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Abstract

The production of biofuels using second-generation feedstocks has been recog-

nized as an important alternative source of sustainable energy and its demand

is expected to increase due to regulations such as the Renewable Fuel Standard.

However, the pathway to biofuel industry maturity faces unique, unaddressed

challenges.

This paper presents an optimization model which quantifies and controls the

impact of biomass quality variability on supply chain related decisions and tech-

nology selection. We propose a two-stage stochastic programming model and

associated efficient solution procedures for solving large-scale problems to (1)

better represent the random nature of the biomass quality (defined by moisture

and ash contents) in supply chain modeling, and (2) assess the impact of these

uncertainties on the supply chain design and planning.

The proposed model is then applied to a case study in the state of Tennessee.

Results show that high moisture and ash contents negatively impact the unit

delivery cost since poor biomass quality requires the addition of quality control

activities. Experimental results indicate that supply chain cost could increase as

much as 27% to 31% when biomass quality is poor. We assess the impact of the
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biomass quality on the topological supply chain. Our case study indicates that

biomass quality impacts supply chain costs; thus, it is important to consider the

impact of biomass quality in supply chain design and management decisions.

Keywords: Quality Costing; Biomass; Bioenergy; Biofuels; Stochastic

Programming; L-shaped; Optimization; Supply Chain Network Design.

1. Introduction

In recent years, industry has seen the advent of highly complex, large-scale

supply chains (SCs), which have become increasingly difficult to analyze and op-

timize when using conventional modeling techniques and solution procedures.

The design of large-scale SCs is a crucial task in a plethora of scientific fields,5

including advanced manufacturing and electric power networks, among others.

A relevant example is found in the emerging bioenergy industry. This industry

requires sophisticated mathematical models and solution approaches to enhance

biomass SCs by integrating biomass quality control principles; and biomass qual-

ity uncertainties in the SC design and management decision making process.10

Biofuel has been recognized as an alternative source of renewable energy

[46]. Its demand and production is expected to increase in the upcoming years

[4, 25, 50], primarily due to the legislation enacted by the United States of

America Energy Independence and Security Act of 2007. An outcome of this

act is the renewable fuel standards (RFS) [16]. The billion ton study lead by15

the Oak Ridge National Laboratory indicates that the country can sustainably

produce over a billion tons of biomass (i.e., forest biomass/residues, agricul-

tural biomass/residues and energy crops) annually [13]. However, the delivery

of biomass required to meet the goals set by the RFS is particularly challeng-

ing. This is mainly because of the physical properties of biomass, which is bulky20

and widely geographically dispersed. First-generation biomass such as corn and

soybean, among others have higher energy density, lower ash content, and lower

collections/transportation costs as compared to agricultural and forest waste.

However, these types of biomass raised the national debate of food versus fuel,
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which considers the use of marginal lands for energy crop production and the25

land and water usage changes in the bioeconomy [34, 12]. This controversy

was one of the main reasons for the development of second-generation biofuels

that use energy crops, agricultural and forest waste (not suitable for neither hu-

man nor livestock consumption). However, second generation biomass exhibits

more biomass quality variability (e.g., higher ash and moisture contents) than30

first generation biomass. This paper focuses on the use of energy crops (i.e.,

switchgrass) to produce second-generation biofuels.

The pathway to industry maturity faces two main challenges. One of the

challenges is developing technologies which ensure a cost efficient conversion of

biomass to biofuels and are robust to biomass quality variations. The second35

challenge is developing cost efficient biofuel supply chains which are robust to

variabilities in biomass supply and costs. This paper contributes to the area of

biomass supply chain design and management by developing a stochastic pro-

gramming model which captures the impacts of biomass quality on supply chain

related decisions. The goal is to quantify and control the impacts of biomass40

quality variability on supply chain related costs and technology selection.

Although bioenergy is an emerging industry, the biomass supply system

inherited models and underlying assumptions from the well-established agricul-

tural and logging industries. Therefore, the objective of most (if not all) of

the biomass feedstock logistics models is to reduce the overall costs, under the45

assumption that the biomass quality specifications and process requirements

are similar to forage and pulpwood [28]. The single objective of minimizing

the total (of purchasing, logistics and processing) costs may have a considerable

negative impact on the expected profit and on the performance of bioenergy SCs

because, in practice, these bioenergy supply systems work with highly variable50

and/or poor quality biomass, which cause important economic losses. A recent

report from Idaho National Laboratory [28] raised the concern that research

on feedstock quality is still lacking and that the traditional models disregard

quality-related issues by driving down the logistics cost. This emphasis of cost

over quality is exemplified by the current pricing structure for biomass, which is55
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based on the measure “dollar per dry ton” instead of “dollar per clean dry car-

bohydrate.” Practitioners who have scaled up to pilot-scale operations (which

require large quantities of feedstock) have experienced considerable differences

between “pristine” and “field-run” biomass [24].

Moreover, scale-up risk becomes a very important parameter to consider in60

the bioenergy industry as new technologies evolve from the laboratory to com-

mercial settings [3]. For example, consider the undesirable scenario where the

biorefinery equipment, designed to work with a biomass moisture content of

approximately 10%, has to work with biomass with moisture content of 30% in

a given year. In addition, consider the financial losses if one load of feedstock65

yields 90 gallons/ton and another load yields 60 gallons/ton. [28] demonstrate

via a number of case studies that these scenarios are very likely to occur in

practice. The biomass quality is dependent upon the moisture, ash, sugar con-

tents, and particle morphology, among others. Thus, ignoring biomass quality

variations and the associated costs when modeling biomass SCs may yield costly70

results that will only be discovered after the operations at a biorefinery have

begun. The development of quality control methods for biomass is a largely

unmet topic in the literature. The model presented in this paper enables us

to quantify the impacts of biomass quality and technology uncertainties in the

performance of the SC.75

In order to address these challenges, we propose (1) a two-stage stochastic

programming model which integrates biomass supply and quality variabilities in

supply chain modeling; and (2) a solution approach which is used to solve large-

scale problems and evaluate the impacts of biomass quality on supply chain de-

cisions. The proposed model and solution procedures contribute to (1) better80

represent the random nature of the biomass quality in SC modeling, and (2)

assess the impact of these uncertainties on the SC design and planning. Uncer-

tainty and risk are two of the main challenges faced by enterprises with complex

SCs. A proper assessment of the uncertainties and risks related to supply avail-

ability and quality, and opportunity costs when making long-term decisions is85

vital for the profitability and sustainability of this enterprise. The inception
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of decision support tools based on stochastic programming models and quality

control principles is a new concept in the field of SC. Indeed, most (if not all)

of the literature on biofuel planning tools is focused on deterministic models

[14, 23, 52, 41]. Only a few stochastic programming models exist in this liter-90

ature [15]. Generally speaking, stochastic models are underutilized in the SC

field due to their complexity; that is, these techniques typically result in models

that require an enormous computational effort for solving large-scale practical

instances. For these reasons, the primary analytic tools currently used in the

bioenergy industry tend to be fairly ad hoc.95

This paper is organized as follows. In section 2, we present a discussion of

the related literature that positions our work in context. Section 3 provides

a description of the problem addressed and the associated novel mathematical

model. Section 4 presents the solution approach based on extensions of the L-

shaped and multicut L-shaped algorithms to solve large-scale problems. Section100

5 presents a case study that uses realistic data from Tennessee. Section 6 shows a

computational study that evaluates the algorithmic performance of the proposed

solution procedures and discusses managerial insights. Finally, in Section 7, we

provide concluding remarks as well as future research lines.

