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Co-firing biomass is a strategy that leads to reduced greenhouse gas emissions in coal-fired power plants.

Incentives such as production tax credit (PTC) are designed to help power plants overcome the financial

challenges faced during the implementation phase. Decision makers at power plants face two big challenges.

The first challenge is identifying whether the benefits from incentives such as PTC can overcome the costs

associated with co-firing. The second challenge is identifying the extent to which a plant should co-fire in order

to maximize profits. We present a novel mathematical model that integrates production and transportation

decisions at power plants. Such a model enables decision makers evaluate the impacts of co-firing on the

system performance and the cost of generating renewable electricity. The model presented is a nonlinear

mixed integer program which captures the loss in process efficiencies due to using biomass, a product which

has lower heating value as compared to coal; the additional investment costs necessary to support biomass

co-firing; as well as savings due to PTC. In order to solve efficiently real-life instances of this problem we

present a Lagrangean relaxation model which provide upper bounds and two linear approximations which

provide lower bounds for the problem in hand. We use numerical analysis to evaluate the quality of these

bounds. We develop a case study using data from nine states located in the southeast region of USA. Via

numerical experiments we observe that: (a) Incentives such as PTC do facilitate renewable energy production.

(b) The PTC should not be “one size fits all”. Instead, tax credits could be a function of plant capacity, or

the amount of renewable electricity produced. (c) There is a need for comprehensive tax credit schemes to

encourage renewable electricity production and reduce GHG emissions.

Key words : Biomass Co-Firing, Biomass Transportation, Integrated Production Transportation Planning

in Supply Chains, Lagrangean Relaxation, Linear Approximation, Nonlinear Programming Model

1. Introduction

Coal-fired power plants in the US consume 1.1 to 1.2 × 109 tons of coal annually in order to

generate electricity. The burning of coal in these plants produces many gases (e.g., CO2, SO2, NOx,

etc.) and heavy metals (e.g., mercury and arsenic), which adversely affect the environment and

human health (US Energy Information Administration (EIA, 2014)). It is estimated that, for each
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2 Ekşioğlu et al.: Co-Firing

megawatt-hour of electricity generated, a total of 2,249 lbs of CO2, 13 lbs of SO2, and 6 lbs of NOx

are emitted. In 2013, coal accounted for 32% of the total energy-related CO2 emissions in the US

(US Environmental Protection Agency (EPA), 2013).

New performance standards and rules proposed by the EPA have placed stringent limitations

on greenhouse gas (GHG) emissions from new and existing power plants. In January 2014, EPA

issued a revised performance standard proposal for CO2 emissions, according to which, new coal

fired power plants are required to limit emissions to 1,100 lbs per megawatt-hour. The proposed

emissions limit is forcing new coal-fired power plants to identify technologies which will reduce CO2

emissions by approximately 50%. In June 2014, EPA released proposed rules that are designed to

cut CO2 emissions for existing power plants by 30% from 2005 levels by the year 2030. In March

2013, the agency finalized the Mercury and Air Toxics Standards to reduce emissions of mercury

and other air toxics from new and existing coal and oil-fired electric generating units. In July 2011,

EPA finalized the Cross-State Air Pollution Rule (CSAPR), which seeks to reduce SO2 and NOx

emissions from power plants in 28 states.

Researchers agree that co-firing offers a near-term solution to reduce CO2 emissions from coal-

fired power plants since viable and long-term solution alternatives (such as, carbon capture and

sequestration (CCS), oxy-firing and carbon loop combustion) still remain in the early to mid stages

of development (Basua et al. 2011). Currently, 40 of the 560 coal-fired power plants in the US are

co-firing biomass, a renewable energy process that is encouraged by incentives such as the renewable

portfolio standards (RPS) at the state level; and the production tax credit (PTC) at the federal

level. The existing federal PTC is a flat rate income tax credit of 1.1 cents per kilowatt-hour which

supports biomass-based electricity generation technologies such as full-scale biomass co-firing and

closed loop partial co-firing; however, its support for general co-firing (open loop biomass) is not

clearly specified (Internal Revenue Code, Section 45). The importance of extending current tax

incentive plan to cover partial co-firing is suggested in the literature (Smith and Rousaki 2002). In

this paper, via our numerical analysis, we evaluate the impacts of extending PTC to support partial

co-firing of existing coal-fired power plants in Southeast USA. At the state level, RPS requires

investor-owned utilities, electric service providers, and community choice aggregators to increase

procurement from eligible renewable energy resources (EIA 2013a, 2013b, 2013c). Researchers also

agree that co-firing biomass with coal in power plants is an option for RPS compliance and a near-

term solution for introducing biomass into today’s renewable energy mix (Basua et al. 2011). Based

on the renewable fuel standards (RFS), cellulosic biomass is expected to be the largest source of

renewable energy comprising 44.4% of the targets set for 2020 (EPA 2007). Biomass used in direct

combustion has shown to be dispatchable, i.e., capable of responding to user needs without energy

storage unlike wind and solar power which are at the mercy of nature (Tillman et al. 2010). While
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the technology to produce liquid fuels by using biomass is not yet available, co-firing of biomass is

a feasible option worth investigating.

Based upon our review of the literature, we contend that most current research has involved

elucidating the technological aspects of co-firing processes (Li et al. 2012, Tumuluru et al. 2012)

and the techno-economic and feasibility analysis (Dong et al. 2010, Ruhul-Kabir and Kumar 2012,

Steer et al. 2013, Goerndt et al. 2013b, Paudel 2013, Mehmood et al. 2014). Very little research has

been undertaken to estimate the transportation costs of delivering biomass to power plants (Roni

et al. 2014). To the best of our knowledge, there are no studies which provide models to optimize

co-firing decisions at the plant level by integrating plant operations-, with, transportation and

other logistics-related decisions. Thus, the main contribution of this paper is the development of

mathematical models to aid co-firing decisions at plant level. The proposed model takes a holistic

view of the processes affected by these decisions such as production, storage, and transportation.

Biomass co-firing impacts the performance of the coal plants in several ways. First, biomass has

less energy density as compared to coal, and therefore, larger quantities of biomass are required to

substitute the same amount of coal. Additionally, biomass in the form of agricultural and forest

waste has poor flowability properties, and thus, it is bulky, heterogeneous, and unstable. For these

reasons, processes such as loading, unloading and transportation of biomass are challenging and

expensive. Second, existing power plants are typically co-located with coal mines which would

typically supply enough coal to satisfy plant’s demand. Biomass suppliers are typically small or

medium sized farms, which are widely dispersed geographically. Thus, processes such as biomass

collection, biomass delivery, and supplier management are expensive (Aden et al. 2002). Third, co-

firing of biomass reduces boilers efficiency, and as a consequence, reduces overall system efficiency.

Fourth, biomass co-firing requires investments to adjust the feeding system, since the same system

often cannot be used to feed biomass in burners (Tillman 2000).

Coal plants are aware of the challenges and opportunities related to co-firing. However, decision

makers are in need of tools which integrate the additional savings, additional costs, and loss of

process efficiencies from co-firing. Such tools would enable decision makers identify the level of co-

firing that maximizes profits while complying with existing GHG emission regulations. To support

these decisions we propose an optimization model which encompasses the (a) additional invest-

ments necessary to adopt co-firing at power plants; (b) reduction in process and equipment (e.g.,

boiler) efficiency from this coal substitution; (c) additional transportation-related costs necessary

for biomass delivery; (d) savings from incentives such as PTC. This model is useful in evaluating

the existing trade-offs between profits and the environmental impacts associated with co-firing.

We propose solution approaches to solve these large scale, nonlinear optimization problems. These

approaches are novel and rely on the properties of the models presented.
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Another important contribution of this paper is that we use real world data to build a case study.

Thus, through our numerical analysis we make a few important observations about the impact of

incentives such as PTC on renewable electricity production. These findings can help policy makers

at the federal or state level to evaluate the economic feasibility of producing renewable electricity,

and design policies in support of co-firing.

2. Review of Related Literature

The work presented in this paper contributes to the literature on biomass supply chain optimization

as well as technological and economical feasibility of co-firing.

2.1. Biomass supply chain optimization

The literature on biomass supply chain has grown in the recent years. Early studies in the area

of biomass supply chain management focused mainly on cost-benefit analysis, such as estimating

the cost of collecting, handling, and hauling biomass (Perlack and Turhollow 2002, Petrolia 2008)

and comparing different modes of transportation to deliver biomass (Kumar et al. 2005, Mahmudi

and Flynn 2006). This literature pays attention to mainly operational-level supply chain decisions.

More recently, a number of models have been proposed to optimize the performance of the supply

chain by incorporating strategic and tactical decisions. Models proposed by Eksioglu et al. (2009),

Zamboni et al. (2009), Huang et al. (2010), An et al. (2011) integrate plant location, production,

and transportation decisions in the biomass supply chain. For a comprehensive review of modeling

frameworks, challenges faced, and the future of biomass supply chains we refer the readers to

Sharma et al. (2013).

Related to this research are works by Aguilar et al. (2012) and Roni et al. (2014). Aguilar et al.

(2012) propose a supply chain model to evaluate the likelihood of using biomass for co-firing. The

model evaluates the impact of the locations of biomass suppliers and the location of coal-fired power

plant on co-firing decisions. Roni et al. (2014) propose a framework to design biomass supply chains

to support co-firing of biomass at the national level. Based on this framework, small-sized plants

are better off receiving biomass shipments from local suppliers. Large-sized plants are better-off

using hub-and-spoke in-bound networks that rely both on truck and rail transportation for biomass

delivery. Hub-and-spoke networks are typically used for long-haul delivery of bulky products. These

models either focus on optimizing transportation decisions for a given biomass co-firing strategy

or focus on optimizing co-firing decisions within a plant given the amount of biomass available in

the region. The model we propose integrates transportation and co-firing decisions with the goal

of optimizing system-wide profits.
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2.2. Technological and economical feasibility of co-firing

Most of the literature about co-firing is mainly focused on analyzing its technological and eco-

nomical feasibility. Work by Goerndt et al. (2013a) identifies the necessary drivers for successful

implementation of co-firing. The drivers identified are the adequate biomass supply and competitive

biomass purchase and transportation costs. The work of Baxter (2005) indicates that biomass-coal

co-combustion is an affordable renewable energy option that promises reductions in GHG emis-

sions. Works of Hansson et al. (2009) and Al-Mansour and Zuwala (2010) indicate that biomass

co-firing is a technologically sound and near-term solution to comply with GHG emission regu-

lations in the European Union (EU). They support their findings by discussing some successful

implementations of the technology in EU. A study by Basua et al. (2011) indicates that nearly all

coal-fired power plants can achieve an incremental gain in GHG reductions with minimum modifi-

cations and moderate investments. Hansson et al. (2009) predict that biomass co-firing will become

a major contributor to meeting the renewable energy production goals in near future. Works by Li

et al. (2012), Shao et al. (2012), Tumuluru et al. (2012), Steer et al. (2013), Tchapda and Pisupati

(2014) investigate the technological challenges and process inefficiencies associated with biomass

co-firing.

