansas,
Georgia, Florida, South Carolina, and North Carolina.
The two main biomass feed stocks in this region are
corn stover and forest residues. The biomass availabil-
ity data are provided by the Bioenergy Knowledge Dis-
covery Framework (KDF) database (KDF 2013). These
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Figure 4. Biomass Distribution and Facility Locations
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(a) Biomass distribution

data were further processed by the INL to identify the
amount of densified biomass available in this region.
Figure 4(a) shows the distribution of densified biomass
available for biofuel production in the Southeast. Alto-
gether, 491 counties contributed to the collected data.
The total amount of densified biomass available in the
region is 29.35 million tons (MT) per year.

Biofuel Demand. The total fuel consumption in 2012 for
the nine states listed above is 44.4 BGY (U.S. Energy
Information Administration2014). Based on the amount
of biomass available in the region and considering a
conversion rate of 72.6 gallons per MT, the total biofuel
production in this region could be as high as 2.1 BGY.
This amount corresponds to about 5% of the total
fuel consumption in 2012. We consider this to be the
total demand for cellulosic biofuel in the region. Recall
that based on the proposed model, substitute products
can be used to meet demand. The model allows this
substitution to happen if the cost of producing bio-
fuel exceeds the market price for substitute products.
Therefore, setting the demand level high will not force
the system to meet demand at any cost.

Counties with a population greater than 30,000 are
considered as demand points in this study. Based on
this criteria, we selected a total of 381 counties from the
region. We assume that the distribution of the popu-
lation in a particular region is a good indicator of the
distribution of demand for biofuel. We use the cen-
troid of the county as the point where demand occurs,
and thus, where biofuel is to be delivered. In a year,
the demand for gasoline typically rises in May and
continues until September (U.S. Energy Information
Administration 2013b), so the seasonality of demand
in the biofuel demand data is incorporated in these
formulations.

Investment Costs. We consider a total of 259 potential
hub locations: 242 are rail ramps and 17 are inland /sea
ports. Figure 4(b) presents the exact potential locations
of these hubs and biorefineries. We consider a total

BIiRfHFR | r.l-:-l}

Biorefinery
Rail hubs
Barge hubs

een

Rail link
Waterway link

(b) Network representation

of 44 potential biofuel plant locations. The annualized
fixed cost for plants with a capacity of 45 million gal-
lon per year (MGY) is set to $159.4 million (You et al.
2012). This cost was estimated based on a project life of
20 years and an interest rate of 15%. We consider five
different plant sizes: 20 MGY, 40 MGY, 60 MGY, 100
MGY, and 150 MGY. Wallace et al. (2005) estimate that
doubling the size of the plant increases the investment
cost by a factor of 1.6. We used this factor to calculate
investment costs for the other biofuel plant sizes con-
sidered. The annualized fixed cost for a rail ramp of
capacity 1.05 million ton per year (MTY) is equal to
$54,949 /year (Mahmudi and Flynn 2006). We consider
five different rail ramp capacities, where /=0.6 MTY, 0.8
MTY, 0.9 MTY, 1.05 MTY, and 1.20 MTY. These costs are
estimated based on a lifetime of 30 years and a discount
factor of 10%. The annualized fixed cost for an inland
port of capacity 2.35 MTY is equal to $306,000/year,
which is derived from a study by Searcy et al. (2007).
We consider five different port capacities, where [=1.0
MTY, 1.5 MTY, 1.75 MTY, 2.00 MTY, and 2.25 MTY.
Although the actual fixed cost would vary by location,
a common fixed cost is used as a reasonable approxi-
mation.

Transportation Costs. This study assumes that trucks
are used to transport biomass from farms to multi-
modal facilities and biofuel plants. Trucks are also used
to deliver biofuel to the market. Major cost components
for truck transportation are obtained from a study by
Parker et al. (2008), and these costs are summarized in
Table 2.

Barge or rail can be used to deliver biomass at a
multimodal facility. The unit transportation cost for
barge shipments is estimated to be $0.017/mile/ton
(Gonzales, Searcy, and Eksioglu 2013). This cost is cal-
culated assuming that a single tow boat pushes up to
15 barges, and each barge carries 1,500 tons of biomass.

Transportation costs by rail using CSXT and Burling-
ton Northern Santa Fe (BNSF) Corporations are cal-
culated using the following equations developed by
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Table 2. Data About Truck Transportation

Feedstock Biofuel
Item Value Unit Value Unit
Loading/unloading 5.0 $/wet ton 0.02 $/gallon
Time dependent 29.0 $/hr/truckload 32.0 $/hr/truckload
Distance dependent 1.20 $/mile/truckload 1.3 $/mile/truckload
Truck capacity 25 Wet tons/truckload 8,000 Gallons/truckload
Average travel speed 40 Miles/hour 40 Miles/hour

Gonzales, Searcy, and Eksioglu (2013). These equations
represent the total transportation cost for a single rail
car of capacity 100 tons. This cost is a function of the
distance traveled (x,)

Yegur=2,248+1.12x,,

R? dj(%) =29.0; p-value(%)=2E"%, 1)

Ynse=3,140+0.75x,
Ridj(%)=50.0; p-value(%)=0.01. (62)

The values $2,248 and $3,140 represent the fixed
shipment cost per rail car, ;. The values $1.12
and $0.75 represent the unit transportation cost per
mile. We multiply these costs with the travel distance
between j€ ¥ and k€7 to calculate c ;.