2. Literature Review105

The majority of the mathematical models in the bioenergy SC field are mod-

eled as Mixed Integer Linear Programming (MILP) or Linear Programming (LP)

optimization. In general, there is a lack of approaches that include uncertainty

and risk modeling for bioenergy logistics [15]. For example, [10] developed a

linear programming model which is used as a planning tool for the assessment110

of the costs associated with biomass transferred from producers located in close

proximity to a centrally located plant. The objective was to minimize the trans-

portation costs and the capacity expansion costs at storage sites for individual

producers. The results estimated biomass delivery costs to biorefineries and

also recommended the shipping and capacity expansion schedules for each pro-115
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ducer. [11] addressed the scheduling of both single and multiple feedstocks in a

single digester system for biogass to methane production systems. They solved

the multiple feedstock problem using a decomposition approach which separates

the problem into one master problem and a number of subproblems. The mas-

ter problem allocates time at the digester for each feedstock. The subproblems120

schedule batches within these time allocations. To maximize biogas production,

the available times, biomass quantities, biogas production rates and storage

decay rates were considered during the planning horizon. [30] proposed a gen-

eral optimization model involving the selection of fuel conversion technologies,

capacities, biomass locations, and the logistics of transportation. They used125

GAMS to implement the MILP model. The results depicted the overall profits

and supply network designs of the system and also illustrated the parameters

having major effects on the overall economics.

Mixed integer stochastic programming has been employed for modeling and

optimizing bioenergy supply chain systems that involve uncertainty. [29] stud-130

ied a supply chain network model which is focused in the southeastern region

of the United States. This model identifies biomass supply locations, facility

sittings, capacities for two kinds of fuel conversion processing, and the logistics

transportation. The model proposed is a two-stage stochastic program, with

the first stage decisions identifying the size and location of the preprocessing135

plants; and the second stage decisions identifying the product flow by scenario.

The objective is the maximization of the expected profit over the different sce-

narios. A global sensitivity analysis using Monte Carlo simulation was also

performed in order to estimate the performance of the system as some problem

parameters change. [9] utilized a mixed integer stochastic programming model140

to provide the strategic planning of bioenergy supply chain systems and opti-

mal feedstock resource allocation in an uncertain decision environment. They

developed a case study using data from California; and solved the problem via a

Lagrangean relaxation-based decomposition algorithm (i.e., progressive hedging

method or horizontal decomposition).145
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The L-shaped algorithm is one of the solution approaches for stochastic opti-

mization problems which has been used extensively in the literature [31]. Both,

the L-shaped and multicut L-shaped methods, decompose the master problem

into as many subproblems as the total number of scenarios. These problems150

are solved iteratively until a stopping criteria is met. Other approaches to solve

stochastic optimization models use variations of the branch-and-bound algo-

rithm [2, 42, 45, 17] or, when appropriate, use extensions of Benders decom-

position algorithm [8, 7, 22, 43, 45]. In the bioenergy supply chain field, [19]

presented a bicriterion, multiperiod, stochastic mixed-integer linear program-155

ming model for the optimal design of hydrocarbon biorefinery supply chains

under supply and demand uncertainties. To minimize the expected annual-

ized cost and the financial risk simultaneously, they proposed a model which

captures multiple conversion technologies, feedstock seasonality and fluctua-

tion, geographical diversity, demand variation, government incentives, biomass160

degradation, and risk management. They propose a multi-cut L-shaped algo-

rithm to reduce the computational time when solving large-scale instances. Four

case studies of hydrocarbon biorefinery supply chain in the State of Illinois were

solved using the proposed algorithm. [36] presented a two-stage stochastic pro-

gramming model to design and manage biodiesel supply chains. They proposed165

an L-shaped algorithm. They used a Lagrangian relaxation algorithm to solve

the master problem since it is an integer program. These authors developed a

case study using data from Mississippi. The model optimizes both costs and

emissions in the supply chain. The results elucidated the impact of carbon

regulatory mechanisms on supply chain costs and emissions and also the effec-170

tiveness of the stochastic programming.
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3. An Integrated Product Quality and Supply Chain Design Model

3.1. Modeling Product Quality

Two product characteristics, which are indicators of biomass quality, are175

moisture and ash contents. Let the biomass moisture content be a random

variable, ε(t), which depends on a specified mean value t. We assume that ε(t)

follows a triangular distribution in [at, bt] with a probability density function as

presented below. This assumption is based on experimental results conducted

with real switchgrass under different storage and harvesting conditions [51].180

fε(t)(e) =


2(e−at)

(bt−at)(t−at) at ≤ e ≤ t
2(bt−e)

(bt−at)(bt−t) t < e ≤ bt

0 o/w

(1)

Similarly, we assume that ash content is a random variable ϑ(δ), whose distribu-

tion is a function of the mean value, δ. We model ash content using a triangular

distribution for ϑ(δ) in [cδ, dδ].

Processes currently used to produce biofuels do have a number of require-

ments with respect to biomass quality. For example, processes that rely on the185

thermochemical conversion technology have a targeted value of moisture content

of no more than 10%. We will refer to the technology target as tk. When this

constraint is violated, a failure cost equal to $q per unit is incurred. This is the

cost of mechanically drying biomass to reduce its moisture to acceptable levels.

The expected cost for not meeting the quality requirements is computed as the190

square of the deviation between the value of the quality characteristic and the

target value. This cost can be regarded as the opportunity cost and is expressed

as:

M(ε(t)) = my2
1 , (2)

where, y1 = max(ε(t)− tk, 0). The expected quality loss is given by:

φ1(ε(t)) =

∫ +∞

−∞
M(ε(t))fε(t)(e)de.
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Similarly, processes which use a thermochemical conversion technology, rely on195

using biomass with no more than 1% of ash content. Let δk represent the ash

content targeted by technology k. Thus, the opportunity cost for not meeting

the ash specification is:

N(ϑ(δ)) = ny2
2 , (3)

where, y2 = max(ϑ(δ)− δk, 0) and, the expected quality loss is given by:

φ2(ϑ(δ)) =

∫ +∞

−∞
N(ϑ(δ))fϑ(δ)(v)dv.

3.2. A Two-Stage Stochastic Model200

Stochastic programming models assume that the probability distributions

governing the data are known or can be estimated [6]. The most extensively

studied stochastic programming models are the two-stage (linear) models. These

models capture the timing of decisions in the SC, where, the first-stage decisions

are made right now and without full knowledge of future events. These future205

events have random outcomes. These random outcomes and the first-stage

decision impact the future (second-stage) decisions in the supply chain. In

such a model, a recourse decision is made in the second-stage to account for

any non-beneficial effects that might have resulted from the first-stage actions.

The optimal policy corresponds to a single first-stage decision and a set of210

recourse decisions (for each random outcome) that define which second-stage

action should be taken [44]. Two-stage stochastic programming models typically

assume that the random event can be described using discrete random variables

with known probability distributions.

The two-stage stochastic location-transportation model identifies facility lo-215

cations that minimize the total of location and expected transportation costs.

The model we propose in this paper is one of its many extensions. The following

sets are defined, I is the set of suppliers, J is the set of potential biorefinery

locations and K is the set of biomass conversion technologies. Let Zjk (∀j ∈ J ,

k ∈ K) be the first stage decision variables, which take the value 1 if a facil-220

ity that uses technology k is located in j, and take the value 0 otherwise. Let
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Xijk ∈ X ⊆ R|I|×|J|×|K|+ be the second stage decision variables which represent

the amount of biomass delivered from supplier i to facility j which uses tech-

nology k. Let ljk be the equivalent annualized investment cost for opening a

biorefinery in location j using technology k. Biomass quality at supplier i is225

not constant, but it rather fluctuates from one season to the next, and from one

year to the next. Let ω be a random variable which represents biomass quality.

Its probability density function is fω(.). The following stochastic programming

model minimizes the total of location and expected transportation costs in the

supply chain.230

Minimize : TC(Z) =
∑
j∈J

∑
k∈K

ljkZjk +Q(Z)

Subject to: (P)

Zjk ∈ {0, 1} ∀j ∈ J ; k ∈ K.

Where,

Q(Z) = EωQ(Z,X, ω) =
∫ +∞
−∞ Q(Z,X, o)fω(o)d(o)

X ∈ X .

3.3. Integrating Product Quality in the Supply Chain Model

The model presented in this section takes an integrated view of key variables235

that impact supply chain design and management decisions of biofuel plants,

such as, location, transportation, technology selection, and product quality.

The goal of this model is to minimize the total supply chain costs by capturing

the trade-offs that exist between location and transportation costs; technology

selection and quality costs; facility location and quality costs.240

Biomass quality impacts differently plants that use different technologies.