Baxter (2005), De and Assadi (2009), Wils et al. (2012), O’Mahoney et al. (2013), Paudel (2013)

study the economic feasibility of co-firing. Ruhul-Kabir and Kumar (2012) conduct a life cycle

energy and environmental performance analysis of co-firing different types of biomass since the

efficiency of co-firing process depends on the specific chemical content and properties of the biomass

used in co-combustion (Mehmood et al. 2014). O’Mahoney et al. (2013) and Wils et al. (2012) use

a cost-benefit analysis to show that governmental incentives are necessary for making co-firing an

attractive investment option. Similarly, McIlveen-Wright et al. (2011) and De and Assadi (2009)

conduct comprehensive techno-economic analysis of co-firing. They evaluated the technological and

economical feasibilities of existing pilot plants, and suggest that there is a need for additional

governmental incentive schemes. The effect of subsidizing biomass co-firing is also discussed by

Lintunen and Kangas (2010). Their numerical results show that subsidizing biomass combustion in

a coal-fired power plant provides great results with minimum investments in renewable technology.

Tharakan et al. (2005) evaluate the impacts of three co-firing incentive programs in the US. One

of the incentives analyzed is the PTC.

3. Problem Description

There are two main co-firing methods used in coal plants, which are direct and indirect co-firing.

Direct biomass co-firing systems include solutions such as: co-milling, co-feeding, combined burner

and new burners. In these systems, biomass is milled and then fed to coal burners for combustion.
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This method is the simplest, cheapest and most-widely used (see Touš et al. (2011), Piriou et al.

(2013)). However, direct co-firing is sensitive to the biomass quality, and, in the long run, direct co-

firing shortens the lifespan of equipment used. Indirect biomass co-firing systems include solutions

such as: separated burning, coupled plant, gasification systems, and pyrolysis. In these systems,

biomass is either burned separately using specially designed boilers; or, it is transformed into a gas

using a gasifier; or it is transformed into a mixture of gas, bio-oils and char through pyrolysis (see

Dong et al. (2010), Caputo et al. (2005), Dasappa et al. (2004)). These systems are more complex

and expensive. However, these systems reduce equipment degradation problems, such as, corrosion,

fouling, and slagging. Such systems allow for larger co-firing rates as compared to direct co-firing.

The focus of this study is direct co-firing since this method is easy to implement, requires less

capital investments, thus, easier to adopt by existing coal fired power plants. In this case, the

percentage of coal substituted varies between 0-50%.

3.1. Biomass Co-Firing: Modeling Plant Efficiency

Biomass has a lower heating value as compared to coal. Additionally, using biomass negatively

impacts the efficiency of the burners used in a coal plant. Thus, co-firing as much biomass (by

mass) as the amount of coal displaced would reduce the amount of energy generated. The objective

of this section is to determine the relationship that exists between the amount of coal displaced

and the amount of biomass co-fired to maintain the same energy output at a coal plant.

Let Q0
j (in MW) be the initial (before co-firing) annual heat input rate of a coal plant j. The heat

input is a function of plant’s nameplate capacity (TCj in MW), capacity factor fj (or utilization

rate), and initial plant efficiency rate (ρ0j). The annual heat input is equal to Q0
j =

TCj∗fj

ρ0
j

.

A coal plant would typically use coal in order to generate electricity. The mass of coal used

is a function of the lower heating value for coal (LHV coal
j in BTU/ton) and the total number of

operating hours (OHj in hours/year). The amount of coal used (M coal
j in tons) is equal to:

M coal
j =

Q0
j ∗OHj ∗C

wb

LHV coal
j

, (1)

where, Cwb is the conversion factor from 1 MW to BTU/hr.

Suppose that ∇M coal
j tons of coal will be displaced in the coal plant. We estimate the amount

of biomass required (M bm
j in tons) to maintain the same energy output using the following energy

equilibrium equation

M bm
j ∗LHV bm

j =∇M coal
j ∗LHV coal

j .

Thus, the amount of biomass required to displace ∇M coal
j tons of coal is equal to

M bm
j =∇M coal

j ∗

(
LHV coal

j

LHV bm
j

)
.
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We now can calculate βj, the percentage of biomass co-fired in facility j, as follows:

βj =
M bm

j

(M coal
j −∇M coal

j )+M bm
j

=
1

Mcoal
j

Mbm
j

+(1−
LHV bm

j

LHV coal
j

)
=

1
Mcoal

j

Mbm
j

+αj

, (2)

where αj = 1−
LHV bm

j

LHV coal
j

. Thus, for a fixed value of βj, the amount of biomass required to displace

coal should be:

M bm
j =

M coal
j

1/βj −αj

=

(
1

1/βj −αj

)
∗

(
Q0

j ∗OHj ∗C
wb

LHV coal
j

)
. (3)

Equation (3) calculates the amount of biomass required to displace β% of coal under the assump-

tion that there would be no equipment efficiency loss due to co-firing. However, equipment efficiency

is indeed affected. Let ρj denote plant efficiency, which is a function of the efficiency of all pro-

cesses involved. Initially, ρ0j = ρbj ∗ ρ
rp
j , where, ρbj represents boiler efficiency and ρrpj represents the

efficiency of rest of the plant. The efficiency loss of boilers (ELj) due to displacing βj% of coal,

is calculated as follows: ELj = 0.0044β2
j +0.0055 (Tillman 2000). Due to this efficiency loss, plant

efficiency decreases from ρ0j to ρj = (ρbj −ELj) ∗ ρ
rp
j .

The efficiency loss impacts the annual heat input of the coal plant. Thus, the heat input required

to maintain the same energy output increases to:

Qj =
TCj ∗ fj

ρj
=

(
ρ0j
ρj

)
∗Q0

j =

(
ρbj

ρbj −ELj

)
∗Q0

j .

Consequently, the corresponding amount of biomass required for co-firing increases to:

M bm
j =

(
1

1/βj −αj

)
∗

(
Q0

j ∗OHj ∗C
wb

LHV coal
j

)
∗

(
ρbj

ρbj −ELj

)
=

=

(
1

1/βj −αj

)
∗

(
ρbj

ρbj −ELj

)
∗M coal

j . (4)

Equation (4) indicates that the amount of biomass requirement to displace βj% of the coal is a

function of plant nameplate capacity, plant efficiency, lower heating values of coal, lower heating

values of biomass, and plant operating hours.

3.2. Biomass Co-Firing: Modeling Costs and Savings

This section estimates the additional costs and savings due to biomass co-firing.

Plant Investment Costs: Investments on building a new feeding system, purchasing compres-

sors and dryers, purchasing biomass handling equipment, and investments on additional storage

space are typically required to facilitate direct co-firing. Studies such as, Sondreal et al. (2001),

Caputo et al. (2005) indicate that when less than 4% of coal is displaced in a plant, the existing

fuel feeding system can be used for both products. In this case, the annual investments (ICAP
j )
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of plant j are expected to be $50 per KW of power generated from biomass, assuming 20 years

investment lifetime and 9% discount rate.

In order to calculate the annual investment costs, we first need to calculate how much power (in

MW) could be generated from biomass at a plant of capacity TCj when βj% of coal (βj%< 4%)

is being displace. Next, we multiply this amount with the $50/KW (or $50,000/MW) to calculate

the annual investment costs as follows:

ICAP
j = 50,000∗

(
M bm

j

M coal
j −∇M coal

j

)
∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)
= 50,000∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)
∗

(
βj

1−βj

)
.

Let, Icapj = 50,000 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)
, then,

ICAP
j = Icapj ∗

(
βj

1−βj

)
. (5)

In the case when βj > 4%, the annual investment costs are higher since large amounts of biomass

would be used by the plant. In this case, the plant would be investing in extra storage space,

material handling equipments, and compressors and dryers necessary to process biomass prior to

co-firing. The annual investment costs necessary for biomass storage (ISj ), biomass handling (IHj ),

and investments on compressors and dryers (ICD
j ) are presented next. The annual storage costs are

estimated to be $136,578 per MW of power generated from biomass; the annual handling costs

are estimated to be $55,780 and the annual compressors and dryers costs are $13,646 per MW of

power generated from biomass (Caputo et al. 2005).

The annual cost of biomass storage as follows:

ISj = 136,578 ∗

(
M bm

j

M coal
j −∇M coal

j

∗TCj ∗ fj ∗
LHV bm

j

LHV coal
j

)0.5575

=

136578 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

∗
βj

1−βj

)0.5575

.

The annual cost of biomass handling is estimated as follows:

IHj = 55780 ∗

(
M bm

j

M coal
j −∇M coal

j

∗TCj ∗ fj ∗
LHV bm

j

LHV coal
j

)0.9554

=

55780 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

∗
βj

1−βj

)0.9554

.

The annual cost of compressors and dryers is estimated as follows:

ICD
j = 13646 ∗

(
M bm

j

M coal
j −∇M coal

j

∗TCj ∗ fj ∗
LHV bm

j

LHV coal
j

)0.5575

=
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13646 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

∗
βj

1−βj

)0.5575

.

Let, Isj = 136578 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.9554

, Ihj = 55780 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.9554

, and Icdj =

13646 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.5575

.

The total capital investment costs in plant j when βj ≥ 4% are:

ICAP
j = ISj + IHj + ICD

j = Isj

(
βj

1−βj

)0.5575

+ Ihj

(
βj

1−βj

)0.9554

+ Icdj

(
βj

1−βj

)
.0.5575 (6)

Operating Costs: Operating costs consist of the cost of purchasing and transporting biomass.

Let cbmi denote the unit purchase cost of biomass (in $/ton) from supplier i, and, let S denote the set

of biomass suppliers. Then, the total biomass purchasing cost at plant j is equal to
∑

i∈S
cbmi ∗M bm

j .

Transportation costs consist of the trucking costs necessary to deliver biomass to coal plants. We

assume that truck shipments of biomass are delivered by third party service providers who charge

a fixed $ amount per ton of biomass shipped. The unit delivery cost from supplier i to plant j is

denoted by cij. The total biomass transportation costs of plant j are equal to
∑

i∈S
cijM

bm
j .

Savings: Savings resulted from the PTC of 1.1¢ per KWh of renewable electricity, and from the

displacement of ∇M coal
j tons of coal.

Savings due to the PTC are calculated as follows:

Stax
j = σt

j ∗M
bm
j , (7)

where, σt
j = 11 ∗

LHV bm
j

Cwb .

Savings due to coal displacement are calculated as follows:

Sp
j = ccoalj ∗ (∇M coal

j ) = ccoalj ∗

(
M bm

j ∗
LHV bm

j

LHV coal
j

)
= σp

j ∗M
bm
j , (8)

where, σp
j = ccoalj ∗

LHV bm
j

LHV coal
j

. Here ccoalj is the door price of coal (in $/ton). This cost includes pur-

chasing and transportation costs.

