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Abstract

The production of biofuels using second-generation feedstocks has been recog-
nized as an important alternative source of sustainable energy and its demand
is expected to increase due to regulations such as the Renewable Fuel Standard.
However, the pathway to biofuel industry maturity faces unique, unaddressed
challenges.

This paper presents an optimization model which quantifies and controls the
impact of biomass quality variability on supply chain related decisions and tech-
nology selection. We propose a two-stage stochastic programming model and
associated efficient solution procedures for solving large-scale problems to (1)
better represent the random nature of the biomass quality (defined by moisture
and ash contents) in supply chain modeling, and (2) assess the impact of these
uncertainties on the supply chain design and planning.

The proposed model is then applied to a case study in the state of Tennessee.
Results show that high moisture and ash contents negatively impact the unit
delivery cost since poor biomass quality requires the addition of quality control
activities. Experimental results indicate that supply chain cost could increase as

much as 27% to 31% when biomass quality is poor. We assess the impact of the
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biomass quality on the topological supply chain. Our case study indicates that
biomass quality impacts supply chain costs; thus, it is important to consider the
impact of biomass quality in supply chain design and management decisions.
Keywords: Quality Costing; Biomass; Bioenergy; Biofuels; Stochastic
Programming; L-shaped; Optimization; Supply Chain Network Design.

1. Introduction

In recent years, industry has seen the advent of highly complex, large-scale
supply chains (SCs), which have become increasingly difficult to analyze and op-
timize when using conventional modeling techniques and solution procedures.
The design of large-scale SCs is a crucial task in a plethora of scientific fields,
including advanced manufacturing and electric power networks, among others.
A relevant example is found in the emerging bioenergy industry. This industry
requires sophisticated mathematical models and solution approaches to enhance
biomass SCs by integrating biomass quality control principles; and biomass qual-
ity uncertainties in the SC design and management decision making process.

Biofuel has been recognized as an alternative source of renewable energy
[46]. Tts demand and production is expected to increase in the upcoming years
[4, 25, 50], primarily due to the legislation enacted by the United States of
America Energy Independence and Security Act of 2007. An outcome of this
act is the renewable fuel standards (RFS) [16]. The billion ton study lead by
the Oak Ridge National Laboratory indicates that the country can sustainably
produce over a billion tons of biomass (i.e., forest biomass/residues, agricul-
tural biomass/residues and energy crops) annually [13]. However, the delivery
of biomass required to meet the goals set by the RFS is particularly challeng-
ing. This is mainly because of the physical properties of biomass, which is bulky
and widely geographically dispersed. First-generation biomass such as corn and
soybean, among others have higher energy density, lower ash content, and lower
collections/transportation costs as compared to agricultural and forest waste.

However, these types of biomass raised the national debate of food versus fuel,
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which considers the use of marginal lands for energy crop production and the
land and water usage changes in the bioeconomy [34, 12]. This controversy
was one of the main reasons for the development of second-generation biofuels
that use energy crops, agricultural and forest waste (not suitable for neither hu-
man nor livestock consumption). However, second generation biomass exhibits
more biomass quality variability (e.g., higher ash and moisture contents) than
first generation biomass. This paper focuses on the use of energy crops (i.e.,
switchgrass) to produce second-generation biofuels.

The pathway to industry maturity faces two main challenges. One of the
challenges is developing technologies which ensure a cost efficient conversion of
biomass to biofuels and are robust to biomass quality variations. The second
challenge is developing cost efficient biofuel supply chains which are robust to
variabilities in biomass supply and costs. This paper contributes to the area of
biomass supply chain design and management by developing a stochastic pro-
gramming model which captures the impacts of biomass quality on supply chain
related decisions. The goal is to quantify and control the impacts of biomass
quality variability on supply chain related costs and technology selection.

Although bioenergy is an emerging industry, the biomass supply system
inherited models and underlying assumptions from the well-established agricul-
tural and logging industries. Therefore, the objective of most (if not all) of
the biomass feedstock logistics models is to reduce the overall costs, under the
assumption that the biomass quality specifications and process requirements
are similar to forage and pulpwood [28]. The single objective of minimizing
the total (of purchasing, logistics and processing) costs may have a considerable
negative impact on the expected profit and on the performance of bioenergy SCs
because, in practice, these bioenergy supply systems work with highly variable
and/or poor quality biomass, which cause important economic losses. A recent
report from Idaho National Laboratory [28] raised the concern that research
on feedstock quality is still lacking and that the traditional models disregard
quality-related issues by driving down the logistics cost. This emphasis of cost

over quality is exemplified by the current pricing structure for biomass, which is
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based on the measure “dollar per dry ton” instead of “dollar per clean dry car-
bohydrate.” Practitioners who have scaled up to pilot-scale operations (which
require large quantities of feedstock) have experienced considerable differences
between “pristine” and “field-run” biomass [24].

Moreover, scale-up risk becomes a very important parameter to consider in
the bioenergy industry as new technologies evolve from the laboratory to com-
mercial settings [3]. For example, consider the undesirable scenario where the
biorefinery equipment, designed to work with a biomass moisture content of
approximately 10%, has to work with biomass with moisture content of 30% in
a given year. In addition, consider the financial losses if one load of feedstock
yields 90 gallons/ton and another load yields 60 gallons/ton. [28] demonstrate
via a number of case studies that these scenarios are very likely to occur in
practice. The biomass quality is dependent upon the moisture, ash, sugar con-
tents, and particle morphology, among others. Thus, ignoring biomass quality
variations and the associated costs when modeling biomass SCs may yield costly
results that will only be discovered after the operations at a biorefinery have
begun. The development of quality control methods for biomass is a largely
unmet topic in the literature. The model presented in this paper enables us
to quantify the impacts of biomass quality and technology uncertainties in the
performance of the SC.

In order to address these challenges, we propose (1) a two-stage stochastic
programming model which integrates biomass supply and quality variabilities in
supply chain modeling; and (2) a solution approach which is used to solve large-
scale problems and evaluate the impacts of biomass quality on supply chain de-
cisions. The proposed model and solution procedures contribute to (1) better
represent the random nature of the biomass quality in SC modeling, and (2)
assess the impact of these uncertainties on the SC design and planning. Uncer-
tainty and risk are two of the main challenges faced by enterprises with complex
SCs. A proper assessment of the uncertainties and risks related to supply avail-
ability and quality, and opportunity costs when making long-term decisions is

vital for the profitability and sustainability of this enterprise. The inception
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of decision support tools based on stochastic programming models and quality
control principles is a new concept in the field of SC. Indeed, most (if not all)
of the literature on biofuel planning tools is focused on deterministic models
[14, 23, 52, 41]. Only a few stochastic programming models exist in this liter-
ature [15]. Generally speaking, stochastic models are underutilized in the SC
field due to their complexity; that is, these techniques typically result in models
that require an enormous computational effort for solving large-scale practical
instances. For these reasons, the primary analytic tools currently used in the
bioenergy industry tend to be fairly ad hoc.

This paper is organized as follows. In section 2, we present a discussion of
the related literature that positions our work in context. Section 3 provides
a description of the problem addressed and the associated novel mathematical
model. Section 4 presents the solution approach based on extensions of the L-
shaped and multicut L-shaped algorithms to solve large-scale problems. Section
5 presents a case study that uses realistic data from Tennessee. Section 6 shows a
computational study that evaluates the algorithmic performance of the proposed
solution procedures and discusses managerial insights. Finally, in Section 7, we

provide concluding remarks as well as future research lines.