We assume that a shipment is delivered from its
source to its destination using the shortest path. Arc
GIS Desktop 10 is used to create a transportation net-
work, and then, this network identifies the shortest
paths. The network includes existing railways; water-
ways; local, rural, urban roads; and major highways in
the Southeast.

Estimating Disruption Probabilities. Failure probabili-
ties at multimodal facilities are obtained from a study
by Marufuzzaman et al. (2014). In developing these
estimates, the authors consider the three major types of
disasters that affect the Southeast: hurricanes, floods,
and droughts. Based on National Hurricane Center
data, the hurricane season starts in late August and
ends in late September (National Hurricane Center

2013). Historically, the largest number of hurricanes
was observed during the month of September. The
U.S. Drought Monitor Center (2013a) provides histor-
ical data and weekly forecasts about the nationwide
drought severity. The data for the period 2009 to 2013
indicates that the drought season starts in August and
continues to January. The severity of droughts is great-
est in September and October. We incorporated this
information in the data set by assigning higher dis-
ruption probabilities during these months compared
to other months of the season. Figure 5 presents the
estimated disruption probabilities of the three disaster
types collectively. These probabilities are presented for
each candidate’s multimodal facilities for the months
of February (Figure 5(a)) and September (Figure 5(b)).
Summarizing the results from Figures 4 and 5, sug-
gests that zone 1 has moderate biomass supply and
faces moderate disruption risk; zone 2 has low biomass
supply and faces low disruption risk; and zone 3 has
high biomass supply and faces high disruption risk.

5.2. Experimental Results

We now discuss the results of our computational study.
All of the algorithms are coded in General Algebraic
Modeling System (GAMS) 24.2.1 (GAMS 2013) and are
executed on a desktop computer with an Intel Core i7
3.5 GHz processor and 32 GB RAM. The optimization
solver used is CPLEX 12.6.

5.2.1. Analyzing the Impact of Disruptions on the Sup-
ply Chain Performance. The goal of these numerical

Figure 5. Disruption Probability of Multimodal Facilities Estimated for Months (a) February and (b) September
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Figure 6. Impact of Disruption on System Performance
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experiments is to evaluate the impact that disruptions
have on the performance of the supply chain. We use
a one-year planning horizon in which each period
represents a month. Figure 6 presents the amount of
biomass and biofuel produced, transported, and inven-
toried during each month of the planning horizon. Fig-
ure 6 also presents the number of hubs operating each
month and the number of containers shipped. This
information is essential to supporting strategic deci-
sions and to guiding the planning of manpower and
equipment during the year.

In the numerical experimentation, time f=1 cor-
responds to the month of July. Corn stover is typi-
cally harvested from September until November, which
corresponds to periods t=3 to 5. Forest residues are
harvested all year round except during the winter
months of December to February (t=6,7,8) because
of the heavy rains that make harvesting/collection
challenging. To support the delivery of biomass to
biofuel plants from September to November, addi-
tional hubs and containers are used. During this
period, the amount shipped by trucks via highways
also increases. The increase of truck transportation
also occurs because weather conditions during the
months of September and October correspond with the
Southeast’s hurricane season. This pick biomass pro-
duction results in increased biofuel production and
accumulation of biofuel inventory during periods 5
and 6 (November and December). Biomass transporta-
tion equals zero during the winter months. To satisfy
demand for biofuels during these months, the inven-

L)

tories built up during September to November are
depleted.

The three models compared above result from the
same amount of biofuel produced and inventoried. The
major difference between these models is the number
of hubs operating. Almost the same number of hubs
is open under each model in periods 1 and 2; how-
ever, the reliable and static model does not close these
hubs during the months of low supply or during the
hurricane season. Therefore, the annual costs related
to hub operation are higher for the reliable and static
model. This is one of the reasons why the unit delivery
cost for such a system is so high—$4.05 per gallon—
compared to the $3.86 and $3.96 per gallon provided
by the other two models (see Table 3). The minimum
cost solution uses more hubs compared to reliable and
dynamic solution because rail and barge transportation
are more cost efficient than truck transportation. The
reliable solution delivers less by barge during the hur-
ricane season. The static and dynamic reliable solutions
open three more biorefineries than the minimum cost
solution. Building redundancies into the supply chain
to hedge against disruptions is a common practice.