4. A Mixed Integer Nonlinear Programming Formulation

This section presents a nonlinear problem formulation which identifies co-firing strategies that

optimize the total profits of coal-fired power plants which share the same regional biomass resources.

The model presented is a nonlinear mixed-integer program. In the following sections we present a

Lagrangean relaxation algorithm that generates upper bounds for the non-linear model; as well as

two linear approximation that provide feasible solutions to the nonlinear model.
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LetXij be a decision variable which represents the amount of biomass (in tons) delivered annually

from supplier i to coal plant j. Let Bj be a decision variable which represents the percentage of

coal displaced in plant j. Let C denote the set of coal plants, and S denote the set of suppliers in

the supply chain. Then, the amount of biomass used in plant j can be represented as

M bm
j =

∑
i∈S

Xij.

We use Equation (4) to derive the following expression which represents the amount of biomass

used as a function of the decision variables declared.

∑
i∈S

Xij =

(
1

1/Bj −αj

)
∗

(
ρbj

ρbj − 0.0044B2
j − 0.0055

)
∗M coal

j . (9)

We express the savings from biomass co-fire at plant j as a function of these decision variables

as follows: ∑
i∈S

(σp
j +σt

j)Xij.

Biomass purchasing costs at plant j are equal to

∑
i∈S

cbmi Xij .

Truck transportation costs at plant j are equal to

∑
i∈S

cijXij.

As described in Section 3.2, the functions used to estimate investment costs for Bj%< 4% are

different from the functions used when Bj% ≥ 4%. In order to capture these differences in our

model, we introduce the binary decision variables Yj, and define them as follows:

Yj =

{
1 if Bj ≤ 0.04
0 if Bj > 0.04

We linearize the relationship between Yj and Bj using the following equations.

Bj ≤ 0.04+M(1−Yj)

Bj > 0.04 ∗ (1−Yj)

We can now express the investment costs of plant j as:

Icapj ∗

(
Bj

1−Bj

)
Yj +

(
Isj + Icdj

)( Bj

1−Bj

)0.9554

(1−Yj)+ Ihj ∗

(
Bj

1−Bj

)0.9554

(1−Yj) .

The following is the nonlinear mixed-integer programming formulation for this problem which

we will be referring to as formulation (P).
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Maximize :ZP (X,Y,B) =
∑
j∈C

(
σp
j +σt

j

)(∑
i∈S

Xij

)
−
∑
i∈S

∑
j∈C

(cij + cbmi )Xij−

−
∑
j∈C

Icapj

(
Bj

1−Bj

)
Yj −

∑
j∈C

Ihj

(
Bj

1−Bj

)0.9554

(1−Yj)−

−
∑
j∈C

(
Isj + Icdj

)( Bj

1−Bj

)0.5575

(1−Yj)

Subject to:

∑
j∈C

Xij ≤ si ∀i∈ S, (10)

∑
i∈S

Xij ≤
(M coal

j ∗ ρbj)

(1/Bj −αj)(ρbj − 0.0044B2
j − 0.0055)

∀j ∈C, (11)

Bj ≤ 0.04+M(1−Yj) ∀j ∈C, (12)

Bj > 0.04(1−Yj) ∀j ∈C, (13)

Xij ∈ R+ ∀i∈ S, j ∈C (14)

Bj ∈ [0,1] ∀j ∈C. (15)

Yj ∈ {0,1} ∀j ∈C. (16)

The objective function maximizes the benefits of co-firing across all j ∈ C. Constraints (10)

indicate that the biomass delivered by supplier i is limited by its availability (si). Constraints (11)

represent the amount of biomass required in a plant as a function of plant capacity, plant efficiency

and as a function of the percentage of biomass co-fired. Constraints (12) and (13) provide a linear

representation of the relationship between the decision variables Bj and Yj. Constraints (14) are the

non-negativity constrains, (15) are the boundary constraints, and (16) are the binary constraints.

5. Generating Upper Bounds via a Lagrangean Relaxation Algorithm

In this section we present a Lagrangean relaxation algorithm that generates upper bounds for

model (P). This algorithm relaxes constraints (10). The Lagrangean relaxation model is:

Maximize :ZP (λ) =
∑
i∈S

∑
j∈C

(cij −λi)Xij +
∑
i∈S

siλi −
∑
j∈C

Icapj

(
Bj

1−Bj

)
Yj

−
∑
j∈C

Ihj

(
Bj

1−Bj

)0.9554

(1−Yj)−
∑
j∈C

(
Isj + Icdj

)( Bj

1−Bj

)0.5575

(1−Yj)

Subject to: (11) to (16)

Where, c̄ij = σp
j +σt

j − cbmi − cij. The Lagrangean dual (LD) problem is: minλ≥0Z
P (λ).
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The Lagrangean relaxation model ZP (λ) can be decomposed into |C| single plant problems.

We refer to the single plant problems as subproblems (SP)j. The following is the corresponding

problem formulation.

Maximize :ZSPj (X,Y,B) =
∑
i∈S

ciXi− Icap
(

B

1−B

)
Y

−Ih
(

B

1−B

)0.9554

(1−Y )−
(
Is + Icd

)( B

1−B

)0.5575

(1−Y )

Subject to:

Xi ≤ si ∀i∈ S (17)∑
i∈S

Xij ≤
(M coal

j ∗ ρbj)

(1/Bj −αj)(ρ
b
j − 0.0044B2

j − 0.0055)
(18)

B ≤ 0.04+M(1−Y ) (19)

B > 0.04(1−Y ) (20)

Xi ∈ R+ ∀i∈ S (21)

B ∈ [0,1] (22)

Y ∈ {0,1} (23)

Constraints (17) are valid inequalities since each feasible solution to the single plant problem

(SP)j meets these supply limitation constraints. The single plant problem can further be decom-

posed into three sub-problems. Subproblem 1 assumes B∗ ∈ [0,0.04], subproblem 2 assumes B∗ ∈

(0.04,0.221], and subproblem 3 assumes B∗ ∈ (0.221,0.5].

Subproblem 1:

Maximize :Z(X,B) =
∑
i∈S

ciXi − Icap
(

B

1−B

)

Subject to: (17), (18), (21)

B ∈ [0,0.04]

Subproblem 2:

Maximize :Z(X,B) =
∑
i∈S

ciXi − Ih
(

B

1−B

)0.9554

−
(
Is + Icd

)( B

1−B

)0.5575

Subject to: (17), (18), (21)

B ∈ (0.040.221]
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Subproblem 3:

Maximize :Z(X,B) =
∑
i∈S

ciXi − Ih
(

B

1−B

)0.9554

−
(
Is + Icd

)( B

1−B

)0.5575

Subject to: (17), (18), (21)

B ∈ (0.2210.5]

These subproblems are easy and can be solved by inspection in polynomial time. The corre-

sponding algorithm is presented in Table 8.

Theorem 1. In an optimal solution X∗ = {X∗
1 ,X

∗
2 , . . . ,X

∗
l } to the single plant problem, at most

one of the suppliers’ is used partially. That means, X∗
i = si, ∀i ∈ S∗/k; X∗

k = γ; and X∗
i = 0 for

i /∈ S∗. Where, S∗ is the set of suppliers selected in the optimal solution. (See the proof in Appendix

A.)

Theorem 2. The special case of problem (P) -when there is a single plant in the supply chain-

can be solved to optimality via an O(|S|log(|S|)) algorithm, where |S| represents the number of

suppliers in the supply chain. (See the proof in Appendix A.)

The algorithm that solves the single plant problem starts by sorting the suppliers in a decreasing

order of ci. Without loss of generality, we assume that ci > 0 for i ∈ S. Let S∗ denote the set of

suppliers selected in an optimal solution. Initially S∗ is empty. We start by finding the B∗
1 that

maximizes Z(X,B) for B ∈ [0,0.04]. Next, we find B∗
2 that maximizes Z(X,B) for B ∈ (0.04,0.221],

and B∗
3 that maximizes Z(X,B) for B ∈ (0.221,0.5]. Therefore, the optimal solution to this problem

is B∗ = argmax{Z(B∗
1),Z(B∗

2),Z(B∗
3)}. Recall that, in an optimal solution constraints (18) are

binding. Thus, we can express the optimal objective function value as a function of B only.

Let’s show how we find B∗
1 . We start with supplier 1 and calculate Z(B1). If Z(B1)> 0, then

S∗ = S∗
⋃
1. We add supplier i to S∗ as long as the following holds true ZZ(Bi−1) < Z(Bi) > 0.

Let supplier j be such that Z(Bj−2)<Z(Bj−1)>Z(Bj). This implies that at some B∗ ∈ [Bj−1,Bj ]

function Z(B) reached its maximum. Since the slope of Z(B) could change its sign at most twice in

the interval [Bj−1,Bj ], and Z(Bj−1)>Z(Bj), that means, within this interval, the slope increased

from Bj−1 to B ≤Bj, and then, decreased from B to Bj. This implies that there is at most one

maximum within this interval. We use the Golden Search algorithm to identify B∗ which maximized

Z(B) (Luenberger and Ye 2008). The Golden Search algorithm will be used at most three times,

ones for each interval [0,0.04], [0.04,0.221), (0.221,0.5].

Figure 5 outlines the Lagrangean relaxation algorithm. In each iteration of this algorithm |C|

single plant problems are solved. These solutions are used to update the upper bound (UB).
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The lower bound is found by solving model (Q) (see Section 6.1). We employ the subgradient

optimization method to solve the Lagrangean dual problem (LD) (Nemhauser and Wolsey 1988)

and update the Lagrangean multipliers λi. We use the following equation:

λn
i = λn−1

i +un(si−
∑
j

Xn
ij),

where un = ξn(UB−LB)∑
i∈S(si−

∑
j Xij)

. The parameter ξ ∈ (0; 2] is reduced if the upper bound fails to improve

after a fixed number of iterations. The algorithm stops if one of the following conditions is satisfied:

(i) the error gap (ε =
(
UB−LB

LB

)
∗ 100) is less than 1%, or (ii) the number of iterations reaches a

pre-specified bound.

6. Generating Lower Bounds via Linear Approximation Algorithms
6.1. A Linear Mixed Integer Problem Formulation

Let’s assume that plant j decides to use biomass to displace coal at a fix rate of βj =1%, 2%, 3%

etc. Without loss of generality, we assume that this plant would pursue a single coal displacement

strategy, and therefore, would select a single value of βj. We denote the finite set of all the values

that βj can potentially take by L. Let l = 1, . . . , |L| index this set, and let Ll denote the l−the

element of this set. We declare Ylj to be a binary variable which takes the value 1 if facility j

displaces Ll = βj% coal, and takes the value 0 otherwise.

For a given value of βj, the amount of biomass needed at plant j is constant and is calculated

using equation (4). We denote this amount by M bm
lj . The total amount of biomass required at plant

j is equal to:

M bm
j =

∑
l∈L

M bm
lj Ylj. (24)

Investment costs also depend on the value of βj. For a given value of βj these costs are fixed.