2. Literature Review

The majority of the mathematical models in the bioenergy SC field are mod-
eled as Mixed Integer Linear Programming (MILP) or Linear Programming (LP)
optimization. In general, there is a lack of approaches that include uncertainty
and risk modeling for bioenergy logistics [15]. For example, [10] developed a
linear programming model which is used as a planning tool for the assessment
of the costs associated with biomass transferred from producers located in close
proximity to a centrally located plant. The objective was to minimize the trans-
portation costs and the capacity expansion costs at storage sites for individual
producers. The results estimated biomass delivery costs to biorefineries and

also recommended the shipping and capacity expansion schedules for each pro-
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ducer. [11] addressed the scheduling of both single and multiple feedstocks in a
single digester system for biogass to methane production systems. They solved
the multiple feedstock problem using a decomposition approach which separates
the problem into one master problem and a number of subproblems. The mas-
ter problem allocates time at the digester for each feedstock. The subproblems
schedule batches within these time allocations. To maximize biogas production,
the available times, biomass quantities, biogas production rates and storage
decay rates were considered during the planning horizon. [30] proposed a gen-
eral optimization model involving the selection of fuel conversion technologies,
capacities, biomass locations, and the logistics of transportation. They used
GAMS to implement the MILP model. The results depicted the overall profits
and supply network designs of the system and also illustrated the parameters
having major effects on the overall economics.

Mixed integer stochastic programming has been employed for modeling and
optimizing bioenergy supply chain systems that involve uncertainty. [29] stud-
ied a supply chain network model which is focused in the southeastern region
of the United States. This model identifies biomass supply locations, facility
sittings, capacities for two kinds of fuel conversion processing, and the logistics
transportation. The model proposed is a two-stage stochastic program, with
the first stage decisions identifying the size and location of the preprocessing
plants; and the second stage decisions identifying the product flow by scenario.
The objective is the maximization of the expected profit over the different sce-
narios. A global sensitivity analysis using Monte Carlo simulation was also
performed in order to estimate the performance of the system as some problem
parameters change. [9] utilized a mixed integer stochastic programming model
to provide the strategic planning of bioenergy supply chain systems and opti-
mal feedstock resource allocation in an uncertain decision environment. They
developed a case study using data from California; and solved the problem via a
Lagrangean relaxation-based decomposition algorithm (i.e., progressive hedging

method or horizontal decomposition).
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The L-shaped algorithm is one of the solution approaches for stochastic opti-
mization problems which has been used extensively in the literature [31]. Both,
the L-shaped and multicut L-shaped methods, decompose the master problem
into as many subproblems as the total number of scenarios. These problems
are solved iteratively until a stopping criteria is met. Other approaches to solve
stochastic optimization models use variations of the branch-and-bound algo-
rithm [2, 42, 45, 17] or, when appropriate, use extensions of Benders decom-
position algorithm [8, 7, 22, 43, 45]. In the bioenergy supply chain field, [19]
presented a bicriterion, multiperiod, stochastic mixed-integer linear program-
ming model for the optimal design of hydrocarbon biorefinery supply chains
under supply and demand uncertainties. To minimize the expected annual-
ized cost and the financial risk simultaneously, they proposed a model which
captures multiple conversion technologies, feedstock seasonality and fluctua-
tion, geographical diversity, demand variation, government incentives, biomass
degradation, and risk management. They propose a multi-cut L-shaped algo-
rithm to reduce the computational time when solving large-scale instances. Four
case studies of hydrocarbon biorefinery supply chain in the State of Illinois were
solved using the proposed algorithm. [36] presented a two-stage stochastic pro-
gramming model to design and manage biodiesel supply chains. They proposed
an L-shaped algorithm. They used a Lagrangian relaxation algorithm to solve
the master problem since it is an integer program. These authors developed a
case study using data from Mississippi. The model optimizes both costs and
emissions in the supply chain. The results elucidated the impact of carbon
regulatory mechanisms on supply chain costs and emissions and also the effec-

tiveness of the stochastic programming.
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3. An Integrated Product Quality and Supply Chain Design Model

3.1. Modeling Product Quality

Two product characteristics, which are indicators of biomass quality, are
moisture and ash contents. Let the biomass moisture content be a random
variable, €(t), which depends on a specified mean value t. We assume that €(t)
follows a triangular distribution in [at, bt] with a probability density function as
presented below. This assumption is based on experimental results conducted

with real switchgrass under different storage and harvesting conditions [51].

2(e—at)
(btf(at)(tfat) at<e<t
fan(0) =1 G t<e<bt (1)
0 o/w

Similarly, we assume that ash content is a random variable ¥(4), whose distribu-
tion is a function of the mean value, §. We model ash content using a triangular
distribution for ¥() in [cd, dd].

Processes currently used to produce biofuels do have a number of require-
ments with respect to biomass quality. For example, processes that rely on the
thermochemical conversion technology have a targeted value of moisture content
of no more than 10%. We will refer to the technology target as t,. When this
constraint is violated, a failure cost equal to $¢ per unit is incurred. This is the
cost of mechanically drying biomass to reduce its moisture to acceptable levels.
The expected cost for not meeting the quality requirements is computed as the
square of the deviation between the value of the quality characteristic and the
target value. This cost can be regarded as the opportunity cost and is expressed
as:

M(e(t)) = my?, (2)

where, y1 = max(e(t) — tx,0). The expected quality loss is given by:

+oo

P1(e(t)) = M(€(t)) fo(ry(e)de.

— 00
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Similarly, processes which use a thermochemical conversion technology, rely on

using biomass with no more than 1% of ash content. Let d; represent the ash
content targeted by technology k. Thus, the opportunity cost for not meeting
the ash specification is:

N(9(8)) = ny3, (3)

where, yo = max(9(§) — 0k, 0) and, the expected quality loss is given by:
“+o00
$2(0(9)) = N(0(5)) fo(s)(v)dv.

3.2. A Two-Stage Stochastic Model

Stochastic programming models assume that the probability distributions
governing the data are known or can be estimated [6]. The most extensively
studied stochastic programming models are the two-stage (linear) models. These
models capture the timing of decisions in the SC, where, the first-stage decisions
are made right now and without full knowledge of future events. These future
events have random outcomes. These random outcomes and the first-stage
decision impact the future (second-stage) decisions in the supply chain. In
such a model, a recourse decision is made in the second-stage to account for
any non-beneficial effects that might have resulted from the first-stage actions.
The optimal policy corresponds to a single first-stage decision and a set of
recourse decisions (for each random outcome) that define which second-stage
action should be taken [44]. Two-stage stochastic programming models typically
assume that the random event can be described using discrete random variables
with known probability distributions.

The two-stage stochastic location-transportation model identifies facility lo-
cations that minimize the total of location and expected transportation costs.
The model we propose in this paper is one of its many extensions. The following
sets are defined, I is the set of suppliers, J is the set of potential biorefinery
locations and K is the set of biomass conversion technologies. Let Zj;;, (Vj € J,
k € K) be the first stage decision variables, which take the value 1 if a facil-

ity that uses technology k is located in 7, and take the value 0 otherwise. Let
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Xijr € X C RK\X\J\X\KI be the second stage decision variables which represent
the amount of biomass delivered from supplier ¢ to facility j which uses tech-
nology k. Let lj; be the equivalent annualized investment cost for opening a
biorefinery in location j using technology k. Biomass quality at supplier 7 is
not constant, but it rather fluctuates from one season to the next, and from one
year to the next. Let w be a random variable which represents biomass quality.
Its probability density function is f,,(.). The following stochastic programming
model minimizes the total of location and expected transportation costs in the
supply chain.
Minimize : TC(Z) = > LinZjx + Q(Z)
jEJ keK

Subject to: (P)
Zjx € {0,1} VjeJkeK.