To quantify the benefits of designing reliable and
dynamic supply chain systems, three different disrup-
tion scenarios are created. Table 3 summarizes the unit
delivery cost of biofuel under each scenario. The first
scenario assumes flooding of the Mississippi River. The
second assumes flooding of the Tombigbee River, and
the third scenario assumes a hurricane making land-
fall in North Carolina. The results indicate that in nor-
mal conditions, the minimum cost solution provides
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Table 3. Comparison of Unit Cost Under Different Disrupted Scenarios

Reliable and Reliable and
Scenarios Min. cost ($/gallon) static hubs ($/gallon) dynamic ($/gallon)
1: Flooding of Mississippi River 491 4.78 4.48
2: Flooding of Tombigbee River 4.62 4.49 4.33
3: Hurricane in North Carolina 5.98 5.43 4.92
No disruption 3.86 4.05 3.96

the minimum delivery cost for this supply chain. The
minimum cost model provides a solution that is 2.59%
cheaper than the reliable and dynamic model and
4.92% cheaper than the reliable and static model. How-
ever, under disaster scenarios, the reliable and dynamic
supply chain model outperforms both the minimum
cost and reliable and static models. The minimum cost
model is 2.65% to 9.20% more expensive than the reli-
able and static model and 6.28% to 17.73% more expen-
sive than the reliable and dynamic model.

Figure 7 presents the impacts of disruptions on the
supply chain network. Figure 7(a) shows the impact
that disruptions would have on the supply chain

resulting from solving the minimum cost model. Fig-
ure 7(b) presents the impacts of disruptions on the
supply chain resulting from solving the reliable and
static model, and Figure 7(c) presents the impacts of
disruptions on the supply chain resulting from solv-
ing the reliable and dynamic model. The definition
of the three model types are discussed in Section 3.2.
Under scenario 1, three facilities would be impacted.
Note the facilities we have circled in Figure 7 and
labeled scenario 1. These facilities are inland ports
along the Mississippi River. Disrupting these facili-
ties would impact the operations of the biorefineries
that they serve. Similarly, under scenario 2, one inland

Figure 7. Impacts of Disruption Scenarios on Network Configuration
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port along the Tombigbee River could be disrupted.
To minimize the impact of disruptions, the capacity
of this facility reduces from 2.35 MTY for the mini-
mum cost solution to a 1.0 MTY for the reliable solution
(Figure 7(b), the circled facility labeled scenario 2). In
zone 3, a high-supply and high-risk area, the model
locates a number of facilities to take advantage of the
available biomass in the area. Under scenario 3, clearly
the number of facilities that could be impacted by a
disaster in North Carolina (zone 3) decreases drasti-
cally going from a minimum cost solution to a reliable
solution. The minimum cost model relies heavily in
using intermodal transportation to deliver the excess
biomass to other plants. The reliable models open a
smaller capacity port to deliver biomass and, in gen-
eral, use fewer intermodal hubs. Fewer hubs are used
for the dynamic than the static model.

5.2.2. Analyzing the Impact of the Biofuel Supply
Chain on Highway Transportation. One of the chal-
lenges that the biofuel industry faces is delivering
biomass to biofuel plants. Because of the high vol-
ume and low energy density of biomass, the vol-
ume of biomass required at a biofuel plant is large.
Truck transportation—although more expensive as
compared with other transportation modes—has been
used extensively because of its availability and flex-
ibility. Additionally, as the numerical analysis indi-
cates, reliable supply chains use highways as a means
of hedging against the risk of disruptions from nat-
ural disasters. Therefore, we think it is important to
evaluate the increased shipment volumes in highways
due to biomass transportation. Figure 8 summarizes
some of the numerical results. The results presented
compare the minimum cost model with the reliable
and dynamic model, as well as the reliable and static
model, as the amount of biomass available for deliv-
ery changes. The base for these comparisons uses the
minimum cost solution to determine the amount of
biomass to be shipped along highways. Note that in
this experiment, we changed the total demand for

Figure 8. Biomass Transported via Highways
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The results indicate that more biomass is shipped on
highways under the reliable solutions than the mini-
mum cost solutions; more biomass is shipped under
the dynamic rather than static solutions. The amount
shipped increases with the amount of biomass avail-
able. To deliver biomass available using minimum cost
solution, on average, a total of 1,329 truck deliveries
(trips) are required daily. Each truck on average travels
258 miles daily. This number increases to 1,543 truck
deliveries daily for the reliable and dynamic model.
Then, each truck on average travels 287 miles daily.
This number further increases to 1,763 truck deliv-
eries daily when biomass supply increases by 20%
and the average number of miles traveled per truck
is 304. The increase of truck transportation impacts
the traffic on highways. Traffic congestion increases the
noise around the communities where biofuel plants are
located and impacts highway safety.

5.2.3. Analyzing the Impact of the Penalty Terms.
Table 4 summarizes the results of our numerical anal-
ysis with respect to the penalty term. Based on these
results, the penalty term could be very low (under $3),
could be very high ($8 and above), or somewhere in
between ($3 to $8). When the penalty is very high, the
demand for biofuel is solely met via production (by
using this supply chain). However, if the penalty is very
small, then demand is met using other sources (not this
supply chain).