Thus, we use equation (5) to calculate investment costs when βj ≤ 0.04. For βj > 0.04, we calculate

investment costs using equation (6). Let Ilj denote investment costs at plant j for a given value of

βj. The total investment costs are equal to

∑
l∈L

∑
j∈C

IljYlj . (25)

The following is a linear mixed integer programming formulation for problem (P) which we will

be referring to as formulation (Q).

Maximize :ZQ(X,Y ) =
∑
i∈S

∑
j∈C

c̄ijXij −
∑
l∈L

∑
j∈C

IljYlj
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Subject to:

∑
j∈C

Xij ≤ si ∀i∈ S, (26)

∑
l∈L

Ylj ≤ 1 ∀j ∈C, (27)

∑
i∈S

Xij ≤
∑
l∈L

M bm
lj Ylj j ∈C, (28)

Xij ∈ R+ ∀i∈ S, j ∈C (29)

Ylj ∈ {0,1} ∀l ∈L,∀j ∈C (30)

The objective function maximizes the benefits of co-firing across all j ∈C. Constraint (27) limits

the number of co-firing strategies adopted by a coal plant to one. Constraints (28) set the upper

bound on the amount of biomass requirements based on the co-firing strategy selected. (29) and

(30) are the non-negativity and binary constraints.

Proposition 1: A feasible solution to problem (Q) is feasible to the non-linear problem (P); and

the objective function value of (Q) is a lower bound for problem (P). (See the proof in Appendix

B.)

Theorem 3. As |L| approaches infinity, an optimal solution to (Q) is optimal to (P) with

probability 1. (See proof in Appendix B.)

6.2. A Linear Approximation of Model (P)

Linearizing constraints (11):

The right hand side of constraints (11) are nonlinear functions. Let fj =
(ρbj∗Bj)

(1−αj∗Bj)(ρ
b
j
−0.0044B2

j
−0.0055)

. Thus, these constraints can be expressed as:

∑
i∈S

Xij ≤M coal
j ∗ fj ∀j ∈C.

Proposition 2:

Bj ≤
1

M coal
j

∑
i∈S

Xij ≤ fj ≤ (Bj + aj) ∀j ∈C.

Where, aj =
0.5(ρbj−(1−0.5αj)(ρ

b
j−0.0066))

(1−0.5αj)(ρ
b
j
−0.0066)

(See proof in Appendix B).

Corollary 1: Let (LR) be the following linear approximation of problem (P).

Maximize : ZP (X,Y,B)

Subject to: (10), (12) to (16)

M coal
j ∗Bj ≤

∑
i∈S

Xij ≤ M coal
j ∗ (Bj + aj) ∀j ∈C. (31)
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Problem (LR) is a relaxation of (P). The objective function value of (LR) is an upper bound for

(P).

On addition to constraints (31), we develop the linear function f j = aj ∗Bj + bj which is such

that: ∑
i∈S

Xij ≤M coal
j ∗ f j ≤M coal

j ∗ fj ∀j ∈C.

Corollary 2: Let (LA) be the following linear approximation of problem (P).

Maximize : ZP (X,Y,B)

Subject to: (10), (12) to (16)∑
i∈S

Xij ≤M coal
j ∗ f j ∀j ∈C. (32)

Constraints (32) are an inner approximation of (11). A solution to problem (LA) is feasible for

(P). The objective function value of (LA) is a lower bound for (P).

Linearizing the objective function :

For Bj ∈ [0,0.5], the following nonlinear terms in the objective function, f 1
j =

(
Bj

1−Bj

)
is convex

for Bj ∈ [0,0.5], and f 2
j =

(
Bj

1−Bj

)9554

is convex for Bj ∈ [0.04,0.5] (see Propositions 6 and 7). The

nonlinear term f 3
j =

(
Bj

1−Bj

)0.5575

is concave for Bj ∈ [0,0.22] and convex for Bj ∈ (0.22,0.5] (see

Proposition 8). For each of these three terms, we develop three linear approximations, one that

overestimates the function (an outer approximation), one that underestimates the function (an

inner approximation), and one that minimizes the squared error (fit line). Let f
oi

j = aoi
j ∗Bj + boij

be the outer approximation line of the i-th term (i = 1,2,3) for each j ∈C. Let f
ui

j = aui
j ∗Bj + buij

be the inner approximation line and f
fi

j = afi
j ∗Bj + bfij the fit line. By substituting the non-linear

terms in the objective function of (P), with the outer approximation lines we get the following,

partial linearization of the objective function of (P).

Maximize :
∑
i∈S

∑
j∈C

cijXij −
∑
j∈C

Icapj

(
ao1
j Bj + bo1j

)
Yj −

∑
j∈C

Ihj
(
ao2
j Bj + bo2j

)
(1−Yj)−

−
∑
j∈C

(
Isj + Icdj

)(
ao3
j Bj + bo3j

)
(1−Yj)

Rearranging the terms in the objective function we have:

Maximize :
∑
j∈C

(∑
i∈S

cijXij − ao
jBj − b

o

jBjYj − d
o

jYj − eoj

)
.

Where, ao
j = Ihj a

o2
j +

(
Isj + Icdj

)
ao3
j ; b

o

j = Icapj ao1
j − Ihj a

o2
j −

(
Isj + Icdj

)
ao3
j ; d

o

j = Icapj bo1j − Ihj b
o2
j −(

Isj + Icdj
)
bo3j ; and eoj = Ihj b

o2
j +

(
Isj + Icdj

)
bo3j . Figure 1 presents the liner approximations of the

objective function and constraints (11).
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(a) Linear approximations of
(

Bj

1−Bj

)
(b) Linear approximations of

(
Bj

1−Bj

)0.5575

(c) Linear approximations of
(

Bj

1−Bj

)0.9554

(d) Linear approximations of constraints (11)

Figure 1 Linear Approximation Schemes

To get a fully linear objective function we introduce Zj =BjYj. Thus,

Zj =

{
Bj if Yj =1
0 if Yj =0

(33)

To represent this relationship using linear functions, we introduce additional variables. Let Y1
j

and Y2
j be binary variables, and let w1

j , w
2
j , w

3
j be continuous variables in [0,1]. Let (LAu) be the

following linear approximation of problem (P). Equations (38) to (45) linearize the relationship

between Zj nd Bj .

Maximize :ZLAu

=
∑
j∈C

(∑
i∈S

cijXij − au
jBj − b

u

jZj − d
u

jYj − euj

)
.

∑
j∈C

Xij ≤ si ∀i∈ S (34)
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∑
i∈S

Xij ≤ M coal
j ∗ f j ∀j ∈C (35)

Bj ≤ 0.04+M(1−Yj) ∀j ∈C (36)

Bj > 0.04(1−Yj) ∀j ∈C (37)

Y1
j +Y2

j = 1 ∀j ∈C (38)

w1
j ≤ Y1

j ∀j ∈C (39)

w2
j +w3

j = Y2
j ∀j ∈C (40)

0.04w1
j = Zj ∀j ∈C (41)

0.04w1
j +0.04w2

j +0.5w3
j = Bj ∀j ∈C (42)

w1
j ,w

2
j ,w

3
j ,Bj ∈ [0,1] ∀j ∈C (43)

Y1
j ,Y

2
j , Yj ∈ {0,1} ∀j ∈C (44)

Xij ∈ R+ ∀i∈ S, j ∈C (45)

Let (LAo) be the following liner approximation of problem (P).

Maximize :ZLAo

=
∑
j∈C

(∑
i∈S

cijXij − ao
jBj − b

o

jZj − d
o

jYj − eoj

)
.

Subject to: (34) to (45).

Let (LAf ) be the following liner approximation of problem (P).

Maximize :ZLAf

=
∑
j∈C

(∑
i∈S

cijXij − af
jBj − b

f

jZj − d
f

jYj − efj

)
.

Subject to: (34) to (45).

Corollary 3: A solution of problem (LAu) is feasible for problem (P).

Corollary 4: A solution of problem (LAo) is feasible for problem (P).

Corollary 5: A solution of problem (LAf ) is feasible for problem (P).

Let (LRu) be the following liner approximation of problem (P).

Maximize :ZLRu

=
∑
j∈C

(∑
i∈S

cijXij − au
jBj − b

u

jZj − d
u

jYj − euj

)
.

Subject to: (34), (31), (36) to (45).

Proposition 3: Problem (LRu) is a relaxation of problem (P), thus its objective function value

is an upper bound for (P).

Proof: Problem (LRu) is a relaxation of (P) since the feasible region of (LRu) contains the

feasible region of (P). This is due to replacing constraints (35) with their corresponding outer

approximation, constraints (31).
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7. Numerical Analysis

We develop a case study in order to evaluate the impact of biomass co-firing on the production of

renewable electricity. The case study is focused on the following 9 states located in the southeast:

Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina and

Tennessee. We focus on this region since it is rich with biomass. Numerical analysis is also used to

evaluate the performance of the algorithms proposed.

7.1. Data Description

7.1.1. Biomass supply: Biomass availability data by state and county is extracted from the

Knowledge Discovery Framework (KDF) database, an outcome of the US Billion Ton Study led

by the Oak Ridge National Laboratory (KDF Accessed 12.10.2013). This database provides the

amount of biomass available at the county level in the form of forest products, forest residues,

agricultural products, agricultural residues, energy plants, etc. The database provides the amount

of biomass available at different market prices for the 2012 to 2030 period.

From this data set we extracted and used data about forest products and residues. We focus the

analysis on these products only, because, research has shown that these products are low in sulfur,

as well as, chemicals such as, chlorine, potassium and nitrogen. These chemicals when burned cause

corrosion and consequently impact the lifetime of burners. Thus, the chances are these will be the

types of biomass used by coal plants.

7.1.2. Coal plants: The data about coal-fired power plant locations, nameplate capacities,

types of coal used, utilization rates, and annual heat input rates, is collected from the US Energy

Information Administration (2011). This database presents a total of 1,400 coal-fired power plants

across the USA, with an overall nameplate capacity of 343,757 MW.

Table 1 summarizes the data about biomass available and coal plants in Southeast USA. The

amounts of biomass listed represent the available biomass at $200/ton in 2014 based on KDF

(Accessed 12.10.2013).

7.1.3. Truck transportation costs: In order to estimate costs for truck transportation of

biomass, we use the data provided by Searcy et al. (2007). They provide two cost components

which are the distance variable cost (DVC) and distance fixed cost (DFC). The distance variable

cost includes the fuel and labor costs. The distance fixed cost includes the cost of loading and

unloading a truck. These costs were provided for different types of biomass, such as, woodchips,

straw and stover. We used the data provided for woodchips. The DVC of woodchips is estimated

$0.112/(tons mile) and DFC is estimated $3.01/(tons). Woodchips are shipped using truck with a

capacity of 40 tons. This data is used as follows in order to calculate cij($/ton) =DFC+DV Cdij,

where dij represents the distance between supplier i and plant j.