Where,

Q(Z) = E.Q(Z, X, w) = [ Q(Z,X,0)f.(0)d(0)
X e X.

8.8. Integrating Product Quality in the Supply Chain Model

The model presented in this section takes an integrated view of key variables
that impact supply chain design and management decisions of biofuel plants,
such as, location, transportation, technology selection, and product quality.
The goal of this model is to minimize the total supply chain costs by capturing
the trade-offs that exist between location and transportation costs; technology
selection and quality costs; facility location and quality costs.

Biomass quality impacts differently plants that use different technologies.
Biomass quality requirements are different in a plant that uses a thermochemi-

cal conversion process, versus a plant that uses a biochemical conversion process.

10
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Even within thermochemical conversion, biomass quality requirements may vary
based on the particular process used, such as, pyrolysis, gasification or combus-
tion. Thus, with each technology k € K, we associate two parameters: t,
which represents the requirements with respect to moisture content; and dy,
which represents the requirements with respect to ash content. Each supplier
provides a product that has specific moisture and ash contents. Based on his-
torical data, suppliers commit to deliver biomass with #; % moisture content and
0;% ash content. These values, t;% and §;%, represent the expected moisture
level and ash content of biomass supplied by supplier 7. Indeed, the moisture
and ash contents are random variables that follow a triangular distribution (see
Section 3.1).

Let w be a discrete variable with density function f, (o) = Plw = o] = P(o0)
for o € 2. Consider the special case of the problem with 2 scenarios (|Q?] = 2).
Scenario 1 assumes that weather conditions are rather dry in the region under
study, and scenario 2 assumes a rainy weather. Therefore, under scenario 1,
moisture content is low. Low moisture content implies low quality costs since the
amount of energy required to dry biomass could potentially be zero. Moisture
content also impacts the amount of biomass available at a supplier. Typically,
dry weather negatively impacts the productivity of agricultural products, and
thus, the amount of agricultural waste available. Under scenario 2 moisture
content is high.

Under scenario 1, the random variable e; — which represents moisture content

of supplier i — lies on the lower side of the triangular distribution; thus, at; <

2(ei7at7;)

e; <t;. Let fel(ti)(ei) = Ghmat) (et

be the moisture content density function
of supplier 7 under scenario 1. If ¢; is the target moisture level under technology
k; the expected quality loss for scenario 1 assuming that supplier i is selected,

would be:

ti 2m(e; — ty)?(e; — at;)

d)l(e(ti)) = /ati (btl — ati)(tl - ati)

2m b
(bt; — at;)(t: — at;) /t (60 = ta)*(es —ati)de: =

dei =

11
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m (1482 — Bty + o). ()

where 7/, 5/ and o are analytical expressions derived in the Appendix A.
To generalize, the expected quality loss due to moisture content under sce-

nario o and for a given t; is equal to:

¢i(tr, 0) = m (vi(0)t; — Bi(o)tr + a;(0)) - (5)

Similarly, each supplier commits to providing biomass which has a particular
ash content by following harvesting techniques which result in biomass with
0;% ash content. This is indeed the expected ash content based on historical
data. However, the actual ash content is a random variable, 1;, which follows
a triangular distribution as described in section 3.1. The expected quality loss
from shipments from supplier ¢ under scenario o and for a given J; is a fixed

constant equal to:
¢i(0k,0) = n (7i(0)d; — Bi(0)dk + (0)) . (6)

The derivations of v;(0), 8;(0) and «;(0) are shown in the Appendix A.

The following two-stage, stochastic model is proposed to minimize the total
of location, transportation, technology selection, and quality costs in the SC
and it is referred as Model (Q). In model (Q), we use a few additional problem
parameters, such as, s;(0), which represents the amount of biomass available at
supplier ¢ under scenario o. Let g;, represent a conversion factor (in gallons/ton)
of biomass to biofuel. The value of this factor depends on the type of biomass
supplied from 7 and technology adapted at facility k. Let [;; denote the facility
location costs; v, denote the production capacity of facility j when adapting
technology k; d denote the total demand for bioenergy; and c¢;; denote the unit

delivery cost from supplier i to facility j.

Minimize : TC(Z,X,w) = Z leijk-l-
keK jeJ

12



SN0 P(o) [eij + €(tn, 0) + €i(Sk, 0)] Xiji(0)

i€l jeJ keK oeQ

205 Subject to:

> Xijr(o)

jeJ keK

ZgikXijk(O)

icl

YD gunXig(o)

icl jeJ keK
> Zik
keK
Xijk(0)

Zj

IN

IN

Y

IN

S

si(0)

l/ijjk

R+
{0, 1}

Q)
Viel,oe (7)
VieJ ke KoeQ (8)
Yo € Q (9)
VieJ (10)

Viel,je J ke K,oeQ (11)

VjedkeK. (12)

In model (Q), constraints (7) give an upper bound on the amount of biomass

available at supplier ¢ under scenario o. Constraints (8) connect the continuous

flow variables X;;; with the binary variables Z;,. These constraints restrict

biofuel production to the maximum capacity of the biorefinery. Constraints (9)

30 enforce total biofuel demand satisfaction. Constraints (10) limit the selection of

one technology per facility. Constraints (11) are the non-negativity constraints,

and (12) are the binary constraints.

4. A Solution Approach for the Integrated Model

Model (Q) is a two-stage SP model where the first-stage decision variables

s are integers and the second-stage decisions are continuous. We propose an L-

shaped and a multicut L-shaped method to solve this stochastic optimization

problem.

4.1. L-shaped method

Consider the following equivalent formulation of problem (Q).

Minimize : TC(Z) = > > ljnZjx+G

13

keK jeJ
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Subject to:

> Zp <1 vieJ (13)
keK
g = Q2 (14)
Zjr € {0,1} VjeJkekK. (15)

where Q(Z) = E,(Q(Z,0)), and

Q(Z.0) = min: D30 @ie(0)Xijk(0) + pr(o)

i€l jeJ keK
Subject to:
Z Z Xijr(0) < si(o) Viel (16)
jeJ keK
ZgikXijk(o) < vk VieJke K (17)
iel
DD gwXir(o)+ 7o) = d (18)
icI jeJ keK

Xijr(o) € RT Viel,jeJ ke K (19)

where, G;jr(0) = ¢;j + ¢;(tg,0) + ¢i(0k,0). The literature refers to above
formulation of (Q) as the Master problem, and Q(Z,0) as the Subproblems
(SP(0)) (for o € Q) [49]. The Master problem is an Integer Program (IP). To
solve an IP Master problem Lagrangian relaxation or valid inequalities which
improve the solution quality and reduce the required computational time are
suitable approaches. The Subproblems (SP(0)) are Linear Programs (LP), thus,
relatively easy to solve. We solve the Subproblems efficiently using a problem
specific algorithm. Next, we describe a few extensions of the L-shaped algorithm
with the goal of improving its performance.