Biomass quality requirements are different in a plant that uses a thermochemi-

cal conversion process, versus a plant that uses a biochemical conversion process.
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Even within thermochemical conversion, biomass quality requirements may vary

based on the particular process used, such as, pyrolysis, gasification or combus-245

tion. Thus, with each technology k ∈ K, we associate two parameters: tk,

which represents the requirements with respect to moisture content; and δk,

which represents the requirements with respect to ash content. Each supplier

provides a product that has specific moisture and ash contents. Based on his-

torical data, suppliers commit to deliver biomass with ti% moisture content and250

δi% ash content. These values, ti% and δi%, represent the expected moisture

level and ash content of biomass supplied by supplier i. Indeed, the moisture

and ash contents are random variables that follow a triangular distribution (see

Section 3.1).

Let ω be a discrete variable with density function fω(o) = P [ω = o] = P (o)255

for o ∈ Ω. Consider the special case of the problem with 2 scenarios (|Ω| = 2).

Scenario 1 assumes that weather conditions are rather dry in the region under

study, and scenario 2 assumes a rainy weather. Therefore, under scenario 1,

moisture content is low. Low moisture content implies low quality costs since the

amount of energy required to dry biomass could potentially be zero. Moisture260

content also impacts the amount of biomass available at a supplier. Typically,

dry weather negatively impacts the productivity of agricultural products, and

thus, the amount of agricultural waste available. Under scenario 2 moisture

content is high.

Under scenario 1, the random variable ei – which represents moisture content265

of supplier i – lies on the lower side of the triangular distribution; thus, ati ≤

ei ≤ ti. Let f1
ε(ti)

(ei) = 2(ei−ati)
(bti−ati)(ti−ati) be the moisture content density function

of supplier i under scenario 1. If tk is the target moisture level under technology

k; the expected quality loss for scenario 1 assuming that supplier i is selected,

would be:270

φ1(ε(ti)) =

∫ ti

ati

2m(ei − tk)2(ei − ati)
(bti − ati)(ti − ati)

dei =

2m

(bti − ati)(ti − ati)

∫ ti

ati

(ei − tk)2(ei − ati)dei =
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m
(
γ′it

2
k − β′itk + α′i

)
. (4)

where γ′i, β
′
i and α′i are analytical expressions derived in the Appendix A.

To generalize, the expected quality loss due to moisture content under sce-

nario o and for a given tk is equal to:

c′i(tk, o) = m
(
γ′i(o)t

2
k − β′i(o)tk + α′i(o)

)
. (5)

275

Similarly, each supplier commits to providing biomass which has a particular

ash content by following harvesting techniques which result in biomass with

δi% ash content. This is indeed the expected ash content based on historical

data. However, the actual ash content is a random variable, ϑi, which follows

a triangular distribution as described in section 3.1. The expected quality loss280

from shipments from supplier i under scenario o and for a given δk is a fixed

constant equal to:

ci(δk, o) = n
(
γi(o)δ

2
k − βi(o)δk + αi(o)

)
. (6)

The derivations of γi(o), βi(o) and αi(o) are shown in the Appendix A.

The following two-stage, stochastic model is proposed to minimize the total

of location, transportation, technology selection, and quality costs in the SC285

and it is referred as Model (Q). In model (Q), we use a few additional problem

parameters, such as, si(o), which represents the amount of biomass available at

supplier i under scenario o. Let gik represent a conversion factor (in gallons/ton)

of biomass to biofuel. The value of this factor depends on the type of biomass

supplied from i and technology adapted at facility k. Let ljk denote the facility290

location costs; νjk denote the production capacity of facility j when adapting

technology k; d denote the total demand for bioenergy; and cij denote the unit

delivery cost from supplier i to facility j.

Minimize : TC(Z,X, ω) =
∑
k∈K

∑
j∈J

ljkZjk+
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∑
i∈I

∑
j∈J

∑
k∈K

∑
o∈Ω

P (o) [cij + c′i(tk, o) + ci(δk, o)]Xijk(o)

Subject to: (Q)295 ∑
j∈J

∑
k∈K

Xijk(o) ≤ si(o) ∀i ∈ I, o ∈ Ω (7)

∑
i∈I

gikXijk(o) ≤ νjkZjk ∀j ∈ J, k ∈ K, o ∈ Ω (8)∑
i∈I

∑
j∈J

∑
k∈K

gikXijk(o) ≥ d ∀o ∈ Ω (9)

∑
k∈K

Zjk ≤ 1 ∀j ∈ J (10)

Xijk(o) ∈ R+ ∀i ∈ I, j ∈ J, k ∈ K, o ∈ Ω (11)

Zjk ∈ {0, 1} ∀j ∈ J, k ∈ K. (12)

In model (Q), constraints (7) give an upper bound on the amount of biomass

available at supplier i under scenario o. Constraints (8) connect the continuous

flow variables Xijk with the binary variables Zjk. These constraints restrict

biofuel production to the maximum capacity of the biorefinery. Constraints (9)

enforce total biofuel demand satisfaction. Constraints (10) limit the selection of300

one technology per facility. Constraints (11) are the non-negativity constraints,

and (12) are the binary constraints.

4. A Solution Approach for the Integrated Model

Model (Q) is a two-stage SP model where the first-stage decision variables

are integers and the second-stage decisions are continuous. We propose an L-305

shaped and a multicut L-shaped method to solve this stochastic optimization

problem.

4.1. L-shaped method

Consider the following equivalent formulation of problem (Q).

Minimize : TC(Z) =
∑
k∈K

∑
j∈J

ljkZjk + G
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Subject to:310 ∑
k∈K

Zjk ≤ 1 ∀j ∈ J (13)

G ≥ Q(Z) (14)

Zjk ∈ {0, 1} ∀j ∈ J, k ∈ K. (15)

where Q(Z) = Eo(Q(Z, o)), and

Q(Z, o) = min
X

:
∑
i∈I

∑
j∈J

∑
k∈K

cijk(o)Xijk(o) + pπ(o)

Subject to:∑
j∈J

∑
k∈K

Xijk(o) ≤ si(o) ∀i ∈ I (16)

∑
i∈I

gikXijk(o) ≤ νjkZjk ∀j ∈ J, k ∈ K (17)∑
i∈I

∑
j∈J

∑
k∈K

gikXijk(o) + π(o) = d (18)

Xijk(o) ∈ R+ ∀i ∈ I, j ∈ J, k ∈ K (19)

where, cijk(o) = cij + c′i(tk, o) + ci(δk, o). The literature refers to above

formulation of (Q) as the Master problem, and Q(Z, o) as the Subproblems315

(SP(o)) (for o ∈ Ω) [49]. The Master problem is an Integer Program (IP). To

solve an IP Master problem Lagrangian relaxation or valid inequalities which

improve the solution quality and reduce the required computational time are

suitable approaches. The Subproblems (SP(o)) are Linear Programs (LP), thus,

relatively easy to solve. We solve the Subproblems efficiently using a problem320

specific algorithm. Next, we describe a few extensions of the L-shaped algorithm

with the goal of improving its performance.

Note that, in Subproblems (SP(o)) uncertainty only affects the right-hand-

side of constraints (16) (i.e., biomass supply). The recourse matrix characterized

by left-hand-sides in equations (16)-(18) and the transfer matrix characterized325

by right-hand side of equations (17) are independent of randomness. Therefore,

the above two-stage stochastic program has a Fixed Recourse [32].
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Let N represents the set of solutions Zjk (∀j ∈ J, k ∈ K) which satisfy

constraints (13) to (15). Let Z
n

jk represent the n − th solution in this set.

Subproblems (SP(o)) are feasible even if Zjk = 0 (∀j ∈ J, k ∈ K). In this330

case, π(o) = d. π(o) represent the demand unmet via this supply chain. To

discourage such solutions, we penalize the unmet demand via a high penalty

cost p in the objective function. Thus, Subproblems (SP(o)) are always Feasible.

This is why the proposed Bender’s decomposition algorithm does not generate

feasibility cuts.335

Let βo, αio and λjko be the dual variables of the primal (SP(o)) Subproblem.