20 Ekşioğlu et al.: Co-Firing

Table 1 Distribution of biomass and coal plants in Southeast USA

Biomass available Number of
State (in tons) coal plants

AL 5,004,000 11
AR 4,505,800 4
FL 2,878,500 15
GA 6,892,500 14
LA 5,044,100 4
MS 5,772,200 5
NC 5,755,400 25
SC 3,666,300 16
TN 2,872,500 10

7.2. Experimental Results

The nonlinear model (P) is solved using GAMS/BONMIN solver. The linear approximation mod-

els are solved using Version 20141128 of AMPL an GUROBI 6.0.0. solver. The experiments are

completed using a Dell personal computer with Intel(R) Core(TM) i5-4300U CPU @ 1.90GHz 2.50

GHz; and 8.00 GB of RAM. The following summarizes our experimental results.

7.2.1. Evaluating the quality of the upper and lower bounds: In order to test the

performance of the upper and lower bounds proposed we randomly generate a number of problems.

We tried solving model (P) using the overall dataset. However, BONMIN ran out of memory

without finding a feasible solution due to the problem size. Thus, we solved model (P) using

the data from Alabama. Next, we changed one problem parameter at a time and generated 8

different problems. For example, in Problems 1 and 2, biomass supply for each county in Alabama is

generated randomly based on the intervals presented in the Table 2. For each problem we generated

5 random instances, and the results presented are the averages overall problem instances. The rest

of problem parameters remain the same as the ones described in Section 7.1.

Table 2 Summary of problem parameters

Problem Nr. Parameter Random interval

1 Biomass supply (si): low [0,10000]
2 Biomass supply (si): high [0,40000]
3 Biomass cost (cbmi ): low [0,100]
4 Biomass cost (cbmi ): high [0,500]
5 Coal price (σp

j ): low [10,50]
6 Coal price (σp

j ): high [50,200]
7 Transportation cost (cij): low [0,80]
8 Transportation cost (cij): high [30,100]



Ekşioğlu et al.: Co-Firing 21

Table 3 summarizes the results of the Lagrangean relaxation algorithm. The error gap =(
UB−LB

LB

)
∗ 100. The quality of the upper bounds is very good. The maximum error bound is less

than 4%.

Table 3 Upper bounds via Lagrangean relaxation

Lagr. Relaxation BONMIN
Problem Nr. Error CPU CPU

(%) (sec) (sec)
1 0.78 671 368
2 0.01 49 410
3 1.28 813 578
4 3.69 911 128
5 0.00 70 170
6 0.00 33 96
7 0.00 79 439
8 0.36 109 502

We solved model (P) and its linear approximation model (Q) in order to evaluate the quality

of the solutions provided by the linear approximation as a function of problem size (|L|). This

analysis gave us an indication of what would be a good size for set L. We tried solving model (P)

using the overall dataset. Initially, we solved model (P) using the data from Alabama. Next, we

solved model (Q) several times using the same dataset. Each time we changed |L|. We focus on

strategies for which the value of Bj is between 1% and 50% which are appropriate strategies for

direct co-firing. As we increase |L|, we explore additional co-firing strategies within this range. For

example, when |L |= 3, the only strategies considered are Bj =0%,25%, and 50%. When |L |= 51,

then strategies considered are Bj = 0%,1%,2%, . . . ,49%,50%.

Figure 2 The error gap between ZP and ZQ as a function of |L|
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Figure 2 presents the relationship between the size of |L| and the relative error gap between the

optimal solution to models (Q) and (P) when biomass market price is fixed at $20/ton, $50/ton

and $120/ton. The error gap is calculated as follows:

Error gap =
(ZP −ZQ)

ZP
∗ 100.

As expected, the relative error gap approaches zero as we increase the size of L. The results of this

graph indicate that the error gap is smaller than 0.1 when the size of L is smaller than 25. In our

numerical analysis we use |L|= 200 to ensure high quality solutions from the approximation.

Table 4 summarizes the running time of GUROBI when solving model (Q) and BONMIN when

solving model (P). The running time of GUROBI increases only slightly due to the increase in

problem size.

Table 4 Solution times in cpu seconds.

Solution time
|L| P Q

297
5 4.2
10 3.9
20 4.7
25 4.3
50 4.8
100 5.2
200 7.2

Table 5 summarizes the results from solving the linear approximation models presented in Sec-

tions 6.1 and 6.2. As indicated by Proposition 1 and Corollaries 2 to 5, by solving problems (Q),

(LA), (LAo), (LAu) and (LAf ) we generate feasible solutions for problem (P). We use these

solutions to calculate lower bounds for (P). Based on these numerical results, the time it took to

solve problem (P) using BONMIN is order of magnitude higher than the time required to solve

problem (Q). The time required to solve problems (LAo), (LAu) and (LAf ) is clearly the best,

however, the quality of the corresponding solutions is poor.

7.2.2. Sensitivity analysis: Table 6 presents the total amount of biomass used by state as

biomass price increases. Table 7 presents the total profits by state as biomass price increases. In

order to generate these results we solved model (Q) for different values of biomass market price.

Note that, not all of the available biomass is sold at the highest price, only the additional amount

that becomes available at that price. Increasing the price positively impacts the amount of biomass

that can be used for production of renewable energy. This is mainly because the amount of biomass

made available to and used by power plants increases as plants are willing to pay a higher price.
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Table 5 Comparing the performance of the lower bounds for problem (P).

Prob. BONMIN (Q) (LA) (LAu) (LAo) (LAf )
Nr. CPU Error CPU Error CPU Error CPU Error CPU Error CPU

(sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec)

1 368.00 0.00∗ 7.96 10.40 454.60 13.69 0.61 11.35 0.45 30.79 0.17
2 410.40 0.00 6.64 1.09 255.80 5.08 0.54 5.08 0.22 7.41 0.16
3 578.60 0.00 8.00 2.93 325.80 8.48 0.83 3.45 0.63 8.77 0.21
4 128.20 0.00 6.40 22.71 147.00 23.77 0.23 25.13 0.19 107.51 0.07
5 170.60 0.00 7.44 2.04 112.00 8.45 0.25 4.20 0.18 7.62 0.10
6 95.80 0.00 6.92 1.11 115.80 1.49 0.34 1.39 0.28 2.80 0.17
7 439.00 0.09∗ 8.23 1.05 220.00 2.12 0.29 1.58 0.14 3.91 0.14
8 502.33 0.00∗ 9.00 3.14 295.00 6.70 0.22 5.36 0.17 12.58 0.08

*The quality of solutions from solving model (Q) are slightly better than solutions found from BONMIN, although

BONMIN reports 0% error gap for these solutions.

Table 6 The total biomass used at different levels of biomass market price

Biomass price Total biomass used (in mill tons)
(in $/ton) AL AR FL GA LA MS NC SC TN

20 1.40 0.04 1.15 1.75 0.44 1.62 1.81 0.73 1.45
40 4.27 0.85 4.40 5.22 1.16 3.32 4.87 3.30 3.97
60 4.48 0.90 4.69 5.43 1.17 3.36 5.29 3.29 4.10
80 4.60 0.90 4.73 5.51 1.17 3.36 5.35 3.33 4.13
100 4.82 0.90 4.73 5.51 1.17 3.36 5.35 3.33 4.13
140 4.82 0.90 4.73 5.51 1.17 3.36 5.35 3.33 4.13
200 4.82 0.90 4.73 5.51 1.17 3.36 5.35 3.33 4.13

The results of Figures 6 and 7 indicate that, the amount of biomass used depends on the number

of coal plants, rather than biomass availability within the state. For example, North Carolina,

South Carolina, Florida, Georgia and Tennessee use most of the biomass available in the region.

This is because the number of coal plants in these states varies between 10 and 25. The number

of coal plants in the remaining states in Southeast is smaller (see Table 1). Therefore, these states

become biomass suppliers to states that have more coal plants.

Let consider the case of Florida. Biomass availability in Florida (at the highest market price of

$200/ton) is close to 2.88 million tons. However, the amount of biomass used in Florida, based on

our numerical results, is 4.73 million tons at a market price of $80/ton. The corresponding system

wide profits are $213 million. In this case, although biomass is produced in other states within the

region, the benefits of the PTC will be collected by Florida. Similarly, Tennessee produces only

2.87 million tons of biomass. Based on our model, Tennessee would use up to 4.13 million tons of

biomass and generate up to $152 million in profits mainly due to PTC. On the other side, states
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such as Arkansas and Louisiana that are rich in biomass (over 5 million tons of biomass available

each) would make a small profit of $0.9 million and $1.17 million correspondingly.

Table 7 Total profits at different levels of biomass market price

Biomass price Total profits (in mill $)
in ($/ton) AL AR FL GA LA MS NC SC TN
20 172.93 0.98 65.94 100.28 12.68 67.64 104.58 45.69 67.36
40 376.20 8.90 206.48 247.77 22.57 108.54 235.01 160.27 150.62
60 378.73 9.16 212.80 251.60 23.30 108.57 247.54 155.99 152.65
80 378.67 9.22 213.21 252.27 23.54 108.53 247.07 156.86 152.41
100 378.81 9.16 213.21 252.27 23.51 108.85 247.21 156.86 151.90
140 378.74 9.23 213.08 252.41 23.50 108.90 247.32 156.49 152.12
200 379.35 9.16 213.06 252.42 23.81 108.04 247.48 156.33 152.12

The results of Table 7 indicate that biomass usage and total profits remain the same as the

market price increases beyond $80/ton. Using the additional biomass which becomes available at

the higher market price decreases profits. This is because the additional tax savings are smaller

than the additional purchase, transportation and investment costs necessary to use the additional

biomass.

Figure 3 Analyzing the impact of biomass market price on average profits, costs and biomass usage in Southeast

USA

Figure 3 presents the relationship that exists between biomass market price and total profits,

tax savings, biomass used, and investment and logistics costs. The PTC is fixed at 1.1 cents per

kilowatt-hour. As the market price of biomass increases from $20/ton to $80/ton, the amount of

biomass available and overall system profits increase. The rate of increase of profits is higher when
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the market price increases from $20 to $40/ton. The amount of biomass used and corresponding

profits do not change at market prices higher that $80/ton since the additional tax savings are

smaller than the additional purchase, transportation and investment costs.

Figure 4 depicts the relationship between PTC and total profits, tax savings, biomass used,

and investment and logistics costs in Southeast US as well as, in Arkansas, Mississippi and South

Carolina. The market price of biomass here is fixed at $100/ton. Results indicate that, when PTC

is equal to zero, the average benefits from co-firing biomass - although small- are positive. Plants

find co-firing to be beneficial when PTC is zero, with the exception of plants located in Arkansas

and Louisiana. In Arkansas, coal plants would use biomass for co-fire when PTC is greater than

0.7 cents per kilowatt-hour (Figure 4(b)); and in Louisiana when PTC is greater than 0.2 cents

per kilowatt-hour.