Note that, in Subproblems (SP(0)) uncertainty only affects the right-hand-
side of constraints (16) (i.e., biomass supply). The recourse matrix characterized
by left-hand-sides in equations (16)-(18) and the transfer matrix characterized
by right-hand side of equations (17) are independent of randomness. Therefore,

the above two-stage stochastic program has a Fized Recourse [32].

14



330

335

340

Let NV represents the set of solutions Zj;, (Vj € J,k € K) which satisfy
constraints (13) to (15). Let Z?k represent the n — th solution in this set.
Subproblems (SP(o)) are feasible even if Z;, = 0 (Vj € J,k € K). In this
case, m(0) = d. w(0) represent the demand unmet via this supply chain. To
discourage such solutions, we penalize the unmet demand via a high penalty
cost p in the objective function. Thus, Subproblems (SP(0)) are always Feasible.
This is why the proposed Bender’s decomposition algorithm does not generate
feasibility cuts.

Let 8o, avip and A, be the dual variables of the primal (SP (o)) Subproblem.
The following is the corresponding dual formulation for given Z?k. Note that,
7?1@ appear only in the objective function of the dual formulation. Thus, as
we update the values of Z?k (for n = 1,2,...) the optimal solution may iterate

among vertexes of the same feasible region.

D(Z",0) = max : df, — Z si(0)o — Z Z ijZ?k)\jko

B icl jed keK
Subject to:
9ikBo — Qio — GikNjk < Cijk(0) viel,jeJkeK (20)
Bo < p (21)
o, € RT Viel (22)
Ajk € RT Vje JkeK. (23)

Let (a2, 87, )\;-lko) denote the optimal solution to D(Zn, o) for fixed values

of Z},,. By duality, the following holds true:

QZ",0) = [dBr = si0)al, = S° 3 v N, 70y

iel jeJ keK

By convexity of Q(Z,0), the following is also true:

Q(Za 0) > dﬂg - Z Si(o)o‘?o - Z Z ij’)‘;'lkozjk

iel jeJkeK

15



15 We now take the expectations of these two functions to obtain the following

relationships.

Q(2) =Y (P(0)Q(Z.0) = > _Plo) | dBy = si(0)a, = > > vixAhoZin

0€Q 0€Q i€l jeJ keK

We use this relationship to develop the following equivalent formulation of

(Q) which we refer to as (EQ).
Minimize : TC(Z) = Y Y LxZin+G
kEK jeJ

Subject to:

> Zp<1 vieJ (24)
keK

> Plo) | dBy = si(0)al, = > > viphhZik | <G meN  (25)

0€Q i€l j€J kEK
Zir €{0,1} VielJkekK. (26)
350 In this formulation, the number of constraints (25) is governed by the size

of set A/, which could be a large number. Recall that A represents the set of

solutions Zj;, (Vj € J, k € K) which satisfy constraints (13) to (15). These

constraints limit the number of non-zero Zj;, variables (in each iteration of the

Bender’s algorithm) to at most |J|. Thus, the size of A is equal to 1 plus the
s number of subsets of set .J, 21/, For this reason, instead of solving (EQ), we

solve the following reduced model formulation which we refer to as (REQ). This

model is solved iteratively, and 1 <1 < |N]| represents the iteration number.

Minimize : TC(Z) = Z leijk +G
keK jeJ

Subject to:

> Zp <1 VielJ (27)
keK

16
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> Plo) | dBy = si(0)ap, =D > vipAoZin | <G n=1,...,1 (28)

0€eQ) icl je€J keEK

Zir €{0,1} VieJkekK. (29)

The L-shaped algorithm is presented in Table 1. Step I of the algorithm
solves (REQ) which is a relaxation of the Master problem and therefore its
objective function value serves as a lower bound for (Q). In Step 2 each sub-
problem (SP(0)) is solved provided solutions Z™ from Step 1. An upper bound
is calculated using the solutions from the Master problem and the Subproblems.
In the first iteration of this algorithm, since n = 0, the optimal solution to (EQ)
is Z;, = 0. This implies that no facilities are open in the supply chain. In this
iteration, the solution to the Subproblems are w(0) = d. In Step 3 we check the
relative gap between the best bounds generated so far. If the gap is less than a
threshold e the algorithm terminates. Otherwise, an optimality cut is added to

the Master problem, and the problem is resolved.

4.1.1. Trust region cuts:

Based on [39], cutting plane-based algorithms (such as, Benders decomposi-
tion) exhibit unstable behavior in their initial iterations. That means, solutions
tend to oscillate from one feasible region to another which leads to slow con-
vergence. Therefore, [40] suggests the use the following trust region inequalities
which bound the Hamming distance [20] of the solutions found in consecutive
iterations of the algorithm.

Let Z?k (for j € J, k € K) be the solution obtained from solving (REQ)
during iteration n. Let Z"t = {(],k)|7;k =1,Vj € J,k € K}. The following
inequality is added to (REQ).

o oa-zith+ > zZpt< (30)
(4,k)eznt (4,k)¢Zn+
These inequalities force the solutions generated during iterations n and n+1

of the algorithm to differ by at most one variable. These inequalities expedite
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Table 1: An L-shaped algorithm for problem (Q)

STEP 0:
Initialize: ¢, n < 1, LB <~ —00,UB < +00
STEP 1:
Solve (REQ) to obtain Z7;,, TC(Z™)
If (TC(Z") > LB) Then
LB+ TC(Z"™)
End If
STEP 2:
For all o € Q2 Do
Solve (SP(0)) to obtain ajy,, o', ATy
End for
If TC(Z")+ Y, .o (P(0)D(Z",0)) — G < UB Then
UB+«+TC(Z")+ Y, .o (P(0)D(Z",0)) — G
End If
STEP 3:
If (UB—-LB)/UB < ¢) Then STOP
Else
Add to (REQ):

Zoeg P(o) (dﬁg - zz‘el si(o)ag, — Eje] Zke}{ ij)‘?kozjk) <g
n <+ n+1; GoTo STEP 1
End If

the running time of the algorithm during its initial iterations. Later on, we drop

these constraints in order to maintain the feasibility of (REQ).

4.1.2. Multi-cut L-shaped algorithm.:

385 The multi-cut L-shaped algorithm was introduced by [5] to enhance the con-
vergence of the L-shaped algorithm. In each iteration of the L-shaped algorithm
(Table 1), one single optimality cut (constraint (28)) is added to formulation
(REQ). Instead, in each iteration of the multi-cut L-shaped algorithm one could
add as many as |Q| cuts, one cut per scenario. In this case, formulation (REQ)

30 is slightly modified to the following. We call this formulation (Q2-REQ)

Minimize : TC(Z) = Z leijk + Z P(0)G(0)

kEK jEJ 0€Q

Subject to: (27), (29)

gy = si(0)ap, = > Y vipAheZix < Glo) n=1,...,1,0 € Q(31)

i€l jEJKEK
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To solve this problem we slightly adjust the algorithm presented in Table 1.
The modification made is the following: STEP 1 solves the modified (Q2-REQ)
instead of (REQ).