The following is the corresponding dual formulation for given Z
n

jk. Note that,

Z
n

jk appear only in the objective function of the dual formulation. Thus, as

we update the values of Z
n

jk (for n = 1, 2, ...) the optimal solution may iterate

among vertexes of the same feasible region.340

D(Z
n
, o) = max

α,β,λ
: dβo −

∑
i∈I

si(o)αio −
∑
j∈J

∑
k∈K

νjkZ
n

jkλjko

Subject to:

gikβo − αio − gikλjk ≤ cijk(o) ∀i ∈ I, j ∈ J, k ∈ K (20)

βo ≤ p (21)

αio ∈ R+ ∀i ∈ I (22)

λjk ∈ R+ ∀j ∈ J, k ∈ K. (23)

Let (αnio, β
n
o , λ

n
jko) denote the optimal solution to D(Z

n
, o) for fixed values

of Z
n

jk. By duality, the following holds true:

Q(Z
n
, o) =

dβno −∑
i∈I

si(o)α
n
io −

∑
j∈J

∑
k∈K

νjkλ
n
jkoZ

n

jk


By convexity of Q(Z, o), the following is also true:

Q(Z, o) ≥

dβno −∑
i∈I

si(o)α
n
io −

∑
j∈J

∑
k∈K

νjkλ
n
jkoZjk


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We now take the expectations of these two functions to obtain the following345

relationships.

Q(Z) =
∑
o∈Ω

(P (o)Q(Z, o)) ≥
∑
o∈Ω

P (o)

dβno −∑
i∈I

si(o)α
n
io −

∑
j∈J

∑
k∈K

νjkλ
n
jkoZjk


We use this relationship to develop the following equivalent formulation of

(Q) which we refer to as (EQ).

Minimize : TC(Z) =
∑
k∈K

∑
j∈J

ljkZjk + G

Subject to:

∑
k∈K

Zjk ≤ 1 ∀j ∈ J (24)

∑
o∈Ω

P (o)

dβno −∑
i∈I

si(o)α
n
io −

∑
j∈J

∑
k∈K

νjkλ
n
jkoZjk

 ≤ G n ∈ N (25)

Zjk ∈ {0, 1} ∀j ∈ J, k ∈ K. (26)

In this formulation, the number of constraints (25) is governed by the size350

of set N , which could be a large number. Recall that N represents the set of

solutions Zjk (∀j ∈ J, k ∈ K) which satisfy constraints (13) to (15). These

constraints limit the number of non-zero Zjk variables (in each iteration of the

Bender’s algorithm) to at most |J |. Thus, the size of N is equal to 1 plus the

number of subsets of set J , 2|J|. For this reason, instead of solving (EQ), we355

solve the following reduced model formulation which we refer to as (REQ). This

model is solved iteratively, and 1 ≤ l ≤ |N | represents the iteration number.

Minimize : TC(Z) =
∑
k∈K

∑
j∈J

ljkZjk + G

Subject to:

∑
k∈K

Zjk ≤ 1 ∀j ∈ J (27)
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∑
o∈Ω

P (o)

dβno −∑
i∈I

si(o)α
n
io −

∑
j∈J

∑
k∈K

νjkλ
n
jkoZjk

 ≤ G n = 1, . . . , l (28)

Zjk ∈ {0, 1} ∀j ∈ J, k ∈ K. (29)

The L-shaped algorithm is presented in Table 1. Step 1 of the algorithm

solves (REQ) which is a relaxation of the Master problem and therefore its360

objective function value serves as a lower bound for (Q). In Step 2 each sub-

problem (SP(o)) is solved provided solutions Zn from Step 1. An upper bound

is calculated using the solutions from the Master problem and the Subproblems.

In the first iteration of this algorithm, since n = 0, the optimal solution to (EQ)

is Zjk = 0. This implies that no facilities are open in the supply chain. In this365

iteration, the solution to the Subproblems are π(o) = d. In Step 3 we check the

relative gap between the best bounds generated so far. If the gap is less than a

threshold ε the algorithm terminates. Otherwise, an optimality cut is added to

the Master problem, and the problem is resolved.

4.1.1. Trust region cuts:370

Based on [39], cutting plane-based algorithms (such as, Benders decomposi-

tion) exhibit unstable behavior in their initial iterations. That means, solutions

tend to oscillate from one feasible region to another which leads to slow con-

vergence. Therefore, [40] suggests the use the following trust region inequalities

which bound the Hamming distance [20] of the solutions found in consecutive375

iterations of the algorithm.

Let Z
n

jk (for j ∈ J, k ∈ K) be the solution obtained from solving (REQ)

during iteration n. Let Zn+ = {(j, k)|Znjk = 1, ∀j ∈ J, k ∈ K}. The following

inequality is added to (REQ).∑
(j,k)∈Zn+

(1− Zn+1
jk ) +

∑
(j,k)/∈Zn+

Zn+1
jk ≤ 1. (30)

These inequalities force the solutions generated during iterations n and n+1380

of the algorithm to differ by at most one variable. These inequalities expedite
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Table 1: An L-shaped algorithm for problem (Q)

STEP 0:
Initialize: ε, n← 1, LB ← −∞, UB ← +∞

STEP 1:
Solve (REQ) to obtain Zn

jk, TC(Zn)
If (TC(Zn) > LB) Then

LB ← TC(Zn)
End If

STEP 2:
For all o ∈ Ω Do

Solve (SP(o)) to obtain αn
io, β

n
o , λ

n
jk

End for

If TC(Zn) +
∑

o∈Ω

(
P (o)D(Z

n
, o)
)
− G < UB Then

UB ← TC(Zn) +
∑

o∈Ω

(
P (o)D(Z

n
, o)
)
− G

End If
STEP 3:

If ((UB − LB)/UB < ε) Then STOP
Else

Add to (REQ):∑
o∈Ω

P (o)
(
dβn

o −
∑

i∈I si(o)α
n
io −

∑
j∈J

∑
k∈K νjkλ

n
jkoZjk

)
≤ G

n← n+ 1; GoTo STEP 1
End If

the running time of the algorithm during its initial iterations. Later on, we drop

these constraints in order to maintain the feasibility of (REQ).

4.1.2. Multi-cut L-shaped algorithm:

The multi-cut L-shaped algorithm was introduced by [5] to enhance the con-385

vergence of the L-shaped algorithm. In each iteration of the L-shaped algorithm

(Table 1), one single optimality cut (constraint (28)) is added to formulation

(REQ). Instead, in each iteration of the multi-cut L-shaped algorithm one could

add as many as |Ω| cuts, one cut per scenario. In this case, formulation (REQ)

is slightly modified to the following. We call this formulation (Ω-REQ)390

Minimize : TC(Z) =
∑
k∈K

∑
j∈J

ljkZjk +
∑
o∈Ω

P (o)G(o)

Subject to: (27), (29)

dβno −
∑
i∈I

si(o)α
n
io −

∑
j∈J

∑
k∈K

νjkλ
n
jkoZjk ≤ G(o) n = 1, . . . , l, o ∈ Ω (31)
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To solve this problem we slightly adjust the algorithm presented in Table 1.

The modification made is the following: STEP 1 solves the modified (Ω-REQ)

instead of (REQ).395

4.1.3. Solving the subproblems:

The structure of problems (SP(o)) resembles the transportation problem. It

is well known that the solutions to the transportation problem can be degen-

erate. Therefore, the dual of this problem can have multiple optimal solutions.

This fact leads to the possibility of multiple optimality cuts being generated400

in each iteration of the algorithm. The literature indicates that, if one is to

pick amongst these cuts the ”strongest” one, then, the approach would result

in improvements of the existing algorithm [48]. In the context of our prob-

lem, let
∑
o∈Ω P (o)

(
dβn1

o −
∑
i∈I si(o)α

n1
io −

∑
j∈J

∑
k∈K νjkλ

n1

jkoZjk

)
≤ G and∑

o∈Ω P (o)
(
dβn2

o −
∑
i∈I si(o)α

n2
io −

∑
j∈J

∑
k∈K νjkλ

n2

jkoZjk

)
≤ G be two cuts405

generated during the n-th iteration of the L-shaped algorithm, each correspond-

ing to one of the two optimal solutions to the dual of (SP(o)). The first cut is

stronger than the second if the following holds true for any Zjk ∈ N .