(a) Southeast USA (b) Arkansas

(c) Mississippi (d) South Carolina

Figure 4 The relationship between total profits and tax credits

The results of Figure 4(a) indicate that an increase of PTC from 0 to 1 cent per kilowatt-hour

has a dramatic impact on biomass usage in Southeast. The amount of biomass used increases 4.8

times. Increasing the PTC from 1 to 2 cents per kilowatt-hour increases biomass usage by 6%; and

increasing PTC from 2 to 3 cents per kilowatt-hour increases biomass usage by 0.5%. These results
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indicate that the impact of increasing PTC beyond 2 cents per kilowatt-hour on the total amount

of renewable electricity produced in Southeast is only marginal. The corresponding increase in total

profits is just due to the higher PTC, and it is not due to increase use of biomass used.

8. Summary and Conclusions

Co-firing biomass in coal-fired power plants is a strategy that leads to reduced greenhouse gas

emissions. This paper presents a mathematical model to evaluate the impact of biomass co-firing

in generating renewable electricity. The model captures the additional biomass purchasing and

transportation costs, plant investment costs, savings due to PTC, and savings from reducing the

amount of coal purchased. The model also captures the loss in process efficiencies due to using

biomass, a product which has lower heating value as compared to coal. The model proposed is a

MINLP, thus, we present a linear approximation which is easier to solve. We use numerical analysis

to evaluate the quality of solutions from the linear approximation model.

We develop a case study using data from nine states located in the southeast region of the US.

The data source used are the Knowledge Discovery Framework KDF (Accessed 12.10.2013) and

the US Energy Information Administration (2011). These databases provide information about the

available amount of biomass for production of renewable energy by county and state, at different

market prices, during the period 2012 to 2020. The databases also provide detailed information

about the coal-fired power plants in the US. We used this data and conducted an extensive number

of experiments. The following summarizes our main observations:

Observation 1: Tax credits do have an impact in increasing the production of renewable energy.

The results of Figure 4 indicate that increasing the PTC impacts greatly the production of renew-

able electricity. Our numerical results indicate that increasing PTC beyond 2 cents/kilowhat hour

has only marginal impacts in increasing renewable energy generation.

Observation 2: Tax credit should not be “one size fits all”. Instead, tax credits could be a

function of the amount of renewable electricity produced, or plant capacity.

The results of Figure 3 indicate that the amount of biomass used increases only slightly with

the increase of biomass market price beyond $80/ton given that PTC is fixed at 1.1 cents per

kilowatt-hour. Since biomass is a bulk product with low energy density and widely dispersed

geographically, collection and transportation costs are high. For every 1% increase in biomass usage,

the corresponding increase of transportation and collection costs is higher. In order to encourage

the production of renewable energy, it makes sense to design a PTC which is a function of the

amount of biomass used, and consequently, a function of the amount of renewable energy produced.

Production tax credits based on coal plant capacity are being currently implemented in European

countries (KPM 2012, IEA 2015). Typically, the tax credit (such as, the “feed-in tariff” implemented
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in Austria) is higher for smaller sized plants. Higher credits allow smaller plants to overcome the

burdens of implementing biomass co-firing.

Observation 3: There is a need for comprehensive tax credit schemes to encourage renewable

electricity production and reduce GHG emissions. Biomass distribution in the US differs by region,

and it does not match the distribution of coal-fired power plants (Figure 1). Therefore, in our case

study, some states of Southeast became biomass suppliers to other states that do currently have a

larger number of power plants. Consequently, states that have the resources to transform biomass

to renewable electricity rip the gains from PTC. Recall that, one of the main reasons of producing

renewable energy is to reduce GHG emissions due to burning of coal. Clearly, when biomass is

transported over state borders, the transportation distances and corresponding GHG emissions do

increase. Further increases of PTC would allow power plants to remain profitable even if biomass

is delivered from suppliers located far away. Thus, decisions related to PTC size and scheme should

be mindful of of the impacts of PTC to GHG emissions due to co-firing and transportation in the

supply chain.
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Appendix A

Theorem 1: In an optimal solution X∗ = {X∗
1 ,X

∗
2 , . . . ,X

∗
l } to the single plant problem, at most

one of the suppliers’ is used partially. That means, X∗
i = si, ∀i ∈ S∗/k; X∗

k = γ; and X∗
i = 0 for

i /∈ S∗. Where, S∗ is the set of suppliers selected in the optimal solution.

Proof:

Let’s assume that the suppliers within set S are sorted in an increasing order of the size of variable

unit costs (ci + cbmi ). Thus, (c1 + cbm1 ) ≤ . . .≤ (ci + cbmi ) ≤ . . . ≤ (cl + cbml ), where, l = |S|. Let the

unit profit be ci = (σp +σt − ci− cbmi ). Thus, the unit profits are decreasing, and c1 ≥ c2, . . . ,≥ cl.

Let’s divide the interval [0,0.5] into k smaller subintervals as follows [0,B1], [B1,B2], ...[Bk−1,0.5].

The breakpoint B1 represents what percentage of coal that could be displaced if all the biomass

available at supplier 1 is being used by the plant. Next, B2 represents the percentage of coal that

can be displaced if biomass supply available at suppliers 1 and 2 was used; and so on. Without loss

of generality, we assume that l≥ k.

Increasing the value of B impacts the amount of biomass used at the plant, thus, the right

hand-side values of constraints (11) increase with B. Let M1,M2, . . . ,Mk represents the amount of

biomass required at B1,B2, . . . ,Bk. Indeed, M1 = s1 since we assumed that supplier 1 is being used

to meet the demand for biomass as B increases from 0 to B1; M2 = s1 + s2; and so on.

For fixed values of B, we can also calculate corresponding investment costs using equations (4)

and (5). Let I1, I2, ...Ik be the investment costs at the corresponding breakpoints B1,B2, . . . ,Bk.

Let Z1,Z2, . . . ,Zk denote the total cost for B ∈ {B1,B2, . . . ,Bk}. Therefore, Zl =
∑l

i=1 ciXi − Il

for l= 1, . . . , k.

Theorem 1 implies that in an optimal solution the total amount of biomass used is equal to:

M ∗ =
∑j

i=1X
∗
i =

∑j−1

i=1 si+ γ, and γ ≤ sj, j ≤ k. We prove this by contradiction. Let’s assume that

X∗ = {X∗
1 ,X

∗
2 , . . . ,X

∗
f} is an optimal solution to the single plant problem. This solution is such

that more than one of the suppliers is used partially. That means: X∗
1 < s1,X

∗
2 < s2, . . . ,X

∗
f < sf ,

and
∑f

i=1X
∗
i =M ∗. Let I∗ denote the corresponding investment costs. Since X∗ is the optimal

solution to this problem, then Z(X∗)≥ Z(X) for any feasible X. Let X = {X1,X2, . . . ,Xj} be a

feasible solution such that: X1 = s1,X2 = s2, . . . ,Xj−1 = sj−1,Xj = γ; and
∑j

i=1Xi =M ∗. Since the

total amount of biomass used in both solutions is the same, M ∗, the corresponding investment

costs are the same. In solution X all the suppliers are completely used, thus, j < f .

Z(X∗)−Z(X) =

(
f∑

i=1

ciX
∗
i − I∗

)
−

(
j∑

i=1

ciXi− I∗

)
=

f∑
i=1

ciX
∗
i −

j−1∑
i=1

cisi− cjγ =

=

f∑
i=1

ciX
∗
i −

j−1∑
i=1

ciX
∗
i −

j−1∑
i=1

ci(si−X∗
i )− cjγ
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=

f∑
i=j

ciX
∗
i −

j−1∑
i=1

ci(si−X∗
i )− cjγ.

Since
∑f

i=1X
∗
i =

∑j

i=1Xi, this is true:
∑f

i=j
X∗

i =
∑j−1

i=1 (si−X∗
i )+ γ. Since c1 ≥ c2, . . .≥ cj . . .≥

cf , the following holds true:

Z(X∗)−Z(X) =

f∑
i=j

ciX
∗
i −

j−1∑
i=1

ci(si−X∗
i )− cjγ ≤ cj

f∑
i=j

X∗
i − cj

j−1∑
i=1

(si−X∗
i )− cjγ = 0.

Therefore, Z(X∗)≤Z(X). This contradicts the assumption that Z(X∗) is an optimal solution for

the single plant problem. Therefore, in an optimal solution at most one of the suppliers is used

partially. �

Theorem 2. The special case of problem (P) -when there is a single plant in the supply chain-

can be solved to optimality via an O(|S|log(|S|)) algorithm.

Proof:

Let’s assume that the suppliers within set S are sorted in an increasing order of the size

of variable unit costs (ci + cbmi ). Let’s divide the interval [0,0.5] into k smaller subintervals

[0,B1], [B1,B2], ...[Bk−1,0.5] in a similar way as explained in Theorem 1. Without loss of generality,

we assume that ci > 0 for i = 1, . . . , k. We analyze the characteristics of the solution to (P) for

B ∈ [0,0.04], B ∈ [0.04,0.221), and B ∈ (0.221,0.5].

Case 1: B∗ ∈ [0,0.04].

Let (X∗,B∗, Y ∗) denote a solution to the single plant case of problem (P). Since B∗ ≤ 0.04,

then Y ∗ = 1. Let’s assume that suppliers 1, . . . , i were selected in the optimal solution. Thus,

B∗ ∈ [Bi−1,Bi]. Based on Theorem 1, and since constraints (22) are binding (Proposition 9), the

optimal objective function value is

Z(B∗) =

i−1∑
j=1

cjsj + ci

(
M coalρbB∗

(1−αB∗)(ρb− 0.0044(B∗)
2
− 0.0055)

−
i−1∑
j=1

sj

)
− Icap

(
B∗

1−B∗

)
.

Let function

f 1
i (B) =

(ciM
coalρb)B

(1−αB)(ρb − 0.0044B2− 0.0055)

and

f 2
i (B) = Icap

(
B

1−B

)
.

Thus,

Z(B∗) =
i−1∑
j=1

cjsj − ci

i−1∑
j=1

sj + f 1
i (B

∗)− f 2
i (B

∗) =
i−1∑
j=1

(cj − ci)sj + f 1
i (B

∗)− f 2
i (B

∗).
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Functions f 1
i (B) and f 2

i (B) are continuous functions of B for B ∈ [Bi−1,Bi]. Thus, the objective

function Z(B) is also continuous on B (Hazewinkel 2001). Since Z(B) is the difference of two

convex functions, we cannot conclude that it is concave, or, that it is convex. Let δ1i (B) denote the

slope of function f 1
i (B); and δ2i (B) denote the slope of function f 2

i (B). Since both functions are

increasing, δ1i (B)> 0 and δ2i (B)> 0. The following cases could be encounter for B ∈ [Bi−1,Bi].

(a) δ1i (B)> δ2i (B): since the slope of Z(B)> 0, Z(B) is increasing, thus, B∗ =Bi.