4.1.8. Solving the subproblems:

The structure of problems (SP(0)) resembles the transportation problem. It
is well known that the solutions to the transportation problem can be degen-
erate. Therefore, the dual of this problem can have multiple optimal solutions.
This fact leads to the possibility of multiple optimality cuts being generated
in each iteration of the algorithm. The literature indicates that, if one is to
pick amongst these cuts the ”strongest” one, then, the approach would result
in improvements of the existing algorithm [48]. In the context of our prob-
lem, let 3, P(0) (dﬁ:}l — 2ier $i(0)iy = Xies Dkex ij)‘?]iozjk> < Gand
> oeq P(0) (dﬂ? = 2ier $i(0)ig = Xie s Dkex ij/\?lgozjk) < § be two cuts
generated during the n-th iteration of the L-shaped algorithm, each correspond-
ing to one of the two optimal solutions to the dual of (SP(0)). The first cut is
stronger than the second if the following holds true for any Z;; € N.

> Po) [dBy = silo)aft =D v i | >

0€Q i€l jeJ keK

> Po) [ dByr = sio)afz = >N vz, Zk

0€Q i€l jeJ keK
In order to generate tight cuts we follow a similar procedure as the two-phase
approach proposed by [38] for the capacitated facility location problem. In the
dual formulation of (SP(0)), the dual values associated with 7% parameters
which are zero, do not have any impact on the optimal objective function value.
Recall that, at most |J| (from a total of |J| * |K|) 7;-Zk parameters are non-
zero. Therefore, when 7;2 = 0, we can modify its coefficient —v;5 A1, without

changing the objective function value while, of course, maintaining the feasibility
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of the corresponding solution (satisfying constraints (32)). The following is a
summary of the two-phase process.
Phase 1: We solve a reduced model formulation of the dual of (SP(0)) to obtain

a set of values for the dual variables A7, = associated with the variables 7;k >0,

jko
as well as, to obtain the optimal o, (Vi € I), and 87. Let J~ = {j € J|7;Lk > 0}
and K- ={ke K \7;-2 > 0}. Formulation (R1-SP(0)) presented below is solved

to find these optimal solutions.

D>(Z " ,o0) = glg>§ 2 dp, — Z si(0)a — Z Z VikZ 1 Njko

i€l jeJ> keK>
Subject to:
gixBo — Cio — gitAjr. < Tiji(0) Viel,jeJ ke K~ (32)
Bo < p (33)
o, € RT Viel (34)
Nk € RT VieJ ke K”. (35)
Phase 2: We fix the values of o' to @, (Vi € I), and 87 to EZ as deter-

mined in the first phase of this procedure. Next, we solve the following models,
one per each Z?k > 0. Solving these problems generates dual variables Ajx,
which provide a stronger cut (equation (28)) to add to formulation (REQ). Let
J=={je J|7;Lk =0} and K= = {k € K|Z;Lk = 0}. Formulation (R2-SP(0))

presented below is solved to find these optimal solutions.

D=(Z",0) = max : — Z Z VikAjko

jEJ= kEK=
Subject to:
GikBo — Tio — gikNjk < Tiji(0) Viel,jeJ ,ke K= (36)
Nk € RT VieJ ke K-, (37)

The optimal solution to models (R2-SP(0)) can as well be found by inspection.

Constraints (36) can be written as \j, > 8, — (%}jk(o)) Niel jeJ ke
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K=. Let 7j; = maXer BO — (%}j’“(o)) . Then, the optimal X]—k for model
(R2-SP(0)) can be calculated as
_ r; if rir>0
Np=4 " T (38)
0 o/w.

Solving the dual of (SP(0)) using the two-phase procedure enhances the solution
time of the L-shaped algorithm. This is mainly due to generating stronger cuts.
Additionally, the procedure proposed significantly reduces the size of the LPs
solved during Phase 1, which enables us to solve large problem instances without
running into memory problems due to using commercial software packages to

solve these LPs.

4.1.4. Other algorithmic improvements:

Formulation (REQ) is an integer linear program, as such, it is difficult to
solve. During the initial iterations of the L-shaped algorithm, the quality of the
solutions obtained from solving (REQ) is poor. This is due to the fact that, in
the beginning of the algorithm, the number of cuts (28) added to the (REQ)
formulation is very small. The quality of the solutions found improves as the
algorithm progresses. For this reason, in the initial iterations of the algorithm we
just seek the first feasible solution to (REQ), rather than the optimal solution.
Later on, as the algorithm progresses, we seek high quality solutions to (REQ).
Doing this reduces the running time of the L-shaped algorithm by reducing the
solution time during the initial iterations. Specifically, we seek only a feasible
solution to (REQ) for as long as (YB=LB) < 4%. Once this condition is met,

UB

we seek solutions which are optimal.

5. Case Studies

5.1. Biomass Supply

The case study developed is focused in the state of Tennessee. Each of its
ninety four counties is a biomass supplier. Of these, thirty one counties are

considered as potential locations for a biorefinery. We opted for a large number
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Figure 1: The Biorefineries using the Switchgrass Feedstock Supported by the Counties of the

State of Tennessee

of potential biorefinery locations to provide the supply chain with options to
reduce costs. The type of biomass considered is switchgrass. Figure 1 illus-
trates the potential locations of the biorefineries and the counties of the state of
Tennessee. The total amount of biomass available for production of bioenergy
in the state of Tennessee is 19,482,102.51 dry ton [26].

The amount of switchgrass available at the county level in Tennessee is ac-
quired from the Bioenergy Knowledge Discovery Framework [13]. The amounts
reported by the KDF are in dry tons (s;qry). Since biomass in the field is not
dried, we use equation (39) to convert dried biomass to biomass with a certain
moisture content. Moisture content depends on the weather conditions under
a particular scenario. The moisture content and the moist biomass supply are
computed based on the region the supplier is in and for each year (see Table 4).
A random number is generated to determine the moisture content from either
the lower (case 1) or upper portion (case 2) of the triangular distribution (i.e.,
e; belongs to at; < e; < t; or t; < e; < bt;). Lastly, equation (39) is used to

compute the amount of biomass available at each supplier during 2004 to 2014.
S; = Sidry/(l — ei) (39)

5.2. Biomass Quality and Transportation Costs

The data on the physical and chemical composition of switchgrass came from

other studies in the literature. For example, [51] collected samples from bales

22



480

485

490

495

500

505

which were stored up to 75, 150, and 225 days in the state of Tennessee. These
samples were analyzed to characterize the moisture and ash content of biomass.
The samples were collected from bales with different particle size and wrap-
ping materials which represent different practices that affect biomass quality.
Specifically, the data collected was divided into three levels, corresponding to
the particle size of full-length of 243.84 cm, 7.62 cm and 1.27-1.91 cm. We use
this data to derive the corresponding distributions of moisture and ash content
in switchgrass. The goodness of fit test indicated that triangular is a suitable
distribution to represent these two random variables. Tables 2 and 3 show the
parameters of the triangular distributions at each level for the moisture and
ash content, respectively. These distributions characterize the moisture and ash
content expected when three different harvesting practices are adopted.

In order to estimate the cost of quality, the values of o, B!, o/ and «;, 8,
«; were computed based upon the derivations in Appendix A. The procedure
developed to obtain the coefficient p and ¢ (necessary to compute the quality
costs due to ash and moisture contents, ¢} (ty, 0) and ¢;(dx, 0)) is described below.
Tables 10 and 11 in Appendix A summarize the unit cost of quality used in our
numerical analysis.