∑
o∈Ω

P (o)

dβn1
o −

∑
i∈I

si(o)α
n1
io −

∑
j∈J

∑
k∈K

νjkλ
n1

jkoZjk

 ≥
∑
o∈Ω

P (o)

dβn2
o −

∑
i∈I

si(o)α
n2
io −

∑
j∈J

∑
k∈K

νjkλ
n2

jkoZjk


In order to generate tight cuts we follow a similar procedure as the two-phase410

approach proposed by [38] for the capacitated facility location problem. In the

dual formulation of (SP(o)), the dual values associated with Z
n

jk parameters

which are zero, do not have any impact on the optimal objective function value.

Recall that, at most |J | (from a total of |J | ∗ |K|) Znjk parameters are non-

zero. Therefore, when Z
n

jk = 0, we can modify its coefficient −νjkλjko without415

changing the objective function value while, of course, maintaining the feasibility
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of the corresponding solution (satisfying constraints (32)). The following is a

summary of the two-phase process.

Phase 1 : We solve a reduced model formulation of the dual of (SP(o)) to obtain

a set of values for the dual variables λnjko associated with the variables Z
n

jk > 0,420

as well as, to obtain the optimal αnio (∀i ∈ I), and βno . Let J> = {j ∈ J |Znjk > 0}

and K> = {k ∈ K|Znjk > 0}. Formulation (R1-SP(0)) presented below is solved

to find these optimal solutions.

D>(Z
n
, o) = max

α,β,λ
: dβo −

∑
i∈I

si(o)αio −
∑
j∈J>

∑
k∈K>

νjkZ
n

jkλjko

Subject to:

gikβo − αio − gikλjk ≤ cijk(o) ∀i ∈ I, j ∈ J>, k ∈ K> (32)

βo ≤ p (33)

αio ∈ R+ ∀i ∈ I (34)

λjk ∈ R+ ∀j ∈ J>, k ∈ K>. (35)

Phase 2 : We fix the values of αnio to αnio (∀i ∈ I), and βno to β
n

o as deter-425

mined in the first phase of this procedure. Next, we solve the following models,

one per each Z
n

jk > 0. Solving these problems generates dual variables λjko

which provide a stronger cut (equation (28)) to add to formulation (REQ). Let

J= = {j ∈ J |Znjk = 0} and K= = {k ∈ K|Znjk = 0}. Formulation (R2-SP(0))

presented below is solved to find these optimal solutions.430

D=(Z
n
, o) = max

λ
: −

∑
j∈J=

∑
k∈K=

νjkλjko

Subject to:

gikβo − αio − gikλjk ≤ cijk(o) ∀i ∈ I, j ∈ J=, k ∈ K= (36)

λjk ∈ R+ ∀j ∈ J=, k ∈ K=. (37)

The optimal solution to models (R2-SP(0)) can as well be found by inspection.

Constraints (36) can be written as λjk ≥ βo−
(
αio+cijk(o)

gik

)
,∀i ∈ I, j ∈ J=, k ∈
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K=. Let rjk = maxi∈I βo −
(
αio+cijk(o)

gik

)
. Then, the optimal λjk for model

(R2-SP(0)) can be calculated as435

λjk =

 rjk if rjk > 0

0 o/w.
(38)

Solving the dual of (SP(o)) using the two-phase procedure enhances the solution

time of the L-shaped algorithm. This is mainly due to generating stronger cuts.

Additionally, the procedure proposed significantly reduces the size of the LPs

solved during Phase 1, which enables us to solve large problem instances without

running into memory problems due to using commercial software packages to440

solve these LPs.

4.1.4. Other algorithmic improvements:

Formulation (REQ) is an integer linear program, as such, it is difficult to

solve. During the initial iterations of the L-shaped algorithm, the quality of the

solutions obtained from solving (REQ) is poor. This is due to the fact that, in445

the beginning of the algorithm, the number of cuts (28) added to the (REQ)

formulation is very small. The quality of the solutions found improves as the

algorithm progresses. For this reason, in the initial iterations of the algorithm we

just seek the first feasible solution to (REQ), rather than the optimal solution.

Later on, as the algorithm progresses, we seek high quality solutions to (REQ).450

Doing this reduces the running time of the L-shaped algorithm by reducing the

solution time during the initial iterations. Specifically, we seek only a feasible

solution to (REQ) for as long as (UB−LBUB ) ≤ 4%. Once this condition is met,

we seek solutions which are optimal.

5. Case Studies455

5.1. Biomass Supply

The case study developed is focused in the state of Tennessee. Each of its

ninety four counties is a biomass supplier. Of these, thirty one counties are

considered as potential locations for a biorefinery. We opted for a large number
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Figure 1: The Biorefineries using the Switchgrass Feedstock Supported by the Counties of the

State of Tennessee

of potential biorefinery locations to provide the supply chain with options to460

reduce costs. The type of biomass considered is switchgrass. Figure 1 illus-

trates the potential locations of the biorefineries and the counties of the state of

Tennessee. The total amount of biomass available for production of bioenergy

in the state of Tennessee is 19,482,102.51 dry ton [26].

The amount of switchgrass available at the county level in Tennessee is ac-465

quired from the Bioenergy Knowledge Discovery Framework [13]. The amounts

reported by the KDF are in dry tons (sidry). Since biomass in the field is not

dried, we use equation (39) to convert dried biomass to biomass with a certain

moisture content. Moisture content depends on the weather conditions under

a particular scenario. The moisture content and the moist biomass supply are470

computed based on the region the supplier is in and for each year (see Table 4).

A random number is generated to determine the moisture content from either

the lower (case 1) or upper portion (case 2) of the triangular distribution (i.e.,

ei belongs to ati ≤ ei ≤ ti or ti ≤ ei ≤ bti). Lastly, equation (39) is used to

compute the amount of biomass available at each supplier during 2004 to 2014.475

si = sidry/(1− ei) (39)

5.2. Biomass Quality and Transportation Costs

The data on the physical and chemical composition of switchgrass came from

other studies in the literature. For example, [51] collected samples from bales
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which were stored up to 75, 150, and 225 days in the state of Tennessee. These

samples were analyzed to characterize the moisture and ash content of biomass.480

The samples were collected from bales with different particle size and wrap-

ping materials which represent different practices that affect biomass quality.

Specifically, the data collected was divided into three levels, corresponding to

the particle size of full-length of 243.84 cm, 7.62 cm and 1.27-1.91 cm. We use

this data to derive the corresponding distributions of moisture and ash content485

in switchgrass. The goodness of fit test indicated that triangular is a suitable

distribution to represent these two random variables. Tables 2 and 3 show the

parameters of the triangular distributions at each level for the moisture and

ash content, respectively. These distributions characterize the moisture and ash

content expected when three different harvesting practices are adopted.490

In order to estimate the cost of quality, the values of α′i, β
′
i, α

′
i and αi, βi,

αi were computed based upon the derivations in Appendix A. The procedure

developed to obtain the coefficient p and q (necessary to compute the quality

costs due to ash and moisture contents, c′i(tk, o) and ci(δk, o)) is described below.

Tables 10 and 11 in Appendix A summarize the unit cost of quality used in our495

numerical analysis.