Clearly, the problem is very easy when the penalty
term is very low. In this case, the solution is simple;
all of the demand is met using other sources (but this
supply chain). As the penalty term increases, the run-
ning time of the algorithm naturally increases since
different alternatives are evaluated. However, increas-
ing the penalty term beyond $8 has really little impact
on the running time (for small or large plants). For
example, going from $8 to $9, increases the running
time 1.2% for the small capacity plant. The difficulty
of the problem is not really impacted. The solutions
we get from the penalty being 8, 9, and 10 are exactly
the same (the amount of biofuel shipped, unsatisfied
demand are equal). Total costs increase because the
unmet demand is satisfied at a higher cost. To summa-
rize, increasing the penalty cost beyond a certain value
($8 for this problem) has only minor impacts on prob-
lem complexity and running time of the algorithm.

5.3. Analyzing the Performance of

Solution Algorithms
This section presents our computational experience in
solving the [LDR] model using the algorithms pro-
posed in Section 4. We initially assess the performance
of different accelerated techniques compared to the
standard Benders decomposition algorithm (Table 6).
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Table 4. Explaining the Impacts of Penalty Cost on System Performance

a,b

Capacity =250 MGY*

Capacity =200 MGY*

Unit penalty ~ Total system Kigt Uy Solution time Total system Xigt Uy, Solution time
cost ($) cost ($) (mil. gal.) (mil. gal.) (CPU sec) cost ($) (mil. gal.) (mil. gal.) (CPU sec)
10 1,106,228,910 250,000,000 23,122,891 3224 1,431,228,910 200,000,000 73,122,891 342.2

9 1,083,106,019 250,000,000 23,122,891 321.6 1,358,106,019 200,000,000 73,122,891 338.6

8 1,059,983,128 250,000,000 23,122,891 318.5 1,284,983,128 200,000,000 73,122,891 3345

7 1,046,820,341 247,154,256 25,968,635 311.1 1,217,969,949 198,254,368 74,868,523 322.8

6 1,043,350,384 238,154,785 34,968,106 2824 1,151,774,176 194,785,268 78,337,623 302.7

5 1,018,847,086 231,178,246 41,944,645 294.3 1,090,741,338 183,248,745 89,874,146 299.3

4 996,412,096 192,158,936 80,963,955 288.7 1,014,748,454 155,486,221 117,636,670 279.1

3 820,997,164 3,256,982 269,865,909 221.7 831,943,156 25,148,966 247,973,925 234.9

2 546,245,782 0 273,122,891 47.5 546,245,782 0 273,122,891 56.1

1 273,122,891 0 273,122,891 44.2 273,122,891 0 273,122,891 51.4

*Solutions obtained by solving the accelerated Benders decomposition algorithm.
Considered the following network size: |#]=100, |7]=4 to produce the results.

‘Demand = 273,122,891 gallons.

Next, the performance of the rolling horizon algo-
rithm is assessed and compared with CPLEX (Table 7).
Finally, we compare the performance of all of the algo-
rithms proposed with CPLEX (Table 8). The algorithms
presented are terminated when at least one of the
following conditions is met: (a) the optimality gap falls
below a threshold value €=0.01, (b) the optimality gap
is calculated as e=|UB—LB|/UB, or (c) the maximum
time limit ¢,,,=36,000 (in CPU seconds) is reached.
To terminate the Benders decomposition algorithm,
we use an additional criterion: the maximum number
of iterations n=1,000 is reached. The columns of the
tables presented in this section provide the optimality
gap (€), the running time of the algorithm (f,,,,), and
the corresponding number of iterations (1). The best
result is identified for each problem solved and is pre-
sented using boldface. Since a stopping criteria for the
algorithm is € <1%, the algorithms are stopped when
such a solution is found within the maximum time
limit. The algorithm that gave the smallest running

Table 5. Experimental Problem Sizes

time is then highlighted. Otherwise, if such a quality
solution is not found within the maximum time limit
or number of iterations, the algorithm with the small-
est optimality gap is highlighted. Table 5 summarizes
the problem size considered for analyzing the perfor-
mance of the solution algorithms.

For the first experiment, we consider nine levels for
|T1={4,...,12} and three possible failure probabilities
{q;}jey,teg={0.0,0.1,0.2} to obtain 27 different prob-
lem instances. Table 6 summarizes the results from en-
hancements of the Benders decomposition algorithm.
These enhancements are due to implementing the cuts
described in Section 4.4. All of the algorithms pre-
sented in this table are further enhanced through the
improvement techniques presented in Section 4.4.5.
The total number of potential hubs for all of the
problems presented in this table is 100. We do not
present results from implementing the standard Ben-
ders decomposition algorithm, since when using this
algorithm to solve the problems presented here, the

Downloaded from informs.org by [130.127.226.150] on 29 June 2017, at 13:40 . For personal use only, all rights reserved.