[18] used experimental data to derive a linear relationship between the per-
centage of ash content in biomass and the percentage of total liquid yield [mf
wt]. We use this linear relationship to compute the percentage of oil yield when
ash content falls within 1% and 8%. Next, we calculated the oil yield (in gal/dry
ton) assuming an 84 gal/dry ton yield from biomass that contains 1% ash as a
baseline. Finally, we used the price of heating oil (at $1.76/gal on June 2015) as
a proxy for pyrolysis oil to calculate the cost of oil per dry ton of biomass feed-
stock. A penalty cost is charged to biomass feedstock with ash concentrations
exceeding the target value of d;. This cost equals $0 at or below the target level
(0k). The following equation estimates the penalty cost for ash content higher

than the technology target level for the thermochemical process (k=1) which
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Table 2: The Parameters of Triangular Distribution for the Moisture Content
Division at t bt
Moisture Content (in %) - Distribution 1 26 27 29
Moisture Content (in %)- Distribution 2 17 19 20
Moisture Content (in %)- Distribution 3 16 18 23

Table 3: The Parameters of Triangular Distribution for Ash Content
Division cd é dd
Ash Content (in %)- Distribution 1 1.33 2.89 4.53
Ash Content (in %)- Distribution 2 0.71 2.44  3.79
Ash Content (in %)- Distribution 3 0.82 2.18 3.49

requires ash content to be d; < 1%.
m = 5.8561 + 0.6507(5 — 0;)* (40)

In the case of the biochemical process (k = 2), [27] estimate the cost of
ash dockage to be $2.25/dry T per each percentage of ash above the 5% process
specification. We consider this to be the unit cost necessary to meet the required
ash specifications. Thus, in our model the losses associated to ash (with do =

5%) are:

m = 2.25(6 — 82)? (41)

Noteworthy our estimated distributions are below the 5% specification; there-
fore, the ash quality cost for this case study is negligible. However, distribution 1
includes the 4% ash content for switchgrass assumed in [27], confirming that this
case study is realistic and that the reason why the ash quality cost is negligible
is the less stringent process requirements of the biochemical technology.

The expected quality cost associated to moisture is g (see equation (4)).
This cost occurs when biomass is mechanically dried to meet process specifi-
cations [35]. [35] estimate the fixed cost of drying to be $2.46/dry ton. They
also estimate an additional operational cost of $7.84/dry ton for an initial mois-
ture content of 40%. This relationship is used to estimate the quality cost for

moisture in the range from 10% to 40%.
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According to [28], the moisture content does not have a considerable impli-
cation to the biochemical conversion process. However, the moisture content is
linked to the degradation and consumption of structural carbohydrates during
storage. Thus, the technology specification is generally recognized as 20%. Even
when the specification of moisture for the biochemical process is not as stringent
as in thermochemical conversion process (10%), the moisture content does im-
pact feedstock transportation costs. The following equation estimates the cost
of quality when the moisture content of biomass is higher than the technology
target level. The technology level is t; = 10% for the thermochemical processes

and t = 20% for the biochemical processed.
n = 5.4318 + 0.0066(¢ — t;,)* Vk = 1,2 (42)

To calculate the transportation costs of biomass, we utilize the following

equation presented by [1].
Cij = 3.85 + 00528(1” (43)

where d;; is the distance from supplier ¢ to facility j in kilometers.

5.8. Production Capacities and the Investment Costs of Biorefineries

Five different biorefinery production capacities are considered in this study.
Two technologies are considered: thermochemical and biochemical. Regarding
the thermochemical conversion process, the biorefineries are designed to yield
37.8, 75.6, 113.4, 189, and 226.8 million liters of ethanol per year. The in-
vestment costs for building the biorefineries with these capacities are estimated
to be $90,850,195, $145,360,312, $193,813,750, $271,339,250, and $310,102,000.
The investment costs are computed considering that, due to the economies of
scale, doubling production capacities will increase costs by 60%. For these cal-
culations, the reference capacity is 226.8 million liters per year which requires
an investment cost of $310,102,000 [14]. The investment costs for building a
biorefinery which uses the biochemical conversion process are estimated using a

similar approach. The reference capacity is 226.8 million liters per year which
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requires an investment cost of $423,000,000 [24]. The biorefineries are designed
to produce an ethanol yield of 37.8, 75.6, 113.4, 189, and 226.8 million liters per
year.

In our model formulation, the parameter /;, represent the equivalent annual
investment costs for biorefinery located in j and using conversion technology
k. In this study we assume a project life of 20 years and an interest rate of
15%. The equivalent annual cost (EAC), which is the cost per year of owning
and operating an asset over its entire lifespan, is used to provide the annual
cost incurred due to those investments. EAC is calculated using the following
equation:

r(NPV)

i .

T+t

EAC = (44)

Where, NPV stands for net present value, 7 is the interest rate, and t is the
expected lifetime of the project.

The conversion rate (g;x) of switchgrass to cellulosic ethanol via a thermo-
chemical process equals 226.8 liters per dry ton [21]. The conversion rate of
switchgrass to cellulosic ethanol via a biochemical process equals 378 liters per
dry ton [33]. Furthermore, the total amount of bioethanol demand equals 850
Million liters per year for the state of Tennessee based upon a USDA report on

February 2015 [47].

5.4. Generation of Scenarios

Eleven scenarios are created by analyzing the historical precipitation data
during 2004 to 2014. This data was obtained from six weather stations of
the National Centers for Environmental Information located in the South East,
North East, Mid South, Mid North, South West, and North West of Tennessee.
Details about these scenarios are provided in Table 4. Historical data was used
to calculate the average amount of the precipitation in each region. This average
was then compared to the actual precipitation on a particular year. Numbers
1 and 2 in this table are used to show whether precipitation was under or over

the average (i.e., case 1 or case 2, respectively).
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Figure 2: The Stations of State of Tennessee for the National Centers for Environmental
Information [37]

Case

Table 4: Scenarios of Regions from 2004 to 2014
2004 2005 2006 2007 2008 2009 2010

201

South East
North East
Mid North
Mid South
South West
North West

NN NN - DN
== NN
NN NN = =
NN N
O N R =N
N = == NN
NN - =N

NN == =N

We develop six different problems as shown in Table 5. Here, ML-T1, ML-

T2, and ML-T3 represent different moisture levels, more specifically, moisture

levels following the triangle distributions 1, 2, 3 according to Table 2. Similarly,
AL-T1, AL-T2, and AL-T3 represent different ash levels, each following the

impact the cost of quality in this supply chain.

Table 5: Problem Definitions

Problem  Moisture Ash
1 ML-T1 AL-T1-Low
2 ML-T1 AL-T1-High
3 ML-T2 AL-T2-Low
4 ML-T2 AL-T2-High
5 ML-T3 AL-T3-Low
6 ML-T3 AL-T3-High

27

triangle distributions 1, 2, 3 according to Table 3. The goal of developing these

problems is to evaluate how different combinations of ash and moisture content
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6. Numerical Analysis

This section presents the results of our numerical analysis. The algorithms
used in this study are written in AMPL. GUROBI 6.0.0. is used to solve the
mathematical models presented above. The experiments are completed using a
computer with Intel(R) Core(TM) i7-2600U CPU @ 3.40GHz; and 16.00 GB of
RAM.

6.1. Evaluating the Performance of the Stochastic Model

To evaluate the performance of the stochastic programming model proposed
we use two performance measures, which are, the value of the stochastic so-
lution (VSS) and the expected value of perfect information (EVPI). Table 6
summarizes the results of this analysis.