[18] used experimental data to derive a linear relationship between the per-

centage of ash content in biomass and the percentage of total liquid yield [mf

wt]. We use this linear relationship to compute the percentage of oil yield when

ash content falls within 1% and 8%. Next, we calculated the oil yield (in gal/dry500

ton) assuming an 84 gal/dry ton yield from biomass that contains 1% ash as a

baseline. Finally, we used the price of heating oil (at $1.76/gal on June 2015) as

a proxy for pyrolysis oil to calculate the cost of oil per dry ton of biomass feed-

stock. A penalty cost is charged to biomass feedstock with ash concentrations

exceeding the target value of δk. This cost equals $0 at or below the target level505

(δk). The following equation estimates the penalty cost for ash content higher

than the technology target level for the thermochemical process (k=1) which
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Table 2: The Parameters of Triangular Distribution for the Moisture Content

Division at t bt

Moisture Content (in %) - Distribution 1 26 27 29
Moisture Content (in %)- Distribution 2 17 19 20
Moisture Content (in %)- Distribution 3 16 18 23

Table 3: The Parameters of Triangular Distribution for Ash Content

Division cδ δ dδ

Ash Content (in %)- Distribution 1 1.33 2.89 4.53
Ash Content (in %)- Distribution 2 0.71 2.44 3.79
Ash Content (in %)- Distribution 3 0.82 2.18 3.49

requires ash content to be δ1 ≤ 1%.

m = 5.8561 + 0.6507(δ − δ1)2 (40)

In the case of the biochemical process (k = 2), [27] estimate the cost of

ash dockage to be $2.25/dry T per each percentage of ash above the 5% process510

specification. We consider this to be the unit cost necessary to meet the required

ash specifications. Thus, in our model the losses associated to ash (with δ2 =

5%) are:

m = 2.25(δ − δ2)2 (41)

Noteworthy our estimated distributions are below the 5% specification; there-

fore, the ash quality cost for this case study is negligible. However, distribution 1515

includes the 4% ash content for switchgrass assumed in [27], confirming that this

case study is realistic and that the reason why the ash quality cost is negligible

is the less stringent process requirements of the biochemical technology.

The expected quality cost associated to moisture is q (see equation (4)).

This cost occurs when biomass is mechanically dried to meet process specifi-520

cations [35]. [35] estimate the fixed cost of drying to be $2.46/dry ton. They

also estimate an additional operational cost of $7.84/dry ton for an initial mois-

ture content of 40%. This relationship is used to estimate the quality cost for

moisture in the range from 10% to 40%.
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According to [28], the moisture content does not have a considerable impli-525

cation to the biochemical conversion process. However, the moisture content is

linked to the degradation and consumption of structural carbohydrates during

storage. Thus, the technology specification is generally recognized as 20%. Even

when the specification of moisture for the biochemical process is not as stringent

as in thermochemical conversion process (10%), the moisture content does im-530

pact feedstock transportation costs. The following equation estimates the cost

of quality when the moisture content of biomass is higher than the technology

target level. The technology level is t1 = 10% for the thermochemical processes

and t2 = 20% for the biochemical processed.

n = 5.4318 + 0.0066(t− tk)2 ∀k = 1, 2 (42)

To calculate the transportation costs of biomass, we utilize the following535

equation presented by [1].

cij = 3.85 + 0.0528dij (43)

where dij is the distance from supplier i to facility j in kilometers.

5.3. Production Capacities and the Investment Costs of Biorefineries

Five different biorefinery production capacities are considered in this study.

Two technologies are considered: thermochemical and biochemical. Regarding540

the thermochemical conversion process, the biorefineries are designed to yield

37.8, 75.6, 113.4, 189, and 226.8 million liters of ethanol per year. The in-

vestment costs for building the biorefineries with these capacities are estimated

to be $90,850,195, $145,360,312, $193,813,750, $271,339,250, and $310,102,000.

The investment costs are computed considering that, due to the economies of545

scale, doubling production capacities will increase costs by 60%. For these cal-

culations, the reference capacity is 226.8 million liters per year which requires

an investment cost of $310,102,000 [14]. The investment costs for building a

biorefinery which uses the biochemical conversion process are estimated using a

similar approach. The reference capacity is 226.8 million liters per year which550
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requires an investment cost of $423,000,000 [24]. The biorefineries are designed

to produce an ethanol yield of 37.8, 75.6, 113.4, 189, and 226.8 million liters per

year.

In our model formulation, the parameter ljk represent the equivalent annual

investment costs for biorefinery located in j and using conversion technology555

k. In this study we assume a project life of 20 years and an interest rate of

15%. The equivalent annual cost (EAC), which is the cost per year of owning

and operating an asset over its entire lifespan, is used to provide the annual

cost incurred due to those investments. EAC is calculated using the following

equation:560

EAC =
r(NPV )

1− 1
(1+r)t

. (44)

Where, NPV stands for net present value, r is the interest rate, and t is the

expected lifetime of the project.

The conversion rate (gik) of switchgrass to cellulosic ethanol via a thermo-

chemical process equals 226.8 liters per dry ton [21]. The conversion rate of

switchgrass to cellulosic ethanol via a biochemical process equals 378 liters per565

dry ton [33]. Furthermore, the total amount of bioethanol demand equals 850

Million liters per year for the state of Tennessee based upon a USDA report on

February 2015 [47].

5.4. Generation of Scenarios

Eleven scenarios are created by analyzing the historical precipitation data570

during 2004 to 2014. This data was obtained from six weather stations of

the National Centers for Environmental Information located in the South East,

North East, Mid South, Mid North, South West, and North West of Tennessee.

Details about these scenarios are provided in Table 4. Historical data was used

to calculate the average amount of the precipitation in each region. This average575

was then compared to the actual precipitation on a particular year. Numbers

1 and 2 in this table are used to show whether precipitation was under or over

the average (i.e., case 1 or case 2, respectively).
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Figure 2: The Stations of State of Tennessee for the National Centers for Environmental
Information [37]

Table 4: Scenarios of Regions from 2004 to 2014

Case 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

South East 2 2 1 1 2 2 2 2 2 2 2
North East 1 1 1 1 1 2 1 1 1 1 1
Mid North 2 1 2 2 1 1 1 1 2 1 2
Mid South 2 2 2 1 1 1 2 1 2 1 2
South West 2 1 2 2 2 1 2 2 1 1 1
North West 2 1 2 2 2 2 1 2 2 2 1

We develop six different problems as shown in Table 5. Here, ML-T1, ML-

T2, and ML-T3 represent different moisture levels, more specifically, moisture580

levels following the triangle distributions 1, 2, 3 according to Table 2. Similarly,

AL-T1, AL-T2, and AL-T3 represent different ash levels, each following the

triangle distributions 1, 2, 3 according to Table 3. The goal of developing these

problems is to evaluate how different combinations of ash and moisture content

impact the cost of quality in this supply chain.585

Table 5: Problem Definitions
Problem Moisture Ash

1 ML-T1 AL-T1-Low
2 ML-T1 AL-T1-High
3 ML-T2 AL-T2-Low
4 ML-T2 AL-T2-High
5 ML-T3 AL-T3-Low
6 ML-T3 AL-T3-High
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6. Numerical Analysis

This section presents the results of our numerical analysis. The algorithms

used in this study are written in AMPL. GUROBI 6.0.0. is used to solve the

mathematical models presented above. The experiments are completed using a590

computer with Intel(R) Core(TM) i7-2600U CPU @ 3.40GHz; and 16.00 GB of

RAM.

6.1. Evaluating the Performance of the Stochastic Model

To evaluate the performance of the stochastic programming model proposed

we use two performance measures, which are, the value of the stochastic so-595

lution (VSS) and the expected value of perfect information (EVPI). Table 6

summarizes the results of this analysis.

VSS represents the cost savings from using a stochastic – instead of the

corresponding deterministic – model to design and manage the supply chain.

Therefore, VSS is the difference between the objective function value of the600

stochastic model (REQ) and the expected value (EV) model. We calculate

EV by solving (REQ) with a single scenario whose quality cost is equal to the

expected value. The value of VSS differs by problem, however, this value is

always greater than zero. This fact indicates that the design and management

decisions proposed by the stochastic model outperform the decisions proposed605

by the deterministic model. The savings due to using the stochastic model vary

from $19,000 to $59,000 annually.

EVPI measure the value of knowing the future with certainty. We calculate

EVPI as the difference between the objective function value of the wait-and-see

(WSS) model and the stochastic model (REQ). To find WSS we solve model610

(REQ) for each scenario assuming that this is the only scenario we will be facing

in the future. Next, we use these results to calculate WSS. For example, for

Problem 1, WSS = (1, 297, 148 ∗ 0.02) + (1, 297, 540 ∗ 0.03) + ...+ (1, 297, 354 ∗

0.17) = 1, 297, 575. The values of EVPI are positive for all the problems studied.