|7 | |71 1l 146l |91 |¥#| Binary variables Integer variables Continuous variables Total variables Total constraints
100 100 80 20 100 4 5 1,700 6,400 656,880 664,980 8,180
100 8 20 100 8 5 3,300 12,800 1,313,760 1,329,860 16,340
100 8 20 100 12 5 4,900 19,200 1,970,640 1,994,740 24,500
120 200 100 20 150 4 5 2,100 8,000 1,629,080 1,639,180 10,460
200 100 20 150 8 5 4,100 16,000 3,258,160 3,278,260 20,900
200 100 20 150 12 5 6,100 24,000 4,887,240 4,917,340 31,340
150 300 120 30 200 4 5 2,550 14,400 4,381,520 4,398,470 17,870
300 120 30 200 8 5 4,950 28,800 8,763,040 8,796,790 35,710
300 120 30 200 12 5 7,350 43,200 13,144,560 13,195,110 53,550
200 400 170 30 250 4 5 3,550 20,400 8,239,720 8,263,670 24,670
400 170 30 250 8 5 6,950 40,800 16,479,440 16,527,190 49,310
400 170 30 250 12 5 10,350 61,200 24,719,160 24,790,710 73,950
259 491 220 39 267 4 5 4,595 34,320 16,971,372 17,010,287 39,519
491 220 39 267 8 5 8,995 68,640 33,942,744 34,020,379 78,999
491 220 39 267 12 5 13,395 102,960 50,914,116 51,030,471 118,479
B IR M TR A
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Table 6. Summary of Results from Implementing Enhancements of Benders Decomposition Algorithm
Benders+PO Benders+PO+KI Benders+PO+KI+LC All cuts
|(7] ‘7; € tmax n € tmax n € tmax n € tmax n
4 0.0 0.81 383.6 28 0.81 348.7 25 0.92 335.1 24 0.75 73.2 6
0.1 0.77 322.8 24 0.94 301.4 22 0.77 287.1 21 0.76 73.7 6
0.2 0.74 266.9 20 0.68 244.6 18 0.85 273.7 20 0.76 73.8 6
5 0.0 0.95 513.4 29 0.92 470.3 26 0.97 429.4 24 0.91 90.7 6
0.1 0.52 461.1 26 0.91 451.5 26 0.78 431.5 24 0.92 91.5 6
0.2 0.94 297.6 18 0.95 342.7 20 0.85 344.5 20 0.91 91.8 6
6 0.0 091 704.7 34 0.97 566.4 26 0.82 565.2 26 0.05 104.5 5
0.1 0.77 532.5 26 0.87 524.8 24 0.91 487.2 23 0.62 105.9 5
0.2 0.61 394.1 21 0.94 385.9 18 0.98 364.2 17 0.52 106.1 5
7 0.0 0.97 731.4 30 0.74 740.7 29 0.29 723.1 28 0.92 169.2 7
0.1 0.91 688.2 26 0.89 711.8 28 0.48 687.5 26 0.89 170.2 7
0.2 0.99 486.2 20 0.84 614.1 27 0.38 520.4 20 0.87 169.9 7
8 0.0 0.78 816.6 29 0.60 894.9 30 0.89 916.5 31 0.27 204.1 8
0.1 0.87 998.1 37 0.88 989.4 35 0.91 929.1 32 0.21 223.0 8
0.2 0.99 701.4 25 0.78 616.0 21 0.77 523.0 18 0.22 226.6 8
9 0.0 0.97 1,085.5 34 0.36 1,118.2 33 0.97 1,073.1 30 0.91 219.1 7
0.1 0.94 1,178.4 37 0.89 1,194.1 35 0.91 1,101.4 31 0.93 222.4 7
0.2 0.87 761.5 24 0.78 724.8 22 0.79 660.7 20 0.89 228.0 7
10 0.0 0.98 1,400.4 39 0.99 1,400.6 38 0.94 1,164.7 31 0.84 320.1 9
0.1 0.96 1,480.6 37 0.94 1,311.8 34 0.97 1,308.1 35 0.78 321.8 9
0.2 0.97 1,105.8 31 0.86 882.0 24 0.91 779.2 21 0.92 324.8 9
11 0.0 0.97 2,337.6 56 0.97 2,340.1 51 0.96 1,837.6 39 0.98 727.1 18
0.1 0.94 1,752.8 38 0.94 1,344.5 32 0.94 1,322.3 31 0.94 743.2 18
0.2 0.89 1,218.4 32 0.97 1,175.1 29 0.96 1,167.4 28 0.97 717.7 16
12 0.0 0.97 2,427.9 56 0.95 2,354.0 49 0.98 2,527.6 54 0.95 1,216.9 26
0.1 0.98 1,778.8 39 0.97 1,545.9 33 0.87 1,524.1 33 0.89 1,028.6 23
0.2 0.97 1,268.8 29 0.96 1,180.3 27 0.95 1,368.1 29 0.94 756.2 16
Average 0.89 966.5 31.3 0.86 917.6 29.0 0.84 876.0 27.3 0.76 325.9 9.7

Note. PO, Pareto-optimal cuts; KI, knapsack inequalities; LC, logistics

inequalities, logistics constraints, and integer cuts.