VSS represents the cost savings from using a stochastic — instead of the
corresponding deterministic — model to design and manage the supply chain.
Therefore, VSS is the difference between the objective function value of the
stochastic model (REQ) and the expected value (EV) model. We calculate
EV by solving (REQ) with a single scenario whose quality cost is equal to the
expected value. The value of VSS differs by problem, however, this value is
always greater than zero. This fact indicates that the design and management
decisions proposed by the stochastic model outperform the decisions proposed
by the deterministic model. The savings due to using the stochastic model vary
from $19,000 to $59,000 annually.

EVPI measure the value of knowing the future with certainty. We calculate
EVPI as the difference between the objective function value of the wait-and-see
(WSS) model and the stochastic model (REQ). To find WSS we solve model
(REQ) for each scenario assuming that this is the only scenario we will be facing
in the future. Next, we use these results to calculate WSS. For example, for
Problem 1, WSS = (1,297,148 x 0.02) + (1,297,540 % 0.03) + ... + (1,297, 354
0.17) = 1,297,575. The values of EVPI are positive for all the problems studied.

This indicates that, if we were to know the future with certainty, then, the
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Table 6: Comparing the Costs (in $1,000) of Stochastic and Deterministic Solutions

Solution Strategies Problems
1 2 3 4 5 6
Wait-and-see
Sc. Probability
1 0.02 1,297,148 1,307,098 1,293,303 1,300,038 1,292,074 1,297,153
2 0.03 1,297,540 1,307,490 1,293,622 1,300,357 1,293,207 1,298,286
3 0.05 1,297,148 1,307,098 1,293,303 1,300,038 1,292,074 1,297,153
4 0.06 1,297,558 1,307,507 1,293,607 1,300,341 1,292,507 1,297,587
5 0.08 1,297,744 1,307,693 1,293,786 1,300,521 1,292,898 1,297,977
6 0.09 1,297,910 1,307,860 1,293,909 1,300,644 1,293,590 1,298,669
7 0.11 1,297,374 1,307,323 1,293,499 1,300,234 1,292,515 1,297,594
8 0.12 1,297,744 1,307,693 1,293,786 1,300,521 1,292,898 1,297,977
9 0.14 1,297,315 1,307,264 1,293,426 1,300,161 1,292,766 1,297,845
10 0.15 1,297,910 1,307,860 1,293,909 1,300,644 1,293,590 1,298,669
11 0.17 1,297,354 1,307,304 1,293,443 1,300,177 1,292,817 1,297,896
WSS 1,297,575 1,307,525 1,293,641 1,300,376 1,292,937 1,298,016
EV 1,297,568 1,307,517 1,293,634 1,300,369 1,292,929 1,298,008
(REQ) 1,297,530 1,307,480 1,293,610 1,300,350 1,292,870 1,297,950
VSS 38 37 24 19 59 58
EVPI 45 45 31 26 67 66
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Table 7: List of Algorithms Tested

Algorithm Description
Al The L-shaped algorithm presented in Table 1
A2 A1 including improvements presented in Section 4.1.4
A3 A2 including improvements presented in Section 4.1.3
A4 A3 including improvements presented in Section 4.1.1
A5 The multi-cut L-shaped algorithm including improvements

presented in Sections 4.1.1, 4.1.3, 4.1.4
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Figure 3: The Performance of the Proposed Five Algorithms over Iterations, including L-
shaped, Enhanced L-shaped, and Multi-cut L-shaped Algorithms

performance of this supply chain would be better. For problem 1, for example,

the annual cost of knowing the future with certainty is $45K.

6.2. FEvaluating Algorithmic Performance

We evaluated the performance of a number of algorithms to solve the prob-
lems presented above. Table 7 lists the algorithms developed and Figure 3
illustrates the performance of these algorithms over iterations.

Table 8 summarizes the error gap, running time and the number of iterations
for each algorithm. The stopping criteria used for all the algorithms (including
Gurobi) was an error gap (i.e., the percentage deviation between the upper and
lower bound) less than or equal to 1%. Additionally, we stopped algorithms
Al,...,A5 if the total number of iterations reached 100. Based on these results,
all the algorithms proposed outperform Gurobi with respect to both, solution

quality and running time. The results indicate that, the improvements suggested
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Table 8: Summary of Experimental Results

Running time (in CPU sec)
Problem Gurobi Al A2 A3 A4 A5
1 1992.63 100.44 3292  8.56 16.00 15.92

2 2018.73  96.01  25.80 12.28 6.14 32.92
3 2461.68 105.55 43.44 36.68 29.22 82.79
4 2507.06 111.60 26.90 50.20 18.58 30.23
5 2097.93 105.02 5.58 39.63 18.87  65.03
6 2131.74 109.11 21.34 15.84 1494 100.94
Avg. 2201.63 104.62 26.00 27.20 17.29 54.64

Error gap (in %)
Problem Gurobi Al A2 A3 A4 A5

1 1.00 2.24 0.61  0.55 0.87 0.98
2 1.00 2.59 0.86 0.54 0.88 0.83
3 1.00 2.66 1.00 0.87 0.78 0.18
4 1.00 2.92 0.94 0.81 0.84 0.97
5 0.99 2.91 0.89  0.89 0.99 0.90
6 0.99 2.88 0.84 0.96 0.62 0.81
Avg. 1.00 2.70 0.86 0.77 0.83 0.78

Number of iterations
Problem Gurobi Al A2 A3 A4 A5

1 - 100 67 18 32 32
2 - 100 55 28 12 37
3 - 100 75 72 57 7
4 - 100 51 86 38 45
5 - 100 13 73 41 62
6 - 100 42 42 35 74
Avg. - 100.00 50.50 53.17 35.83  54.50

do impact the performance of the L-Shaped algorithm.

The results indicate that A4 was the first to meet both stoping criteria. Its
average running time was 17.29 CPU seconds. In terms of solution quality,
algorithm A3 outperformed the rest. The quality of the solutions from the

multi-cut L-shaped algorithm is also very good.

6.3. Discussing Managerial Insights

Table 9 provides details about the distribution of the total costs for the 6
problems solved. Based on these results, on average, the cost of lowering mois-
ture content to meet process requirements counts for 1.85% of the total costs.

The cost occurred due to ash content being higher than process requirement
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counts for 2.19% of the total costs. On the average, the quality-related costs
count for 4.04% of the total supply chain costs. While these costs represent
only a small percentage of the overall supply chain costs, in absolute terms,
they equal $52.5 million annually. As such, should not be ignored in the supply
chain decision making process.

The quality costs are the highest in problems where moisture and ash levels
follow distribution 1 (Problems 1 and 2). These costs are 24.03% and 23.86%
higher as compared to the problems where moisture and ash levels follow dis-
tributions 2 and 3, respectively. Additionally, ash costs for problems 1, 3 and 5
(which have low ash content as shown in Table 5) are always lower as compared
to 2, 4 and 6 (which have high ash content as shown in Table 5). These results
indicate that high moisture and ash contents negatively impact the quality of
biofuel, and consequently, costs in the supply chain. Indeed, variable costs (i.e.,
transportation, ash and moisture) increase by 16.5% when comparing problem
2 (highest ash and moisture) with problem 5 (lowest ash and moisture). More-
over, facility locations are also different in problems 1 and 2 versus 3 to 6. In
problems 1 and 2, a large capacity plant is located in Giles county and a smaller
plant is located in Haywood county. Whereas, in problems 3 to 6, a smaller plant
capacity is located in Giles county, and a larger plant is located in Haywood

county.