This indicates that, if we were to know the future with certainty, then, the615
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Table 6: Comparing the Costs (in $1,000) of Stochastic and Deterministic Solutions

Solution Strategies Problems
1 2 3 4 5 6

Wait-and-see
Sc. Probability

1 0.02 1,297,148 1,307,098 1,293,303 1,300,038 1,292,074 1,297,153
2 0.03 1,297,540 1,307,490 1,293,622 1,300,357 1,293,207 1,298,286
3 0.05 1,297,148 1,307,098 1,293,303 1,300,038 1,292,074 1,297,153
4 0.06 1,297,558 1,307,507 1,293,607 1,300,341 1,292,507 1,297,587
5 0.08 1,297,744 1,307,693 1,293,786 1,300,521 1,292,898 1,297,977
6 0.09 1,297,910 1,307,860 1,293,909 1,300,644 1,293,590 1,298,669
7 0.11 1,297,374 1,307,323 1,293,499 1,300,234 1,292,515 1,297,594
8 0.12 1,297,744 1,307,693 1,293,786 1,300,521 1,292,898 1,297,977
9 0.14 1,297,315 1,307,264 1,293,426 1,300,161 1,292,766 1,297,845
10 0.15 1,297,910 1,307,860 1,293,909 1,300,644 1,293,590 1,298,669
11 0.17 1,297,354 1,307,304 1,293,443 1,300,177 1,292,817 1,297,896

WSS 1,297,575 1,307,525 1,293,641 1,300,376 1,292,937 1,298,016

EV 1,297,568 1,307,517 1,293,634 1,300,369 1,292,929 1,298,008
(REQ) 1,297,530 1,307,480 1,293,610 1,300,350 1,292,870 1,297,950
VSS 38 37 24 19 59 58
EVPI 45 45 31 26 67 66
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Table 7: List of Algorithms Tested

Algorithm Description

A1 The L-shaped algorithm presented in Table 1
A2 A1 including improvements presented in Section 4.1.4
A3 A2 including improvements presented in Section 4.1.3
A4 A3 including improvements presented in Section 4.1.1
A5 The multi-cut L-shaped algorithm including improvements

presented in Sections 4.1.1, 4.1.3, 4.1.4

Figure 3: The Performance of the Proposed Five Algorithms over Iterations, including L-
shaped, Enhanced L-shaped, and Multi-cut L-shaped Algorithms

performance of this supply chain would be better. For problem 1, for example,

the annual cost of knowing the future with certainty is $45K.

6.2. Evaluating Algorithmic Performance

We evaluated the performance of a number of algorithms to solve the prob-

lems presented above. Table 7 lists the algorithms developed and Figure 3620

illustrates the performance of these algorithms over iterations.

Table 8 summarizes the error gap, running time and the number of iterations

for each algorithm. The stopping criteria used for all the algorithms (including

Gurobi) was an error gap (i.e., the percentage deviation between the upper and

lower bound) less than or equal to 1%. Additionally, we stopped algorithms625

A1,...,A5 if the total number of iterations reached 100. Based on these results,

all the algorithms proposed outperform Gurobi with respect to both, solution

quality and running time. The results indicate that, the improvements suggested
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Table 8: Summary of Experimental Results

Running time (in CPU sec)

Problem Gurobi A1 A2 A3 A4 A5

1 1992.63 100.44 32.92 8.56 16.00 15.92
2 2018.73 96.01 25.80 12.28 6.14 32.92
3 2461.68 105.55 43.44 36.68 29.22 82.79
4 2507.06 111.60 26.90 50.20 18.58 30.23
5 2097.93 105.02 5.58 39.63 18.87 65.03
6 2131.74 109.11 21.34 15.84 14.94 100.94

Avg. 2201.63 104.62 26.00 27.20 17.29 54.64

Error gap (in %)

Problem Gurobi A1 A2 A3 A4 A5

1 1.00 2.24 0.61 0.55 0.87 0.98
2 1.00 2.59 0.86 0.54 0.88 0.83
3 1.00 2.66 1.00 0.87 0.78 0.18
4 1.00 2.92 0.94 0.81 0.84 0.97
5 0.99 2.91 0.89 0.89 0.99 0.90
6 0.99 2.88 0.84 0.96 0.62 0.81

Avg. 1.00 2.70 0.86 0.77 0.83 0.78

Number of iterations

Problem Gurobi A1 A2 A3 A4 A5

1 - 100 67 18 32 32
2 - 100 55 28 12 37
3 - 100 75 72 57 77
4 - 100 51 86 38 45
5 - 100 13 73 41 62
6 - 100 42 42 35 74

Avg. - 100.00 50.50 53.17 35.83 54.50

do impact the performance of the L-Shaped algorithm.

The results indicate that A4 was the first to meet both stoping criteria. Its630

average running time was 17.29 CPU seconds. In terms of solution quality,

algorithm A3 outperformed the rest. The quality of the solutions from the

multi-cut L-shaped algorithm is also very good.

6.3. Discussing Managerial Insights

Table 9 provides details about the distribution of the total costs for the 6635

problems solved. Based on these results, on average, the cost of lowering mois-

ture content to meet process requirements counts for 1.85% of the total costs.

The cost occurred due to ash content being higher than process requirement

31



counts for 2.19% of the total costs. On the average, the quality-related costs

count for 4.04% of the total supply chain costs. While these costs represent640

only a small percentage of the overall supply chain costs, in absolute terms,

they equal $52.5 million annually. As such, should not be ignored in the supply

chain decision making process.

The quality costs are the highest in problems where moisture and ash levels

follow distribution 1 (Problems 1 and 2). These costs are 24.03% and 23.86%645

higher as compared to the problems where moisture and ash levels follow dis-

tributions 2 and 3, respectively. Additionally, ash costs for problems 1, 3 and 5

(which have low ash content as shown in Table 5) are always lower as compared

to 2, 4 and 6 (which have high ash content as shown in Table 5). These results

indicate that high moisture and ash contents negatively impact the quality of650

biofuel, and consequently, costs in the supply chain. Indeed, variable costs (i.e.,

transportation, ash and moisture) increase by 16.5% when comparing problem

2 (highest ash and moisture) with problem 5 (lowest ash and moisture). More-

over, facility locations are also different in problems 1 and 2 versus 3 to 6. In

problems 1 and 2, a large capacity plant is located in Giles county and a smaller655

plant is located in Haywood county. Whereas, in problems 3 to 6, a smaller plant

capacity is located in Giles county, and a larger plant is located in Haywood

county.

6.4. Impact of Quality Costs on the Supply Chain Network Design and Man-
agement660

The impact of quality costs on the supply chain network design and man-

agement is illustrated in Figures 4 and 5. Figure 4 presents the solution of

problem 2 when solving the model which captures quality-related costs. Figure

5 presents the solution of problem 2 when solving a model which does not cap-

ture quality-related costs. The model which captures quality costs is mindful665

of the biomass specifications in certain regions, which impacts the location of

plants. The results show that the optimal location of biorefineries differ when

biomass quality is included or excluded from the model. Specifically, the model

which captures the cost of quality opens a fourth biorefienery in Henry county
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Figure 4: Solution using the Highest Parameters in the Distribution for Moisture and Ash in
the State of Tennessee when integrating quality-related costs.

Figure 5: Solution using the Highest Parameters in the Distribution for Moisture and Ash in
the State of Tennessee when not integrating quality-related costs.

while the model which does not include the cost of quality opens a fourth biore-670

finery in Smith county. Interestingly, when considering biomass quality, the

model tends to open two biorefineries next to each-other in order to reduce the

quality-related costs. This suggests that scalability of plant capacity might be

part of the optimal decision. Moreover, biomass transportation paths differ as

displayed using the colorbar in Figures 4 and 5. These results also point to675

the fact that quality-related costs incur when using field run biomass, therefore,

they should not be ignored in the supply chain decision making process.

The moisture and ash costs per technology shown in Tables 10 and 11 in the

Appendix A were computed using the baseline distributions of Table 2 and 3.