solutions found within 1,000 iterations had an opti-
mality gap of at least 20%. The results indicate that
implementing the cuts presented in Section 4.4 sub-
stantially improves the performance of the Benders
algorithm. The results from all cuts Benders decompo-
sition algorithm—which in addition to Pareto optimal,
knapsack, and logistics cuts uses the integer cuts—
indicate a running time improved 1.68 times compared
to the accelerated Benders decomposition algorithm
without these integer cuts. Results indicate that incor-
porating the integer cuts significantly reduces the aver-
age number of iterations required by the accelerated
Benders decomposition algorithm compared to imple-
mentations of the accelerated Benders decomposition
algorithm without the integer cuts. Note that, because
of the possibility of cutting off an optimal solution, we
turn off the integer cuts when the optimality gap of the
Benders decomposition algorithm reaches below 5%
and rely on Pareto-optimal cuts, logistics constraints,
and knapsack inequalities to reach the optimality gap
to a prespecified tolerance gap (€). The number of itera-
tions (1) reported in Tables 6 and 8 represents the num-
ber of cuts required to reach an optimality gap below

L)

constraints; all cuts, cuts including Pareto-optimal cuts, knapsack

a prespecified tolerance € (i.e., 1.0%). We do not gener-
ate feasibility cuts since the solution to the subproblem
is always feasible because of constraints (35). Since the
integer cuts, knapsack inequalities, and Pareto-optimal
cuts are added from the second iteration, we generate
in total n—1 of these cuts in solving model [LDR] using
the Benders decomposition algorithm.

Table 7 compares the computational results of
solving the [LDR] model using the rolling horizon
algorithm and CPLEX. The number of potential hubs
and time periods differ from one problem to another.
The performance of the algorithm is investigated as
the values of these two problem parameters change
because they greatly impact problem size, and con-
sequently, the running time of the algorithm. Each
subproblem created during the implementation of the
rolling horizon algorithm is solved using CPLEX. We
experiment with the stopping criteria used to stop
CPLEX when solving these subproblems. We inves-
tigate the performance of the [RH] algorithm when
the optimality gap used for subproblems equals 1%
and 2%. Increasing the gap from 1% to 2% reduces the
overall running time of the [LDR] algorithm. Another



Downloaded from informs.org by [130.127.226.150] on 29 June 2017, at 13:40 . For personal use only, all rights reserved.

BIAHTFR [ THTF

Marufuzzaman and Eksioglu: Designing a Multimodal Transportation Network

514

Transportation Science, 2017, vol. 51, no. 2, pp. 494-517, ©2016 INFORMS

Table 7. Summary of Results from Implementing the RH
Algorithm and CPLEX

CPLEX RH 1.0% RH 2.0%

|7€| |:ﬂ q; € tmax € tmax € tmax
100 10 0.0 0.99 686.5 1.17 190.8 1.30 120.8
0.1 0.99 4544 1.04 256.4 1.41 143.1

12 00 099 1,6262 1.17 480.8 1.45 249.0

0.1 095 1,865.7 0.91 658.6 1.44 288.7

120 10 00 0.75 9,648.8 0.30 1,477.6 1.59 722.2
01 021 10,1104 0.29 1,913.3 1.23 889.5

12 00 0.72 11,748.1 0.91 3,161.6 1.71 1,121.5

01 0.82 12,7237 0.86 4,123.2 1.62 1,485.5

140 10 0.0 5.65 36,000.0 2.08* 10,847.8 2.18 1,247.8
01 515 36,000.0 2.09° 11,623.3 2.12 2,023.3

12 0.0 12.69 36,000.0 3.04° 12,427.3 3.04" 12,427.3

0.1 12.86 36,000.0 3.29* 12,716.8 3.29" 12,716.8

Average 3.56 16,072.0 1.f43  4,989.8 1.86 2,786.3

*Unable to solve the first subproblem within the specified optimal-
ity gap within 10,800 CPU seconds.

criterion used to stop CPLEX is a maximum running
time of 10,800 CPU seconds.

Results indicate that the benefits of the [RH] algo-
rithm over CPLEX are evident as the problem size
increases, either because of increasing the number of
potential hubs or the number of time periods con-
sidered in this problem. Our experience with [RH]
algorithm indicates that solving the first subproblem
is difficult, and therefore time consuming. Stopping
CPLEX when €=1% or 2%—although it helped some—
did not have a great impact on reducing the time it took
to solve this subproblem. Because the first subproblem
is challenging, CPLEX fails to solve it as the number of
potential hubs increases. Note the results for |7#|=140,
|71=10 and 12 in Table 7. Once the first subproblem is
solved, the rest can be solved quickly.

Table 8 presents the results from solving the [LDR]
model using the algorithms proposed in this paper.
The problems solved differ by the number of poten-
tial hub locations considered, the length of planning
horizon, and thus, the problem size. We do not present
results for problems with |7#] <100. For those problems,
CPLEX provided the best results and outperformed the
algorithms presented here. The benefits of using the
algorithms we develop becomes evident as the prob-
lem size increases, which is the case when |#|>100.