6.4. Impact of Quality Costs on the Supply Chain Network Design and Man-
agement

The impact of quality costs on the supply chain network design and man-
agement is illustrated in Figures 4 and 5. Figure 4 presents the solution of
problem 2 when solving the model which captures quality-related costs. Figure
5 presents the solution of problem 2 when solving a model which does not cap-
ture quality-related costs. The model which captures quality costs is mindful
of the biomass specifications in certain regions, which impacts the location of
plants. The results show that the optimal location of biorefineries differ when
biomass quality is included or excluded from the model. Specifically, the model

which captures the cost of quality opens a fourth biorefienery in Henry county
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Figure 4: Solution using the Highest Parameters in the Distribution for Moisture and Ash in
the State of Tennessee when integrating quality-related costs.
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Figure 5: Solution using the Highest Parameters in the Distribution for Moisture and Ash in
the State of Tennessee when not integrating quality-related costs.

while the model which does not include the cost of quality opens a fourth biore-
finery in Smith county. Interestingly, when considering biomass quality, the
model tends to open two biorefineries next to each-other in order to reduce the
quality-related costs. This suggests that scalability of plant capacity might be
part of the optimal decision. Moreover, biomass transportation paths differ as
displayed using the colorbar in Figures 4 and 5. These results also point to
the fact that quality-related costs incur when using field run biomass, therefore,
they should not be ignored in the supply chain decision making process.

The moisture and ash costs per technology shown in Tables 10 and 11 in the

Appendix A were computed using the baseline distributions of Table 2 and 3.

Table 9: Summary of Experimental Results

Costs (in $ mill) Biomass used
Problem Fixed Transport. Moisture Ash Variable Total (in mill tons)
1 1,202 41 28 27 96 1,298 3.75
2 1,202 41 28 37 106 1,307 3.75
3 1,202 46 22 24 92 1,294 3.75
4 1,202 46 22 31 99 1,300 3.75
5 1,202 45 22 23 91 1,293 3.75
6 1,202 45 22 29 96 1,298 3.75
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7. Conclusions and Future Work

This paper proposes a two-stage stochastic programming model and provides
a unique approach to capture the impacts of biomass quality and variability on
the design and management of its supply chain. The proposed model minimizes
the total of location, transportation, technology selection, and quality costs in
the supply chain. To solve the proposed stochastic model, different algorithms
were proposed and tested (i.e., L-shaped, L-shaped with trust region cuts and
algorithmic improvements, and multi-cut L-shaped algorithm). All of the pro-
posed algorithms outperform Gurobi in terms of solution quality and running
time. The results show that A4 is the fastest algorithm with an average running
time of 17.29 CPU seconds and 0.83% error gap. Algorithm A3 outperforms
the rest in terms of solution quality with an average error gap of 0.77% and an
average running time of 27.20 CPU seconds.

The results indicate that the moisture-related cost is 27% higher in Prob-
lems 1 and 2 for which the moisture content is highest. The ash-related cost
is 31% higher for problems 2, 4 and 6 for which ash content is highest. This
highlights the impact of ash and moisture contents on the supply chain costs.
Moreover, the results illustrate that high moisture and ash contents negatively
impact the quality of biofuel and require the addition of quality control activ-
ities; consequently, variable costs (transportation, ash and moisture). For this
reason, costs were 16.5% higher for problem 2 (highest ash and moisture) versus
problem 5 (lowest ash and moisture).

We also resolved the (REQ) model after dropping the quality-related costs.
Hiding the quality-related costs decreased the variable costs, transportation
costs included. Moreover, the optimal solution of this model (i.e., location of
biorefineries, the selection of suppliers and the amount of biomass transported)
differs from the solution when the model considers the quality costs. Since the
quality-related costs are incurred when using field run biomass, they should not
be ignored in the supply chain decision making process.

The proposed model can be extended to include other types of biomass feed-
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stocks and additional emerging biomass conversion technologies. Future lines of
research include the extension of this model to a multi-objective optimization
model which minimizes costs and the environmental impacts of biofuel pro-
duction process. This model can be also extended to further investigate the
feasibility of large-scale, region-based supply chains in support of biofuel pro-
duction. In this case, a biofuel plant would use local suppliers and suppliers
located further away to replenish biomass inventories. Expanding the supplier
base will, in return, increase biomass availability, increase biomass variety, and
reduce biomass supply risks. In order to facilitate the delivery of biomass, a

hub-and-spoke biomass SC design model can be investigated.
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Appendices

Appendix A Calculating Expected Costs for (e — t3)2

Case 1: Moisture content of supplier ¢ is lower than t;, thus, at; < e; < t;.

The corresponding density function for e; is:

2(e—at)
at<e<t
fa(e) =4 e (45)
0 o/w

Loom(e; — tr)%(e; — aty) 2m ta 9
p1(ti ei) = /ati (t — at,)? de; = i —ah 2 /ati<€i_tk) (ei—at;)de; =

2m ti
M/ (€; — t1)?(e; — aty)de; =

at;
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B (1-a)? (1-a)?

.2 a?—2a+1 L (—4 — 2a3 + 6a)t; n (6 + 2a* — 8a)t2
m X
(1= a)2 P31 —a)? 12(1 — a)?

pl—an (4—2a(1+a))t; (B—a(l+a+a®)t?\
m\ (=) 31— a) 6(1—a) -

44 2a)t; 3+2 2)¢2
m(ti—( +3a) tk+( + a6+a)z>

In this case:

=1 g=2dah s Gretd)h

Case 2: Moisture content of supplier 7 is higher than t;, thus, ¢; < e; < bt;.

The corresponding density function for e; is:

2(bt—e) t<e<bt
fepyle) = W07 - (46)
0 o/w

bt 2m(e; — tr)%(bt; — €;) 2m bt 9
¢1 (ti’ei) - /t; (bt1 _ ti)2 dei - t?(b _ 1)2 /t7 (€i_tk) (bti_ei)dei =

2 bt;
m / (btie? — € — 2btitre; + 2tpe; + btity, — the;) de; =

- t?(b - 1)2 t;
2m —€} €3 €3 5 o€ 9 bts
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Similarly, one could derive the expected quality loss function due to ash content.
735 Case 1: Ash content of products from supplier i is lower than §;, thus,
ad; < v; < 6.

N 2(2 + a)é,

3+ 2a + a?)6?

g 6
Case 2: Ash content of supplier 7 is higher than §;, thus, §; < v; < bd;.

224 D)5

3+ 2b+ b?)6?
w=1 =22t (B42b+ 5907

6

o =
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Table 10: The Moisture Cost and Ash Cost for Thermochemical Technology [dollars/ton]
ci(61,0) of case 1 ¢;(61,0) of case 2 c(t1,0) of case 1 cj(t1,0) of case 2

Distribution 1 7.1719 9.8267 7.2655 7.4932
Distribution 2 6.4493 8.2463 5.8916 6.0071
Distribution 3 6.2702 7.6254 5.8220 6.0992

Table 11: The Moisture Cost and Ash Cost for Biochemical Technology [dollars/ton]
ci(62,0) of case 1 ¢;(02,0) of case 2 ¢j(t2,0) of case 1 c}(t2,0) of case 2

Distribution 1 0 0 5.7255 5.8212

Distribution 2 0 0 5.4516 5.4351

Distribution 3 0 0 5.4700 5.4392
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