(b) δ1i (B)< δ2i (B): since the slope of Z(B)< 0, Z(B) is decreasing, thus, B∗ =Bi−1.

(c) δ1i (B) = δ2i (B) for some B ∈ [Bi−1,Bi]: Since both f 1
i (B) and f 2

i (B) are strictly increasing

in B, the slope of these lines could be equal in at most two points. Thus, Z(B) could be quasi-

convex, or quasi-concave, or have one minimum and one maximum in B ∈ [Bi−1,Bi]. If Z(B) is

quasi-convex, B∗ = argmax{Z(Bi−1),Z(Bi)}. If Z(B) is quasi-concave, or have one minimum and

one maximum, then, B∗ ∈ (Bi−1,Bi).

Case 2: B∗ ∈ [0.04,0.221).

The optimal objective function value is

Zi(B
∗) =

i−1∑
j=1

cjsj + ci

(
M coalρbB∗

(1−αB∗)(ρb − 0.0044(B∗)
2
− 0.0055)

−
i−1∑
j=1

sj

)

−Ih
(

B∗

1−B∗

)0.9554

−
(
Is + Icd

)( B∗

1−B∗

)0.5575

.

Let function

f 1
i (B) =

(ciM
coalρb)B

(1−αB)(ρb− 0.0044B2− 0.0055)
−
(
Is + Icd

)( B

1−B

)0.5575

and

f 2
i (B) = Ih

(
B

1−B

)0.9554

.

Thus,

Zi(B
∗) =

i−1∑
j=1

(cj − ci)sj + f 1
i (B

∗)− f 2
i (B

∗)

Functions f 1
i (B) and f 2

i (B) are continuous functions of B. Thus, the objective function Z(B)

is also continuous on B (Hazewinkel 2001). Function f 1
i (B) is convex since it is the difference of

a convex and a concave function. However, we cannot say the same for function Z(B) since it is

the difference of two convex function. Let δ1i (B) denote the slope of function f 1
i (B); and δ2i (B)

denote the slope of function f 2
i (B). Since both functions are increasing, δ1i (B)> 0 and δ2i (B)> 0.

The following cases could be encounter for B ∈ [Bi−1,Bi].

(a) δ1i (B)> δ2i (B): since the slope of Z(B)> 0, Z(B) is increasing, thus, B∗ =Bi.
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(b) δ1i (B)< δ2i (B): since the slope of Z(B)< 0, Z(B) is decreasing, thus, B∗ =Bi−1.

(c) δ1i (B) = δ2i (B) for some B ∈ [Bi−1,Bi]: If Z(B) is quasi-convex, B∗ =

argmax{Z(Bi−1),Z(Bi)}. If Z(B) is quasi-concave, or have one minimum and one maximum,

then, B∗ ∈ (Bi−1,Bi).

Case 3: B ∈ (0.221,0.5].

The optimal objective function value is

Zi(B
∗) =

i−1∑
j=1

cjsj + ci

(
M coalρbB∗

(1−αB∗)(ρb − 0.0044(B∗)
2
− 0.0055)

−
i−1∑
j=1

sj

)

−Ih
(

B∗

1−B∗

)0.9554

−
(
Is + Icd

)( B∗

1−B∗

)0.5575

.

Let function

f 1
i (B) =

(ciM
coalρb)B

(1−αB)(ρb − 0.0044B2− 0.0055)

and

f 2
i (B) = Ih

(
B

1−B

)0.9554

+
(
Is + Icd

)( B

1−B

)0.5575

.

Thus,

Zi(B
∗) =

i−1∑
j=1

(cj − ci)sj + f 1
i (B

∗)− f 2
i (B

∗)

Functions f 1
i (B) and f 2

i (B) are continuous functions of B. Thus, the objective function Z(B)

is also continuous on B (Hazewinkel 2001). Function f 2
i (B) is convex since it is the sum of two

convex functions. We cannot conclude whether function Z(B) is concave or convex since it is the

difference of two convex functions. Let δ1i (B) denote the slope of function f 1
i (B); and δ2i (B) denote

the slope of function f 2
i (B). Since both functions are increasing, δ1i (B) > 0 and δ2i (B) > 0. The

following cases could be encounter while solving Zi(B).

(a) δ1i (B)> δ2i (B): since the slope of Z(B)> 0, Z(B) is increasing, thus, B∗ =Bi.

(b) δ1i (B)< δ2i (B): since the slope of Z(B)< 0, Z(B) is decreasing, thus, B∗ =Bi−1.

(c) δ1i (B) = δ2i (B) for some B ∈ [Bi−1,Bi]: If Z(B) is quasi-convex, B∗ =

argmax{Z(Bi−1),Z(Bi)}. If Z(B) is quasi-concave, or have one minimum and one maximum,

then, B∗ ∈ (Bi−1,Bi).

Implications of the results from Cases 1-3.

Based on Theorem 1, at most one supplier will be used partially in an optimal solution. Addition-

ally, we did sort the suppliers in a decreasing order of their unit profit c. That means, if suppliers

1, . . . , j are selected in an optimal solution, supplier j (the last supplier selected) is the only one
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Table 8 A polynomial time algorithm for the single plant problem.

Step 1: Initialize: S∗ = ∅; B∗ = 0; Mi =Bi = Ii =0 for i= 1, . . . , k, k≤ |S|. l= 1
Step 2: Let B1 = 0.04,B2 = 0.221,B3 = 0.5.
Step 3: Sort si ∈ S in an ascending order of unit profit ci.
Step 4: For i=1, . . . , k:

Let Mi =Mi−1 + si
Calculate Bi using equation (2)
Calculate Z(Bi)

End For i
Step 5: For p= 1, . . .3:

For i= l, . . . k:
If Z(Bi)> 0

If Z(Bi)>Z(Bi−1) and Bi ≤Bp then
S∗ = S∗

⋃
i

φ= i
Else

Find Bp∗ ∈ [Bi−1,Bi] using Golden Search Algorithm
If Bp∗ >Bi−1, then S∗ = S∗

⋃
i, φ= i

End If
End If

End For i
l= φ

End For p
B∗ = argmax{Z(B1∗),Z(B2∗),Z(B3∗)}

Step 6: Report the optimal solution:
B∗

For i=1, . . . , |S∗| − 1, let X∗
i = si.

Let j = |S∗|. Calculate X∗
j .

If B∗ ≤ 0.04 then Y ∗ =1, Else, Y ∗ = 0.

that could have been used partially. To find an optimal solution to the problem we need to compare

the objective function values for each B ∈ {B1, . . . ,Bl}.

�

Proposition 1: A feasible solution to problem (Q) is feasible to the non-linear problem (P);

and the objective function value of (Q) is a lower bound for problem (P).

Proof: This is true due to the way we constructed model (Q). We built model (Q) by discretizing

the continuous variable Bj. L is the set of the co-firing strategies that are investigated, thus, it

includes some, but clearly not all the potential values that Bj could take.

Let Ξ(Q) be the set of solutions to problem (Q), and Ξ(P) be the set of solutions to problem

(P). Let (XQ
ij , Y

Q
lj )∈ Ξ(Q) be a feasible solution to problem (Q). We can use this solution to derive

a feasible solution for problem (P) in the following way.

XP
ij = XQ

ij for i∈ I, j ∈C (46)
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BP
j =

∑
l∈L

Ll ∗Y
Q
lj forj ∈C (47)

Y P
j =

{
1 if

∑
l∈L

Ll ∗Y
Q
lj ≤ 0.04

0 otherwise.
(48)

Since (XQ
ij , Y

Q
lj ), a feasible solution to (Q), can be used to derive a feasible solution for (P); it

can easily be verified that the corresponding objective function value of (Q) is a lower bound for

(P). �

Theorem 3: As |L| approaches infinity, an optimal solution to (Q) is optimal to (P) with

probability 1.

Proof: An optimal solution to problem (Q) could be transformed to a feasible solution for (P)

using equations (46) to (48). Let, ZQ∗ be the corresponding objective function value of (Q), and

ZP be the corresponding objective function value of (P). By construction, these two objective

function values are equal. Next, we show that, under certain conditions, an optimal solution to (P)

can be transformed to a feasible solution to (Q). Let (XP∗
ij ,BP∗

j , Y P∗
j ) be the optimal solution to

problem (P).

CASE 1: |L| is finite.

If BP∗
j ∈L, then, we can derive a feasible solution for (Q) using the following equations.

XQ
ij = XP∗

ij for i∈ I, j ∈C (49)

Y Q
lj =

{
1 if BP∗

j =Ll

0 otherwise
for j ∈C. (50)

However, given that BP∗
j is a continuous variable, and L is a finite set, the probability that BP∗

j

is represented in L is equal to zero.

If BP∗
j /∈L, then, we cannot derive an solution to model (Q) using a solution to (P).

CASE 2: |L| is infinite.

In this case, lim|L|→inf P (BP∗
j ∈ L) = 1. This implies that, given an optimal solution to (P) we

can derive a feasible solution to (Q) using equations (49) and (50). Let, ZP∗ be the corresponding

objective function value of (P), and ZQ be the corresponding objective function value of (Q).

These two objective function values are equal. By Proposition 1 and optimality theory, we have:

ZP ≤ZP∗ =ZQ ≤ZQ∗ and ZP∗ ≥ZQ. This implies that ZP∗ =ZQ∗.

To summarize, as |L| → inf the optimal solutions to models (Q) and (P) are equal with proba-

bility 1. �

Proposition 2:

Bj ≤
1

M coal
j

∑
i∈S

Xij ≤ fj ≤ (Bj + aj) ∀j ∈C.

Where, aj =
0.5(ρbj−(1−0.5αj)(ρ

b
j−0.0066))

(1−0.5αj)(ρ
b
j
−0.0066)

.
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Proof: Function fj has the following properties: fj = 0 if Bj = 0 and fj > Bj for Bj > 0. This is

due to the way we construct fj. If Bj represents the percentage of coal being substituted in plant j

(by mass), then, fj transforms this percentage into an equivalent percentage of biomass needed to

enable this substitution. Thus, the linear function f j =Bj is an inner approximation of fj. Indeed,

f j underestimates fj for Bj ∈ (0,0.5].

Function fj is an increasing function of Bj . Thus the difference fj −Bj reaches its maximum

when Bj = 0.5. This maximum difference is aj. To summarize,

fj = 0 if Bj =0

fj =Bj +αj if Bj =0.5

Bj <fj <Bj +αj if 0<Bj < 0.5.

�

Proposition 4: Function f(Bj) =
Bj

(1−Bj)
is increasing in Bj , for 0≤Bj ≤ 1.

Proof: To proof this we show that for any ε > 0, such that, Bj + ε < 1, the following holds true

f(Bj + ε)− f(Bj)≥ 0.