Results indicate that, in 33 out of 36 problem in-
stances solved, the accelerated Benders decomposition
algorithm provides solutions with an optimality gap
less than 1.0% within the specified time limit. The ben-
efits of using the greedy [RH] and the hybrid Benders
based [RH] algorithms can clearly be seen as the prob-
lem size increases. Both algorithms are able to find
high-quality solutions within relatively small compu-
tational time. The overall average optimality gap for
the greedy [RH] algorithm is 1.82%, with only one

L)

out of 36 problem instances exceeding 5.0% gap. The
overall average optimality gap for the hybrid Benders
based [RH] algorithm is 1.41%. The largest three prob-
lem instances presented in Table 8 show noticeable
improvements of both algorithms in terms of solution
quality and running time as compared to other solu-
tion approaches. Overall, both the greedy [RH] and the
hybrid Benders-based [RH] algorithms seem to offer
high-quality solutions consistently within the experi-
mental range.

6. Conclusion

This paper presents an MIP model that helps supply
chain managers to design cost-efficient and reliable
supply chain networks for biomass delivery to bio-
fuel plants and biofuel delivery to markets. The pro-
posed inbound supply chain of biofuel plants has a
multimodal facility structure. Multimodal facility net-
works are typically used for high-volume, long-haul
transportation of bulk products. Such a network design
facilitates the transportation of biomass in a cost-
efficient manner. This system relies on using inland
ports, sea ports, and rail stations for the delivery of
biomass by rail and barge between multimodal facil-
ities. Activities at ports could be disrupted by natu-
ral disasters, such as floods, hurricanes, and droughts.
Therefore, considering the risks associated with these
disruptions when designing biofuel supply chains
makes sense.

The model we propose captures supply chain uncer-
tainties due to natural disruptions and biomass sea-
sonality since these factors impact the performance of
biofuel supply chains. To handle these uncertainties
efficiently, the model proposes to adjust short-term and
midterm supply chain decisions dynamically under
disaster scenarios. Numerical results indicate that such
an approach results in cost savings in the supply chain.

The MIP model proposed is an extension of the cap-
acitated facility location problem, and therefore, it is
an N%-hard problem. To solve this problem, we pro-
pose the following solution approaches: a rolling hori-
zon algorithm, a greedy rolling horizon algorithm, an
accelerated Benders decomposition algorithm, and a
hybrid Benders-based rolling horizon algorithm. We
test the performance of these algorithms in a case study
we build using data from the Southeast United States.
Numerical results indicate that the accelerated Ben-
ders and the hybrid algorithms outperform the rest.
Although the accelerated Benders provides solutions
of high quality, the hybrid algorithm provides good
quality solutions in a reasonable amount of time. For
very large problem instances, the hybrid algorithm
outperforms the accelerated Benders decomposition
algorithm. For these large problem instances CPLEX
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Table 8. Comparison of Different Solution Approaches

CPLEX RH-algorithm Greedy RH Accelerated Benders* RH-Benders
|%| | 37‘] q; e tmax e tmax e tmax e t]ThiX n e tmax
100 4 0.0 0.72 64.8 0.72 47.9 0.77 30.8 0.75 73.2 6 0.88 106.7

0.1 0.51 120.7 1.01 107.8 1.17 40.9 0.76 73.7 6 0.58 109.1

0.2 0.46 127.4 1.60 119.9 1.14 37.2 0.76 73.8 6 0.81 120.1

8 0.0 0.66 109.8 1.22 96.6 1.14 90.2 0.27 204.1 8 1.05 174.0

0.1 0.75 195.9 0.97 166.6 1.17 104.7 0.21 223.0 8 0.92 169.1

0.2 0.74 195.8 1.18 223.3 1.15 95.8 0.22 226.6 8 0.92 173.1

12 0.0 0.99 1,626.2 1.17 480.8 1.26 299.2 0.95 1,216.9 26 1.10 449.6

0.1 0.95 1,865.7 0.91 658.6 1.34 219.1 0.89 1,028.6 23 1.07 423.8

0.2 0.98 1,368.1 1.09 547.7 1.65 236.5 0.94 756.2 16 0.61 406.1

150 4 0.0 5.40 36,000.0 0.52 1,015.6 0.66 378.3 0.91 559.5 8 0.55 4422
0.1 5.30 36,000.0 1.12 2,066.1 1.17 712.2 0.94 563.8 8 1.22 747.5

0.2 4.98 36,000.0 1.55 2,436.2 1.41 615.8 0.93 561.3 8 0.82 698.7

8 0.0 7.47 36,000.0 2.59 11,203.6 0.61 1,091.1 0.97 2,393.4 14 0.74 1,017.2

0.1 4.16 36,000.0 2.39 7,234.5 1.31 1,798.5 0.88 2,428.3 15 1.12 1,121.2

0.2 4.58 36,000.0 1.53 6,940.0 1.69 2,308.5 0.79 2,210.2 13 1.67 1,160.3

12 0.0 16.70 36,000.0 3.35 12,830.3 0.55 2,830.9 0.87 9,758.8 37 0.85 2,814.5

0.1 17.02 36,000.0 3.13 12,210.2 0.55 2,449.8 0.96 9,112.5 36 1.18 2,842.1

0.2 15.70 36,000.0 5.97 11,035.6 0.63 2,367.4 0.86 9,142.6 36 1.22 2,902.8

200 4 0.0 6.74 36,000.0 2.19 1,862.0 223 726.2 0.39 799.0 6 1.10 1,132.6
0.1 6.82 36,000.0 2.35 3,247.6 222 1,125.8 0.76 822.1 6 1.65 1,215.6