Table 9: Summary of Experimental Results

Costs (in $ mill) Biomass used
Problem Fixed Transport. Moisture Ash Variable Total (in mill tons)

1 1,202 41 28 27 96 1,298 3.75
2 1,202 41 28 37 106 1,307 3.75

3 1,202 46 22 24 92 1,294 3.75
4 1,202 46 22 31 99 1,300 3.75

5 1,202 45 22 23 91 1,293 3.75
6 1,202 45 22 29 96 1,298 3.75
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7. Conclusions and Future Work680

This paper proposes a two-stage stochastic programming model and provides

a unique approach to capture the impacts of biomass quality and variability on

the design and management of its supply chain. The proposed model minimizes

the total of location, transportation, technology selection, and quality costs in

the supply chain. To solve the proposed stochastic model, different algorithms685

were proposed and tested (i.e., L-shaped, L-shaped with trust region cuts and

algorithmic improvements, and multi-cut L-shaped algorithm). All of the pro-

posed algorithms outperform Gurobi in terms of solution quality and running

time. The results show that A4 is the fastest algorithm with an average running

time of 17.29 CPU seconds and 0.83% error gap. Algorithm A3 outperforms690

the rest in terms of solution quality with an average error gap of 0.77% and an

average running time of 27.20 CPU seconds.

The results indicate that the moisture-related cost is 27% higher in Prob-

lems 1 and 2 for which the moisture content is highest. The ash-related cost

is 31% higher for problems 2, 4 and 6 for which ash content is highest. This695

highlights the impact of ash and moisture contents on the supply chain costs.

Moreover, the results illustrate that high moisture and ash contents negatively

impact the quality of biofuel and require the addition of quality control activ-

ities; consequently, variable costs (transportation, ash and moisture). For this

reason, costs were 16.5% higher for problem 2 (highest ash and moisture) versus700

problem 5 (lowest ash and moisture).

We also resolved the (REQ) model after dropping the quality-related costs.

Hiding the quality-related costs decreased the variable costs, transportation

costs included. Moreover, the optimal solution of this model (i.e., location of

biorefineries, the selection of suppliers and the amount of biomass transported)705

differs from the solution when the model considers the quality costs. Since the

quality-related costs are incurred when using field run biomass, they should not

be ignored in the supply chain decision making process.

The proposed model can be extended to include other types of biomass feed-
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stocks and additional emerging biomass conversion technologies. Future lines of710

research include the extension of this model to a multi-objective optimization

model which minimizes costs and the environmental impacts of biofuel pro-

duction process. This model can be also extended to further investigate the

feasibility of large-scale, region-based supply chains in support of biofuel pro-

duction. In this case, a biofuel plant would use local suppliers and suppliers715

located further away to replenish biomass inventories. Expanding the supplier

base will, in return, increase biomass availability, increase biomass variety, and

reduce biomass supply risks. In order to facilitate the delivery of biomass, a

hub-and-spoke biomass SC design model can be investigated.
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Appendices725

Appendix A Calculating Expected Costs for (ε− tk)
2

Case 1: Moisture content of supplier i is lower than ti, thus, ati ≤ ei ≤ ti.

The corresponding density function for ei is:

fε(t)(e) =


2(e−at)
(t−at)2 at ≤ e ≤ t

0 o/w
(45)

φ1(ti, εi) =

∫ ti

ati

2m(εi − tk)2(εi − ati)
(ti − ati)2

dεi =
2m

(ti − ati)2

∫ ti

ati

(εi−tk)2(εi−ati)dεi =

2m

t2i (1− a)2

∫ ti

ati

(εi − tk)2(εi − ati)dεi =
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2m

t2i (1− a)2

(
1

4
t4i−

1

4
a4t4i+

1

3
(−2tk−ati)(t3i−a3t3i )+

1

2
(t2k+2tkati)(t

2
i−a2t2i )−t2kati(ti−ati)

)
=

2m

(
t2k

1
2a

2 − a+ 1
2

(1− a)2
+ tk

(− 2
3 −

a3

3 + a)ti

(1− a)2
+

( 1
4 + 1

12a
4 − a

3 )t2i
(1− a)2

)
=

m

(
t2k
a2 − 2a+ 1

(1− a)2
+ tk

(−4− 2a3 + 6a)ti
3(1− a)2

+
(6 + 2a4 − 8a)t2i

12(1− a)2

)
=

m

(
t2k(

1− a
1− a

)− tk
(4− 2a(1 + a))ti

3(1− a)
+

(3− a(1 + a+ a2))t2i
6(1− a)

)
=

m

(
t2k −

(4 + 2a)ti
3

tk +
(3 + 2a+ a2)t2i

6

)

In this case:

γ′i = 1, β′i =
2(2 + a)ti

3
, α′i =

(3 + 2a+ a2)t2i
6

.

Case 2: Moisture content of supplier i is higher than ti, thus, ti < ei ≤ bti.730

The corresponding density function for ei is:

fε(t)(e) =


2(bt−e)
(bt−t)2 t ≤ e ≤ bt

0 o/w
(46)

φ1(ti, εi) =

∫ bti

ti

2m(εi − tk)2(bti − εi)
(bti − ti)2

dεi =
2m

t2i (b− 1)2

∫ bti

ti

(εi−tk)2(bti−εi)dεi =

=
2m

t2i (b− 1)2

∫ bti

ti

(
btiε

2
i − ε3i − 2btitkεi + 2tkε

2
i + btit

2
k − t2kεi

)
dεi =

=
2m

t2i (b− 1)2

(
−ε4i

4
+ bti

ε3i
3

+ 2tk
ε3i
3
− btitkε2i − t2k

ε2i
2

+ btit
2
kεi

)bti
ti

=
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=
2m

t2i (b− 1)2

(
1

4
t4i−

1

4
b4t4i+

1

3
(2tk+bti)(b

3t3i−t3i )+
1

2
(−t2k−2tkbti)(b

2t2i−t2i )+t2kbti(bti−ti)

)
=

=
2m

ti(b− 1)

(
−1

4
t3i (b+1)(b2+1)+

1

3
(2tk+bti)(b

2t2i+bt
2
i+t

2
i )+

1

2
(−t2k−2tkbti)(bti+ti)+t

2
kbti

)
=

=
2m

ti(b− 1)

[(
t2kbti −

t2k
2

(bti + ti)

)
+

(
2tk
3

(b2t2i + bt2i + t2i )− tkbti(bti + ti)

)
+

(
− 1

4
t3i (b+ 1)(b2 + 1) +

bti
3

(b2t2i + bt2i + t2i )

)]
=

=
2m

ti(b− 1)

[(
bti − ti

2

)
t2k +

(
t2i
3

(1− b)(2 + b)

)
tk +

(
t3i (b− 1)(b2 + 2b+ 3)

12

)]

= mt2k −m

(
2ti
3

(2 + b)

)
tk +m

(
t2i (b

2 + 2b+ 3)

6

)

In this case:

γ′i = 1, β′i =
2(2 + b)ti

3
, α′i =

(3 + 2b+ b2)t2i
6

.

Similarly, one could derive the expected quality loss function due to ash content.

Case 1: Ash content of products from supplier i is lower than δi, thus,735

aδi ≤ vi ≤ δi.

γi = 1, βi =
2(2 + a)δi

3
, αi =

(3 + 2a+ a2)δ2
i

6
.

Case 2: Ash content of supplier i is higher than δi, thus, δi < vi ≤ bδi.

γi = 1, βi =
2(2 + b)δi

3
, αi =

(3 + 2b+ b2)δ2
i

6
.
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Table 10: The Moisture Cost and Ash Cost for Thermochemical Technology [dollars/ton]

ci(δ1, o) of case 1 ci(δ1, o) of case 2 c′i(t1, o) of case 1 c′i(t1, o) of case 2

Distribution 1 7.1719 9.8267 7.2655 7.4932
Distribution 2 6.4493 8.2463 5.8916 6.0071
Distribution 3 6.2702 7.6254 5.8220 6.0992

Table 11: The Moisture Cost and Ash Cost for Biochemical Technology [dollars/ton]

ci(δ2, o) of case 1 ci(δ2, o) of case 2 c′i(t2, o) of case 1 c′i(t2, o) of case 2

Distribution 1 0 0 5.7255 5.8212
Distribution 2 0 0 5.4516 5.4351
Distribution 3 0 0 5.4700 5.4392
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