Therefore,

f(Bj + ε)− f(Bj) =
Bj + ε

(1− (Bj + ε))
−

Bj

(1−Bj)
=

(Bj + ε)(1−Bj)−Bj(1− (Bj + ε))

(1− (Bj + ε))(1−Bj)
=

=
Bj −B2

j + ε− εBj −Bj +B2
j + εBj

(1− (Bj + ε))(1−Bj)
=

ε

(1− (Bj + ε))(1−Bj)
> 0.

�

Proposition 5: Functions f(Bj) =
(

Bj

1−Bj)

)0.5575

and f(Bj) =
(

Bj

1−Bj

)0.9554

are increasing in Bj ,

for 0≤Bj ≤ 1.

Proof: Via proposition 4 we show that
Bj

1−Bj
is increasing in Bj. For Bj ∈ [0,0.5],

Bj

1−Bj
takes values

in [0,1]. Therefore,
Bj

1−Bj
in some power l (0< l < 1) is also an increasing function of Bj . �

Proposition 6: Functions f(Bj) =
(

Bj

1−Bj)

)
is strongly convex for 0≤B ≤ 0.5.

Proof: We prove this by investigating the second derivative of this function with respect to Bj .

df(Bj)

dBj

=
1

(1−Bj)2
,

and
d2f(Bj)

dB2
j

=
2

(1−Bj)3
.

Clearly,
d2f(Bj)

dB2

j

≥ 2 for 0≤B ≤ 0.5. Therefore, functions f(Bj) =
(

Bj

1−Bj)

)
is strongly convex. �

Proposition 7: Functions f(Bj) =
(

Bj

1−Bj)

)0.9554

is strictly convex for 0.04≤B ≤ 0.5.
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Proof: We prove this by showing that the second derivative of this function with respect to Bj is

greater than zero for 0.04≤B ≤ 0.5.

df(Bj)

dBj

=
0.9554

(1−Bj)2(
Bj

1−Bj
)0.0446

,

and

d2f(Bj)

dB2
j

=

1.9108(1−Bj)(
Bj

1−Bj

)0.0446 −
0.0426108(
Bj

1−Bj

)1.0446

(1−Bj)4
.

For 0.04≤B ≤ 0.5, function (1−Bj)
4 ≥ 0. Additionally, for 0.04≤B ≤ 0.5, the difference

1.9108(1−Bj)(
Bj

1−Bj

)0.0446 −
0.0426108(

Bj

1−Bj

)1.0446 > 0.

Therefore, functions f(Bj) =
(

Bj

1−Bj)

)0.9554

is strictly convex for 0.04≤B ≤ 0.5. �

Proposition 8: Functions f(Bj) =
(

Bj

1−Bj)

)0.5575

is strictly concave for 0.04 ≤ B < 0.221 and

strictly convex for 0.221<B ≤ 0.5.

Proof: We prove this by showing that the second derivative of this function with respect to Bj is

less than zero for for 0.04≤B < 0.221; and greater than zero for 0.221<B ≤ 0.5.

d2f(Bj)

dB2
j

=
0.5575

(
2

(1−Bj)
2 +

2Bj

(1−Bj)
3

)
(

Bj

1−Bj

)0.4425 −
0.246694

(
1

1−Bj
+

Bj

(1−Bj)
2

)2

(
Bj

1−Bj

)1.4425

The second derivative takes negative values for 0.04<Bj < 0.221 and takes positive values for

0.221<Bj ≤ 0.5.

Therefore, functions f(Bj) =
(

Bj

1−Bj)

)0.5575

is strictly concave for 0.04≤B ≤ 0.221 and is strictly

convex for 0.221<B ≤ 0.5. �

Proposition 9: In an optimal solution to model (P), constraints (11) are binding.

Proof: We prove this by contradiction.

Let (X∗, Y ∗,B∗) be an optimal solution of (P). Let I∗ denote the corresponding investment

costs, and let S∗ denote the set of suppliers selected. The optimal objective function value is

ZP (X∗, Y ∗,B∗) =
∑

i∈S∗ ciX
∗
i − I∗.

Let’s assume that constraints (11) are not binding at (X∗, Y ∗,B∗). Therefore,

∑
i∈S∗

X∗
i <

(M coal ∗ ρb)

(1/B∗−α)(ρb − 0.0044(B∗)2 − 0.0055)
.
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Let (X,Y,B) be a feasible solution of (P). We create this solution by starting at (X∗, Y ∗,B∗)

and decreasing the value of B∗ by ε > 0 so that constraints (11) become binding.

Let’s now calculate:

ZP (X∗, Y ∗,B∗)−ZP (X,Y,B) =

(∑
i∈S∗

ciX
∗
i − I∗

)
−

(∑
i∈S∗

ciX
∗
i − I

)
= I − I∗ ≤ 0.

As shown in Propositions 4 and 5, the investment cost functions do increase with B. Since

B <B∗, then, I < I∗. Therefore,

ZP (X∗, Y ∗,B∗)<ZP (X,Y,B).

This contradicts the initial assumption that (X∗, Y ∗,B∗) be an optimal solution of (P). There-

fore, at an optimal solution constraints (11) are binding.

�

Proposition 10: Function f(Bj) =
ρbjBj

(1−αjBj)(ρ
b
j
−0.0044B2

j
−0.0055)

is strongly convex for 0≤Bj ≤ 0.5,

0≤ αj ≤ 1, and ρbj > 0.0066.

Proof: We prove this by showing that the second derivative of this function with respect to Bj is

greater than zero for 0≤Bj ≤ 0.5, 0≤αj ≤ 1, and ρbj > 0. The second derivative is:

d2f(Bj)

dB2
j

=
0.00015488ρbjB

3
j

(1−αjBj)(−0.0055+ ρbj − 0.0044B2
j )

3
+

0.0088ρbjBj

(1−αjBj)(−0.0055+ ρbj − 0.0044B2
j )

2
=

=
0.0088ρbjBj

(1−αjBj)(−0.0055+ ρbj − 0.0044B2
j )

2

(
1+

0.0176B2
j

(−0.0055+ ρbj − 0.0044B2
j )

)

For 0≤αj ≤ 1 and ρbj > 0, the following holds true:

(
0.0088ρbjBj

(1−αjBj)(−0.0055+ρb
j
−0.0044B2

j
)2

)
> 0.

Expression

(
1+

0.0176B2

j

(−0.0055+ρb
j
−0.0044B2

j
)

)
> 0 if (−0.0055+ ρbj − 0.0044B2

j )> 0.

The minimum value that expression (−0.0055 + ρbj − 0.0044B2
j ) can take is when ρbj = 0 and

Bj = 0.5. In this case, the value of this expression is −0.0066. If ρbj > 0.0066, then,
d2f(Bj)

dB2

j

> 0 and

function f(Bj) =
ρbjBj

(1−αjBj)(ρ
b
j
−0.0044B2

j
−0.0055)

is strictly convex. �
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Step 1: Initialize λ, UB, n, u, ξ, ε, N

Step 2: Let LB =ZQ(X,Y )

Step 3: Solve subproblems (SP)j for j ∈C

Step 4: Compute the upper bound:

UBn =
∑
j∈J

ZSP
j (X,Y,B)+

∑
i∈S

siλi

If UBn >UB, then

UB =UBn

ε= UBn−LB
LB

End If

Let n= n+1

Step 5: If ε≤ 0.01, then STOP

ELSE

Let un = ξn(UB−LB)∑
i∈S(si−

∑
j X

n
ij
)2

Let λn
i = λn−1

i +un(si−
∑

j
Xij)

Step 6: If n>N , then, STOP

ELSE go to Step 3

Figure 5 Lagrangean relaxation algorithm

Appendix B

Table 9 Set Notations

Sets

C the set of coal plants
S the set of biomass suppliers
L the set of potential values of β
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Table 10 Notations: Decision Variables

Decision Variables

Bj represents the percentage of coal (mass basis) displaced in plant j ∈C (in %)
Xij represents the amount of biomass transported from supplier i to plant j (in tons)
Yj binary variable that takes the value 1 if β ≤ 4 in plant j ∈C, and takes the

value 0 otherwise
Ylj binary variable that takes the value 1 if facility j ∈C displaced Ll = β% coal,

and takes the value 0 otherwise
Zj semi-continuous variable that takes the same value as Bj if Yj =1 and takes the value 0 if Yj =0
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Table 11 Other Notations

Other Notations

αj is equal to 1− (LHV coal
j /LHV bm

j )
β the percentage of biomass (mass basis) used for cofiring (in %)
βj the percentage of biomass co-fired in plant j ∈C (in %)
Cwb the conversion factor from MW to BTU/hr (in BTU/(hr*MW)
ccoalj the unit door price of coal (in %/ton)
cbmi the unit purchase cost of biomass from supplier i∈ S (in $/ton)
cij the unit transportation cost along arc (i, j) inA (in $/ton)
∇M coal

j the change in the value of M coal
j (in tons)

ELj the efficiency loss of boilers due to co-firing in plant j ∈C (in %)
fj the utilization rate / capacity factor of plant j ∈C (in %)
Icapj is equal to (50,000 ∗TCj ∗ fj ∗LHV bm

j )/LHV coal
j

ICAP
j the investment costs in plant j ∈C (in $)

Isj is equal to Isj = 136578 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.9554

,

ISj the investment necessary for biomass storage in plant j ∈C (in $)

Ihj is equal to Ihj = 55780 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.9554

,

IHj the investment necessary for biomass handling in plant j ∈C (in $)

Icdj is equal to Icdj = 13646 ∗

(
TCj ∗ fj ∗

LHV bm
j

LHV coal
j

)0.5575

ICD
j the investment necessary for compressors and dryers in plant j ∈C (in $)
LHV coal

j the lower heating value of coal used in plant j ∈C (in BTU/ton)
LHV bm

j the lower heating value of biomass used in plant j ∈C (in BTU/ton)
M coal

j the amount of coal used in plant j ∈C (in tons/year)
M bm

j the amount of biomass used in plant j ∈C (in tons/year)
M a very large number
mmb

lj the amount of biomass necessary to displace l(∈L)% of coal in plant j ∈C (in tons)
OHj the number of operating hours in plant j ∈C (in hours/year)
Q0

j the initial (before co-firing) annual heating input of plant j ∈C (in MW)
Qj the annual heating input after co-firing of plant j ∈C (in MW)
ρ0j the initial (before co-firing) efficiency rate of plant j ∈C (in %)
ρj the efficiency rate after co-firing of plant j ∈C (in %)
ρbj the efficiency rate of boilers in plant j ∈C (in %)
ρrpj the efficiency rate of the rest (without boilers) of plant j ∈C (in %)

σp
j is equal to (ccoalj ∗

LHV bm
j

LHV coal
j

)

Sp
j the total savings due to reducing the amount of coal purchased in plant j ∈C,

(in $/year)
σt
j is equal to (11 ∗LHV bm

j )/(Cwb)
Stax
j the total savings due to production tax savings in plant j ∈C,

(in $/(ton*year))
TCj coal plant j ∈C nameplate capacity (in MW)