0.2 9.09 36,000.0 2.23 3,349.4 1.99 1,014.9 0.49 963.8 7 1.70 1,255.5

8 0.0 10.67 36,000.0 3.48 12,733.3 2.89 1,974.3 0.97 2,640.3 9 1.83 1,805.3

0.1 10.75 36,000.0 3.02 8,477.9 2.75 2,122.5 0.84 2,998.6 10 2.04 1,600.2

0.2 10.39 36,000.0 4.60 8,847.6 2.69 2,899.4 0.69 2627.8 9 1.72 1,578.8

12 0.0 19.89 36,000.0 5.51 13,581.1 5.03 4,2944 0.11 14,357.9 27 2.57 4,693.0

0.1 17.57 36,000.0 5.67 13,612.5 449 4,688.7 0.23 14,412.8 27 2.00 4,585.5

0.2 13.96 36,000.0 5.19 13,771.5 3.92 4,4429 0.49 14,222.2 27 1.99 4,492.2

259 4 0.0 11.75 36,000.0 1.75 12,094.3 1.10 3,531.1 0.94 10,413.5 23 2.00 3,780.3
0.1 15.04 36,000.0 2.37 12,174.6 1.65 3,811.5 0.89 11,254.2 24 1.85 3,752.1

0.2 13.04 36,000.0 2.53 12,221.7 1.63 4,289.4 0.84 11,294.7 24 1.58 3,698.5

8 0.0 12.39 36,000.0 2.33 15,121.7 0.97 7,214.5 0.86 30,180.0 28 1.75 6,592.6

0.1 15.80 36,000.0 3.13 15,249.7 222 7,415.8 0.97 28,322.4 27 1.91 6,789.4

0.2 13.89 36,000.0 4.59 15,987.2 2.66 7,4459 0.94 28,111.2 27 2.12 6,994.2

12 0.0 mem?® mem n.ab n.a. 1.58 15,988.9 17.22 36,000.0 18 0.99 14,155.4

0.1 mem mem n.a. n.a. 2.37 16,289.4 14.61 36,000.0 19 1.95 14,478.6

0.2 mem mem n.a. n.a. 3.82 16,672.6 13.89 36,000.0 19 2.75 14,214.9

Average 8.36 26,354 2.51 7,025.8 1.82 3,379.3 1.94 8,945.2 17 141 3,130.4

*Runs out of memory.
PUnable to find an integer feasible solution within the time limit.
¢Accelerated Benders decomposition includes Pareto-optimal cuts, knapsack inequalities, logistics constraints, and integer cuts.

runs out of memory, and the rolling horizon algo-  model proposed in this paper outperforms the min-
rithm fails to find an integer-feasible solution within ~ imum cost and reliable and static models. The mini-
the time limit. mum cost model is 2.65% to 9.20% more expensive than
We conducted extensive numerical analyses to pro-  the reliable and static model and 6.28% to 17.73% more
vide insights about the advantages of using the model ~ expensive than the reliable and dynamic model.
proposed to optimize the performance of the supply This work can be extended in several ways. In this

chain. We compare our model to a minimum cost  study we assume that intermodal hubs fail indepen-
model, with the goal of minimizing total costs, to  dently. This is mainly because the hubs selected in a

a reliable but static model, with the goal minimiz-  supply chain for shipment consolidations and decon-
ing expected costs under normal and disruption sce-  solidations would typically be located far away from
narios. Under normal conditions, the minimum cost one another, and therefore, the chances that these hubs
model outperforms the rest. However, under disas-  are impacted by the same disasters are very small.

ter scenarios, the reliable and dynamic supply chain =~ We also assume that failure probabilities are temporar-
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ily independent. This is mainly because we assume
the length of a time period to be a month. Thus, the
chances that the impacts of a disaster span more than
a month are small. We make this assumption because
the model proposed here integrates strategic and plan-
ning (rather than day-to-day) decisions. However, in
real life, disasters have more complex failure patterns.
We identify as future work extensions of the current
model to consider time- and space-dependent proba-
bilities. Furthermore, our work can be extended to con-
sider congestions caused by multimodal facility failure
during disruption. These issues will be addressed in
future studies.
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Appendix
Table A.1. Mississippi River Flooding History Between
19002011

Name of the flood Year Most affected months

Great Mississippi flood of 1927 1927 May-December

Great flood of 1937 1937 January-February
Flood of 1945 1945 March-May
Mississippi flood of 1973 1973 March-May
Flood of 1975 1975 April
Flood of 1979 1979 April
Lower Mississippi flood 1983 May-June

Great Mississippi and Missouri 1993
Rivers flood

Flood of 2002 2002 April

Flood of 2008 2008 April-May

Great Mississippi flood of 2011 2011 April-May

April-October

Source. Trotter et al. (2011).
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